#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
+#include <rte_power_intrinsics.h>
#include <rte_prefetch.h>
#include <rte_ring.h>
#include <rte_string_fns.h>
dlb2_movdir64b(port_data->pp_addr, qe4);
}
+static inline int
+dlb2_consume_qe_immediate(struct dlb2_port *qm_port, int num)
+{
+ struct process_local_port_data *port_data;
+ struct dlb2_cq_pop_qe *qe;
+
+ RTE_ASSERT(qm_port->config_state == DLB2_CONFIGURED);
+
+ qe = qm_port->consume_qe;
+
+ qe->tokens = num - 1;
+
+ /* No store fence needed since no pointer is being sent, and CQ token
+ * pops can be safely reordered with other HCWs.
+ */
+ port_data = &dlb2_port[qm_port->id][PORT_TYPE(qm_port)];
+
+ dlb2_movntdq_single(port_data->pp_addr, qe);
+
+ DLB2_LOG_DBG("dlb2: consume immediate - %d QEs\n", num);
+
+ qm_port->owed_tokens = 0;
+
+ return 0;
+}
+
static inline void
dlb2_hw_do_enqueue(struct dlb2_port *qm_port,
bool do_sfence,
return dlb2_event_enqueue_burst(event_port, events, num);
}
+static inline void
+dlb2_port_credits_inc(struct dlb2_port *qm_port, int num)
+{
+ uint32_t batch_size = DLB2_SW_CREDIT_BATCH_SZ;
+
+ /* increment port credits, and return to pool if exceeds threshold */
+ if (!qm_port->is_directed) {
+ qm_port->cached_ldb_credits += num;
+ if (qm_port->cached_ldb_credits >= 2 * batch_size) {
+ __atomic_fetch_add(
+ qm_port->credit_pool[DLB2_LDB_QUEUE],
+ batch_size, __ATOMIC_SEQ_CST);
+ qm_port->cached_ldb_credits -= batch_size;
+ }
+ } else {
+ qm_port->cached_dir_credits += num;
+ if (qm_port->cached_dir_credits >= 2 * batch_size) {
+ __atomic_fetch_add(
+ qm_port->credit_pool[DLB2_DIR_QUEUE],
+ batch_size, __ATOMIC_SEQ_CST);
+ qm_port->cached_dir_credits -= batch_size;
+ }
+ }
+}
+
+static inline int
+dlb2_dequeue_wait(struct dlb2_eventdev *dlb2,
+ struct dlb2_eventdev_port *ev_port,
+ struct dlb2_port *qm_port,
+ uint64_t timeout,
+ uint64_t start_ticks)
+{
+ struct process_local_port_data *port_data;
+ uint64_t elapsed_ticks;
+
+ port_data = &dlb2_port[qm_port->id][PORT_TYPE(qm_port)];
+
+ elapsed_ticks = rte_get_timer_cycles() - start_ticks;
+
+ /* Wait/poll time expired */
+ if (elapsed_ticks >= timeout) {
+ return 1;
+ } else if (dlb2->umwait_allowed) {
+ volatile struct dlb2_dequeue_qe *cq_base;
+ union {
+ uint64_t raw_qe[2];
+ struct dlb2_dequeue_qe qe;
+ } qe_mask;
+ uint64_t expected_value;
+ volatile uint64_t *monitor_addr;
+
+ qe_mask.qe.cq_gen = 1; /* set mask */
+
+ cq_base = port_data->cq_base;
+ monitor_addr = (volatile uint64_t *)(volatile void *)
+ &cq_base[qm_port->cq_idx];
+ monitor_addr++; /* cq_gen bit is in second 64bit location */
+
+ if (qm_port->gen_bit)
+ expected_value = qe_mask.raw_qe[1];
+ else
+ expected_value = 0;
+
+ rte_power_monitor(monitor_addr, expected_value,
+ qe_mask.raw_qe[1], timeout + start_ticks,
+ sizeof(uint64_t));
+
+ DLB2_INC_STAT(ev_port->stats.traffic.rx_umonitor_umwait, 1);
+ } else {
+ uint64_t poll_interval = RTE_LIBRTE_PMD_DLB2_POLL_INTERVAL;
+ uint64_t curr_ticks = rte_get_timer_cycles();
+ uint64_t init_ticks = curr_ticks;
+
+ while ((curr_ticks - start_ticks < timeout) &&
+ (curr_ticks - init_ticks < poll_interval))
+ curr_ticks = rte_get_timer_cycles();
+ }
+
+ return 0;
+}
+
+static inline int
+dlb2_process_dequeue_qes(struct dlb2_eventdev_port *ev_port,
+ struct dlb2_port *qm_port,
+ struct rte_event *events,
+ struct dlb2_dequeue_qe *qes,
+ int cnt)
+{
+ uint8_t *qid_mappings = qm_port->qid_mappings;
+ int i, num, evq_id;
+
+ for (i = 0, num = 0; i < cnt; i++) {
+ struct dlb2_dequeue_qe *qe = &qes[i];
+ int sched_type_map[DLB2_NUM_HW_SCHED_TYPES] = {
+ [DLB2_SCHED_ATOMIC] = RTE_SCHED_TYPE_ATOMIC,
+ [DLB2_SCHED_UNORDERED] = RTE_SCHED_TYPE_PARALLEL,
+ [DLB2_SCHED_ORDERED] = RTE_SCHED_TYPE_ORDERED,
+ [DLB2_SCHED_DIRECTED] = RTE_SCHED_TYPE_ATOMIC,
+ };
+
+ /* Fill in event information.
+ * Note that flow_id must be embedded in the data by
+ * the app, such as the mbuf RSS hash field if the data
+ * buffer is a mbuf.
+ */
+ if (unlikely(qe->error)) {
+ DLB2_LOG_ERR("QE error bit ON\n");
+ DLB2_INC_STAT(ev_port->stats.traffic.rx_drop, 1);
+ dlb2_consume_qe_immediate(qm_port, 1);
+ continue; /* Ignore */
+ }
+
+ events[num].u64 = qe->data;
+ events[num].flow_id = qe->flow_id;
+ events[num].priority = DLB2_TO_EV_PRIO((uint8_t)qe->priority);
+ events[num].event_type = qe->u.event_type.major;
+ events[num].sub_event_type = qe->u.event_type.sub;
+ events[num].sched_type = sched_type_map[qe->sched_type];
+ events[num].impl_opaque = qe->qid_depth;
+
+ /* qid not preserved for directed queues */
+ if (qm_port->is_directed)
+ evq_id = ev_port->link[0].queue_id;
+ else
+ evq_id = qid_mappings[qe->qid];
+
+ events[num].queue_id = evq_id;
+ DLB2_INC_STAT(
+ ev_port->stats.queue[evq_id].qid_depth[qe->qid_depth],
+ 1);
+ DLB2_INC_STAT(ev_port->stats.rx_sched_cnt[qe->sched_type], 1);
+ num++;
+ }
+
+ DLB2_INC_STAT(ev_port->stats.traffic.rx_ok, num);
+
+ return num;
+}
+
+static inline int
+dlb2_process_dequeue_four_qes(struct dlb2_eventdev_port *ev_port,
+ struct dlb2_port *qm_port,
+ struct rte_event *events,
+ struct dlb2_dequeue_qe *qes)
+{
+ int sched_type_map[] = {
+ [DLB2_SCHED_ATOMIC] = RTE_SCHED_TYPE_ATOMIC,
+ [DLB2_SCHED_UNORDERED] = RTE_SCHED_TYPE_PARALLEL,
+ [DLB2_SCHED_ORDERED] = RTE_SCHED_TYPE_ORDERED,
+ [DLB2_SCHED_DIRECTED] = RTE_SCHED_TYPE_ATOMIC,
+ };
+ const int num_events = DLB2_NUM_QES_PER_CACHE_LINE;
+ uint8_t *qid_mappings = qm_port->qid_mappings;
+ __m128i sse_evt[2];
+
+ /* In the unlikely case that any of the QE error bits are set, process
+ * them one at a time.
+ */
+ if (unlikely(qes[0].error || qes[1].error ||
+ qes[2].error || qes[3].error))
+ return dlb2_process_dequeue_qes(ev_port, qm_port, events,
+ qes, num_events);
+
+ events[0].u64 = qes[0].data;
+ events[1].u64 = qes[1].data;
+ events[2].u64 = qes[2].data;
+ events[3].u64 = qes[3].data;
+
+ /* Construct the metadata portion of two struct rte_events
+ * in one 128b SSE register. Event metadata is constructed in the SSE
+ * registers like so:
+ * sse_evt[0][63:0]: event[0]'s metadata
+ * sse_evt[0][127:64]: event[1]'s metadata
+ * sse_evt[1][63:0]: event[2]'s metadata
+ * sse_evt[1][127:64]: event[3]'s metadata
+ */
+ sse_evt[0] = _mm_setzero_si128();
+ sse_evt[1] = _mm_setzero_si128();
+
+ /* Convert the hardware queue ID to an event queue ID and store it in
+ * the metadata:
+ * sse_evt[0][47:40] = qid_mappings[qes[0].qid]
+ * sse_evt[0][111:104] = qid_mappings[qes[1].qid]
+ * sse_evt[1][47:40] = qid_mappings[qes[2].qid]
+ * sse_evt[1][111:104] = qid_mappings[qes[3].qid]
+ */
+#define DLB_EVENT_QUEUE_ID_BYTE 5
+ sse_evt[0] = _mm_insert_epi8(sse_evt[0],
+ qid_mappings[qes[0].qid],
+ DLB_EVENT_QUEUE_ID_BYTE);
+ sse_evt[0] = _mm_insert_epi8(sse_evt[0],
+ qid_mappings[qes[1].qid],
+ DLB_EVENT_QUEUE_ID_BYTE + 8);
+ sse_evt[1] = _mm_insert_epi8(sse_evt[1],
+ qid_mappings[qes[2].qid],
+ DLB_EVENT_QUEUE_ID_BYTE);
+ sse_evt[1] = _mm_insert_epi8(sse_evt[1],
+ qid_mappings[qes[3].qid],
+ DLB_EVENT_QUEUE_ID_BYTE + 8);
+
+ /* Convert the hardware priority to an event priority and store it in
+ * the metadata, while also returning the queue depth status
+ * value captured by the hardware, storing it in impl_opaque, which can
+ * be read by the application but not modified
+ * sse_evt[0][55:48] = DLB2_TO_EV_PRIO(qes[0].priority)
+ * sse_evt[0][63:56] = qes[0].qid_depth
+ * sse_evt[0][119:112] = DLB2_TO_EV_PRIO(qes[1].priority)
+ * sse_evt[0][127:120] = qes[1].qid_depth
+ * sse_evt[1][55:48] = DLB2_TO_EV_PRIO(qes[2].priority)
+ * sse_evt[1][63:56] = qes[2].qid_depth
+ * sse_evt[1][119:112] = DLB2_TO_EV_PRIO(qes[3].priority)
+ * sse_evt[1][127:120] = qes[3].qid_depth
+ */
+#define DLB_EVENT_PRIO_IMPL_OPAQUE_WORD 3
+#define DLB_BYTE_SHIFT 8
+ sse_evt[0] =
+ _mm_insert_epi16(sse_evt[0],
+ DLB2_TO_EV_PRIO((uint8_t)qes[0].priority) |
+ (qes[0].qid_depth << DLB_BYTE_SHIFT),
+ DLB_EVENT_PRIO_IMPL_OPAQUE_WORD);
+ sse_evt[0] =
+ _mm_insert_epi16(sse_evt[0],
+ DLB2_TO_EV_PRIO((uint8_t)qes[1].priority) |
+ (qes[1].qid_depth << DLB_BYTE_SHIFT),
+ DLB_EVENT_PRIO_IMPL_OPAQUE_WORD + 4);
+ sse_evt[1] =
+ _mm_insert_epi16(sse_evt[1],
+ DLB2_TO_EV_PRIO((uint8_t)qes[2].priority) |
+ (qes[2].qid_depth << DLB_BYTE_SHIFT),
+ DLB_EVENT_PRIO_IMPL_OPAQUE_WORD);
+ sse_evt[1] =
+ _mm_insert_epi16(sse_evt[1],
+ DLB2_TO_EV_PRIO((uint8_t)qes[3].priority) |
+ (qes[3].qid_depth << DLB_BYTE_SHIFT),
+ DLB_EVENT_PRIO_IMPL_OPAQUE_WORD + 4);
+
+ /* Write the event type, sub event type, and flow_id to the event
+ * metadata.
+ * sse_evt[0][31:0] = qes[0].flow_id |
+ * qes[0].u.event_type.major << 28 |
+ * qes[0].u.event_type.sub << 20;
+ * sse_evt[0][95:64] = qes[1].flow_id |
+ * qes[1].u.event_type.major << 28 |
+ * qes[1].u.event_type.sub << 20;
+ * sse_evt[1][31:0] = qes[2].flow_id |
+ * qes[2].u.event_type.major << 28 |
+ * qes[2].u.event_type.sub << 20;
+ * sse_evt[1][95:64] = qes[3].flow_id |
+ * qes[3].u.event_type.major << 28 |
+ * qes[3].u.event_type.sub << 20;
+ */
+#define DLB_EVENT_EV_TYPE_DW 0
+#define DLB_EVENT_EV_TYPE_SHIFT 28
+#define DLB_EVENT_SUB_EV_TYPE_SHIFT 20
+ sse_evt[0] = _mm_insert_epi32(sse_evt[0],
+ qes[0].flow_id |
+ qes[0].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT |
+ qes[0].u.event_type.sub << DLB_EVENT_SUB_EV_TYPE_SHIFT,
+ DLB_EVENT_EV_TYPE_DW);
+ sse_evt[0] = _mm_insert_epi32(sse_evt[0],
+ qes[1].flow_id |
+ qes[1].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT |
+ qes[1].u.event_type.sub << DLB_EVENT_SUB_EV_TYPE_SHIFT,
+ DLB_EVENT_EV_TYPE_DW + 2);
+ sse_evt[1] = _mm_insert_epi32(sse_evt[1],
+ qes[2].flow_id |
+ qes[2].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT |
+ qes[2].u.event_type.sub << DLB_EVENT_SUB_EV_TYPE_SHIFT,
+ DLB_EVENT_EV_TYPE_DW);
+ sse_evt[1] = _mm_insert_epi32(sse_evt[1],
+ qes[3].flow_id |
+ qes[3].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT |
+ qes[3].u.event_type.sub << DLB_EVENT_SUB_EV_TYPE_SHIFT,
+ DLB_EVENT_EV_TYPE_DW + 2);
+
+ /* Write the sched type to the event metadata. 'op' and 'rsvd' are not
+ * set:
+ * sse_evt[0][39:32] = sched_type_map[qes[0].sched_type] << 6
+ * sse_evt[0][103:96] = sched_type_map[qes[1].sched_type] << 6
+ * sse_evt[1][39:32] = sched_type_map[qes[2].sched_type] << 6
+ * sse_evt[1][103:96] = sched_type_map[qes[3].sched_type] << 6
+ */
+#define DLB_EVENT_SCHED_TYPE_BYTE 4
+#define DLB_EVENT_SCHED_TYPE_SHIFT 6
+ sse_evt[0] = _mm_insert_epi8(sse_evt[0],
+ sched_type_map[qes[0].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
+ DLB_EVENT_SCHED_TYPE_BYTE);
+ sse_evt[0] = _mm_insert_epi8(sse_evt[0],
+ sched_type_map[qes[1].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
+ DLB_EVENT_SCHED_TYPE_BYTE + 8);
+ sse_evt[1] = _mm_insert_epi8(sse_evt[1],
+ sched_type_map[qes[2].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
+ DLB_EVENT_SCHED_TYPE_BYTE);
+ sse_evt[1] = _mm_insert_epi8(sse_evt[1],
+ sched_type_map[qes[3].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
+ DLB_EVENT_SCHED_TYPE_BYTE + 8);
+
+ /* Store the metadata to the event (use the double-precision
+ * _mm_storeh_pd because there is no integer function for storing the
+ * upper 64b):
+ * events[0].event = sse_evt[0][63:0]
+ * events[1].event = sse_evt[0][127:64]
+ * events[2].event = sse_evt[1][63:0]
+ * events[3].event = sse_evt[1][127:64]
+ */
+ _mm_storel_epi64((__m128i *)&events[0].event, sse_evt[0]);
+ _mm_storeh_pd((double *)&events[1].event, (__m128d) sse_evt[0]);
+ _mm_storel_epi64((__m128i *)&events[2].event, sse_evt[1]);
+ _mm_storeh_pd((double *)&events[3].event, (__m128d) sse_evt[1]);
+
+ DLB2_INC_STAT(ev_port->stats.rx_sched_cnt[qes[0].sched_type], 1);
+ DLB2_INC_STAT(ev_port->stats.rx_sched_cnt[qes[1].sched_type], 1);
+ DLB2_INC_STAT(ev_port->stats.rx_sched_cnt[qes[2].sched_type], 1);
+ DLB2_INC_STAT(ev_port->stats.rx_sched_cnt[qes[3].sched_type], 1);
+
+ DLB2_INC_STAT(
+ ev_port->stats.queue[events[0].queue_id].
+ qid_depth[qes[0].qid_depth],
+ 1);
+ DLB2_INC_STAT(
+ ev_port->stats.queue[events[1].queue_id].
+ qid_depth[qes[1].qid_depth],
+ 1);
+ DLB2_INC_STAT(
+ ev_port->stats.queue[events[2].queue_id].
+ qid_depth[qes[2].qid_depth],
+ 1);
+ DLB2_INC_STAT(
+ ev_port->stats.queue[events[3].queue_id].
+ qid_depth[qes[3].qid_depth],
+ 1);
+
+ DLB2_INC_STAT(ev_port->stats.traffic.rx_ok, num_events);
+
+ return num_events;
+}
+
+static __rte_always_inline int
+dlb2_recv_qe_sparse(struct dlb2_port *qm_port, struct dlb2_dequeue_qe *qe)
+{
+ volatile struct dlb2_dequeue_qe *cq_addr;
+ uint8_t xor_mask[2] = {0x0F, 0x00};
+ const uint8_t and_mask = 0x0F;
+ __m128i *qes = (__m128i *)qe;
+ uint8_t gen_bits, gen_bit;
+ uintptr_t addr[4];
+ uint16_t idx;
+
+ cq_addr = dlb2_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
+
+ idx = qm_port->cq_idx;
+
+ /* Load the next 4 QEs */
+ addr[0] = (uintptr_t)&cq_addr[idx];
+ addr[1] = (uintptr_t)&cq_addr[(idx + 4) & qm_port->cq_depth_mask];
+ addr[2] = (uintptr_t)&cq_addr[(idx + 8) & qm_port->cq_depth_mask];
+ addr[3] = (uintptr_t)&cq_addr[(idx + 12) & qm_port->cq_depth_mask];
+
+ /* Prefetch next batch of QEs (all CQs occupy minimum 8 cache lines) */
+ rte_prefetch0(&cq_addr[(idx + 16) & qm_port->cq_depth_mask]);
+ rte_prefetch0(&cq_addr[(idx + 20) & qm_port->cq_depth_mask]);
+ rte_prefetch0(&cq_addr[(idx + 24) & qm_port->cq_depth_mask]);
+ rte_prefetch0(&cq_addr[(idx + 28) & qm_port->cq_depth_mask]);
+
+ /* Correct the xor_mask for wrap-around QEs */
+ gen_bit = qm_port->gen_bit;
+ xor_mask[gen_bit] ^= !!((idx + 4) > qm_port->cq_depth_mask) << 1;
+ xor_mask[gen_bit] ^= !!((idx + 8) > qm_port->cq_depth_mask) << 2;
+ xor_mask[gen_bit] ^= !!((idx + 12) > qm_port->cq_depth_mask) << 3;
+
+ /* Read the cache lines backwards to ensure that if QE[N] (N > 0) is
+ * valid, then QEs[0:N-1] are too.
+ */
+ qes[3] = _mm_load_si128((__m128i *)(void *)addr[3]);
+ rte_compiler_barrier();
+ qes[2] = _mm_load_si128((__m128i *)(void *)addr[2]);
+ rte_compiler_barrier();
+ qes[1] = _mm_load_si128((__m128i *)(void *)addr[1]);
+ rte_compiler_barrier();
+ qes[0] = _mm_load_si128((__m128i *)(void *)addr[0]);
+
+ /* Extract and combine the gen bits */
+ gen_bits = ((_mm_extract_epi8(qes[0], 15) & 0x1) << 0) |
+ ((_mm_extract_epi8(qes[1], 15) & 0x1) << 1) |
+ ((_mm_extract_epi8(qes[2], 15) & 0x1) << 2) |
+ ((_mm_extract_epi8(qes[3], 15) & 0x1) << 3);
+
+ /* XOR the combined bits such that a 1 represents a valid QE */
+ gen_bits ^= xor_mask[gen_bit];
+
+ /* Mask off gen bits we don't care about */
+ gen_bits &= and_mask;
+
+ return __builtin_popcount(gen_bits);
+}
+
+static inline void
+dlb2_inc_cq_idx(struct dlb2_port *qm_port, int cnt)
+{
+ uint16_t idx = qm_port->cq_idx_unmasked + cnt;
+
+ qm_port->cq_idx_unmasked = idx;
+ qm_port->cq_idx = idx & qm_port->cq_depth_mask;
+ qm_port->gen_bit = (~(idx >> qm_port->gen_bit_shift)) & 0x1;
+}
+
+static int
+dlb2_event_release(struct dlb2_eventdev *dlb2,
+ uint8_t port_id,
+ int n)
+{
+ struct process_local_port_data *port_data;
+ struct dlb2_eventdev_port *ev_port;
+ struct dlb2_port *qm_port;
+ int i, cnt;
+
+ if (port_id > dlb2->num_ports) {
+ DLB2_LOG_ERR("Invalid port id %d in dlb2-event_release\n",
+ port_id);
+ rte_errno = -EINVAL;
+ return rte_errno;
+ }
+
+ ev_port = &dlb2->ev_ports[port_id];
+ qm_port = &ev_port->qm_port;
+ port_data = &dlb2_port[qm_port->id][PORT_TYPE(qm_port)];
+
+ cnt = 0;
+
+ if (qm_port->is_directed) {
+ cnt = n;
+ goto sw_credit_update;
+ }
+
+ for (i = 0; i < n; i += DLB2_NUM_QES_PER_CACHE_LINE) {
+ int j;
+
+ /* Zero-out QEs */
+ qm_port->qe4[0].cmd_byte = 0;
+ qm_port->qe4[1].cmd_byte = 0;
+ qm_port->qe4[2].cmd_byte = 0;
+ qm_port->qe4[3].cmd_byte = 0;
+
+ for (j = 0; j < DLB2_NUM_QES_PER_CACHE_LINE && (i + j) < n; j++)
+ qm_port->qe4[j].cmd_byte = DLB2_COMP_CMD_BYTE;
+
+ qm_port->issued_releases += j;
+
+ if (j == 0)
+ break;
+
+ dlb2_hw_do_enqueue(qm_port, i == 0, port_data);
+
+ cnt += j;
+ }
+
+sw_credit_update:
+ /* each release returns one credit */
+ if (!ev_port->outstanding_releases) {
+ DLB2_LOG_ERR("Unrecoverable application error. Outstanding releases underflowed.\n");
+ rte_errno = -ENOTRECOVERABLE;
+ return rte_errno;
+ }
+
+ ev_port->outstanding_releases -= cnt;
+ ev_port->inflight_credits += cnt;
+
+ /* Replenish s/w credits if enough releases are performed */
+ dlb2_replenish_sw_credits(dlb2, ev_port);
+ return 0;
+}
+
+static inline int16_t
+dlb2_hw_dequeue_sparse(struct dlb2_eventdev *dlb2,
+ struct dlb2_eventdev_port *ev_port,
+ struct rte_event *events,
+ uint16_t max_num,
+ uint64_t dequeue_timeout_ticks)
+{
+ uint64_t timeout;
+ uint64_t start_ticks = 0ULL;
+ struct dlb2_port *qm_port;
+ int num = 0;
+
+ qm_port = &ev_port->qm_port;
+
+ /* We have a special implementation for waiting. Wait can be:
+ * 1) no waiting at all
+ * 2) busy poll only
+ * 3) wait for interrupt. If wakeup and poll time
+ * has expired, then return to caller
+ * 4) umonitor/umwait repeatedly up to poll time
+ */
+
+ /* If configured for per dequeue wait, then use wait value provided
+ * to this API. Otherwise we must use the global
+ * value from eventdev config time.
+ */
+ if (!dlb2->global_dequeue_wait)
+ timeout = dequeue_timeout_ticks;
+ else
+ timeout = dlb2->global_dequeue_wait_ticks;
+
+ start_ticks = rte_get_timer_cycles();
+
+ while (num < max_num) {
+ struct dlb2_dequeue_qe qes[DLB2_NUM_QES_PER_CACHE_LINE];
+ int num_avail;
+
+ /* Copy up to 4 QEs from the current cache line into qes */
+ num_avail = dlb2_recv_qe_sparse(qm_port, qes);
+
+ /* But don't process more than the user requested */
+ num_avail = RTE_MIN(num_avail, max_num - num);
+
+ dlb2_inc_cq_idx(qm_port, num_avail << 2);
+
+ if (num_avail == DLB2_NUM_QES_PER_CACHE_LINE)
+ num += dlb2_process_dequeue_four_qes(ev_port,
+ qm_port,
+ &events[num],
+ &qes[0]);
+ else if (num_avail)
+ num += dlb2_process_dequeue_qes(ev_port,
+ qm_port,
+ &events[num],
+ &qes[0],
+ num_avail);
+ else if ((timeout == 0) || (num > 0))
+ /* Not waiting in any form, or 1+ events received? */
+ break;
+ else if (dlb2_dequeue_wait(dlb2, ev_port, qm_port,
+ timeout, start_ticks))
+ break;
+ }
+
+ qm_port->owed_tokens += num;
+
+ if (num) {
+
+ dlb2_consume_qe_immediate(qm_port, num);
+
+ ev_port->outstanding_releases += num;
+
+ dlb2_port_credits_inc(qm_port, num);
+ }
+
+ return num;
+}
+
+static __rte_always_inline int
+dlb2_recv_qe(struct dlb2_port *qm_port, struct dlb2_dequeue_qe *qe,
+ uint8_t *offset)
+{
+ uint8_t xor_mask[2][4] = { {0x0F, 0x0E, 0x0C, 0x08},
+ {0x00, 0x01, 0x03, 0x07} };
+ uint8_t and_mask[4] = {0x0F, 0x0E, 0x0C, 0x08};
+ volatile struct dlb2_dequeue_qe *cq_addr;
+ __m128i *qes = (__m128i *)qe;
+ uint64_t *cache_line_base;
+ uint8_t gen_bits;
+
+ cq_addr = dlb2_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
+ cq_addr = &cq_addr[qm_port->cq_idx];
+
+ cache_line_base = (void *)(((uintptr_t)cq_addr) & ~0x3F);
+ *offset = ((uintptr_t)cq_addr & 0x30) >> 4;
+
+ /* Load the next CQ cache line from memory. Pack these reads as tight
+ * as possible to reduce the chance that DLB invalidates the line while
+ * the CPU is reading it. Read the cache line backwards to ensure that
+ * if QE[N] (N > 0) is valid, then QEs[0:N-1] are too.
+ *
+ * (Valid QEs start at &qe[offset])
+ */
+ qes[3] = _mm_load_si128((__m128i *)&cache_line_base[6]);
+ qes[2] = _mm_load_si128((__m128i *)&cache_line_base[4]);
+ qes[1] = _mm_load_si128((__m128i *)&cache_line_base[2]);
+ qes[0] = _mm_load_si128((__m128i *)&cache_line_base[0]);
+
+ /* Evict the cache line ASAP */
+ rte_cldemote(cache_line_base);
+
+ /* Extract and combine the gen bits */
+ gen_bits = ((_mm_extract_epi8(qes[0], 15) & 0x1) << 0) |
+ ((_mm_extract_epi8(qes[1], 15) & 0x1) << 1) |
+ ((_mm_extract_epi8(qes[2], 15) & 0x1) << 2) |
+ ((_mm_extract_epi8(qes[3], 15) & 0x1) << 3);
+
+ /* XOR the combined bits such that a 1 represents a valid QE */
+ gen_bits ^= xor_mask[qm_port->gen_bit][*offset];
+
+ /* Mask off gen bits we don't care about */
+ gen_bits &= and_mask[*offset];
+
+ return __builtin_popcount(gen_bits);
+}
+
+static inline int16_t
+dlb2_hw_dequeue(struct dlb2_eventdev *dlb2,
+ struct dlb2_eventdev_port *ev_port,
+ struct rte_event *events,
+ uint16_t max_num,
+ uint64_t dequeue_timeout_ticks)
+{
+ uint64_t timeout;
+ uint64_t start_ticks = 0ULL;
+ struct dlb2_port *qm_port;
+ int num = 0;
+
+ qm_port = &ev_port->qm_port;
+
+ /* We have a special implementation for waiting. Wait can be:
+ * 1) no waiting at all
+ * 2) busy poll only
+ * 3) wait for interrupt. If wakeup and poll time
+ * has expired, then return to caller
+ * 4) umonitor/umwait repeatedly up to poll time
+ */
+
+ /* If configured for per dequeue wait, then use wait value provided
+ * to this API. Otherwise we must use the global
+ * value from eventdev config time.
+ */
+ if (!dlb2->global_dequeue_wait)
+ timeout = dequeue_timeout_ticks;
+ else
+ timeout = dlb2->global_dequeue_wait_ticks;
+
+ start_ticks = rte_get_timer_cycles();
+
+ while (num < max_num) {
+ struct dlb2_dequeue_qe qes[DLB2_NUM_QES_PER_CACHE_LINE];
+ uint8_t offset;
+ int num_avail;
+
+ /* Copy up to 4 QEs from the current cache line into qes */
+ num_avail = dlb2_recv_qe(qm_port, qes, &offset);
+
+ /* But don't process more than the user requested */
+ num_avail = RTE_MIN(num_avail, max_num - num);
+
+ dlb2_inc_cq_idx(qm_port, num_avail);
+
+ if (num_avail == DLB2_NUM_QES_PER_CACHE_LINE)
+ num += dlb2_process_dequeue_four_qes(ev_port,
+ qm_port,
+ &events[num],
+ &qes[offset]);
+ else if (num_avail)
+ num += dlb2_process_dequeue_qes(ev_port,
+ qm_port,
+ &events[num],
+ &qes[offset],
+ num_avail);
+ else if ((timeout == 0) || (num > 0))
+ /* Not waiting in any form, or 1+ events received? */
+ break;
+ else if (dlb2_dequeue_wait(dlb2, ev_port, qm_port,
+ timeout, start_ticks))
+ break;
+ }
+
+ qm_port->owed_tokens += num;
+
+ if (num) {
+
+ dlb2_consume_qe_immediate(qm_port, num);
+
+ ev_port->outstanding_releases += num;
+
+ dlb2_port_credits_inc(qm_port, num);
+ }
+
+ return num;
+}
+
+static uint16_t
+dlb2_event_dequeue_burst(void *event_port, struct rte_event *ev, uint16_t num,
+ uint64_t wait)
+{
+ struct dlb2_eventdev_port *ev_port = event_port;
+ struct dlb2_eventdev *dlb2 = ev_port->dlb2;
+ uint16_t cnt;
+
+ RTE_ASSERT(ev_port->setup_done);
+ RTE_ASSERT(ev != NULL);
+
+ if (ev_port->implicit_release && ev_port->outstanding_releases > 0) {
+ uint16_t out_rels = ev_port->outstanding_releases;
+
+ if (dlb2_event_release(dlb2, ev_port->id, out_rels))
+ return 0; /* rte_errno is set */
+
+ DLB2_INC_STAT(ev_port->stats.tx_implicit_rel, out_rels);
+ }
+
+ cnt = dlb2_hw_dequeue(dlb2, ev_port, ev, num, wait);
+
+ DLB2_INC_STAT(ev_port->stats.traffic.total_polls, 1);
+ DLB2_INC_STAT(ev_port->stats.traffic.zero_polls, ((cnt == 0) ? 1 : 0));
+
+ return cnt;
+}
+
+static uint16_t
+dlb2_event_dequeue(void *event_port, struct rte_event *ev, uint64_t wait)
+{
+ return dlb2_event_dequeue_burst(event_port, ev, 1, wait);
+}
+
+static uint16_t
+dlb2_event_dequeue_burst_sparse(void *event_port, struct rte_event *ev,
+ uint16_t num, uint64_t wait)
+{
+ struct dlb2_eventdev_port *ev_port = event_port;
+ struct dlb2_eventdev *dlb2 = ev_port->dlb2;
+ uint16_t cnt;
+
+ RTE_ASSERT(ev_port->setup_done);
+ RTE_ASSERT(ev != NULL);
+
+ if (ev_port->implicit_release && ev_port->outstanding_releases > 0) {
+ uint16_t out_rels = ev_port->outstanding_releases;
+
+ if (dlb2_event_release(dlb2, ev_port->id, out_rels))
+ return 0; /* rte_errno is set */
+
+ DLB2_INC_STAT(ev_port->stats.tx_implicit_rel, out_rels);
+ }
+
+ cnt = dlb2_hw_dequeue_sparse(dlb2, ev_port, ev, num, wait);
+
+ DLB2_INC_STAT(ev_port->stats.traffic.total_polls, 1);
+ DLB2_INC_STAT(ev_port->stats.traffic.zero_polls, ((cnt == 0) ? 1 : 0));
+ return cnt;
+}
+
+static uint16_t
+dlb2_event_dequeue_sparse(void *event_port, struct rte_event *ev,
+ uint64_t wait)
+{
+ return dlb2_event_dequeue_burst_sparse(event_port, ev, 1, wait);
+}
+
static void
dlb2_entry_points_init(struct rte_eventdev *dev)
{
+ struct dlb2_eventdev *dlb2;
+
/* Expose PMD's eventdev interface */
static struct rte_eventdev_ops dlb2_eventdev_entry_ops = {
.dev_infos_get = dlb2_eventdev_info_get,
dev->enqueue_burst = dlb2_event_enqueue_burst;
dev->enqueue_new_burst = dlb2_event_enqueue_new_burst;
dev->enqueue_forward_burst = dlb2_event_enqueue_forward_burst;
+
+ dlb2 = dev->data->dev_private;
+ if (dlb2->poll_mode == DLB2_CQ_POLL_MODE_SPARSE) {
+ dev->dequeue = dlb2_event_dequeue_sparse;
+ dev->dequeue_burst = dlb2_event_dequeue_burst_sparse;
+ } else {
+ dev->dequeue = dlb2_event_dequeue;
+ dev->dequeue_burst = dlb2_event_dequeue_burst;
+ }
}
int