--- /dev/null
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2018 Intel Corporation
+ */
+
+#include <stdarg.h>
+#include <errno.h>
+#include <stdint.h>
+#include <inttypes.h>
+
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_memory.h>
+#include <rte_eal.h>
+#include <rte_byteorder.h>
+
+#include "bpf_impl.h"
+
+#define GET_BPF_OP(op) (BPF_OP(op) >> 4)
+
+enum {
+ RAX = 0, /* scratch, return value */
+ RCX = 1, /* scratch, 4th arg */
+ RDX = 2, /* scratch, 3rd arg */
+ RBX = 3, /* callee saved */
+ RSP = 4, /* stack pointer */
+ RBP = 5, /* frame pointer, callee saved */
+ RSI = 6, /* scratch, 2nd arg */
+ RDI = 7, /* scratch, 1st arg */
+ R8 = 8, /* scratch, 5th arg */
+ R9 = 9, /* scratch, 6th arg */
+ R10 = 10, /* scratch */
+ R11 = 11, /* scratch */
+ R12 = 12, /* callee saved */
+ R13 = 13, /* callee saved */
+ R14 = 14, /* callee saved */
+ R15 = 15, /* callee saved */
+};
+
+#define IS_EXT_REG(r) ((r) >= R8)
+
+enum {
+ REX_PREFIX = 0x40, /* fixed value 0100 */
+ REX_W = 0x8, /* 64bit operand size */
+ REX_R = 0x4, /* extension of the ModRM.reg field */
+ REX_X = 0x2, /* extension of the SIB.index field */
+ REX_B = 0x1, /* extension of the ModRM.rm field */
+};
+
+enum {
+ MOD_INDIRECT = 0,
+ MOD_IDISP8 = 1,
+ MOD_IDISP32 = 2,
+ MOD_DIRECT = 3,
+};
+
+enum {
+ SIB_SCALE_1 = 0,
+ SIB_SCALE_2 = 1,
+ SIB_SCALE_4 = 2,
+ SIB_SCALE_8 = 3,
+};
+
+/*
+ * eBPF to x86_64 register mappings.
+ */
+static const uint32_t ebpf2x86[] = {
+ [EBPF_REG_0] = RAX,
+ [EBPF_REG_1] = RDI,
+ [EBPF_REG_2] = RSI,
+ [EBPF_REG_3] = RDX,
+ [EBPF_REG_4] = RCX,
+ [EBPF_REG_5] = R8,
+ [EBPF_REG_6] = RBX,
+ [EBPF_REG_7] = R13,
+ [EBPF_REG_8] = R14,
+ [EBPF_REG_9] = R15,
+ [EBPF_REG_10] = RBP,
+};
+
+/*
+ * r10 and r11 are used as a scratch temporary registers.
+ */
+enum {
+ REG_DIV_IMM = R9,
+ REG_TMP0 = R11,
+ REG_TMP1 = R10,
+};
+
+/*
+ * callee saved registers list.
+ * keep RBP as the last one.
+ */
+static const uint32_t save_regs[] = {RBX, R12, R13, R14, R15, RBP};
+
+struct bpf_jit_state {
+ uint32_t idx;
+ size_t sz;
+ struct {
+ uint32_t num;
+ int32_t off;
+ } exit;
+ uint32_t reguse;
+ int32_t *off;
+ uint8_t *ins;
+};
+
+#define INUSE(v, r) (((v) >> (r)) & 1)
+#define USED(v, r) ((v) |= 1 << (r))
+
+union bpf_jit_imm {
+ uint32_t u32;
+ uint8_t u8[4];
+};
+
+static size_t
+bpf_size(uint32_t bpf_op_sz)
+{
+ if (bpf_op_sz == BPF_B)
+ return sizeof(uint8_t);
+ else if (bpf_op_sz == BPF_H)
+ return sizeof(uint16_t);
+ else if (bpf_op_sz == BPF_W)
+ return sizeof(uint32_t);
+ else if (bpf_op_sz == EBPF_DW)
+ return sizeof(uint64_t);
+ return 0;
+}
+
+/*
+ * In many cases for imm8 we can produce shorter code.
+ */
+static size_t
+imm_size(int32_t v)
+{
+ if (v == (int8_t)v)
+ return sizeof(int8_t);
+ return sizeof(int32_t);
+}
+
+static void
+emit_bytes(struct bpf_jit_state *st, const uint8_t ins[], uint32_t sz)
+{
+ uint32_t i;
+
+ if (st->ins != NULL) {
+ for (i = 0; i != sz; i++)
+ st->ins[st->sz + i] = ins[i];
+ }
+ st->sz += sz;
+}
+
+static void
+emit_imm(struct bpf_jit_state *st, const uint32_t imm, uint32_t sz)
+{
+ union bpf_jit_imm v;
+
+ v.u32 = imm;
+ emit_bytes(st, v.u8, sz);
+}
+
+/*
+ * emit REX byte
+ */
+static void
+emit_rex(struct bpf_jit_state *st, uint32_t op, uint32_t reg, uint32_t rm)
+{
+ uint8_t rex;
+
+ /* mark operand registers as used*/
+ USED(st->reguse, reg);
+ USED(st->reguse, rm);
+
+ rex = 0;
+ if (BPF_CLASS(op) == EBPF_ALU64 ||
+ op == (BPF_ST | BPF_MEM | EBPF_DW) ||
+ op == (BPF_STX | BPF_MEM | EBPF_DW) ||
+ op == (BPF_STX | EBPF_XADD | EBPF_DW) ||
+ op == (BPF_LD | BPF_IMM | EBPF_DW) ||
+ (BPF_CLASS(op) == BPF_LDX &&
+ BPF_MODE(op) == BPF_MEM &&
+ BPF_SIZE(op) != BPF_W))
+ rex |= REX_W;
+
+ if (IS_EXT_REG(reg))
+ rex |= REX_R;
+
+ if (IS_EXT_REG(rm))
+ rex |= REX_B;
+
+ /* store using SIL, DIL */
+ if (op == (BPF_STX | BPF_MEM | BPF_B) && (reg == RDI || reg == RSI))
+ rex |= REX_PREFIX;
+
+ if (rex != 0) {
+ rex |= REX_PREFIX;
+ emit_bytes(st, &rex, sizeof(rex));
+ }
+}
+
+/*
+ * emit MODRegRM byte
+ */
+static void
+emit_modregrm(struct bpf_jit_state *st, uint32_t mod, uint32_t reg, uint32_t rm)
+{
+ uint8_t v;
+
+ v = mod << 6 | (reg & 7) << 3 | (rm & 7);
+ emit_bytes(st, &v, sizeof(v));
+}
+
+/*
+ * emit SIB byte
+ */
+static void
+emit_sib(struct bpf_jit_state *st, uint32_t scale, uint32_t idx, uint32_t base)
+{
+ uint8_t v;
+
+ v = scale << 6 | (idx & 7) << 3 | (base & 7);
+ emit_bytes(st, &v, sizeof(v));
+}
+
+/*
+ * emit xchg %<sreg>, %<dreg>
+ */
+static void
+emit_xchg_reg(struct bpf_jit_state *st, uint32_t sreg, uint32_t dreg)
+{
+ const uint8_t ops = 0x87;
+
+ emit_rex(st, EBPF_ALU64, sreg, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, sreg, dreg);
+}
+
+/*
+ * emit neg %<dreg>
+ */
+static void
+emit_neg(struct bpf_jit_state *st, uint32_t op, uint32_t dreg)
+{
+ const uint8_t ops = 0xF7;
+ const uint8_t mods = 3;
+
+ emit_rex(st, op, 0, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, mods, dreg);
+}
+
+/*
+ * emit mov %<sreg>, %<dreg>
+ */
+static void
+emit_mov_reg(struct bpf_jit_state *st, uint32_t op, uint32_t sreg,
+ uint32_t dreg)
+{
+ const uint8_t ops = 0x89;
+
+ /* if operands are 32-bit, then it can be used to clear upper 32-bit */
+ if (sreg != dreg || BPF_CLASS(op) == BPF_ALU) {
+ emit_rex(st, op, sreg, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, sreg, dreg);
+ }
+}
+
+/*
+ * emit movzwl %<sreg>, %<dreg>
+ */
+static void
+emit_movzwl(struct bpf_jit_state *st, uint32_t sreg, uint32_t dreg)
+{
+ static const uint8_t ops[] = {0x0F, 0xB7};
+
+ emit_rex(st, BPF_ALU, sreg, dreg);
+ emit_bytes(st, ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, sreg, dreg);
+}
+
+/*
+ * emit ror <imm8>, %<dreg>
+ */
+static void
+emit_ror_imm(struct bpf_jit_state *st, uint32_t dreg, uint32_t imm)
+{
+ const uint8_t prfx = 0x66;
+ const uint8_t ops = 0xC1;
+ const uint8_t mods = 1;
+
+ emit_bytes(st, &prfx, sizeof(prfx));
+ emit_rex(st, BPF_ALU, 0, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, mods, dreg);
+ emit_imm(st, imm, imm_size(imm));
+}
+
+/*
+ * emit bswap %<dreg>
+ */
+static void
+emit_be2le_48(struct bpf_jit_state *st, uint32_t dreg, uint32_t imm)
+{
+ uint32_t rop;
+
+ const uint8_t ops = 0x0F;
+ const uint8_t mods = 1;
+
+ rop = (imm == 64) ? EBPF_ALU64 : BPF_ALU;
+ emit_rex(st, rop, 0, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, mods, dreg);
+}
+
+static void
+emit_be2le(struct bpf_jit_state *st, uint32_t dreg, uint32_t imm)
+{
+ if (imm == 16) {
+ emit_ror_imm(st, dreg, 8);
+ emit_movzwl(st, dreg, dreg);
+ } else
+ emit_be2le_48(st, dreg, imm);
+}
+
+/*
+ * In general it is NOP for x86.
+ * Just clear the upper bits.
+ */
+static void
+emit_le2be(struct bpf_jit_state *st, uint32_t dreg, uint32_t imm)
+{
+ if (imm == 16)
+ emit_movzwl(st, dreg, dreg);
+ else if (imm == 32)
+ emit_mov_reg(st, BPF_ALU | EBPF_MOV | BPF_X, dreg, dreg);
+}
+
+/*
+ * emit one of:
+ * add <imm>, %<dreg>
+ * and <imm>, %<dreg>
+ * or <imm>, %<dreg>
+ * sub <imm>, %<dreg>
+ * xor <imm>, %<dreg>
+ */
+static void
+emit_alu_imm(struct bpf_jit_state *st, uint32_t op, uint32_t dreg, uint32_t imm)
+{
+ uint8_t mod, opcode;
+ uint32_t bop, imsz;
+
+ const uint8_t op8 = 0x83;
+ const uint8_t op32 = 0x81;
+ static const uint8_t mods[] = {
+ [GET_BPF_OP(BPF_ADD)] = 0,
+ [GET_BPF_OP(BPF_AND)] = 4,
+ [GET_BPF_OP(BPF_OR)] = 1,
+ [GET_BPF_OP(BPF_SUB)] = 5,
+ [GET_BPF_OP(BPF_XOR)] = 6,
+ };
+
+ bop = GET_BPF_OP(op);
+ mod = mods[bop];
+
+ imsz = imm_size(imm);
+ opcode = (imsz == 1) ? op8 : op32;
+
+ emit_rex(st, op, 0, dreg);
+ emit_bytes(st, &opcode, sizeof(opcode));
+ emit_modregrm(st, MOD_DIRECT, mod, dreg);
+ emit_imm(st, imm, imsz);
+}
+
+/*
+ * emit one of:
+ * add %<sreg>, %<dreg>
+ * and %<sreg>, %<dreg>
+ * or %<sreg>, %<dreg>
+ * sub %<sreg>, %<dreg>
+ * xor %<sreg>, %<dreg>
+ */
+static void
+emit_alu_reg(struct bpf_jit_state *st, uint32_t op, uint32_t sreg,
+ uint32_t dreg)
+{
+ uint32_t bop;
+
+ static const uint8_t ops[] = {
+ [GET_BPF_OP(BPF_ADD)] = 0x01,
+ [GET_BPF_OP(BPF_AND)] = 0x21,
+ [GET_BPF_OP(BPF_OR)] = 0x09,
+ [GET_BPF_OP(BPF_SUB)] = 0x29,
+ [GET_BPF_OP(BPF_XOR)] = 0x31,
+ };
+
+ bop = GET_BPF_OP(op);
+
+ emit_rex(st, op, sreg, dreg);
+ emit_bytes(st, &ops[bop], sizeof(ops[bop]));
+ emit_modregrm(st, MOD_DIRECT, sreg, dreg);
+}
+
+static void
+emit_shift(struct bpf_jit_state *st, uint32_t op, uint32_t dreg)
+{
+ uint8_t mod;
+ uint32_t bop, opx;
+
+ static const uint8_t ops[] = {0xC1, 0xD3};
+ static const uint8_t mods[] = {
+ [GET_BPF_OP(BPF_LSH)] = 4,
+ [GET_BPF_OP(BPF_RSH)] = 5,
+ [GET_BPF_OP(EBPF_ARSH)] = 7,
+ };
+
+ bop = GET_BPF_OP(op);
+ mod = mods[bop];
+ opx = (BPF_SRC(op) == BPF_X);
+
+ emit_rex(st, op, 0, dreg);
+ emit_bytes(st, &ops[opx], sizeof(ops[opx]));
+ emit_modregrm(st, MOD_DIRECT, mod, dreg);
+}
+
+/*
+ * emit one of:
+ * shl <imm>, %<dreg>
+ * shr <imm>, %<dreg>
+ * sar <imm>, %<dreg>
+ */
+static void
+emit_shift_imm(struct bpf_jit_state *st, uint32_t op, uint32_t dreg,
+ uint32_t imm)
+{
+ emit_shift(st, op, dreg);
+ emit_imm(st, imm, imm_size(imm));
+}
+
+/*
+ * emit one of:
+ * shl %<dreg>
+ * shr %<dreg>
+ * sar %<dreg>
+ * note that rcx is implicitly used as a source register, so few extra
+ * instructions for register spillage might be necessary.
+ */
+static void
+emit_shift_reg(struct bpf_jit_state *st, uint32_t op, uint32_t sreg,
+ uint32_t dreg)
+{
+ if (sreg != RCX)
+ emit_xchg_reg(st, RCX, sreg);
+
+ emit_shift(st, op, (dreg == RCX) ? sreg : dreg);
+
+ if (sreg != RCX)
+ emit_xchg_reg(st, RCX, sreg);
+}
+
+/*
+ * emit mov <imm>, %<dreg>
+ */
+static void
+emit_mov_imm(struct bpf_jit_state *st, uint32_t op, uint32_t dreg, uint32_t imm)
+{
+ const uint8_t ops = 0xC7;
+
+ if (imm == 0) {
+ /* replace 'mov 0, %<dst>' with 'xor %<dst>, %<dst>' */
+ op = BPF_CLASS(op) | BPF_XOR | BPF_X;
+ emit_alu_reg(st, op, dreg, dreg);
+ return;
+ }
+
+ emit_rex(st, op, 0, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, 0, dreg);
+ emit_imm(st, imm, sizeof(imm));
+}
+
+/*
+ * emit mov <imm64>, %<dreg>
+ */
+static void
+emit_ld_imm64(struct bpf_jit_state *st, uint32_t dreg, uint32_t imm0,
+ uint32_t imm1)
+{
+ const uint8_t ops = 0xB8;
+
+ if (imm1 == 0) {
+ emit_mov_imm(st, EBPF_ALU64 | EBPF_MOV | BPF_K, dreg, imm0);
+ return;
+ }
+
+ emit_rex(st, EBPF_ALU64, 0, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, 0, dreg);
+
+ emit_imm(st, imm0, sizeof(imm0));
+ emit_imm(st, imm1, sizeof(imm1));
+}
+
+/*
+ * note that rax:rdx are implicitly used as source/destination registers,
+ * so some reg spillage is necessary.
+ * emit:
+ * mov %rax, %r11
+ * mov %rdx, %r10
+ * mov %<dreg>, %rax
+ * either:
+ * mov %<sreg>, %rdx
+ * OR
+ * mov <imm>, %rdx
+ * mul %rdx
+ * mov %r10, %rdx
+ * mov %rax, %<dreg>
+ * mov %r11, %rax
+ */
+static void
+emit_mul(struct bpf_jit_state *st, uint32_t op, uint32_t sreg, uint32_t dreg,
+ uint32_t imm)
+{
+ const uint8_t ops = 0xF7;
+ const uint8_t mods = 4;
+
+ /* save rax & rdx */
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, RAX, REG_TMP0);
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, RDX, REG_TMP1);
+
+ /* rax = dreg */
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, dreg, RAX);
+
+ if (BPF_SRC(op) == BPF_X)
+ /* rdx = sreg */
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X,
+ sreg == RAX ? REG_TMP0 : sreg, RDX);
+ else
+ /* rdx = imm */
+ emit_mov_imm(st, EBPF_ALU64 | EBPF_MOV | BPF_K, RDX, imm);
+
+ emit_rex(st, op, RAX, RDX);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, mods, RDX);
+
+ if (dreg != RDX)
+ /* restore rdx */
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, REG_TMP1, RDX);
+
+ if (dreg != RAX) {
+ /* dreg = rax */
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, RAX, dreg);
+ /* restore rax */
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, REG_TMP0, RAX);
+ }
+}
+
+/*
+ * emit mov <ofs>(%<sreg>), %<dreg>
+ * note that for non 64-bit ops, higher bits have to be cleared.
+ */
+static void
+emit_ld_reg(struct bpf_jit_state *st, uint32_t op, uint32_t sreg, uint32_t dreg,
+ int32_t ofs)
+{
+ uint32_t mods, opsz;
+ const uint8_t op32 = 0x8B;
+ const uint8_t op16[] = {0x0F, 0xB7};
+ const uint8_t op8[] = {0x0F, 0xB6};
+
+ emit_rex(st, op, dreg, sreg);
+
+ opsz = BPF_SIZE(op);
+ if (opsz == BPF_B)
+ emit_bytes(st, op8, sizeof(op8));
+ else if (opsz == BPF_H)
+ emit_bytes(st, op16, sizeof(op16));
+ else
+ emit_bytes(st, &op32, sizeof(op32));
+
+ mods = (imm_size(ofs) == 1) ? MOD_IDISP8 : MOD_IDISP32;
+
+ emit_modregrm(st, mods, dreg, sreg);
+ if (sreg == RSP || sreg == R12)
+ emit_sib(st, SIB_SCALE_1, sreg, sreg);
+ emit_imm(st, ofs, imm_size(ofs));
+}
+
+/*
+ * emit one of:
+ * mov %<sreg>, <ofs>(%<dreg>)
+ * mov <imm>, <ofs>(%<dreg>)
+ */
+static void
+emit_st_common(struct bpf_jit_state *st, uint32_t op, uint32_t sreg,
+ uint32_t dreg, uint32_t imm, int32_t ofs)
+{
+ uint32_t mods, imsz, opsz, opx;
+ const uint8_t prfx16 = 0x66;
+
+ /* 8 bit instruction opcodes */
+ static const uint8_t op8[] = {0xC6, 0x88};
+
+ /* 16/32/64 bit instruction opcodes */
+ static const uint8_t ops[] = {0xC7, 0x89};
+
+ /* is the instruction has immediate value or src reg? */
+ opx = (BPF_CLASS(op) == BPF_STX);
+
+ opsz = BPF_SIZE(op);
+ if (opsz == BPF_H)
+ emit_bytes(st, &prfx16, sizeof(prfx16));
+
+ emit_rex(st, op, sreg, dreg);
+
+ if (opsz == BPF_B)
+ emit_bytes(st, &op8[opx], sizeof(op8[opx]));
+ else
+ emit_bytes(st, &ops[opx], sizeof(ops[opx]));
+
+ imsz = imm_size(ofs);
+ mods = (imsz == 1) ? MOD_IDISP8 : MOD_IDISP32;
+
+ emit_modregrm(st, mods, sreg, dreg);
+
+ if (dreg == RSP || dreg == R12)
+ emit_sib(st, SIB_SCALE_1, dreg, dreg);
+
+ emit_imm(st, ofs, imsz);
+
+ if (opx == 0) {
+ imsz = RTE_MIN(bpf_size(opsz), sizeof(imm));
+ emit_imm(st, imm, imsz);
+ }
+}
+
+static void
+emit_st_imm(struct bpf_jit_state *st, uint32_t op, uint32_t dreg, uint32_t imm,
+ int32_t ofs)
+{
+ emit_st_common(st, op, 0, dreg, imm, ofs);
+}
+
+static void
+emit_st_reg(struct bpf_jit_state *st, uint32_t op, uint32_t sreg, uint32_t dreg,
+ int32_t ofs)
+{
+ emit_st_common(st, op, sreg, dreg, 0, ofs);
+}
+
+/*
+ * emit lock add %<sreg>, <ofs>(%<dreg>)
+ */
+static void
+emit_st_xadd(struct bpf_jit_state *st, uint32_t op, uint32_t sreg,
+ uint32_t dreg, int32_t ofs)
+{
+ uint32_t imsz, mods;
+
+ const uint8_t lck = 0xF0; /* lock prefix */
+ const uint8_t ops = 0x01; /* add opcode */
+
+ imsz = imm_size(ofs);
+ mods = (imsz == 1) ? MOD_IDISP8 : MOD_IDISP32;
+
+ emit_bytes(st, &lck, sizeof(lck));
+ emit_rex(st, op, sreg, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, mods, sreg, dreg);
+ emit_imm(st, ofs, imsz);
+}
+
+/*
+ * emit:
+ * mov <imm64>, (%rax)
+ * call *%rax
+ */
+static void
+emit_call(struct bpf_jit_state *st, uintptr_t trg)
+{
+ const uint8_t ops = 0xFF;
+ const uint8_t mods = 2;
+
+ emit_ld_imm64(st, RAX, trg, trg >> 32);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, mods, RAX);
+}
+
+/*
+ * emit jmp <ofs>
+ * where 'ofs' is the target offset for the native code.
+ */
+static void
+emit_abs_jmp(struct bpf_jit_state *st, int32_t ofs)
+{
+ int32_t joff;
+ uint32_t imsz;
+
+ const uint8_t op8 = 0xEB;
+ const uint8_t op32 = 0xE9;
+
+ const int32_t sz8 = sizeof(op8) + sizeof(uint8_t);
+ const int32_t sz32 = sizeof(op32) + sizeof(uint32_t);
+
+ /* max possible jmp instruction size */
+ const int32_t iszm = RTE_MAX(sz8, sz32);
+
+ joff = ofs - st->sz;
+ imsz = RTE_MAX(imm_size(joff), imm_size(joff + iszm));
+
+ if (imsz == 1) {
+ emit_bytes(st, &op8, sizeof(op8));
+ joff -= sz8;
+ } else {
+ emit_bytes(st, &op32, sizeof(op32));
+ joff -= sz32;
+ }
+
+ emit_imm(st, joff, imsz);
+}
+
+/*
+ * emit jmp <ofs>
+ * where 'ofs' is the target offset for the BPF bytecode.
+ */
+static void
+emit_jmp(struct bpf_jit_state *st, int32_t ofs)
+{
+ emit_abs_jmp(st, st->off[st->idx + ofs]);
+}
+
+/*
+ * emit one of:
+ * cmovz %<sreg>, <%dreg>
+ * cmovne %<sreg>, <%dreg>
+ * cmova %<sreg>, <%dreg>
+ * cmovb %<sreg>, <%dreg>
+ * cmovae %<sreg>, <%dreg>
+ * cmovbe %<sreg>, <%dreg>
+ * cmovg %<sreg>, <%dreg>
+ * cmovl %<sreg>, <%dreg>
+ * cmovge %<sreg>, <%dreg>
+ * cmovle %<sreg>, <%dreg>
+ */
+static void
+emit_movcc_reg(struct bpf_jit_state *st, uint32_t op, uint32_t sreg,
+ uint32_t dreg)
+{
+ uint32_t bop;
+
+ static const uint8_t ops[][2] = {
+ [GET_BPF_OP(BPF_JEQ)] = {0x0F, 0x44}, /* CMOVZ */
+ [GET_BPF_OP(EBPF_JNE)] = {0x0F, 0x45}, /* CMOVNE */
+ [GET_BPF_OP(BPF_JGT)] = {0x0F, 0x47}, /* CMOVA */
+ [GET_BPF_OP(EBPF_JLT)] = {0x0F, 0x42}, /* CMOVB */
+ [GET_BPF_OP(BPF_JGE)] = {0x0F, 0x43}, /* CMOVAE */
+ [GET_BPF_OP(EBPF_JLE)] = {0x0F, 0x46}, /* CMOVBE */
+ [GET_BPF_OP(EBPF_JSGT)] = {0x0F, 0x4F}, /* CMOVG */
+ [GET_BPF_OP(EBPF_JSLT)] = {0x0F, 0x4C}, /* CMOVL */
+ [GET_BPF_OP(EBPF_JSGE)] = {0x0F, 0x4D}, /* CMOVGE */
+ [GET_BPF_OP(EBPF_JSLE)] = {0x0F, 0x4E}, /* CMOVLE */
+ [GET_BPF_OP(BPF_JSET)] = {0x0F, 0x45}, /* CMOVNE */
+ };
+
+ bop = GET_BPF_OP(op);
+
+ emit_rex(st, op, dreg, sreg);
+ emit_bytes(st, ops[bop], sizeof(ops[bop]));
+ emit_modregrm(st, MOD_DIRECT, dreg, sreg);
+}
+
+/*
+ * emit one of:
+ * je <ofs>
+ * jne <ofs>
+ * ja <ofs>
+ * jb <ofs>
+ * jae <ofs>
+ * jbe <ofs>
+ * jg <ofs>
+ * jl <ofs>
+ * jge <ofs>
+ * jle <ofs>
+ * where 'ofs' is the target offset for the native code.
+ */
+static void
+emit_abs_jcc(struct bpf_jit_state *st, uint32_t op, int32_t ofs)
+{
+ uint32_t bop, imsz;
+ int32_t joff;
+
+ static const uint8_t op8[] = {
+ [GET_BPF_OP(BPF_JEQ)] = 0x74, /* JE */
+ [GET_BPF_OP(EBPF_JNE)] = 0x75, /* JNE */
+ [GET_BPF_OP(BPF_JGT)] = 0x77, /* JA */
+ [GET_BPF_OP(EBPF_JLT)] = 0x72, /* JB */
+ [GET_BPF_OP(BPF_JGE)] = 0x73, /* JAE */
+ [GET_BPF_OP(EBPF_JLE)] = 0x76, /* JBE */
+ [GET_BPF_OP(EBPF_JSGT)] = 0x7F, /* JG */
+ [GET_BPF_OP(EBPF_JSLT)] = 0x7C, /* JL */
+ [GET_BPF_OP(EBPF_JSGE)] = 0x7D, /*JGE */
+ [GET_BPF_OP(EBPF_JSLE)] = 0x7E, /* JLE */
+ [GET_BPF_OP(BPF_JSET)] = 0x75, /*JNE */
+ };
+
+ static const uint8_t op32[][2] = {
+ [GET_BPF_OP(BPF_JEQ)] = {0x0F, 0x84}, /* JE */
+ [GET_BPF_OP(EBPF_JNE)] = {0x0F, 0x85}, /* JNE */
+ [GET_BPF_OP(BPF_JGT)] = {0x0F, 0x87}, /* JA */
+ [GET_BPF_OP(EBPF_JLT)] = {0x0F, 0x82}, /* JB */
+ [GET_BPF_OP(BPF_JGE)] = {0x0F, 0x83}, /* JAE */
+ [GET_BPF_OP(EBPF_JLE)] = {0x0F, 0x86}, /* JBE */
+ [GET_BPF_OP(EBPF_JSGT)] = {0x0F, 0x8F}, /* JG */
+ [GET_BPF_OP(EBPF_JSLT)] = {0x0F, 0x8C}, /* JL */
+ [GET_BPF_OP(EBPF_JSGE)] = {0x0F, 0x8D}, /*JGE */
+ [GET_BPF_OP(EBPF_JSLE)] = {0x0F, 0x8E}, /* JLE */
+ [GET_BPF_OP(BPF_JSET)] = {0x0F, 0x85}, /*JNE */
+ };
+
+ const int32_t sz8 = sizeof(op8[0]) + sizeof(uint8_t);
+ const int32_t sz32 = sizeof(op32[0]) + sizeof(uint32_t);
+
+ /* max possible jcc instruction size */
+ const int32_t iszm = RTE_MAX(sz8, sz32);
+
+ joff = ofs - st->sz;
+ imsz = RTE_MAX(imm_size(joff), imm_size(joff + iszm));
+
+ bop = GET_BPF_OP(op);
+
+ if (imsz == 1) {
+ emit_bytes(st, &op8[bop], sizeof(op8[bop]));
+ joff -= sz8;
+ } else {
+ emit_bytes(st, op32[bop], sizeof(op32[bop]));
+ joff -= sz32;
+ }
+
+ emit_imm(st, joff, imsz);
+}
+
+/*
+ * emit one of:
+ * je <ofs>
+ * jne <ofs>
+ * ja <ofs>
+ * jb <ofs>
+ * jae <ofs>
+ * jbe <ofs>
+ * jg <ofs>
+ * jl <ofs>
+ * jge <ofs>
+ * jle <ofs>
+ * where 'ofs' is the target offset for the BPF bytecode.
+ */
+static void
+emit_jcc(struct bpf_jit_state *st, uint32_t op, int32_t ofs)
+{
+ emit_abs_jcc(st, op, st->off[st->idx + ofs]);
+}
+
+
+/*
+ * emit cmp <imm>, %<dreg>
+ */
+static void
+emit_cmp_imm(struct bpf_jit_state *st, uint32_t op, uint32_t dreg, uint32_t imm)
+{
+ uint8_t ops;
+ uint32_t imsz;
+
+ const uint8_t op8 = 0x83;
+ const uint8_t op32 = 0x81;
+ const uint8_t mods = 7;
+
+ imsz = imm_size(imm);
+ ops = (imsz == 1) ? op8 : op32;
+
+ emit_rex(st, op, 0, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, mods, dreg);
+ emit_imm(st, imm, imsz);
+}
+
+/*
+ * emit test <imm>, %<dreg>
+ */
+static void
+emit_tst_imm(struct bpf_jit_state *st, uint32_t op, uint32_t dreg, uint32_t imm)
+{
+ const uint8_t ops = 0xF7;
+ const uint8_t mods = 0;
+
+ emit_rex(st, op, 0, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, mods, dreg);
+ emit_imm(st, imm, imm_size(imm));
+}
+
+static void
+emit_jcc_imm(struct bpf_jit_state *st, uint32_t op, uint32_t dreg,
+ uint32_t imm, int32_t ofs)
+{
+ if (BPF_OP(op) == BPF_JSET)
+ emit_tst_imm(st, EBPF_ALU64, dreg, imm);
+ else
+ emit_cmp_imm(st, EBPF_ALU64, dreg, imm);
+
+ emit_jcc(st, op, ofs);
+}
+
+/*
+ * emit test %<sreg>, %<dreg>
+ */
+static void
+emit_tst_reg(struct bpf_jit_state *st, uint32_t op, uint32_t sreg,
+ uint32_t dreg)
+{
+ const uint8_t ops = 0x85;
+
+ emit_rex(st, op, sreg, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, sreg, dreg);
+}
+
+/*
+ * emit cmp %<sreg>, %<dreg>
+ */
+static void
+emit_cmp_reg(struct bpf_jit_state *st, uint32_t op, uint32_t sreg,
+ uint32_t dreg)
+{
+ const uint8_t ops = 0x39;
+
+ emit_rex(st, op, sreg, dreg);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, sreg, dreg);
+
+}
+
+static void
+emit_jcc_reg(struct bpf_jit_state *st, uint32_t op, uint32_t sreg,
+ uint32_t dreg, int32_t ofs)
+{
+ if (BPF_OP(op) == BPF_JSET)
+ emit_tst_reg(st, EBPF_ALU64, sreg, dreg);
+ else
+ emit_cmp_reg(st, EBPF_ALU64, sreg, dreg);
+
+ emit_jcc(st, op, ofs);
+}
+
+/*
+ * note that rax:rdx are implicitly used as source/destination registers,
+ * so some reg spillage is necessary.
+ * emit:
+ * mov %rax, %r11
+ * mov %rdx, %r10
+ * mov %<dreg>, %rax
+ * xor %rdx, %rdx
+ * for divisor as immediate value:
+ * mov <imm>, %r9
+ * div %<divisor_reg>
+ * mov %r10, %rdx
+ * mov %rax, %<dreg>
+ * mov %r11, %rax
+ * either:
+ * mov %rax, %<dreg>
+ * OR
+ * mov %rdx, %<dreg>
+ * mov %r11, %rax
+ * mov %r10, %rdx
+ */
+static void
+emit_div(struct bpf_jit_state *st, uint32_t op, uint32_t sreg, uint32_t dreg,
+ uint32_t imm)
+{
+ uint32_t sr;
+
+ const uint8_t ops = 0xF7;
+ const uint8_t mods = 6;
+
+ if (BPF_SRC(op) == BPF_X) {
+
+ /* check that src divisor is not zero */
+ emit_tst_reg(st, BPF_CLASS(op), sreg, sreg);
+
+ /* exit with return value zero */
+ emit_movcc_reg(st, BPF_CLASS(op) | BPF_JEQ | BPF_X, sreg, RAX);
+ emit_abs_jcc(st, BPF_JMP | BPF_JEQ | BPF_K, st->exit.off);
+ }
+
+ /* save rax & rdx */
+ if (dreg != RAX)
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, RAX, REG_TMP0);
+ if (dreg != RDX)
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, RDX, REG_TMP1);
+
+ /* fill rax & rdx */
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, dreg, RAX);
+ emit_mov_imm(st, EBPF_ALU64 | EBPF_MOV | BPF_K, RDX, 0);
+
+ if (BPF_SRC(op) == BPF_X) {
+ sr = sreg;
+ if (sr == RAX)
+ sr = REG_TMP0;
+ else if (sr == RDX)
+ sr = REG_TMP1;
+ } else {
+ sr = REG_DIV_IMM;
+ emit_mov_imm(st, EBPF_ALU64 | EBPF_MOV | BPF_K, sr, imm);
+ }
+
+ emit_rex(st, op, 0, sr);
+ emit_bytes(st, &ops, sizeof(ops));
+ emit_modregrm(st, MOD_DIRECT, mods, sr);
+
+ if (BPF_OP(op) == BPF_DIV)
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, RAX, dreg);
+ else
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, RDX, dreg);
+
+ if (dreg != RAX)
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, REG_TMP0, RAX);
+ if (dreg != RDX)
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, REG_TMP1, RDX);
+}
+
+static void
+emit_prolog(struct bpf_jit_state *st, int32_t stack_size)
+{
+ uint32_t i;
+ int32_t spil, ofs;
+
+ spil = 0;
+ for (i = 0; i != RTE_DIM(save_regs); i++)
+ spil += INUSE(st->reguse, save_regs[i]);
+
+ /* we can avoid touching the stack at all */
+ if (spil == 0)
+ return;
+
+
+ emit_alu_imm(st, EBPF_ALU64 | BPF_SUB | BPF_K, RSP,
+ spil * sizeof(uint64_t));
+
+ ofs = 0;
+ for (i = 0; i != RTE_DIM(save_regs); i++) {
+ if (INUSE(st->reguse, save_regs[i]) != 0) {
+ emit_st_reg(st, BPF_STX | BPF_MEM | EBPF_DW,
+ save_regs[i], RSP, ofs);
+ ofs += sizeof(uint64_t);
+ }
+ }
+
+ if (INUSE(st->reguse, RBP) != 0) {
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X, RSP, RBP);
+ emit_alu_imm(st, EBPF_ALU64 | BPF_SUB | BPF_K, RSP, stack_size);
+ }
+}
+
+/*
+ * emit ret
+ */
+static void
+emit_ret(struct bpf_jit_state *st)
+{
+ const uint8_t ops = 0xC3;
+
+ emit_bytes(st, &ops, sizeof(ops));
+}
+
+static void
+emit_epilog(struct bpf_jit_state *st)
+{
+ uint32_t i;
+ int32_t spil, ofs;
+
+ /* if we allready have an epilog generate a jump to it */
+ if (st->exit.num++ != 0) {
+ emit_abs_jmp(st, st->exit.off);
+ return;
+ }
+
+ /* store offset of epilog block */
+ st->exit.off = st->sz;
+
+ spil = 0;
+ for (i = 0; i != RTE_DIM(save_regs); i++)
+ spil += INUSE(st->reguse, save_regs[i]);
+
+ if (spil != 0) {
+
+ if (INUSE(st->reguse, RBP) != 0)
+ emit_mov_reg(st, EBPF_ALU64 | EBPF_MOV | BPF_X,
+ RBP, RSP);
+
+ ofs = 0;
+ for (i = 0; i != RTE_DIM(save_regs); i++) {
+ if (INUSE(st->reguse, save_regs[i]) != 0) {
+ emit_ld_reg(st, BPF_LDX | BPF_MEM | EBPF_DW,
+ RSP, save_regs[i], ofs);
+ ofs += sizeof(uint64_t);
+ }
+ }
+
+ emit_alu_imm(st, EBPF_ALU64 | BPF_ADD | BPF_K, RSP,
+ spil * sizeof(uint64_t));
+ }
+
+ emit_ret(st);
+}
+
+/*
+ * walk through bpf code and translate them x86_64 one.
+ */
+static int
+emit(struct bpf_jit_state *st, const struct rte_bpf *bpf)
+{
+ uint32_t i, dr, op, sr;
+ const struct ebpf_insn *ins;
+
+ /* reset state fields */
+ st->sz = 0;
+ st->exit.num = 0;
+
+ emit_prolog(st, bpf->stack_sz);
+
+ for (i = 0; i != bpf->prm.nb_ins; i++) {
+
+ st->idx = i;
+ st->off[i] = st->sz;
+
+ ins = bpf->prm.ins + i;
+
+ dr = ebpf2x86[ins->dst_reg];
+ sr = ebpf2x86[ins->src_reg];
+ op = ins->code;
+
+ switch (op) {
+ /* 32 bit ALU IMM operations */
+ case (BPF_ALU | BPF_ADD | BPF_K):
+ case (BPF_ALU | BPF_SUB | BPF_K):
+ case (BPF_ALU | BPF_AND | BPF_K):
+ case (BPF_ALU | BPF_OR | BPF_K):
+ case (BPF_ALU | BPF_XOR | BPF_K):
+ emit_alu_imm(st, op, dr, ins->imm);
+ break;
+ case (BPF_ALU | BPF_LSH | BPF_K):
+ case (BPF_ALU | BPF_RSH | BPF_K):
+ emit_shift_imm(st, op, dr, ins->imm);
+ break;
+ case (BPF_ALU | EBPF_MOV | BPF_K):
+ emit_mov_imm(st, op, dr, ins->imm);
+ break;
+ /* 32 bit ALU REG operations */
+ case (BPF_ALU | BPF_ADD | BPF_X):
+ case (BPF_ALU | BPF_SUB | BPF_X):
+ case (BPF_ALU | BPF_AND | BPF_X):
+ case (BPF_ALU | BPF_OR | BPF_X):
+ case (BPF_ALU | BPF_XOR | BPF_X):
+ emit_alu_reg(st, op, sr, dr);
+ break;
+ case (BPF_ALU | BPF_LSH | BPF_X):
+ case (BPF_ALU | BPF_RSH | BPF_X):
+ emit_shift_reg(st, op, sr, dr);
+ break;
+ case (BPF_ALU | EBPF_MOV | BPF_X):
+ emit_mov_reg(st, op, sr, dr);
+ break;
+ case (BPF_ALU | BPF_NEG):
+ emit_neg(st, op, dr);
+ break;
+ case (BPF_ALU | EBPF_END | EBPF_TO_BE):
+ emit_be2le(st, dr, ins->imm);
+ break;
+ case (BPF_ALU | EBPF_END | EBPF_TO_LE):
+ emit_le2be(st, dr, ins->imm);
+ break;
+ /* 64 bit ALU IMM operations */
+ case (EBPF_ALU64 | BPF_ADD | BPF_K):
+ case (EBPF_ALU64 | BPF_SUB | BPF_K):
+ case (EBPF_ALU64 | BPF_AND | BPF_K):
+ case (EBPF_ALU64 | BPF_OR | BPF_K):
+ case (EBPF_ALU64 | BPF_XOR | BPF_K):
+ emit_alu_imm(st, op, dr, ins->imm);
+ break;
+ case (EBPF_ALU64 | BPF_LSH | BPF_K):
+ case (EBPF_ALU64 | BPF_RSH | BPF_K):
+ case (EBPF_ALU64 | EBPF_ARSH | BPF_K):
+ emit_shift_imm(st, op, dr, ins->imm);
+ break;
+ case (EBPF_ALU64 | EBPF_MOV | BPF_K):
+ emit_mov_imm(st, op, dr, ins->imm);
+ break;
+ /* 64 bit ALU REG operations */
+ case (EBPF_ALU64 | BPF_ADD | BPF_X):
+ case (EBPF_ALU64 | BPF_SUB | BPF_X):
+ case (EBPF_ALU64 | BPF_AND | BPF_X):
+ case (EBPF_ALU64 | BPF_OR | BPF_X):
+ case (EBPF_ALU64 | BPF_XOR | BPF_X):
+ emit_alu_reg(st, op, sr, dr);
+ break;
+ case (EBPF_ALU64 | BPF_LSH | BPF_X):
+ case (EBPF_ALU64 | BPF_RSH | BPF_X):
+ case (EBPF_ALU64 | EBPF_ARSH | BPF_X):
+ emit_shift_reg(st, op, sr, dr);
+ break;
+ case (EBPF_ALU64 | EBPF_MOV | BPF_X):
+ emit_mov_reg(st, op, sr, dr);
+ break;
+ case (EBPF_ALU64 | BPF_NEG):
+ emit_neg(st, op, dr);
+ break;
+ /* multiply instructions */
+ case (BPF_ALU | BPF_MUL | BPF_K):
+ case (BPF_ALU | BPF_MUL | BPF_X):
+ case (EBPF_ALU64 | BPF_MUL | BPF_K):
+ case (EBPF_ALU64 | BPF_MUL | BPF_X):
+ emit_mul(st, op, sr, dr, ins->imm);
+ break;
+ /* divide instructions */
+ case (BPF_ALU | BPF_DIV | BPF_K):
+ case (BPF_ALU | BPF_MOD | BPF_K):
+ case (BPF_ALU | BPF_DIV | BPF_X):
+ case (BPF_ALU | BPF_MOD | BPF_X):
+ case (EBPF_ALU64 | BPF_DIV | BPF_K):
+ case (EBPF_ALU64 | BPF_MOD | BPF_K):
+ case (EBPF_ALU64 | BPF_DIV | BPF_X):
+ case (EBPF_ALU64 | BPF_MOD | BPF_X):
+ emit_div(st, op, sr, dr, ins->imm);
+ break;
+ /* load instructions */
+ case (BPF_LDX | BPF_MEM | BPF_B):
+ case (BPF_LDX | BPF_MEM | BPF_H):
+ case (BPF_LDX | BPF_MEM | BPF_W):
+ case (BPF_LDX | BPF_MEM | EBPF_DW):
+ emit_ld_reg(st, op, sr, dr, ins->off);
+ break;
+ /* load 64 bit immediate value */
+ case (BPF_LD | BPF_IMM | EBPF_DW):
+ emit_ld_imm64(st, dr, ins[0].imm, ins[1].imm);
+ i++;
+ break;
+ /* store instructions */
+ case (BPF_STX | BPF_MEM | BPF_B):
+ case (BPF_STX | BPF_MEM | BPF_H):
+ case (BPF_STX | BPF_MEM | BPF_W):
+ case (BPF_STX | BPF_MEM | EBPF_DW):
+ emit_st_reg(st, op, sr, dr, ins->off);
+ break;
+ case (BPF_ST | BPF_MEM | BPF_B):
+ case (BPF_ST | BPF_MEM | BPF_H):
+ case (BPF_ST | BPF_MEM | BPF_W):
+ case (BPF_ST | BPF_MEM | EBPF_DW):
+ emit_st_imm(st, op, dr, ins->imm, ins->off);
+ break;
+ /* atomic add instructions */
+ case (BPF_STX | EBPF_XADD | BPF_W):
+ case (BPF_STX | EBPF_XADD | EBPF_DW):
+ emit_st_xadd(st, op, sr, dr, ins->off);
+ break;
+ /* jump instructions */
+ case (BPF_JMP | BPF_JA):
+ emit_jmp(st, ins->off + 1);
+ break;
+ /* jump IMM instructions */
+ case (BPF_JMP | BPF_JEQ | BPF_K):
+ case (BPF_JMP | EBPF_JNE | BPF_K):
+ case (BPF_JMP | BPF_JGT | BPF_K):
+ case (BPF_JMP | EBPF_JLT | BPF_K):
+ case (BPF_JMP | BPF_JGE | BPF_K):
+ case (BPF_JMP | EBPF_JLE | BPF_K):
+ case (BPF_JMP | EBPF_JSGT | BPF_K):
+ case (BPF_JMP | EBPF_JSLT | BPF_K):
+ case (BPF_JMP | EBPF_JSGE | BPF_K):
+ case (BPF_JMP | EBPF_JSLE | BPF_K):
+ case (BPF_JMP | BPF_JSET | BPF_K):
+ emit_jcc_imm(st, op, dr, ins->imm, ins->off + 1);
+ break;
+ /* jump REG instructions */
+ case (BPF_JMP | BPF_JEQ | BPF_X):
+ case (BPF_JMP | EBPF_JNE | BPF_X):
+ case (BPF_JMP | BPF_JGT | BPF_X):
+ case (BPF_JMP | EBPF_JLT | BPF_X):
+ case (BPF_JMP | BPF_JGE | BPF_X):
+ case (BPF_JMP | EBPF_JLE | BPF_X):
+ case (BPF_JMP | EBPF_JSGT | BPF_X):
+ case (BPF_JMP | EBPF_JSLT | BPF_X):
+ case (BPF_JMP | EBPF_JSGE | BPF_X):
+ case (BPF_JMP | EBPF_JSLE | BPF_X):
+ case (BPF_JMP | BPF_JSET | BPF_X):
+ emit_jcc_reg(st, op, sr, dr, ins->off + 1);
+ break;
+ /* call instructions */
+ case (BPF_JMP | EBPF_CALL):
+ emit_call(st, (uintptr_t)bpf->prm.xsym[ins->imm].func);
+ break;
+ /* return instruction */
+ case (BPF_JMP | EBPF_EXIT):
+ emit_epilog(st);
+ break;
+ default:
+ RTE_BPF_LOG(ERR,
+ "%s(%p): invalid opcode %#x at pc: %u;\n",
+ __func__, bpf, ins->code, i);
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * produce a native ISA version of the given BPF code.
+ */
+int
+bpf_jit_x86(struct rte_bpf *bpf)
+{
+ int32_t rc;
+ uint32_t i;
+ size_t sz;
+ struct bpf_jit_state st;
+
+ /* init state */
+ memset(&st, 0, sizeof(st));
+ st.off = malloc(bpf->prm.nb_ins * sizeof(st.off[0]));
+ if (st.off == NULL)
+ return -ENOMEM;
+
+ /* fill with fake offsets */
+ st.exit.off = INT32_MAX;
+ for (i = 0; i != bpf->prm.nb_ins; i++)
+ st.off[i] = INT32_MAX;
+
+ /*
+ * dry runs, used to calculate total code size and valid jump offsets.
+ * stop when we get minimal possible size
+ */
+ do {
+ sz = st.sz;
+ rc = emit(&st, bpf);
+ } while (rc == 0 && sz != st.sz);
+
+ if (rc == 0) {
+
+ /* allocate memory needed */
+ st.ins = mmap(NULL, st.sz, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ if (st.ins == MAP_FAILED)
+ rc = -ENOMEM;
+ else
+ /* generate code */
+ rc = emit(&st, bpf);
+ }
+
+ if (rc == 0 && mprotect(st.ins, st.sz, PROT_READ | PROT_EXEC) != 0)
+ rc = -ENOMEM;
+
+ if (rc != 0)
+ munmap(st.ins, st.sz);
+ else {
+ bpf->jit.func = (void *)st.ins;
+ bpf->jit.sz = st.sz;
+ }
+
+ free(st.off);
+ return rc;
+}