struct thread_params {
uint8_t dev_id;
uint16_t queue_id;
+ uint32_t lcore_id;
uint64_t start_time;
double ops_per_sec;
double mbps;
uint8_t iter_count;
rte_atomic16_t nb_dequeued;
rte_atomic16_t processing_status;
+ rte_atomic16_t burst_sz;
struct test_op_params *op_params;
+ struct rte_bbdev_dec_op *dec_ops[MAX_BURST];
+ struct rte_bbdev_enc_op *enc_ops[MAX_BURST];
};
#ifdef RTE_BBDEV_OFFLOAD_COST
uint16_t i;
uint64_t total_time;
uint16_t deq, burst_sz, num_ops;
- uint16_t queue_id = INVALID_QUEUE_ID;
- struct rte_bbdev_dec_op *dec_ops[MAX_BURST];
- struct rte_bbdev_enc_op *enc_ops[MAX_BURST];
+ uint16_t queue_id = *(uint16_t *) ret_param;
struct rte_bbdev_info info;
double tb_len_bits;
struct thread_params *tp = cb_arg;
- RTE_SET_USED(ret_param);
- queue_id = tp->queue_id;
/* Find matching thread params using queue_id */
for (i = 0; i < MAX_QUEUES; ++i, ++tp)
return;
}
- burst_sz = tp->op_params->burst_sz;
+ burst_sz = rte_atomic16_read(&tp->burst_sz);
num_ops = tp->op_params->num_to_process;
- if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC) {
- deq = rte_bbdev_dequeue_dec_ops(dev_id, queue_id, dec_ops,
+ if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
+ deq = rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
+ &tp->dec_ops[
+ rte_atomic16_read(&tp->nb_dequeued)],
burst_sz);
- rte_bbdev_dec_op_free_bulk(dec_ops, deq);
- } else {
- deq = rte_bbdev_dequeue_enc_ops(dev_id, queue_id, enc_ops,
+ else
+ deq = rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
+ &tp->enc_ops[
+ rte_atomic16_read(&tp->nb_dequeued)],
burst_sz);
- rte_bbdev_enc_op_free_bulk(enc_ops, deq);
- }
if (deq < burst_sz) {
printf(
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC) {
struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
- ret = validate_dec_op(dec_ops, num_ops, ref_op,
+ ret = validate_dec_op(tp->dec_ops, num_ops, ref_op,
tp->op_params->vector_mask);
- rte_bbdev_dec_op_free_bulk(dec_ops, deq);
+ /* get the max of iter_count for all dequeued ops */
+ for (i = 0; i < num_ops; ++i)
+ tp->iter_count = RTE_MAX(
+ tp->dec_ops[i]->turbo_dec.iter_count,
+ tp->iter_count);
+ rte_bbdev_dec_op_free_bulk(tp->dec_ops, deq);
} else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC) {
struct rte_bbdev_enc_op *ref_op = tp->op_params->ref_enc_op;
- ret = validate_enc_op(enc_ops, num_ops, ref_op);
- rte_bbdev_enc_op_free_bulk(enc_ops, deq);
+ ret = validate_enc_op(tp->enc_ops, num_ops, ref_op);
+ rte_bbdev_enc_op_free_bulk(tp->enc_ops, deq);
}
if (ret) {
return;
}
- tp->ops_per_sec = ((double)num_ops) /
+ tp->ops_per_sec += ((double)num_ops) /
((double)total_time / (double)rte_get_tsc_hz());
- tp->mbps = (((double)(num_ops * tb_len_bits)) / 1000000.0) /
+ tp->mbps += (((double)(num_ops * tb_len_bits)) / 1000000.0) /
((double)total_time / (double)rte_get_tsc_hz());
rte_atomic16_add(&tp->nb_dequeued, deq);
struct rte_bbdev_dec_op *ops[num_to_process];
struct test_buffers *bufs = NULL;
struct rte_bbdev_info info;
- int ret;
- uint16_t num_to_enq;
+ int ret, i, j;
+ uint16_t num_to_enq, enq;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
bufs->hard_outputs, bufs->soft_outputs,
tp->op_params->ref_dec_op);
- tp->start_time = rte_rdtsc_precise();
- for (enqueued = 0; enqueued < num_to_process;) {
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_to_process; ++j)
+ ops[j]->opaque_data = (void *)(uintptr_t)j;
- num_to_enq = burst_sz;
+ for (j = 0; j < TEST_REPETITIONS; ++j) {
+ for (i = 0; i < num_to_process; ++i)
+ rte_pktmbuf_reset(ops[i]->turbo_dec.hard_output.data);
- if (unlikely(num_to_process - enqueued < num_to_enq))
- num_to_enq = num_to_process - enqueued;
+ tp->start_time = rte_rdtsc_precise();
+ for (enqueued = 0; enqueued < num_to_process;) {
+ num_to_enq = burst_sz;
+
+ if (unlikely(num_to_process - enqueued < num_to_enq))
+ num_to_enq = num_to_process - enqueued;
+
+ enq = 0;
+ do {
+ enq += rte_bbdev_enqueue_dec_ops(tp->dev_id,
+ queue_id, &ops[enqueued],
+ num_to_enq);
+ } while (unlikely(num_to_enq != enq));
+ enqueued += enq;
+
+ /* Write to thread burst_sz current number of enqueued
+ * descriptors. It ensures that proper number of
+ * descriptors will be dequeued in callback
+ * function - needed for last batch in case where
+ * the number of operations is not a multiple of
+ * burst size.
+ */
+ rte_atomic16_set(&tp->burst_sz, num_to_enq);
- enqueued += rte_bbdev_enqueue_dec_ops(tp->dev_id, queue_id,
- &ops[enqueued], num_to_enq);
+ /* Wait until processing of previous batch is
+ * completed.
+ */
+ while (rte_atomic16_read(&tp->nb_dequeued) !=
+ (int16_t) enqueued)
+ rte_pause();
+ }
+ if (j != TEST_REPETITIONS - 1)
+ rte_atomic16_clear(&tp->nb_dequeued);
}
return TEST_SUCCESS;
struct rte_bbdev_enc_op *ops[num_to_process];
struct test_buffers *bufs = NULL;
struct rte_bbdev_info info;
- int ret;
- uint16_t num_to_enq;
+ int ret, i, j;
+ uint16_t num_to_enq, enq;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
copy_reference_enc_op(ops, num_to_process, 0, bufs->inputs,
bufs->hard_outputs, tp->op_params->ref_enc_op);
- tp->start_time = rte_rdtsc_precise();
- for (enqueued = 0; enqueued < num_to_process;) {
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_to_process; ++j)
+ ops[j]->opaque_data = (void *)(uintptr_t)j;
+
+ for (j = 0; j < TEST_REPETITIONS; ++j) {
+ for (i = 0; i < num_to_process; ++i)
+ rte_pktmbuf_reset(ops[i]->turbo_enc.output.data);
- num_to_enq = burst_sz;
+ tp->start_time = rte_rdtsc_precise();
+ for (enqueued = 0; enqueued < num_to_process;) {
+ num_to_enq = burst_sz;
- if (unlikely(num_to_process - enqueued < num_to_enq))
- num_to_enq = num_to_process - enqueued;
+ if (unlikely(num_to_process - enqueued < num_to_enq))
+ num_to_enq = num_to_process - enqueued;
+
+ enq = 0;
+ do {
+ enq += rte_bbdev_enqueue_enc_ops(tp->dev_id,
+ queue_id, &ops[enqueued],
+ num_to_enq);
+ } while (unlikely(enq != num_to_enq));
+ enqueued += enq;
+
+ /* Write to thread burst_sz current number of enqueued
+ * descriptors. It ensures that proper number of
+ * descriptors will be dequeued in callback
+ * function - needed for last batch in case where
+ * the number of operations is not a multiple of
+ * burst size.
+ */
+ rte_atomic16_set(&tp->burst_sz, num_to_enq);
- enqueued += rte_bbdev_enqueue_enc_ops(tp->dev_id, queue_id,
- &ops[enqueued], num_to_enq);
+ /* Wait until processing of previous batch is
+ * completed.
+ */
+ while (rte_atomic16_read(&tp->nb_dequeued) !=
+ (int16_t) enqueued)
+ rte_pause();
+ }
+ if (j != TEST_REPETITIONS - 1)
+ rte_atomic16_clear(&tp->nb_dequeued);
}
return TEST_SUCCESS;
static void
print_enc_throughput(struct thread_params *t_params, unsigned int used_cores)
{
- unsigned int lcore_id, iter = 0;
+ unsigned int iter = 0;
double total_mops = 0, total_mbps = 0;
- RTE_LCORE_FOREACH(lcore_id) {
- if (iter++ >= used_cores)
- break;
+ for (iter = 0; iter < used_cores; iter++) {
printf(
- "Throughput for core (%u): %.8lg Ops/s, %.8lg Mbps\n",
- lcore_id, t_params[lcore_id].ops_per_sec,
- t_params[lcore_id].mbps);
- total_mops += t_params[lcore_id].ops_per_sec;
- total_mbps += t_params[lcore_id].mbps;
+ "Throughput for core (%u): %.8lg Ops/s, %.8lg Mbps\n",
+ t_params[iter].lcore_id, t_params[iter].ops_per_sec,
+ t_params[iter].mbps);
+ total_mops += t_params[iter].ops_per_sec;
+ total_mbps += t_params[iter].mbps;
}
printf(
"\nTotal throughput for %u cores: %.8lg MOPS, %.8lg Mbps\n",
static void
print_dec_throughput(struct thread_params *t_params, unsigned int used_cores)
{
- unsigned int lcore_id, iter = 0;
+ unsigned int iter = 0;
double total_mops = 0, total_mbps = 0;
uint8_t iter_count = 0;
- RTE_LCORE_FOREACH(lcore_id) {
- if (iter++ >= used_cores)
- break;
+ for (iter = 0; iter < used_cores; iter++) {
printf(
- "Throughput for core (%u): %.8lg Ops/s, %.8lg Mbps @ max %u iterations\n",
- lcore_id, t_params[lcore_id].ops_per_sec,
- t_params[lcore_id].mbps,
- t_params[lcore_id].iter_count);
- total_mops += t_params[lcore_id].ops_per_sec;
- total_mbps += t_params[lcore_id].mbps;
- iter_count = RTE_MAX(iter_count, t_params[lcore_id].iter_count);
+ "Throughput for core (%u): %.8lg Ops/s, %.8lg Mbps @ max %u iterations\n",
+ t_params[iter].lcore_id, t_params[iter].ops_per_sec,
+ t_params[iter].mbps, t_params[iter].iter_count);
+ total_mops += t_params[iter].ops_per_sec;
+ total_mbps += t_params[iter].mbps;
+ iter_count = RTE_MAX(iter_count, t_params[iter].iter_count);
}
printf(
"\nTotal throughput for %u cores: %.8lg MOPS, %.8lg Mbps @ max %u iterations\n",
{
int ret;
unsigned int lcore_id, used_cores = 0;
- struct thread_params t_params[MAX_QUEUES];
+ struct thread_params *t_params, *tp;
struct rte_bbdev_info info;
lcore_function_t *throughput_function;
- struct thread_params *tp;
uint16_t num_lcores;
const char *op_type_str;
? ad->nb_queues
: op_params->num_lcores;
+ /* Allocate memory for thread parameters structure */
+ t_params = rte_zmalloc(NULL, num_lcores * sizeof(struct thread_params),
+ RTE_CACHE_LINE_SIZE);
+ TEST_ASSERT_NOT_NULL(t_params, "Failed to alloc %zuB for t_params",
+ RTE_ALIGN(sizeof(struct thread_params) * num_lcores,
+ RTE_CACHE_LINE_SIZE));
+
if (intr_enabled) {
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
throughput_function = throughput_intr_lcore_dec;
/* Dequeue interrupt callback registration */
ret = rte_bbdev_callback_register(ad->dev_id,
RTE_BBDEV_EVENT_DEQUEUE, dequeue_event_callback,
- &t_params);
- if (ret < 0)
+ t_params);
+ if (ret < 0) {
+ rte_free(t_params);
return ret;
+ }
} else {
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
throughput_function = throughput_pmd_lcore_dec;
rte_atomic16_set(&op_params->sync, SYNC_WAIT);
- t_params[rte_lcore_id()].dev_id = ad->dev_id;
- t_params[rte_lcore_id()].op_params = op_params;
- t_params[rte_lcore_id()].queue_id =
- ad->queue_ids[used_cores++];
+ /* Master core is set at first entry */
+ t_params[0].dev_id = ad->dev_id;
+ t_params[0].lcore_id = rte_lcore_id();
+ t_params[0].op_params = op_params;
+ t_params[0].queue_id = ad->queue_ids[used_cores++];
+ t_params[0].iter_count = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (used_cores >= num_lcores)
break;
- t_params[lcore_id].dev_id = ad->dev_id;
- t_params[lcore_id].op_params = op_params;
- t_params[lcore_id].queue_id = ad->queue_ids[used_cores++];
+ t_params[used_cores].dev_id = ad->dev_id;
+ t_params[used_cores].lcore_id = lcore_id;
+ t_params[used_cores].op_params = op_params;
+ t_params[used_cores].queue_id = ad->queue_ids[used_cores];
+ t_params[used_cores].iter_count = 0;
- rte_eal_remote_launch(throughput_function, &t_params[lcore_id],
- lcore_id);
+ rte_eal_remote_launch(throughput_function,
+ &t_params[used_cores++], lcore_id);
}
rte_atomic16_set(&op_params->sync, SYNC_START);
- ret = throughput_function(&t_params[rte_lcore_id()]);
+ ret = throughput_function(&t_params[0]);
/* Master core is always used */
- used_cores = 1;
- RTE_LCORE_FOREACH_SLAVE(lcore_id) {
- if (used_cores++ >= num_lcores)
- break;
-
- ret |= rte_eal_wait_lcore(lcore_id);
- }
+ for (used_cores = 1; used_cores < num_lcores; used_cores++)
+ ret |= rte_eal_wait_lcore(t_params[used_cores].lcore_id);
/* Return if test failed */
- if (ret)
+ if (ret) {
+ rte_free(t_params);
return ret;
+ }
/* Print throughput if interrupts are disabled and test passed */
if (!intr_enabled) {
print_dec_throughput(t_params, num_lcores);
else
print_enc_throughput(t_params, num_lcores);
+ rte_free(t_params);
return ret;
}
* error using processing_status variable.
* Wait for master lcore operations.
*/
- tp = &t_params[rte_lcore_id()];
+ tp = &t_params[0];
while ((rte_atomic16_read(&tp->nb_dequeued) <
op_params->num_to_process) &&
(rte_atomic16_read(&tp->processing_status) !=
TEST_FAILED))
rte_pause();
+ tp->ops_per_sec /= TEST_REPETITIONS;
+ tp->mbps /= TEST_REPETITIONS;
ret |= rte_atomic16_read(&tp->processing_status);
/* Wait for slave lcores operations */
- used_cores = 1;
- RTE_LCORE_FOREACH_SLAVE(lcore_id) {
- tp = &t_params[lcore_id];
- if (used_cores++ >= num_lcores)
- break;
+ for (used_cores = 1; used_cores < num_lcores; used_cores++) {
+ tp = &t_params[used_cores];
while ((rte_atomic16_read(&tp->nb_dequeued) <
op_params->num_to_process) &&
TEST_FAILED))
rte_pause();
+ tp->ops_per_sec /= TEST_REPETITIONS;
+ tp->mbps /= TEST_REPETITIONS;
ret |= rte_atomic16_read(&tp->processing_status);
}
else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC)
print_enc_throughput(t_params, num_lcores);
}
+
+ rte_free(t_params);
return ret;
}