net/bnxt: add AVX2 RX/Tx
authorLance Richardson <lance.richardson@broadcom.com>
Mon, 24 May 2021 18:59:51 +0000 (14:59 -0400)
committerAjit Khaparde <ajit.khaparde@broadcom.com>
Mon, 7 Jun 2021 21:36:13 +0000 (23:36 +0200)
Implement AVX2 vector PMD.

Signed-off-by: Lance Richardson <lance.richardson@broadcom.com>
Reviewed-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
doc/guides/nics/bnxt.rst
drivers/net/bnxt/bnxt_ethdev.c
drivers/net/bnxt/bnxt_rxr.c
drivers/net/bnxt/bnxt_rxr.h
drivers/net/bnxt/bnxt_rxtx_vec_avx2.c [new file with mode: 0644]
drivers/net/bnxt/bnxt_rxtx_vec_neon.c
drivers/net/bnxt/bnxt_rxtx_vec_sse.c
drivers/net/bnxt/bnxt_txr.h
drivers/net/bnxt/meson.build

index 0fb2032..feb0c6a 100644 (file)
@@ -853,23 +853,36 @@ DPDK implements a light-weight library to allow PMDs to be bonded together and p
 Vector Processing
 -----------------
 
+The BNXT PMD provides vectorized burst transmit/receive function implementations
+on x86-based platforms using SSE (Streaming SIMD Extensions) and AVX2 (Advanced
+Vector Extensions 2) instructions, and on Arm-based platforms using Arm Neon
+Advanced SIMD instructions. Vector processing support is currently implemented
+only for Intel/AMD and Arm CPU architectures.
+
 Vector processing provides significantly improved performance over scalar
-processing (see Vector Processor, here).
+processing. This improved performance is derived from a number of optimizations:
+
+* Using SIMD instructions to operate on multiple packets in parallel.
+* Using SIMD instructions to do more work per instruction than is possible
+  with scalar instructions, for example by leveraging 128-bit and 256-bi
+  load/store instructions or by using SIMD shuffle and permute operations.
+* Batching
 
-The BNXT PMD supports the vector processing using SSE (Streaming SIMD
-Extensions) instructions on x86 platforms. It also supports NEON intrinsics for
-vector processing on ARM CPUs. The BNXT vPMD (vector mode PMD) is available for
-Intel/AMD and ARM CPU architectures.
+    * TX: transmit completions are processed in bulk.
+    * RX: bulk allocation of mbufs is used when allocating rxq buffers.
 
-This improved performance comes from several optimizations:
+* Simplifications enabled by not supporting chained mbufs in vector mode.
+* Simplifications enabled by not supporting some stateless offloads in vector
+  mode:
 
-* Batching
-    * TX: processing completions in bulk
-    * RX: allocating mbufs in bulk
-* Chained mbufs are *not* supported, i.e. a packet should fit a single mbuf
-* Some stateless offloads are *not* supported with vector processing
-    * TX: no offloads will be supported
-    * RX: reduced RX offloads (listed below) will be supported::
+    * TX: only the following reduced set of transmit offloads is supported in
+      vector mode::
+
+       DEV_TX_OFFLOAD_MBUF_FAST_FREE
+
+    * RX: only the following reduced set of receive offloads is supported in
+      vector mode (note that jumbo MTU is allowed only when the MTU setting
+      does not require `DEV_RX_OFFLOAD_SCATTER` to be enabled)::
 
        DEV_RX_OFFLOAD_VLAN_STRIP
        DEV_RX_OFFLOAD_KEEP_CRC
@@ -878,23 +891,21 @@ This improved performance comes from several optimizations:
        DEV_RX_OFFLOAD_UDP_CKSUM
        DEV_RX_OFFLOAD_TCP_CKSUM
        DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM
+       DEV_RX_OFFLOAD_OUTER_UDP_CKSUM
        DEV_RX_OFFLOAD_RSS_HASH
        DEV_RX_OFFLOAD_VLAN_FILTER
 
-The BNXT Vector PMD is enabled in DPDK builds by default.
-
-However, a decision to enable vector mode will be made when the port transitions
-from stopped to started. Any TX offloads or some RX offloads (other than listed
-above) will disable the vector mode.
-Offload configuration changes that impact vector mode must be made when the port
-is stopped.
+The BNXT Vector PMD is enabled in DPDK builds by default. The decision to enable
+vector processing is made at run-time when the port is started; if no transmit
+offloads outside the set supported for vector mode are enabled then vector mode
+transmit will be enabled, and if no receive offloads outside the set supported
+for vector mode are enabled then vector mode receive will be enabled.  Offload
+configuration changes that impact the decision to enable vector mode are allowed
+only when the port is stopped.
 
 Note that TX (or RX) vector mode can be enabled independently from RX (or TX)
 vector mode.
 
-Also vector mode is allowed when jumbo is enabled
-as long as the MTU setting does not require scattered Rx.
-
 Appendix
 --------
 
index 3778e28..96d2bef 100644 (file)
@@ -1174,32 +1174,57 @@ bnxt_receive_function(struct rte_eth_dev *eth_dev)
                return bnxt_recv_pkts;
        }
 
-#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
-#ifndef RTE_LIBRTE_IEEE1588
+#if (defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)) && \
+       !defined(RTE_LIBRTE_IEEE1588)
+
+       /* Vector mode receive cannot be enabled if scattered rx is in use. */
+       if (eth_dev->data->scattered_rx)
+               goto use_scalar_rx;
+
        /*
-        * Vector mode receive can be enabled only if scatter rx is not
-        * in use and rx offloads are limited to VLAN stripping and
-        * CRC stripping.
+        * Vector mode receive cannot be enabled if Truflow is enabled or if
+        * asynchronous completions and receive completions can be placed in
+        * the same completion ring.
         */
-       if (!eth_dev->data->scattered_rx &&
-           !(eth_dev->data->dev_conf.rxmode.offloads &
-             ~(DEV_RX_OFFLOAD_VLAN_STRIP |
-               DEV_RX_OFFLOAD_KEEP_CRC |
-               DEV_RX_OFFLOAD_JUMBO_FRAME |
-               DEV_RX_OFFLOAD_IPV4_CKSUM |
-               DEV_RX_OFFLOAD_UDP_CKSUM |
-               DEV_RX_OFFLOAD_TCP_CKSUM |
-               DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
-               DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
-               DEV_RX_OFFLOAD_RSS_HASH |
-               DEV_RX_OFFLOAD_VLAN_FILTER)) &&
-           !BNXT_TRUFLOW_EN(bp) && BNXT_NUM_ASYNC_CPR(bp) &&
-           rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
-               PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n",
+       if (BNXT_TRUFLOW_EN(bp) || !BNXT_NUM_ASYNC_CPR(bp))
+               goto use_scalar_rx;
+
+       /*
+        * Vector mode receive cannot be enabled if any receive offloads outside
+        * a limited subset have been enabled.
+        */
+       if (eth_dev->data->dev_conf.rxmode.offloads &
+               ~(DEV_RX_OFFLOAD_VLAN_STRIP |
+                 DEV_RX_OFFLOAD_KEEP_CRC |
+                 DEV_RX_OFFLOAD_JUMBO_FRAME |
+                 DEV_RX_OFFLOAD_IPV4_CKSUM |
+                 DEV_RX_OFFLOAD_UDP_CKSUM |
+                 DEV_RX_OFFLOAD_TCP_CKSUM |
+                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
+                 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
+                 DEV_RX_OFFLOAD_RSS_HASH |
+                 DEV_RX_OFFLOAD_VLAN_FILTER))
+               goto use_scalar_rx;
+
+#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
+       if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
+           rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1) {
+               PMD_DRV_LOG(INFO,
+                           "Using AVX2 vector mode receive for port %d\n",
+                           eth_dev->data->port_id);
+               bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
+               return bnxt_recv_pkts_vec_avx2;
+       }
+ #endif
+       if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
+               PMD_DRV_LOG(INFO,
+                           "Using SSE vector mode receive for port %d\n",
                            eth_dev->data->port_id);
                bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
                return bnxt_recv_pkts_vec;
        }
+
+use_scalar_rx:
        PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
                    eth_dev->data->port_id);
        PMD_DRV_LOG(INFO,
@@ -1207,7 +1232,6 @@ bnxt_receive_function(struct rte_eth_dev *eth_dev)
                    eth_dev->data->port_id,
                    eth_dev->data->scattered_rx,
                    eth_dev->data->dev_conf.rxmode.offloads);
-#endif
 #endif
        bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
        return bnxt_recv_pkts;
@@ -1222,22 +1246,36 @@ bnxt_transmit_function(struct rte_eth_dev *eth_dev)
        if (BNXT_CHIP_SR2(bp))
                return bnxt_xmit_pkts;
 
-#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
-#ifndef RTE_LIBRTE_IEEE1588
+#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64) && \
+       !defined(RTE_LIBRTE_IEEE1588)
        uint64_t offloads = eth_dev->data->dev_conf.txmode.offloads;
 
        /*
         * Vector mode transmit can be enabled only if not using scatter rx
         * or tx offloads.
         */
-       if (!eth_dev->data->scattered_rx &&
-           !(offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
-           !BNXT_TRUFLOW_EN(bp) &&
-           rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
-               PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n",
+       if (eth_dev->data->scattered_rx ||
+           (offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) ||
+           BNXT_TRUFLOW_EN(bp))
+               goto use_scalar_tx;
+
+#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
+       if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
+           rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1) {
+               PMD_DRV_LOG(INFO,
+                           "Using AVX2 vector mode transmit for port %d\n",
+                           eth_dev->data->port_id);
+               return bnxt_xmit_pkts_vec_avx2;
+       }
+#endif
+       if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
+               PMD_DRV_LOG(INFO,
+                           "Using SSE vector mode transmit for port %d\n",
                            eth_dev->data->port_id);
                return bnxt_xmit_pkts_vec;
        }
+
+use_scalar_tx:
        PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
                    eth_dev->data->port_id);
        PMD_DRV_LOG(INFO,
@@ -1245,7 +1283,6 @@ bnxt_transmit_function(struct rte_eth_dev *eth_dev)
                    eth_dev->data->port_id,
                    eth_dev->data->scattered_rx,
                    offloads);
-#endif
 #endif
        return bnxt_xmit_pkts;
 }
@@ -2855,11 +2892,15 @@ static const struct {
        eth_rx_burst_t pkt_burst;
        const char *info;
 } bnxt_rx_burst_info[] = {
-       {bnxt_recv_pkts,        "Scalar"},
+       {bnxt_recv_pkts,                "Scalar"},
 #if defined(RTE_ARCH_X86)
-       {bnxt_recv_pkts_vec,    "Vector SSE"},
-#elif defined(RTE_ARCH_ARM64)
-       {bnxt_recv_pkts_vec,    "Vector Neon"},
+       {bnxt_recv_pkts_vec,            "Vector SSE"},
+#endif
+#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
+       {bnxt_recv_pkts_vec_avx2,       "Vector AVX2"},
+#endif
+#if defined(RTE_ARCH_ARM64)
+       {bnxt_recv_pkts_vec,            "Vector Neon"},
 #endif
 };
 
@@ -2885,11 +2926,15 @@ static const struct {
        eth_tx_burst_t pkt_burst;
        const char *info;
 } bnxt_tx_burst_info[] = {
-       {bnxt_xmit_pkts,        "Scalar"},
+       {bnxt_xmit_pkts,                "Scalar"},
 #if defined(RTE_ARCH_X86)
-       {bnxt_xmit_pkts_vec,    "Vector SSE"},
-#elif defined(RTE_ARCH_ARM64)
-       {bnxt_xmit_pkts_vec,    "Vector Neon"},
+       {bnxt_xmit_pkts_vec,            "Vector SSE"},
+#endif
+#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
+       {bnxt_xmit_pkts_vec_avx2,       "Vector AVX2"},
+#endif
+#if defined(RTE_ARCH_ARM64)
+       {bnxt_xmit_pkts_vec,            "Vector Neon"},
 #endif
 };
 
index a6a8fb2..4eef75f 100644 (file)
@@ -1147,7 +1147,7 @@ int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
 
        /* Allocate extra rx ring entries for vector rx. */
        ring->vmem_size = sizeof(struct rte_mbuf *) *
-                               (ring->ring_size + RTE_BNXT_DESCS_PER_LOOP);
+                         (ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES);
 
        ring->vmem = (void **)&rxr->rx_buf_ring;
        ring->fw_ring_id = INVALID_HW_RING_ID;
@@ -1251,7 +1251,7 @@ int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
 
        /* Initialize dummy mbuf pointers for vector mode rx. */
        for (i = ring->ring_size;
-            i < ring->ring_size + RTE_BNXT_DESCS_PER_LOOP; i++) {
+            i < ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES; i++) {
                rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
        }
 
index 79f1458..955bf3e 100644 (file)
@@ -42,7 +42,12 @@ static inline uint16_t bnxt_tpa_start_agg_id(struct bnxt *bp,
                RX_PKT_CMPL_AGG_BUFS_SFT)
 
 /* Number of descriptors to process per inner loop in vector mode. */
-#define RTE_BNXT_DESCS_PER_LOOP                4U
+#define BNXT_RX_DESCS_PER_LOOP_VEC128  4U /* SSE, Neon */
+#define BNXT_RX_DESCS_PER_LOOP_VEC256  8U /* AVX2 */
+
+/* Number of extra Rx mbuf ring entries to allocate for vector mode. */
+#define BNXT_RX_EXTRA_MBUF_ENTRIES \
+       RTE_MAX(BNXT_RX_DESCS_PER_LOOP_VEC128, BNXT_RX_DESCS_PER_LOOP_VEC256)
 
 #define BNXT_OL_FLAGS_TBL_DIM  64
 #define BNXT_OL_FLAGS_ERR_TBL_DIM 32
@@ -106,6 +111,10 @@ uint16_t bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
 int bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq);
 #endif
 
+#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
+uint16_t bnxt_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+                                uint16_t nb_pkts);
+#endif
 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
                           struct rx_pkt_cmpl_hi *rxcmp1,
                           struct rte_mbuf *mbuf);
diff --git a/drivers/net/bnxt/bnxt_rxtx_vec_avx2.c b/drivers/net/bnxt/bnxt_rxtx_vec_avx2.c
new file mode 100644 (file)
index 0000000..a06dfec
--- /dev/null
@@ -0,0 +1,597 @@
+/* SPDX-License-Identifier: BSD-3-Clause */
+/* Copyright(c) 2019-2021 Broadcom All rights reserved. */
+
+#include <inttypes.h>
+#include <stdbool.h>
+
+#include <rte_bitmap.h>
+#include <rte_byteorder.h>
+#include <rte_malloc.h>
+#include <rte_memory.h>
+#include <rte_vect.h>
+
+#include "bnxt.h"
+#include "bnxt_cpr.h"
+#include "bnxt_ring.h"
+
+#include "bnxt_txq.h"
+#include "bnxt_txr.h"
+#include "bnxt_rxtx_vec_common.h"
+#include <unistd.h>
+
+static uint16_t
+recv_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
+{
+       struct bnxt_rx_queue *rxq = rx_queue;
+       const __m256i mbuf_init =
+               _mm256_set_epi64x(0, 0, 0, rxq->mbuf_initializer);
+       struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
+       struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
+       uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
+       uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
+       struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
+       uint64_t valid, desc_valid_mask = ~0ULL;
+       const __m256i info3_v_mask = _mm256_set1_epi32(CMPL_BASE_V);
+       uint32_t raw_cons = cpr->cp_raw_cons;
+       uint32_t cons, mbcons;
+       int nb_rx_pkts = 0;
+       int i;
+       const __m256i valid_target =
+               _mm256_set1_epi32(!!(raw_cons & cp_ring_size));
+       const __m256i dsc_shuf_msk =
+               _mm256_set_epi8(0xff, 0xff, 0xff, 0xff,  /* Zeroes. */
+                               7, 6,                    /* metadata type */
+                               9, 8,                    /* flags2 low 16 */
+                               5, 4,                    /* vlan_tci */
+                               1, 0,                    /* errors_v2 */
+                               0xff, 0xff, 0xff, 0xff,  /* Zeroes. */
+                               0xff, 0xff, 0xff, 0xff,  /* Zeroes. */
+                               7, 6,                    /* metadata type */
+                               9, 8,                    /* flags2 low 16 */
+                               5, 4,                    /* vlan_tci */
+                               1, 0,                    /* errors_v2 */
+                               0xff, 0xff, 0xff, 0xff); /* Zeroes. */
+       const __m256i shuf_msk =
+               _mm256_set_epi8(15, 14, 13, 12,          /* rss */
+                               7, 6,                    /* vlan_tci */
+                               3, 2,                    /* data_len */
+                               0xFF, 0xFF, 3, 2,        /* pkt_len */
+                               0xFF, 0xFF, 0xFF, 0xFF,  /* pkt_type (zeroes) */
+                               15, 14, 13, 12,          /* rss */
+                               7, 6,                    /* vlan_tci */
+                               3, 2,                    /* data_len */
+                               0xFF, 0xFF, 3, 2,        /* pkt_len */
+                               0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */
+       const __m256i flags_type_mask =
+               _mm256_set1_epi32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
+       const __m256i flags2_mask1 =
+               _mm256_set1_epi32(CMPL_FLAGS2_VLAN_TUN_MSK);
+       const __m256i flags2_mask2 =
+               _mm256_set1_epi32(RX_PKT_CMPL_FLAGS2_IP_TYPE);
+       const __m256i rss_mask =
+               _mm256_set1_epi32(RX_PKT_CMPL_FLAGS_RSS_VALID);
+       __m256i t0, t1, flags_type, flags2, index, errors;
+       __m256i ptype_idx, ptypes, is_tunnel;
+       __m256i mbuf01, mbuf23, mbuf45, mbuf67;
+       __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, rearm6, rearm7;
+       __m256i ol_flags, ol_flags_hi;
+       __m256i rss_flags;
+
+       /* Validate ptype table indexing at build time. */
+       bnxt_check_ptype_constants();
+
+       /* If Rx Q was stopped return */
+       if (unlikely(!rxq->rx_started))
+               return 0;
+
+       if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
+               bnxt_rxq_rearm(rxq, rxr);
+
+       nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256);
+
+       cons = raw_cons & (cp_ring_size - 1);
+       mbcons = (raw_cons / 2) & (rx_ring_size - 1);
+
+       /* Prefetch first four descriptor pairs. */
+       rte_prefetch0(&cp_desc_ring[cons + 0]);
+       rte_prefetch0(&cp_desc_ring[cons + 4]);
+       rte_prefetch0(&cp_desc_ring[cons + 8]);
+       rte_prefetch0(&cp_desc_ring[cons + 12]);
+
+       /* Ensure that we do not go past the ends of the rings. */
+       nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
+                                          (cp_ring_size - cons) / 2));
+       /*
+        * If we are at the end of the ring, ensure that descriptors after the
+        * last valid entry are not treated as valid. Otherwise, force the
+        * maximum number of packets to receive to be a multiple of the per-
+        * loop count.
+        */
+       if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC256) {
+               desc_valid_mask >>=
+                       CHAR_BIT * (BNXT_RX_DESCS_PER_LOOP_VEC256 - nb_pkts);
+       } else {
+               nb_pkts =
+                       RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256);
+       }
+
+       /* Handle RX burst request */
+       for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC256,
+                                 cons += BNXT_RX_DESCS_PER_LOOP_VEC256 * 2,
+                                 mbcons += BNXT_RX_DESCS_PER_LOOP_VEC256) {
+               __m256i desc0, desc1, desc2, desc3, desc4, desc5, desc6, desc7;
+               __m256i rxcmp0_1, rxcmp2_3, rxcmp4_5, rxcmp6_7, info3_v;
+               __m256i errors_v2;
+               uint32_t num_valid;
+
+               /* Copy eight mbuf pointers to output array. */
+               t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons]);
+               _mm256_storeu_si256((void *)&rx_pkts[i], t0);
+#ifdef RTE_ARCH_X86_64
+               t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons + 4]);
+               _mm256_storeu_si256((void *)&rx_pkts[i + 4], t0);
+#endif
+
+               /* Prefetch eight descriptor pairs for next iteration. */
+               if (i + BNXT_RX_DESCS_PER_LOOP_VEC256 < nb_pkts) {
+                       rte_prefetch0(&cp_desc_ring[cons + 16]);
+                       rte_prefetch0(&cp_desc_ring[cons + 20]);
+                       rte_prefetch0(&cp_desc_ring[cons + 24]);
+                       rte_prefetch0(&cp_desc_ring[cons + 28]);
+               }
+
+               /*
+                * Load eight receive completion descriptors into 256-bit
+                * registers. Loads are issued in reverse order in order to
+                * ensure consistent state.
+                */
+               desc7 = _mm256_load_si256((void *)&cp_desc_ring[cons + 14]);
+               rte_compiler_barrier();
+               desc6 = _mm256_load_si256((void *)&cp_desc_ring[cons + 12]);
+               rte_compiler_barrier();
+               desc5 = _mm256_load_si256((void *)&cp_desc_ring[cons + 10]);
+               rte_compiler_barrier();
+               desc4 = _mm256_load_si256((void *)&cp_desc_ring[cons + 8]);
+               rte_compiler_barrier();
+               desc3 = _mm256_load_si256((void *)&cp_desc_ring[cons + 6]);
+               rte_compiler_barrier();
+               desc2 = _mm256_load_si256((void *)&cp_desc_ring[cons + 4]);
+               rte_compiler_barrier();
+               desc1 = _mm256_load_si256((void *)&cp_desc_ring[cons + 2]);
+               rte_compiler_barrier();
+               desc0 = _mm256_load_si256((void *)&cp_desc_ring[cons + 0]);
+
+               /*
+                * Pack needed fields from each descriptor into a compressed
+                * 128-bit layout and pair two compressed descriptors into
+                * 256-bit registers. The 128-bit compressed layout is as
+                * follows:
+                *     Bits  0-15: flags_type field from low completion record.
+                *     Bits 16-31: len field  from low completion record.
+                *     Bits 32-47: flags2 (low 16 bits) from high completion.
+                *     Bits 48-79: metadata from high completion record.
+                *     Bits 80-95: errors_v2 from high completion record.
+                *     Bits 96-127: rss hash from low completion record.
+                */
+               t0 = _mm256_permute2f128_si256(desc6, desc7, 0x20);
+               t1 = _mm256_permute2f128_si256(desc6, desc7, 0x31);
+               t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
+               rxcmp6_7 = _mm256_blend_epi32(t0, t1, 0x66);
+
+               t0 = _mm256_permute2f128_si256(desc4, desc5, 0x20);
+               t1 = _mm256_permute2f128_si256(desc4, desc5, 0x31);
+               t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
+               rxcmp4_5 = _mm256_blend_epi32(t0, t1, 0x66);
+
+               t0 = _mm256_permute2f128_si256(desc2, desc3, 0x20);
+               t1 = _mm256_permute2f128_si256(desc2, desc3, 0x31);
+               t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
+               rxcmp2_3 = _mm256_blend_epi32(t0, t1, 0x66);
+
+               t0 = _mm256_permute2f128_si256(desc0, desc1, 0x20);
+               t1 = _mm256_permute2f128_si256(desc0, desc1, 0x31);
+               t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
+               rxcmp0_1 = _mm256_blend_epi32(t0, t1, 0x66);
+
+               /* Compute packet type table indices for eight packets. */
+               t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3);
+               t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7);
+               flags_type = _mm256_unpacklo_epi64(t0, t1);
+               ptype_idx = _mm256_and_si256(flags_type, flags_type_mask);
+               ptype_idx = _mm256_srli_epi32(ptype_idx,
+                                             RX_PKT_CMPL_FLAGS_ITYPE_SFT -
+                                             BNXT_PTYPE_TBL_TYPE_SFT);
+
+               t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3);
+               t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7);
+               flags2 = _mm256_unpackhi_epi64(t0, t1);
+
+               t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask1),
+                                      RX_PKT_CMPL_FLAGS2_META_FORMAT_SFT -
+                                      BNXT_PTYPE_TBL_VLAN_SFT);
+               ptype_idx = _mm256_or_si256(ptype_idx, t0);
+
+               t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask2),
+                                      RX_PKT_CMPL_FLAGS2_IP_TYPE_SFT -
+                                      BNXT_PTYPE_TBL_IP_VER_SFT);
+               ptype_idx = _mm256_or_si256(ptype_idx, t0);
+
+               /*
+                * Load ptypes for eight packets using gather. Gather operations
+                * have extremely high latency (~19 cycles), execution and use
+                * of result should be separated as much as possible.
+                */
+               ptypes = _mm256_i32gather_epi32((int *)bnxt_ptype_table,
+                                               ptype_idx, sizeof(uint32_t));
+               /*
+                * Compute ol_flags and checksum error table indices for eight
+                * packets.
+                */
+               is_tunnel = _mm256_and_si256(flags2, _mm256_set1_epi32(4));
+               is_tunnel = _mm256_slli_epi32(is_tunnel, 3);
+               flags2 = _mm256_and_si256(flags2, _mm256_set1_epi32(0x1F));
+
+               /* Extract errors_v2 fields for eight packets. */
+               t0 = _mm256_unpackhi_epi32(rxcmp0_1, rxcmp2_3);
+               t1 = _mm256_unpackhi_epi32(rxcmp4_5, rxcmp6_7);
+               errors_v2 = _mm256_unpacklo_epi64(t0, t1);
+
+               errors = _mm256_srli_epi32(errors_v2, 4);
+               errors = _mm256_and_si256(errors, _mm256_set1_epi32(0xF));
+               errors = _mm256_and_si256(errors, flags2);
+
+               index = _mm256_andnot_si256(errors, flags2);
+               errors = _mm256_or_si256(errors,
+                                        _mm256_srli_epi32(is_tunnel, 1));
+               index = _mm256_or_si256(index, is_tunnel);
+
+               /*
+                * Load ol_flags for eight packets using gather. Gather
+                * operations have extremely high latency (~19 cycles),
+                * execution and use of result should be separated as much
+                * as possible.
+                */
+               ol_flags = _mm256_i32gather_epi32((int *)rxr->ol_flags_table,
+                                                 index, sizeof(uint32_t));
+               errors = _mm256_i32gather_epi32((int *)rxr->ol_flags_err_table,
+                                               errors, sizeof(uint32_t));
+
+               /*
+                * Pack the 128-bit array of valid descriptor flags into 64
+                * bits and count the number of set bits in order to determine
+                * the number of valid descriptors.
+                */
+               const __m256i perm_msk =
+                               _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
+               info3_v = _mm256_permutevar8x32_epi32(errors_v2, perm_msk);
+               info3_v = _mm256_and_si256(errors_v2, info3_v_mask);
+               info3_v = _mm256_xor_si256(info3_v, valid_target);
+
+               info3_v = _mm256_packs_epi32(info3_v, _mm256_setzero_si256());
+               valid = _mm_cvtsi128_si64(_mm256_extracti128_si256(info3_v, 1));
+               valid = (valid << CHAR_BIT) |
+                       _mm_cvtsi128_si64(_mm256_castsi256_si128(info3_v));
+               num_valid = __builtin_popcountll(valid & desc_valid_mask);
+
+               if (num_valid == 0)
+                       break;
+
+               /* Update mbuf rearm_data for eight packets. */
+               mbuf01 = _mm256_shuffle_epi8(rxcmp0_1, shuf_msk);
+               mbuf23 = _mm256_shuffle_epi8(rxcmp2_3, shuf_msk);
+               mbuf45 = _mm256_shuffle_epi8(rxcmp4_5, shuf_msk);
+               mbuf67 = _mm256_shuffle_epi8(rxcmp6_7, shuf_msk);
+
+               /* Blend in ptype field for two mbufs at a time. */
+               mbuf01 = _mm256_blend_epi32(mbuf01, ptypes, 0x11);
+               mbuf23 = _mm256_blend_epi32(mbuf23,
+                                       _mm256_srli_si256(ptypes, 4), 0x11);
+               mbuf45 = _mm256_blend_epi32(mbuf45,
+                                       _mm256_srli_si256(ptypes, 8), 0x11);
+               mbuf67 = _mm256_blend_epi32(mbuf67,
+                                       _mm256_srli_si256(ptypes, 12), 0x11);
+
+               /* Unpack rearm data, set fixed fields for first four mbufs. */
+               rearm0 = _mm256_permute2f128_si256(mbuf_init, mbuf01, 0x20);
+               rearm1 = _mm256_blend_epi32(mbuf_init, mbuf01, 0xF0);
+               rearm2 = _mm256_permute2f128_si256(mbuf_init, mbuf23, 0x20);
+               rearm3 = _mm256_blend_epi32(mbuf_init, mbuf23, 0xF0);
+
+               /* Compute final ol_flags values for eight packets. */
+               rss_flags = _mm256_and_si256(flags_type, rss_mask);
+               rss_flags = _mm256_srli_epi32(rss_flags, 9);
+               ol_flags = _mm256_or_si256(ol_flags, errors);
+               ol_flags = _mm256_or_si256(ol_flags, rss_flags);
+               ol_flags_hi = _mm256_permute2f128_si256(ol_flags,
+                                                       ol_flags, 0x11);
+
+               /* Set ol_flags fields for first four packets. */
+               rearm0 = _mm256_blend_epi32(rearm0,
+                                           _mm256_slli_si256(ol_flags, 8),
+                                           0x04);
+               rearm1 = _mm256_blend_epi32(rearm1,
+                                           _mm256_slli_si256(ol_flags_hi, 8),
+                                           0x04);
+               rearm2 = _mm256_blend_epi32(rearm2,
+                                           _mm256_slli_si256(ol_flags, 4),
+                                           0x04);
+               rearm3 = _mm256_blend_epi32(rearm3,
+                                           _mm256_slli_si256(ol_flags_hi, 4),
+                                           0x04);
+
+               /* Store all mbuf fields for first four packets. */
+               _mm256_storeu_si256((void *)&rx_pkts[i + 0]->rearm_data,
+                                   rearm0);
+               _mm256_storeu_si256((void *)&rx_pkts[i + 1]->rearm_data,
+                                   rearm1);
+               _mm256_storeu_si256((void *)&rx_pkts[i + 2]->rearm_data,
+                                   rearm2);
+               _mm256_storeu_si256((void *)&rx_pkts[i + 3]->rearm_data,
+                                   rearm3);
+
+               /* Unpack rearm data, set fixed fields for final four mbufs. */
+               rearm4 = _mm256_permute2f128_si256(mbuf_init, mbuf45, 0x20);
+               rearm5 = _mm256_blend_epi32(mbuf_init, mbuf45, 0xF0);
+               rearm6 = _mm256_permute2f128_si256(mbuf_init, mbuf67, 0x20);
+               rearm7 = _mm256_blend_epi32(mbuf_init, mbuf67, 0xF0);
+
+               /* Set ol_flags fields for final four packets. */
+               rearm4 = _mm256_blend_epi32(rearm4, ol_flags, 0x04);
+               rearm5 = _mm256_blend_epi32(rearm5, ol_flags_hi, 0x04);
+               rearm6 = _mm256_blend_epi32(rearm6,
+                                           _mm256_srli_si256(ol_flags, 4),
+                                           0x04);
+               rearm7 = _mm256_blend_epi32(rearm7,
+                                           _mm256_srli_si256(ol_flags_hi, 4),
+                                           0x04);
+
+               /* Store all mbuf fields for final four packets. */
+               _mm256_storeu_si256((void *)&rx_pkts[i + 4]->rearm_data,
+                                   rearm4);
+               _mm256_storeu_si256((void *)&rx_pkts[i + 5]->rearm_data,
+                                   rearm5);
+               _mm256_storeu_si256((void *)&rx_pkts[i + 6]->rearm_data,
+                                   rearm6);
+               _mm256_storeu_si256((void *)&rx_pkts[i + 7]->rearm_data,
+                                   rearm7);
+
+               nb_rx_pkts += num_valid;
+               if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC256)
+                       break;
+       }
+
+       if (nb_rx_pkts) {
+               rxr->rx_raw_prod = RING_ADV(rxr->rx_raw_prod, nb_rx_pkts);
+
+               rxq->rxrearm_nb += nb_rx_pkts;
+               cpr->cp_raw_cons += 2 * nb_rx_pkts;
+               bnxt_db_cq(cpr);
+       }
+
+       return nb_rx_pkts;
+}
+
+uint16_t
+bnxt_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+                        uint16_t nb_pkts)
+{
+       uint16_t cnt = 0;
+
+       while (nb_pkts > RTE_BNXT_MAX_RX_BURST) {
+               uint16_t burst;
+
+               burst = recv_burst_vec_avx2(rx_queue, rx_pkts + cnt,
+                                            RTE_BNXT_MAX_RX_BURST);
+
+               cnt += burst;
+               nb_pkts -= burst;
+
+               if (burst < RTE_BNXT_MAX_RX_BURST)
+                       return cnt;
+       }
+       return cnt + recv_burst_vec_avx2(rx_queue, rx_pkts + cnt, nb_pkts);
+}
+
+static void
+bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
+{
+       struct bnxt_cp_ring_info *cpr = txq->cp_ring;
+       uint32_t raw_cons = cpr->cp_raw_cons;
+       uint32_t cons;
+       uint32_t nb_tx_pkts = 0;
+       struct tx_cmpl *txcmp;
+       struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
+       struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
+       uint32_t ring_mask = cp_ring_struct->ring_mask;
+
+       do {
+               cons = RING_CMPL(ring_mask, raw_cons);
+               txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
+
+               if (!CMP_VALID(txcmp, raw_cons, cp_ring_struct))
+                       break;
+
+               nb_tx_pkts += txcmp->opaque;
+               raw_cons = NEXT_RAW_CMP(raw_cons);
+       } while (nb_tx_pkts < ring_mask);
+
+       if (nb_tx_pkts) {
+               if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
+                       bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts);
+               else
+                       bnxt_tx_cmp_vec(txq, nb_tx_pkts);
+               cpr->cp_raw_cons = raw_cons;
+               bnxt_db_cq(cpr);
+       }
+}
+
+static inline void
+bnxt_xmit_one(struct rte_mbuf *mbuf, struct tx_bd_long *txbd,
+             struct rte_mbuf **tx_buf)
+{
+       uint64_t dsc_hi, dsc_lo;
+       __m128i desc;
+
+       *tx_buf = mbuf;
+
+       dsc_hi = mbuf->buf_iova + mbuf->data_off;
+       dsc_lo = (mbuf->data_len << 16) |
+                bnxt_xmit_flags_len(mbuf->data_len, TX_BD_FLAGS_NOCMPL);
+
+       desc = _mm_set_epi64x(dsc_hi, dsc_lo);
+       _mm_store_si128((void *)txbd, desc);
+}
+
+static uint16_t
+bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **pkts,
+                         uint16_t nb_pkts)
+{
+       struct bnxt_tx_ring_info *txr = txq->tx_ring;
+       uint16_t tx_prod, tx_raw_prod = txr->tx_raw_prod;
+       struct tx_bd_long *txbd;
+       struct rte_mbuf **tx_buf;
+       uint16_t to_send;
+
+       tx_prod = RING_IDX(txr->tx_ring_struct, tx_raw_prod);
+       txbd = &txr->tx_desc_ring[tx_prod];
+       tx_buf = &txr->tx_buf_ring[tx_prod];
+
+       /* Prefetch next transmit buffer descriptors. */
+       rte_prefetch0(txbd);
+       rte_prefetch0(txbd + 3);
+
+       nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
+
+       if (unlikely(nb_pkts == 0))
+               return 0;
+
+       /* Handle TX burst request */
+       to_send = nb_pkts;
+
+       /*
+        * If current descriptor is not on a 32-byte boundary, send one packet
+        * to align for 32-byte stores.
+        */
+       if (tx_prod & 1) {
+               bnxt_xmit_one(pkts[0], txbd++, tx_buf++);
+               to_send--;
+               pkts++;
+       }
+
+       /*
+        * Send four packets per loop, with a single store for each pair
+        * of descriptors.
+        */
+       while (to_send >= BNXT_TX_DESCS_PER_LOOP) {
+               uint64_t dsc0_hi, dsc0_lo, dsc1_hi, dsc1_lo;
+               uint64_t dsc2_hi, dsc2_lo, dsc3_hi, dsc3_lo;
+               __m256i dsc01, dsc23;
+
+               /* Prefetch next transmit buffer descriptors. */
+               rte_prefetch0(txbd + 4);
+               rte_prefetch0(txbd + 7);
+
+               /* Copy four mbuf pointers to tx buf ring. */
+#ifdef RTE_ARCH_X86_64
+               __m256i tmp = _mm256_loadu_si256((void *)pkts);
+               _mm256_storeu_si256((void *)tx_buf, tmp);
+#else
+               __m128i tmp = _mm_loadu_si128((void *)pkts);
+               _mm_storeu_si128((void *)tx_buf, tmp);
+#endif
+
+               dsc0_hi = tx_buf[0]->buf_iova + tx_buf[0]->data_off;
+               dsc0_lo = (tx_buf[0]->data_len << 16) |
+                         bnxt_xmit_flags_len(tx_buf[0]->data_len,
+                                             TX_BD_FLAGS_NOCMPL);
+
+               dsc1_hi = tx_buf[1]->buf_iova + tx_buf[1]->data_off;
+               dsc1_lo = (tx_buf[1]->data_len << 16) |
+                         bnxt_xmit_flags_len(tx_buf[1]->data_len,
+                                             TX_BD_FLAGS_NOCMPL);
+
+               dsc01 = _mm256_set_epi64x(dsc1_hi, dsc1_lo, dsc0_hi, dsc0_lo);
+
+               dsc2_hi = tx_buf[2]->buf_iova + tx_buf[2]->data_off;
+               dsc2_lo = (tx_buf[2]->data_len << 16) |
+                         bnxt_xmit_flags_len(tx_buf[2]->data_len,
+                                             TX_BD_FLAGS_NOCMPL);
+
+               dsc3_hi = tx_buf[3]->buf_iova + tx_buf[3]->data_off;
+               dsc3_lo = (tx_buf[3]->data_len << 16) |
+                         bnxt_xmit_flags_len(tx_buf[3]->data_len,
+                                             TX_BD_FLAGS_NOCMPL);
+
+               dsc23 = _mm256_set_epi64x(dsc3_hi, dsc3_lo, dsc2_hi, dsc2_lo);
+
+               _mm256_store_si256((void *)txbd, dsc01);
+               _mm256_store_si256((void *)(txbd + 2), dsc23);
+
+               to_send -= BNXT_TX_DESCS_PER_LOOP;
+               pkts += BNXT_TX_DESCS_PER_LOOP;
+               txbd += BNXT_TX_DESCS_PER_LOOP;
+               tx_buf += BNXT_TX_DESCS_PER_LOOP;
+       }
+
+       /* Send any remaining packets, writing each descriptor individually. */
+       while (to_send) {
+               bnxt_xmit_one(pkts[0], txbd++, tx_buf++);
+               to_send--;
+               pkts++;
+       }
+
+       /* Request a completion for the final packet of the burst. */
+       txbd[-1].opaque = nb_pkts;
+       txbd[-1].flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
+
+       tx_raw_prod += nb_pkts;
+       bnxt_db_write(&txr->tx_db, tx_raw_prod);
+
+       txr->tx_raw_prod = tx_raw_prod;
+
+       return nb_pkts;
+}
+
+uint16_t
+bnxt_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+                       uint16_t nb_pkts)
+{
+       int nb_sent = 0;
+       struct bnxt_tx_queue *txq = tx_queue;
+       struct bnxt_tx_ring_info *txr = txq->tx_ring;
+       uint16_t ring_size = txr->tx_ring_struct->ring_size;
+
+       /* Tx queue was stopped; wait for it to be restarted */
+       if (unlikely(!txq->tx_started)) {
+               PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
+               return 0;
+       }
+
+       /* Handle TX completions */
+       if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
+               bnxt_handle_tx_cp_vec(txq);
+
+       while (nb_pkts) {
+               uint16_t ret, num;
+
+               /*
+                * Ensure that no more than RTE_BNXT_MAX_TX_BURST packets
+                * are transmitted before the next completion.
+                */
+               num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
+
+               /*
+                * Ensure that a ring wrap does not occur within a call to
+                * bnxt_xmit_fixed_burst_vec().
+                */
+               num = RTE_MIN(num, ring_size -
+                                  (txr->tx_raw_prod & (ring_size - 1)));
+               ret = bnxt_xmit_fixed_burst_vec(txq, &tx_pkts[nb_sent], num);
+               nb_sent += ret;
+               nb_pkts -= ret;
+               if (ret < num)
+                       break;
+       }
+
+       return nb_sent;
+}
index a6e630e..b4e9202 100644 (file)
@@ -200,17 +200,20 @@ recv_burst_vec_neon(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
         * maximum number of packets to receive to be a multiple of the per-
         * loop count.
         */
-       if (nb_pkts < RTE_BNXT_DESCS_PER_LOOP)
-               desc_valid_mask >>= 16 * (RTE_BNXT_DESCS_PER_LOOP - nb_pkts);
-       else
-               nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP);
+       if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC128) {
+               desc_valid_mask >>=
+                       16 * (BNXT_RX_DESCS_PER_LOOP_VEC128 - nb_pkts);
+       } else {
+               nb_pkts =
+                       RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC128);
+       }
 
        /* Handle RX burst request */
-       for (i = 0; i < nb_pkts; i += RTE_BNXT_DESCS_PER_LOOP,
-                                 cons += RTE_BNXT_DESCS_PER_LOOP * 2,
-                                 mbcons += RTE_BNXT_DESCS_PER_LOOP) {
-               uint32x4_t rxcmp1[RTE_BNXT_DESCS_PER_LOOP];
-               uint32x4_t rxcmp[RTE_BNXT_DESCS_PER_LOOP];
+       for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC128,
+                                 cons += BNXT_RX_DESCS_PER_LOOP_VEC128 * 2,
+                                 mbcons += BNXT_RX_DESCS_PER_LOOP_VEC128) {
+               uint32x4_t rxcmp1[BNXT_RX_DESCS_PER_LOOP_VEC128];
+               uint32x4_t rxcmp[BNXT_RX_DESCS_PER_LOOP_VEC128];
                uint32x4_t info3_v;
                uint64x2_t t0, t1;
                uint32_t num_valid;
@@ -226,7 +229,7 @@ recv_burst_vec_neon(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
 #endif
 
                /* Prefetch four descriptor pairs for next iteration. */
-               if (i + RTE_BNXT_DESCS_PER_LOOP < nb_pkts) {
+               if (i + BNXT_RX_DESCS_PER_LOOP_VEC128 < nb_pkts) {
                        rte_prefetch0(&cp_desc_ring[cons + 8]);
                        rte_prefetch0(&cp_desc_ring[cons + 12]);
                }
@@ -284,7 +287,7 @@ recv_burst_vec_neon(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
                               rxr);
                nb_rx_pkts += num_valid;
 
-               if (num_valid < RTE_BNXT_DESCS_PER_LOOP)
+               if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC128)
                        break;
        }
 
index fe074f8..c479697 100644 (file)
@@ -191,17 +191,20 @@ recv_burst_vec_sse(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
         * maximum number of packets to receive to be a multiple of the per-
         * loop count.
         */
-       if (nb_pkts < RTE_BNXT_DESCS_PER_LOOP)
-               desc_valid_mask >>= 16 * (RTE_BNXT_DESCS_PER_LOOP - nb_pkts);
-       else
-               nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP);
+       if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC128) {
+               desc_valid_mask >>=
+                       16 * (BNXT_RX_DESCS_PER_LOOP_VEC128 - nb_pkts);
+       } else {
+               nb_pkts =
+                       RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC128);
+       }
 
        /* Handle RX burst request */
-       for (i = 0; i < nb_pkts; i += RTE_BNXT_DESCS_PER_LOOP,
-                                 cons += RTE_BNXT_DESCS_PER_LOOP * 2,
-                                 mbcons += RTE_BNXT_DESCS_PER_LOOP) {
-               __m128i rxcmp1[RTE_BNXT_DESCS_PER_LOOP];
-               __m128i rxcmp[RTE_BNXT_DESCS_PER_LOOP];
+       for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC128,
+                                 cons += BNXT_RX_DESCS_PER_LOOP_VEC128 * 2,
+                                 mbcons += BNXT_RX_DESCS_PER_LOOP_VEC128) {
+               __m128i rxcmp1[BNXT_RX_DESCS_PER_LOOP_VEC128];
+               __m128i rxcmp[BNXT_RX_DESCS_PER_LOOP_VEC128];
                __m128i tmp0, tmp1, info3_v;
                uint32_t num_valid;
 
@@ -216,7 +219,7 @@ recv_burst_vec_sse(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
 #endif
 
                /* Prefetch four descriptor pairs for next iteration. */
-               if (i + RTE_BNXT_DESCS_PER_LOOP < nb_pkts) {
+               if (i + BNXT_RX_DESCS_PER_LOOP_VEC128 < nb_pkts) {
                        rte_prefetch0(&cp_desc_ring[cons + 8]);
                        rte_prefetch0(&cp_desc_ring[cons + 12]);
                }
@@ -265,7 +268,7 @@ recv_burst_vec_sse(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
                               rxr);
                nb_rx_pkts += num_valid;
 
-               if (num_valid < RTE_BNXT_DESCS_PER_LOOP)
+               if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC128)
                        break;
        }
 
@@ -383,7 +386,7 @@ bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **tx_pkts,
 
        /* Handle TX burst request */
        to_send = nb_pkts;
-       while (to_send >= RTE_BNXT_DESCS_PER_LOOP) {
+       while (to_send >= BNXT_TX_DESCS_PER_LOOP) {
                /* Prefetch next transmit buffer descriptors. */
                rte_prefetch0(txbd + 4);
                rte_prefetch0(txbd + 7);
@@ -393,8 +396,8 @@ bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **tx_pkts,
                bnxt_xmit_one(tx_pkts[2], txbd++, tx_buf++);
                bnxt_xmit_one(tx_pkts[3], txbd++, tx_buf++);
 
-               to_send -= RTE_BNXT_DESCS_PER_LOOP;
-               tx_pkts += RTE_BNXT_DESCS_PER_LOOP;
+               to_send -= BNXT_TX_DESCS_PER_LOOP;
+               tx_pkts += BNXT_TX_DESCS_PER_LOOP;
        }
 
        while (to_send) {
index e4bd90f..6bfdc6d 100644 (file)
@@ -11,6 +11,9 @@
 #define BNXT_MAX_TSO_SEGS      32
 #define BNXT_MIN_PKT_SIZE      52
 
+/* Number of transmit descriptors processed per inner loop in vector mode. */
+#define BNXT_TX_DESCS_PER_LOOP 4U
+
 struct bnxt_tx_ring_info {
        uint16_t                tx_raw_prod;
        uint16_t                tx_raw_cons;
@@ -48,6 +51,10 @@ uint16_t bnxt_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
 uint16_t bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
                            uint16_t nb_pkts);
 #endif
+#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
+uint16_t bnxt_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+                                uint16_t nb_pkts);
+#endif
 
 int bnxt_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id);
 int bnxt_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id);
index 117c753..41c4796 100644 (file)
@@ -82,6 +82,23 @@ sources = files(
 
 if arch_subdir == 'x86'
     sources += files('bnxt_rxtx_vec_sse.c')
+    # compile AVX2 version if either:
+    # a. we have AVX supported in minimum instruction set baseline
+    # b. it's not minimum instruction set, but supported by compiler
+    if cc.get_define('__AVX2__', args: machine_args) != ''
+            cflags += ['-DCC_AVX2_SUPPORT']
+            sources += files('bnxt_rxtx_vec_avx2.c')
+    elif cc.has_argument('-mavx2')
+            cflags += ['-DCC_AVX2_SUPPORT']
+            bnxt_avx2_lib = static_library('bnxt_avx2_lib',
+                            'bnxt_rxtx_vec_avx2.c',
+                            dependencies: [static_rte_ethdev,
+                                    static_rte_bus_pci,
+                                    static_rte_kvargs, static_rte_hash],
+                            include_directories: includes,
+                            c_args: [cflags, '-mavx2'])
+            objs += bnxt_avx2_lib.extract_objects('bnxt_rxtx_vec_avx2.c')
+     endif
 elif arch_subdir == 'arm' and host_machine.cpu_family().startswith('aarch64')
     sources += files('bnxt_rxtx_vec_neon.c')
 endif