.. SPDX-License-Identifier: BSD-3-Clause
Copyright(c) 2020 Intel Corporation
-Intel(R) ACC100 5G/4G FEC Poll Mode Driver
-==========================================
+Intel(R) ACC100 and ACC101 5G/4G FEC Poll Mode Drivers
+======================================================
The BBDEV ACC100 5G/4G FEC poll mode driver (PMD) supports an
implementation of a VRAN FEC wireless acceleration function.
This device is also known as Mount Bryce.
+The BBDEV ACC101, also known as Mount Cirrus, is a derivative device from Mount Bryce
+with functional and capacity improvements but still with the same exposed BBDEV capabilities.
Features
--------
-ACC100 5G/4G FEC PMD supports the following features:
+ACC100 and ACC101 5G/4G FEC PMDs support the following features:
- LDPC Encode in the DL (5GNR)
- LDPC Decode in the UL (5GNR)
- MSI
- SR-IOV
-ACC100 5G/4G FEC PMD supports the following BBDEV capabilities:
+ACC100 and ACC101 5G/4G FEC PMDs support the following BBDEV capabilities:
* For the LDPC encode operation:
- ``RTE_BBDEV_LDPC_CRC_24B_ATTACH`` : set to attach CRC24B to CB(s)
Initialization
--------------
-When the device first powers up, its PCI Physical Functions (PF) can be listed through this command:
+When the device first powers up, its PCI Physical Functions (PF) can be listed through these
+commands for ACC100 and ACC101 respectively:
.. code-block:: console
sudo lspci -vd8086:0d5c
+ sudo lspci -vd8086:57c4
The physical and virtual functions are compatible with Linux UIO drivers:
-``vfio`` and ``igb_uio``. However, in order to work the ACC100 5G/4G
+``vfio`` and ``igb_uio``. However, in order to work the 5G/4G
FEC device first needs to be bound to one of these linux drivers through DPDK.
Install the DPDK igb_uio driver, bind it with the PF PCI device ID and use
``lspci`` to confirm the PF device is under use by ``igb_uio`` DPDK UIO driver.
-The igb_uio driver may be bound to the PF PCI device using one of two methods:
+The igb_uio driver may be bound to the PF PCI device using one of two methods for ACC100
+(for ACC101 the device id ``57c4`` should be used in lieu of ``0d5c``):
1. PCI functions (physical or virtual, depending on the use case) can be bound to
where the PCI device ID (example: 0000:06:00.0) is obtained using lspci -vd8086:0d5c
-In a similar way the ACC100 5G/4G FEC PF may be bound with vfio-pci as any PCIe device.
+In a similar way the 5G/4G FEC PF may be bound with vfio-pci as any PCIe device.
Enable Virtual Functions
device to perform FEC functions.
This configuration needs to be executed at least once after reboot or PCI FLR and can
-be achieved by using the function ``acc100_configure()``, which sets up the
-parameters defined in ``acc100_conf`` structure.
+be achieved by using the functions ``rte_acc10x_configure()``,
+which sets up the parameters defined in the compatible ``acc100_conf`` structure.
Test Application
----------------
BBDEV provides a test application, ``test-bbdev.py`` and range of test data for testing
-the functionality of ACC100 5G/4G FEC encode and decode, depending on the device's
+the functionality of the device 5G/4G FEC encode and decode, depending on the device's
capabilities. The test application is located under app->test-bbdev folder and has the
following options:
In addition to the simple LDPC decoder and LDPC encoder tests, bbdev also provides
a range of additional tests under the test_vectors folder, which may be useful. The results
-of these tests will depend on the ACC100 5G/4G FEC capabilities which may cause some
+of these tests will depend on the device 5G/4G FEC capabilities which may cause some
testcases to be skipped, but no failure should be reported.
./pf_bb_config ACC100 -c acc100/acc100_config_vf_5g.cfg
./test-bbdev.py -e="-c 0xff0 -a${VF_PCI_ADDR}" -c validation -n 64 -b 32 -l 1 -v ./ldpc_dec_default.data
+
+Specifically for the BBDEV ACC101 PMD, the command below can be used:
+
+.. code-block:: console
+
+ ./pf_bb_config ACC101 -c acc101/acc101_config_2vf_4g5g.cfg
+ ./test-bbdev.py -e="-c 0xff0 -a${VF_PCI_ADDR}" -c validation -n 64 -b 32 -l 1 -v ./ldpc_dec_default.data
--- /dev/null
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2022 Intel Corporation
+ */
+
+/* ACC101 PCI vendor & device IDs */
+#define ACC101_VENDOR_ID (0x8086)
+#define ACC101_PF_DEVICE_ID (0x57c4)
+#define ACC101_VF_DEVICE_ID (0x57c5)
+
+/* Number of Virtual Functions ACC101 supports */
+#define ACC101_NUM_VFS 16
+#define ACC101_NUM_QGRPS 8
+#define ACC101_NUM_AQS 16
+/* All ACC101 Registers alignment are 32bits = 4B */
+#define ACC101_BYTES_IN_WORD 4
+
+#define ACC101_TMPL_PRI_0 0x03020100
+#define ACC101_TMPL_PRI_1 0x07060504
+#define ACC101_TMPL_PRI_2 0x0b0a0908
+#define ACC101_TMPL_PRI_3 0x0f0e0d0c
+#define ACC101_WORDS_IN_ARAM_SIZE (128 * 1024 / 4)
+
+#define ACC101_NUM_TMPL 32
+/* Mapping of signals for the available engines */
+#define ACC101_SIG_UL_5G 0
+#define ACC101_SIG_UL_5G_LAST 8
+#define ACC101_SIG_DL_5G 13
+#define ACC101_SIG_DL_5G_LAST 15
+#define ACC101_SIG_UL_4G 16
+#define ACC101_SIG_UL_4G_LAST 19
+#define ACC101_SIG_DL_4G 27
+#define ACC101_SIG_DL_4G_LAST 31
+#define ACC101_NUM_ACCS 5
+#define ACC101_PF_VAL 2
+
+/* ACC101 Configuration */
+#define ACC101_CFG_DMA_ERROR 0x3D7
+#define ACC101_CFG_AXI_CACHE 0x11
+#define ACC101_CFG_QMGR_HI_P 0x0F0F
+#define ACC101_CFG_PCI_AXI 0xC003
+#define ACC101_CFG_PCI_BRIDGE 0x40006033
+#define ACC101_ENGINE_OFFSET 0x1000
+#define ACC101_LONG_WAIT 1000
+#define ACC101_GPEX_AXIMAP_NUM 17
+#define ACC101_CLOCK_GATING_EN 0x30000
+#define ACC101_DMA_INBOUND 0x104
+/* DDR Size per VF - 512MB by default
+ * Can be increased up to 4 GB with single PF/VF
+ */
+#define ACC101_HARQ_DDR (512 * 1)
#include <rte_bbdev.h>
#include <rte_bbdev_pmd.h>
#include "rte_acc100_pmd.h"
+#include "acc101_pmd.h"
#ifdef RTE_LIBRTE_BBDEV_DEBUG
RTE_LOG_REGISTER_DEFAULT(acc100_logtype, DEBUG);
/* ACC100 PCI PF address map */
static struct rte_pci_id pci_id_acc100_pf_map[] = {
{
- RTE_PCI_DEVICE(ACC100_VENDOR_ID, ACC100_PF_DEVICE_ID)
+ RTE_PCI_DEVICE(ACC100_VENDOR_ID, ACC100_PF_DEVICE_ID),
+ },
+ {
+ RTE_PCI_DEVICE(ACC101_VENDOR_ID, ACC101_PF_DEVICE_ID),
},
{.device_id = 0},
};
/* ACC100 PCI VF address map */
static struct rte_pci_id pci_id_acc100_vf_map[] = {
{
- RTE_PCI_DEVICE(ACC100_VENDOR_ID, ACC100_VF_DEVICE_ID)
+ RTE_PCI_DEVICE(ACC100_VENDOR_ID, ACC100_VF_DEVICE_ID),
+ },
+ {
+ RTE_PCI_DEVICE(ACC101_VENDOR_ID, ACC101_VF_DEVICE_ID),
},
{.device_id = 0},
};
/* Fill in a frame control word for LDPC decoding. */
static inline void
-acc100_fcw_ld_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_ld *fcw,
+acc100_fcw_ld_fill(struct rte_bbdev_dec_op *op, struct acc100_fcw_ld *fcw,
union acc100_harq_layout_data *harq_layout)
{
uint16_t harq_out_length, harq_in_length, ncb_p, k0_p, parity_offset;
}
}
+/* Convert offset to harq index for harq_layout structure */
+static inline uint32_t hq_index(uint32_t offset)
+{
+ return (offset >> ACC100_HARQ_OFFSET_SHIFT) & ACC100_HARQ_OFFSET_MASK;
+}
+
+/* Fill in a frame control word for LDPC decoding for ACC101 */
+static inline void
+acc101_fcw_ld_fill(struct rte_bbdev_dec_op *op, struct acc100_fcw_ld *fcw,
+ union acc100_harq_layout_data *harq_layout)
+{
+ uint16_t harq_out_length, harq_in_length, ncb_p, k0_p, parity_offset;
+ uint32_t harq_index;
+ uint32_t l;
+
+ fcw->qm = op->ldpc_dec.q_m;
+ fcw->nfiller = op->ldpc_dec.n_filler;
+ fcw->BG = (op->ldpc_dec.basegraph - 1);
+ fcw->Zc = op->ldpc_dec.z_c;
+ fcw->ncb = op->ldpc_dec.n_cb;
+ fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_dec.basegraph,
+ op->ldpc_dec.rv_index);
+ if (op->ldpc_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK)
+ fcw->rm_e = op->ldpc_dec.cb_params.e;
+ else
+ fcw->rm_e = (op->ldpc_dec.tb_params.r <
+ op->ldpc_dec.tb_params.cab) ?
+ op->ldpc_dec.tb_params.ea :
+ op->ldpc_dec.tb_params.eb;
+
+ if (unlikely(check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE) &&
+ (op->ldpc_dec.harq_combined_input.length == 0))) {
+ rte_bbdev_log(WARNING, "Null HARQ input size provided");
+ /* Disable HARQ input in that case to carry forward */
+ op->ldpc_dec.op_flags ^= RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE;
+ }
+
+ fcw->hcin_en = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
+ fcw->hcout_en = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
+ fcw->crc_select = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK);
+ fcw->bypass_dec = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_DECODE_BYPASS);
+ fcw->bypass_intlv = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS);
+ if (op->ldpc_dec.q_m == 1) {
+ fcw->bypass_intlv = 1;
+ fcw->qm = 2;
+ }
+ fcw->hcin_decomp_mode = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
+ fcw->hcout_comp_mode = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
+ fcw->llr_pack_mode = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_LLR_COMPRESSION);
+ harq_index = hq_index(op->ldpc_dec.harq_combined_output.offset);
+ if (fcw->hcin_en > 0) {
+ harq_in_length = op->ldpc_dec.harq_combined_input.length;
+ if (fcw->hcin_decomp_mode > 0)
+ harq_in_length = harq_in_length * 8 / 6;
+ harq_in_length = RTE_MIN(harq_in_length, op->ldpc_dec.n_cb
+ - op->ldpc_dec.n_filler);
+ /* Alignment on next 64B - Already enforced from HC output */
+ harq_in_length = RTE_ALIGN_FLOOR(harq_in_length, 64);
+ fcw->hcin_size0 = harq_in_length;
+ fcw->hcin_offset = 0;
+ fcw->hcin_size1 = 0;
+ } else {
+ fcw->hcin_size0 = 0;
+ fcw->hcin_offset = 0;
+ fcw->hcin_size1 = 0;
+ }
+
+ fcw->itmax = op->ldpc_dec.iter_max;
+ fcw->itstop = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
+ fcw->synd_precoder = fcw->itstop;
+ /*
+ * These are all implicitly set
+ * fcw->synd_post = 0;
+ * fcw->so_en = 0;
+ * fcw->so_bypass_rm = 0;
+ * fcw->so_bypass_intlv = 0;
+ * fcw->dec_convllr = 0;
+ * fcw->hcout_convllr = 0;
+ * fcw->hcout_size1 = 0;
+ * fcw->so_it = 0;
+ * fcw->hcout_offset = 0;
+ * fcw->negstop_th = 0;
+ * fcw->negstop_it = 0;
+ * fcw->negstop_en = 0;
+ * fcw->gain_i = 1;
+ * fcw->gain_h = 1;
+ */
+ if (fcw->hcout_en > 0) {
+ parity_offset = (op->ldpc_dec.basegraph == 1 ? 20 : 8)
+ * op->ldpc_dec.z_c - op->ldpc_dec.n_filler;
+ k0_p = (fcw->k0 > parity_offset) ?
+ fcw->k0 - op->ldpc_dec.n_filler : fcw->k0;
+ ncb_p = fcw->ncb - op->ldpc_dec.n_filler;
+ l = RTE_MIN(k0_p + fcw->rm_e, INT16_MAX);
+ harq_out_length = (uint16_t) fcw->hcin_size0;
+ harq_out_length = RTE_MAX(harq_out_length, l);
+ /* Cannot exceed the pruned Ncb circular buffer */
+ harq_out_length = RTE_MIN(harq_out_length, ncb_p);
+ /* Alignment on next 64B */
+ harq_out_length = RTE_ALIGN_CEIL(harq_out_length, 64);
+ fcw->hcout_size0 = harq_out_length;
+ fcw->hcout_size1 = 0;
+ fcw->hcout_offset = 0;
+ harq_layout[harq_index].offset = fcw->hcout_offset;
+ harq_layout[harq_index].size0 = fcw->hcout_size0;
+ } else {
+ fcw->hcout_size0 = 0;
+ fcw->hcout_size1 = 0;
+ fcw->hcout_offset = 0;
+ }
+}
+
/**
* Fills descriptor with data pointers of one block type.
*
struct acc100_fcw_ld *fcw;
uint32_t seg_total_left;
fcw = &desc->req.fcw_ld;
- acc100_fcw_ld_fill(op, fcw, harq_layout);
+ q->d->fcw_ld_fill(op, fcw, harq_layout);
/* Special handling when overusing mbuf */
if (fcw->rm_e < ACC100_MAX_E_MBUF)
desc = q->ring_addr + desc_idx;
uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
- acc100_fcw_ld_fill(op, &desc->req.fcw_ld, harq_layout);
+ q->d->fcw_ld_fill(op, &desc->req.fcw_ld, harq_layout);
input = op->ldpc_dec.input.data;
h_output_head = h_output = op->ldpc_dec.hard_output.data;
dev->dequeue_ldpc_enc_ops = acc100_dequeue_ldpc_enc;
dev->dequeue_ldpc_dec_ops = acc100_dequeue_ldpc_dec;
+ /* Device variant specific handling */
+ if ((pci_dev->id.device_id == ACC100_PF_DEVICE_ID) ||
+ (pci_dev->id.device_id == ACC100_VF_DEVICE_ID)) {
+ ((struct acc100_device *) dev->data->dev_private)->device_variant = ACC100_VARIANT;
+ ((struct acc100_device *) dev->data->dev_private)->fcw_ld_fill = acc100_fcw_ld_fill;
+ } else {
+ ((struct acc100_device *) dev->data->dev_private)->device_variant = ACC101_VARIANT;
+ ((struct acc100_device *) dev->data->dev_private)->fcw_ld_fill = acc101_fcw_ld_fill;
+ }
+
((struct acc100_device *) dev->data->dev_private)->pf_device =
- !strcmp(drv->driver.name,
- RTE_STR(ACC100PF_DRIVER_NAME));
+ !strcmp(drv->driver.name, RTE_STR(ACC100PF_DRIVER_NAME));
+
((struct acc100_device *) dev->data->dev_private)->mmio_base =
pci_dev->mem_resource[0].addr;