--- /dev/null
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2020 Intel Corporation
+ */
+
+#include <stdint.h>
+#include <rte_ethdev_driver.h>
+#include <rte_malloc.h>
+
+#include "base/i40e_prototype.h"
+#include "base/i40e_type.h"
+#include "i40e_ethdev.h"
+#include "i40e_rxtx.h"
+#include "i40e_rxtx_vec_common.h"
+
+#include <rte_vect.h>
+
+#ifndef __INTEL_COMPILER
+#pragma GCC diagnostic ignored "-Wcast-qual"
+#endif
+
+#define RTE_I40E_DESCS_PER_LOOP_AVX 8
+
+static inline void
+i40e_rxq_rearm(struct i40e_rx_queue *rxq)
+{
+ int i;
+ uint16_t rx_id;
+ volatile union i40e_rx_desc *rxdp;
+ struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
+ struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
+ rte_lcore_id());
+
+ rxdp = rxq->rx_ring + rxq->rxrearm_start;
+
+ /* We need to pull 'n' more MBUFs into the software ring from mempool
+ * We inline the mempool function here, so we can vectorize the copy
+ * from the cache into the shadow ring.
+ */
+
+ if (cache->len < RTE_I40E_RXQ_REARM_THRESH) {
+ /* No. Backfill the cache first, and then fill from it */
+ uint32_t req = RTE_I40E_RXQ_REARM_THRESH + (cache->size -
+ cache->len);
+
+ /* How many do we require
+ * i.e. number to fill the cache + the request
+ */
+ int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
+ &cache->objs[cache->len], req);
+ if (ret == 0) {
+ cache->len += req;
+ } else {
+ if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
+ rxq->nb_rx_desc) {
+ __m128i dma_addr0;
+
+ dma_addr0 = _mm_setzero_si128();
+ for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
+ rxep[i].mbuf = &rxq->fake_mbuf;
+ _mm_store_si128
+ ((__m128i *)&rxdp[i].read,
+ dma_addr0);
+ }
+ }
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
+ RTE_I40E_RXQ_REARM_THRESH;
+ return;
+ }
+ }
+
+ const __m512i iova_offsets = _mm512_set1_epi64
+ (offsetof(struct rte_mbuf, buf_iova));
+ const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
+
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+ /* to shuffle the addresses to correct slots. Values 4-7 will contain
+ * zeros, so use 7 for a zero-value.
+ */
+ const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
+#else
+ const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
+#endif
+
+ /* Initialize the mbufs in vector, process 8 mbufs in one loop, taking
+ * from mempool cache and populating both shadow and HW rings
+ */
+ for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH / 8; i++) {
+ const __m512i mbuf_ptrs = _mm512_loadu_si512
+ (&cache->objs[cache->len - 8]);
+ _mm512_store_si512(rxep, mbuf_ptrs);
+
+ /* gather iova of mbuf0-7 into one zmm reg */
+ const __m512i iova_base_addrs = _mm512_i64gather_epi64
+ (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
+ 0, /* base */
+ 1 /* scale */);
+ const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
+ headroom);
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+ const __m512i iovas0 = _mm512_castsi256_si512
+ (_mm512_extracti64x4_epi64(iova_addrs, 0));
+ const __m512i iovas1 = _mm512_castsi256_si512
+ (_mm512_extracti64x4_epi64(iova_addrs, 1));
+
+ /* permute leaves desc 2-3 addresses in header address slots 0-1
+ * but these are ignored by driver since header split not
+ * enabled. Similarly for desc 4 & 5.
+ */
+ const __m512i desc_rd_0_1 = _mm512_permutexvar_epi64
+ (permute_idx, iovas0);
+ const __m512i desc_rd_2_3 = _mm512_bsrli_epi128(desc_rd_0_1, 8);
+
+ const __m512i desc_rd_4_5 = _mm512_permutexvar_epi64
+ (permute_idx, iovas1);
+ const __m512i desc_rd_6_7 = _mm512_bsrli_epi128(desc_rd_4_5, 8);
+
+ _mm512_store_si512((void *)rxdp, desc_rd_0_1);
+ _mm512_store_si512((void *)(rxdp + 2), desc_rd_2_3);
+ _mm512_store_si512((void *)(rxdp + 4), desc_rd_4_5);
+ _mm512_store_si512((void *)(rxdp + 6), desc_rd_6_7);
+#else
+ /* permute leaves desc 4-7 addresses in header address slots 0-3
+ * but these are ignored by driver since header split not
+ * enabled.
+ */
+ const __m512i desc_rd_0_3 = _mm512_permutexvar_epi64
+ (permute_idx, iova_addrs);
+ const __m512i desc_rd_4_7 = _mm512_bsrli_epi128(desc_rd_0_3, 8);
+
+ _mm512_store_si512((void *)rxdp, desc_rd_0_3);
+ _mm512_store_si512((void *)(rxdp + 4), desc_rd_4_7);
+#endif
+ rxep += 8, rxdp += 8, cache->len -= 8;
+ }
+
+ rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
+ if (rxq->rxrearm_start >= rxq->nb_rx_desc)
+ rxq->rxrearm_start = 0;
+
+ rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
+
+ rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
+ (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
+
+ /* Update the tail pointer on the NIC */
+ I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
+}
+
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+/* Handles 32B descriptor FDIR ID processing:
+ * rxdp: receive descriptor ring, required to load 2nd 16B half of each desc
+ * rx_pkts: required to store metadata back to mbufs
+ * pkt_idx: offset into the burst, increments in vector widths
+ * desc_idx: required to select the correct shift at compile time
+ */
+static inline __m256i
+desc_fdir_processing_32b(volatile union i40e_rx_desc *rxdp,
+ struct rte_mbuf **rx_pkts,
+ const uint32_t pkt_idx,
+ const uint32_t desc_idx)
+{
+ /* 32B desc path: load rxdp.wb.qword2 for EXT_STATUS and FLEXBH_STAT */
+ __m128i *rxdp_desc_0 = (void *)(&rxdp[desc_idx + 0].wb.qword2);
+ __m128i *rxdp_desc_1 = (void *)(&rxdp[desc_idx + 1].wb.qword2);
+ const __m128i desc_qw2_0 = _mm_load_si128(rxdp_desc_0);
+ const __m128i desc_qw2_1 = _mm_load_si128(rxdp_desc_1);
+
+ /* Mask for FLEXBH_STAT, and the FDIR_ID value to compare against. The
+ * remaining data is set to all 1's to pass through data.
+ */
+ const __m256i flexbh_mask = _mm256_set_epi32(-1, -1, -1, 3 << 4,
+ -1, -1, -1, 3 << 4);
+ const __m256i flexbh_id = _mm256_set_epi32(-1, -1, -1, 1 << 4,
+ -1, -1, -1, 1 << 4);
+
+ /* Load descriptor, check for FLEXBH bits, generate a mask for both
+ * packets in the register.
+ */
+ __m256i desc_qw2_0_1 =
+ _mm256_inserti128_si256(_mm256_castsi128_si256(desc_qw2_0),
+ desc_qw2_1, 1);
+ __m256i desc_tmp_msk = _mm256_and_si256(flexbh_mask, desc_qw2_0_1);
+ __m256i fdir_mask = _mm256_cmpeq_epi32(flexbh_id, desc_tmp_msk);
+ __m256i fdir_data = _mm256_alignr_epi8(desc_qw2_0_1, desc_qw2_0_1, 12);
+ __m256i desc_fdir_data = _mm256_and_si256(fdir_mask, fdir_data);
+
+ /* Write data out to the mbuf. There is no store to this area of the
+ * mbuf today, so we cannot combine it with another store.
+ */
+ const uint32_t idx_0 = pkt_idx + desc_idx;
+ const uint32_t idx_1 = pkt_idx + desc_idx + 1;
+
+ rx_pkts[idx_0]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 0);
+ rx_pkts[idx_1]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 4);
+
+ /* Create mbuf flags as required for mbuf_flags layout
+ * (That's high lane [1,3,5,7, 0,2,4,6] as u32 lanes).
+ * Approach:
+ * - Mask away bits not required from the fdir_mask
+ * - Leave the PKT_FDIR_ID bit (1 << 13)
+ * - Position that bit correctly based on packet number
+ * - OR in the resulting bit to mbuf_flags
+ */
+ RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
+ __m256i mbuf_flag_mask = _mm256_set_epi32(0, 0, 0, 1 << 13,
+ 0, 0, 0, 1 << 13);
+ __m256i desc_flag_bit = _mm256_and_si256(mbuf_flag_mask, fdir_mask);
+
+ /* For static-inline function, this will be stripped out
+ * as the desc_idx is a hard-coded constant.
+ */
+ switch (desc_idx) {
+ case 0:
+ return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 4);
+ case 2:
+ return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 8);
+ case 4:
+ return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 12);
+ case 6:
+ return desc_flag_bit;
+ default:
+ break;
+ }
+
+ /* NOT REACHED, see above switch returns */
+ return _mm256_setzero_si256();
+}
+#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
+
+#define PKTLEN_SHIFT 10
+
+/* Force inline as some compilers will not inline by default. */
+static __rte_always_inline uint16_t
+_recv_raw_pkts_vec_avx512(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts, uint8_t *split_packet)
+{
+ const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
+ const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
+ 0, rxq->mbuf_initializer);
+ struct i40e_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
+ volatile union i40e_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
+
+ rte_prefetch0(rxdp);
+
+ /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP_AVX */
+ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP_AVX);
+
+ /* See if we need to rearm the RX queue - gives the prefetch a bit
+ * of time to act
+ */
+ if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
+ i40e_rxq_rearm(rxq);
+
+ /* Before we start moving massive data around, check to see if
+ * there is actually a packet available
+ */
+ if (!(rxdp->wb.qword1.status_error_len &
+ rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
+ return 0;
+
+ /* constants used in processing loop */
+ const __m512i crc_adjust =
+ _mm512_set4_epi32
+ (0, /* ignore non-length fields */
+ -rxq->crc_len, /* sub crc on data_len */
+ -rxq->crc_len, /* sub crc on pkt_len */
+ 0 /* ignore non-length fields */
+ );
+
+ /* 8 packets DD mask, LSB in each 32-bit value */
+ const __m256i dd_check = _mm256_set1_epi32(1);
+
+ /* 8 packets EOP mask, second-LSB in each 32-bit value */
+ const __m256i eop_check = _mm256_slli_epi32(dd_check,
+ I40E_RX_DESC_STATUS_EOF_SHIFT);
+
+ /* mask to shuffle from desc. to mbuf (2 descriptors)*/
+ const __m512i shuf_msk =
+ _mm512_set4_epi32
+ (/* rss hash parsed separately */
+ /* octet 4~7, 32bits rss */
+ 7 << 24 | 6 << 16 | 5 << 8 | 4,
+ /* octet 2~3, low 16 bits vlan_macip */
+ /* octet 14~15, 16 bits data_len */
+ 3 << 24 | 2 << 16 | 15 << 8 | 14,
+ /* skip hi 16 bits pkt_len, zero out */
+ /* octet 14~15, 16 bits pkt_len */
+ 0xFFFF << 16 | 15 << 8 | 14,
+ /* pkt_type set as unknown */
+ 0xFFFFFFFF
+ );
+ /* compile-time check the above crc and shuffle layout is correct.
+ * NOTE: the first field (lowest address) is given last in set_epi
+ * calls above.
+ */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+
+ /* Status/Error flag masks */
+ /* mask everything except RSS, flow director and VLAN flags
+ * bit2 is for VLAN tag, bit11 for flow director indication
+ * bit13:12 for RSS indication. Bits 3-5 of error
+ * field (bits 22-24) are for IP/L4 checksum errors
+ */
+ const __m256i flags_mask = _mm256_set1_epi32
+ ((1 << 2) | (1 << 11) | (3 << 12) | (7 << 22));
+
+ /* data to be shuffled by result of flag mask. If VLAN bit is set,
+ * (bit 2), then position 4 in this array will be used in the
+ * destination
+ */
+ const __m256i vlan_flags_shuf = _mm256_set_epi32
+ (0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
+ 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
+
+ /* data to be shuffled by result of flag mask, shifted down 11.
+ * If RSS/FDIR bits are set, shuffle moves appropriate flags in
+ * place.
+ */
+ const __m256i rss_flags_shuf = _mm256_set_epi8
+ (0, 0, 0, 0, 0, 0, 0, 0,
+ PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
+ 0, 0, PKT_RX_FDIR, 0, /* end up 128-bits */
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
+ 0, 0, PKT_RX_FDIR, 0);
+
+ /* data to be shuffled by the result of the flags mask shifted by 22
+ * bits. This gives use the l3_l4 flags.
+ */
+ const __m256i l3_l4_flags_shuf = _mm256_set_epi8
+ (0, 0, 0, 0, 0, 0, 0, 0,
+ /* shift right 1 bit to make sure it not exceed 255 */
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_BAD) >> 1,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
+ PKT_RX_IP_CKSUM_BAD >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
+ /* second 128-bits */
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_BAD) >> 1,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
+ PKT_RX_IP_CKSUM_BAD >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
+
+ const __m256i cksum_mask = _mm256_set1_epi32
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_EIP_CKSUM_BAD);
+
+ uint16_t i, received;
+
+ for (i = 0, received = 0; i < nb_pkts;
+ i += RTE_I40E_DESCS_PER_LOOP_AVX,
+ rxdp += RTE_I40E_DESCS_PER_LOOP_AVX) {
+ /* step 1, copy over 8 mbuf pointers to rx_pkts array */
+ _mm256_storeu_si256((void *)&rx_pkts[i],
+ _mm256_loadu_si256((void *)&sw_ring[i]));
+#ifdef RTE_ARCH_X86_64
+ _mm256_storeu_si256((void *)&rx_pkts[i + 4],
+ _mm256_loadu_si256((void *)&sw_ring[i + 4]));
+#endif
+
+ __m512i raw_desc0_3, raw_desc4_7;
+ __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
+
+ /* load in descriptors, in reverse order */
+ const __m128i raw_desc7 =
+ _mm_load_si128((void *)(rxdp + 7));
+ rte_compiler_barrier();
+ const __m128i raw_desc6 =
+ _mm_load_si128((void *)(rxdp + 6));
+ rte_compiler_barrier();
+ const __m128i raw_desc5 =
+ _mm_load_si128((void *)(rxdp + 5));
+ rte_compiler_barrier();
+ const __m128i raw_desc4 =
+ _mm_load_si128((void *)(rxdp + 4));
+ rte_compiler_barrier();
+ const __m128i raw_desc3 =
+ _mm_load_si128((void *)(rxdp + 3));
+ rte_compiler_barrier();
+ const __m128i raw_desc2 =
+ _mm_load_si128((void *)(rxdp + 2));
+ rte_compiler_barrier();
+ const __m128i raw_desc1 =
+ _mm_load_si128((void *)(rxdp + 1));
+ rte_compiler_barrier();
+ const __m128i raw_desc0 =
+ _mm_load_si128((void *)(rxdp + 0));
+
+ raw_desc6_7 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc6),
+ raw_desc7, 1);
+ raw_desc4_5 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc4),
+ raw_desc5, 1);
+ raw_desc2_3 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc2),
+ raw_desc3, 1);
+ raw_desc0_1 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc0),
+ raw_desc1, 1);
+
+ raw_desc4_7 =
+ _mm512_inserti64x4
+ (_mm512_castsi256_si512(raw_desc4_5),
+ raw_desc6_7, 1);
+ raw_desc0_3 =
+ _mm512_inserti64x4
+ (_mm512_castsi256_si512(raw_desc0_1),
+ raw_desc2_3, 1);
+
+ if (split_packet) {
+ int j;
+
+ for (j = 0; j < RTE_I40E_DESCS_PER_LOOP_AVX; j++)
+ rte_mbuf_prefetch_part2(rx_pkts[i + j]);
+ }
+
+ /* convert descriptors 0-7 into mbufs, adjusting length and
+ * re-arranging fields. Then write into the mbuf
+ */
+ const __m512i len4_7 = _mm512_slli_epi32
+ (raw_desc4_7, PKTLEN_SHIFT);
+ const __m512i len0_3 = _mm512_slli_epi32
+ (raw_desc0_3, PKTLEN_SHIFT);
+ const __m512i desc4_7 = _mm512_mask_blend_epi16
+ (0x80808080, raw_desc4_7, len4_7);
+ const __m512i desc0_3 = _mm512_mask_blend_epi16
+ (0x80808080, raw_desc0_3, len0_3);
+ __m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk);
+ __m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk);
+
+ mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
+ mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
+
+ /* to get packet types, shift 64-bit values down 30 bits
+ * and so ptype is in lower 8-bits in each
+ */
+ const __m512i ptypes4_7 = _mm512_srli_epi64(desc4_7, 30);
+ const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 30);
+ const __m256i ptypes6_7 =
+ _mm512_extracti64x4_epi64(ptypes4_7, 1);
+ const __m256i ptypes4_5 =
+ _mm512_extracti64x4_epi64(ptypes4_7, 0);
+ const __m256i ptypes2_3 =
+ _mm512_extracti64x4_epi64(ptypes0_3, 1);
+ const __m256i ptypes0_1 =
+ _mm512_extracti64x4_epi64(ptypes0_3, 0);
+ const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
+ const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
+ const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
+ const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
+ const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
+ const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
+ const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
+ const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
+
+ const __m512i ptype4_7 = _mm512_set_epi32
+ (0, 0, 0, ptype_tbl[ptype7],
+ 0, 0, 0, ptype_tbl[ptype6],
+ 0, 0, 0, ptype_tbl[ptype5],
+ 0, 0, 0, ptype_tbl[ptype4]);
+ const __m512i ptype0_3 = _mm512_set_epi32
+ (0, 0, 0, ptype_tbl[ptype3],
+ 0, 0, 0, ptype_tbl[ptype2],
+ 0, 0, 0, ptype_tbl[ptype1],
+ 0, 0, 0, ptype_tbl[ptype0]);
+
+ mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
+ mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
+
+ __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
+ __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
+ __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
+ __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
+
+ /**
+ * use permute/extract to get status content
+ * After the operations, the packets status flags are in the
+ * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+ */
+ /* merge the status bits into one register */
+ const __m512i status_permute_msk = _mm512_set_epi32
+ (0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 22, 30, 6, 14,
+ 18, 26, 2, 10);
+ const __m512i raw_status0_7 = _mm512_permutex2var_epi32
+ (desc4_7, status_permute_msk, desc0_3);
+ __m256i status0_7 = _mm512_extracti64x4_epi64
+ (raw_status0_7, 0);
+
+ /* now do flag manipulation */
+
+ /* get only flag/error bits we want */
+ const __m256i flag_bits =
+ _mm256_and_si256(status0_7, flags_mask);
+ /* set vlan and rss flags */
+ const __m256i vlan_flags =
+ _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
+ const __m256i rss_fdir_bits = _mm256_srli_epi32(flag_bits, 11);
+ const __m256i rss_flags = _mm256_shuffle_epi8(rss_flags_shuf,
+ rss_fdir_bits);
+
+ /* l3_l4_error flags, shuffle, then shift to correct adjustment
+ * of flags in flags_shuf, and finally mask out extra bits
+ */
+ __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
+ _mm256_srli_epi32(flag_bits, 22));
+ l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
+ l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
+
+ /* merge flags */
+ __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
+ _mm256_or_si256(rss_flags, vlan_flags));
+
+ /* If the rxq has FDIR enabled, read and process the FDIR info
+ * from the descriptor. This can cause more loads/stores, so is
+ * not always performed. Branch over the code when not enabled.
+ */
+ if (rxq->fdir_enabled) {
+#ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+ /* 16B descriptor code path:
+ * RSS and FDIR ID use the same offset in the desc, so
+ * only one can be present at a time. The code below
+ * identifies an FDIR ID match, and zeros the RSS value
+ * in the mbuf on FDIR match to keep mbuf data clean.
+ */
+#define FDIR_BLEND_MASK ((1 << 3) | (1 << 7))
+
+ /* Flags:
+ * - Take flags, shift bits to null out
+ * - CMPEQ with known FDIR ID, to get 0xFFFF or 0 mask
+ * - Strip bits from mask, leaving 0 or 1 for FDIR ID
+ * - Merge with mbuf_flags
+ */
+ /* FLM = 1, FLTSTAT = 0b01, (FLM | FLTSTAT) == 3.
+ * Shift left by 28 to avoid having to mask.
+ */
+ const __m256i fdir =
+ _mm256_slli_epi32(rss_fdir_bits, 28);
+ const __m256i fdir_id = _mm256_set1_epi32(3 << 28);
+
+ /* As above, the fdir_mask to packet mapping is this:
+ * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+ * Then OR FDIR flags to mbuf_flags on FDIR ID hit.
+ */
+ RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
+ const __m256i pkt_fdir_bit = _mm256_set1_epi32(1 << 13);
+ const __m256i fdir_mask =
+ _mm256_cmpeq_epi32(fdir, fdir_id);
+ __m256i fdir_bits =
+ _mm256_and_si256(fdir_mask, pkt_fdir_bit);
+
+ mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_bits);
+
+ /* Based on FDIR_MASK, clear the RSS or FDIR value.
+ * The FDIR ID value is masked to zero if not a hit,
+ * otherwise the mb0_1 register RSS field is zeroed.
+ */
+ const __m256i fdir_zero_mask = _mm256_setzero_si256();
+ __m256i tmp0_1 = _mm256_blend_epi32(fdir_zero_mask,
+ fdir_mask, FDIR_BLEND_MASK);
+ __m256i fdir_mb0_1 = _mm256_and_si256(mb0_1, fdir_mask);
+
+ mb0_1 = _mm256_andnot_si256(tmp0_1, mb0_1);
+
+ /* Write to mbuf: no stores to combine with, so just a
+ * scalar store to push data here.
+ */
+ rx_pkts[i + 0]->hash.fdir.hi =
+ _mm256_extract_epi32(fdir_mb0_1, 3);
+ rx_pkts[i + 1]->hash.fdir.hi =
+ _mm256_extract_epi32(fdir_mb0_1, 7);
+
+ /* Same as above, only shift the fdir_mask to align
+ * the packet FDIR mask with the FDIR_ID desc lane.
+ */
+ __m256i tmp2_3 =
+ _mm256_alignr_epi8(fdir_mask, fdir_mask, 12);
+ __m256i fdir_mb2_3 = _mm256_and_si256(mb2_3, tmp2_3);
+
+ tmp2_3 = _mm256_blend_epi32(fdir_zero_mask, tmp2_3,
+ FDIR_BLEND_MASK);
+ mb2_3 = _mm256_andnot_si256(tmp2_3, mb2_3);
+ rx_pkts[i + 2]->hash.fdir.hi =
+ _mm256_extract_epi32(fdir_mb2_3, 3);
+ rx_pkts[i + 3]->hash.fdir.hi =
+ _mm256_extract_epi32(fdir_mb2_3, 7);
+
+ __m256i tmp4_5 =
+ _mm256_alignr_epi8(fdir_mask, fdir_mask, 8);
+ __m256i fdir_mb4_5 = _mm256_and_si256(mb4_5, tmp4_5);
+
+ tmp4_5 = _mm256_blend_epi32(fdir_zero_mask, tmp4_5,
+ FDIR_BLEND_MASK);
+ mb4_5 = _mm256_andnot_si256(tmp4_5, mb4_5);
+ rx_pkts[i + 4]->hash.fdir.hi =
+ _mm256_extract_epi32(fdir_mb4_5, 3);
+ rx_pkts[i + 5]->hash.fdir.hi =
+ _mm256_extract_epi32(fdir_mb4_5, 7);
+
+ __m256i tmp6_7 =
+ _mm256_alignr_epi8(fdir_mask, fdir_mask, 4);
+ __m256i fdir_mb6_7 = _mm256_and_si256(mb6_7, tmp6_7);
+
+ tmp6_7 = _mm256_blend_epi32(fdir_zero_mask, tmp6_7,
+ FDIR_BLEND_MASK);
+ mb6_7 = _mm256_andnot_si256(tmp6_7, mb6_7);
+ rx_pkts[i + 6]->hash.fdir.hi =
+ _mm256_extract_epi32(fdir_mb6_7, 3);
+ rx_pkts[i + 7]->hash.fdir.hi =
+ _mm256_extract_epi32(fdir_mb6_7, 7);
+
+ /* End of 16B descriptor handling */
+#else
+ /* 32B descriptor FDIR ID mark handling. Returns bits
+ * to be OR-ed into the mbuf olflags.
+ */
+ __m256i fdir_add_flags;
+
+ fdir_add_flags =
+ desc_fdir_processing_32b(rxdp, rx_pkts, i, 0);
+ mbuf_flags =
+ _mm256_or_si256(mbuf_flags, fdir_add_flags);
+
+ fdir_add_flags =
+ desc_fdir_processing_32b(rxdp, rx_pkts, i, 2);
+ mbuf_flags =
+ _mm256_or_si256(mbuf_flags, fdir_add_flags);
+
+ fdir_add_flags =
+ desc_fdir_processing_32b(rxdp, rx_pkts, i, 4);
+ mbuf_flags =
+ _mm256_or_si256(mbuf_flags, fdir_add_flags);
+
+ fdir_add_flags =
+ desc_fdir_processing_32b(rxdp, rx_pkts, i, 6);
+ mbuf_flags =
+ _mm256_or_si256(mbuf_flags, fdir_add_flags);
+ /* End 32B desc handling */
+#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
+
+ } /* if() on FDIR enabled */
+
+ /* At this point, we have the 8 sets of flags in the low 16-bits
+ * of each 32-bit value in vlan0.
+ * We want to extract these, and merge them with the mbuf init data
+ * so we can do a single write to the mbuf to set the flags
+ * and all the other initialization fields. Extracting the
+ * appropriate flags means that we have to do a shift and blend for
+ * each mbuf before we do the write. However, we can also
+ * add in the previously computed rx_descriptor fields to
+ * make a single 256-bit write per mbuf
+ */
+ /* check the structure matches expectations */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+ offsetof(struct rte_mbuf, rearm_data) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+ RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
+ /* build up data and do writes */
+ __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
+ rearm6, rearm7;
+ rearm6 = _mm256_blend_epi32
+ (mbuf_init, _mm256_slli_si256(mbuf_flags, 8), 0x04);
+ rearm4 = _mm256_blend_epi32
+ (mbuf_init, _mm256_slli_si256(mbuf_flags, 4), 0x04);
+ rearm2 = _mm256_blend_epi32
+ (mbuf_init, mbuf_flags, 0x04);
+ rearm0 = _mm256_blend_epi32
+ (mbuf_init, _mm256_srli_si256(mbuf_flags, 4), 0x04);
+ /* permute to add in the rx_descriptor e.g. rss fields */
+ rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
+ rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
+ rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
+ rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
+ /* write to mbuf */
+ _mm256_storeu_si256
+ ((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6);
+ _mm256_storeu_si256
+ ((__m256i *)&rx_pkts[i + 4]->rearm_data, rearm4);
+ _mm256_storeu_si256
+ ((__m256i *)&rx_pkts[i + 2]->rearm_data, rearm2);
+ _mm256_storeu_si256
+ ((__m256i *)&rx_pkts[i + 0]->rearm_data, rearm0);
+
+ /* repeat for the odd mbufs */
+ const __m256i odd_flags = _mm256_castsi128_si256
+ (_mm256_extracti128_si256(mbuf_flags, 1));
+ rearm7 = _mm256_blend_epi32
+ (mbuf_init, _mm256_slli_si256(odd_flags, 8), 0x04);
+ rearm5 = _mm256_blend_epi32
+ (mbuf_init, _mm256_slli_si256(odd_flags, 4), 0x04);
+ rearm3 = _mm256_blend_epi32
+ (mbuf_init, odd_flags, 0x04);
+ rearm1 = _mm256_blend_epi32
+ (mbuf_init, _mm256_srli_si256(odd_flags, 4), 0x04);
+ /* since odd mbufs are already in hi 128-bits use blend */
+ rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
+ rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
+ rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
+ rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
+ /* again write to mbufs */
+ _mm256_storeu_si256
+ ((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7);
+ _mm256_storeu_si256
+ ((__m256i *)&rx_pkts[i + 5]->rearm_data, rearm5);
+ _mm256_storeu_si256
+ ((__m256i *)&rx_pkts[i + 3]->rearm_data, rearm3);
+ _mm256_storeu_si256
+ ((__m256i *)&rx_pkts[i + 1]->rearm_data, rearm1);
+
+ /* extract and record EOP bit */
+ if (split_packet) {
+ const __m128i eop_mask =
+ _mm_set1_epi16
+ (1 << I40E_RX_DESC_STATUS_EOF_SHIFT);
+ const __m256i eop_bits256 =
+ _mm256_and_si256(status0_7, eop_check);
+ /* pack status bits into a single 128-bit register */
+ const __m128i eop_bits =
+ _mm_packus_epi32
+ (_mm256_castsi256_si128(eop_bits256),
+ _mm256_extractf128_si256(eop_bits256, 1));
+ /* flip bits, and mask out the EOP bit, which is now
+ * a split-packet bit i.e. !EOP, rather than EOP one.
+ */
+ __m128i split_bits = _mm_andnot_si128(eop_bits,
+ eop_mask);
+ /* eop bits are out of order, so we need to shuffle them
+ * back into order again. In doing so, only use low 8
+ * bits, which acts like another pack instruction
+ * The original order is (hi->lo): 1,3,5,7,0,2,4,6
+ * [Since we use epi8, the 16-bit positions are
+ * multiplied by 2 in the eop_shuffle value.]
+ */
+ __m128i eop_shuffle = _mm_set_epi8
+ (0xFF, 0xFF, 0xFF, 0xFF, /* zero hi 64b */
+ 0xFF, 0xFF, 0xFF, 0xFF,
+ 8, 0, 10, 2, /* move values to lo 64b */
+ 12, 4, 14, 6);
+ split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
+ *(uint64_t *)split_packet =
+ _mm_cvtsi128_si64(split_bits);
+ split_packet += RTE_I40E_DESCS_PER_LOOP_AVX;
+ }
+
+ /* perform dd_check */
+ status0_7 = _mm256_and_si256(status0_7, dd_check);
+ status0_7 = _mm256_packs_epi32
+ (status0_7, _mm256_setzero_si256());
+
+ uint64_t burst = __builtin_popcountll
+ (_mm_cvtsi128_si64
+ (_mm256_extracti128_si256
+ (status0_7, 1)));
+ burst += __builtin_popcountll(_mm_cvtsi128_si64
+ (_mm256_castsi256_si128(status0_7)));
+ received += burst;
+ if (burst != RTE_I40E_DESCS_PER_LOOP_AVX)
+ break;
+ }
+
+ /* update tail pointers */
+ rxq->rx_tail += received;
+ rxq->rx_tail &= (rxq->nb_rx_desc - 1);
+ if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
+ rxq->rx_tail--;
+ received--;
+ }
+ rxq->rxrearm_nb += received;
+ return received;
+}
+
+/**
+ * Notice:
+ * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+i40e_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ return _recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
+}
+
+/**
+ * vPMD receive routine that reassembles single burst of 32 scattered packets
+ * Notice:
+ * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
+ */
+static uint16_t
+i40e_recv_scattered_burst_vec_avx512(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct i40e_rx_queue *rxq = rx_queue;
+ uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
+
+ /* get some new buffers */
+ uint16_t nb_bufs = _recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
+ split_flags);
+ if (nb_bufs == 0)
+ return 0;
+
+ /* happy day case, full burst + no packets to be joined */
+ const uint64_t *split_fl64 = (uint64_t *)split_flags;
+
+ if (!rxq->pkt_first_seg &&
+ split_fl64[0] == 0 && split_fl64[1] == 0 &&
+ split_fl64[2] == 0 && split_fl64[3] == 0)
+ return nb_bufs;
+
+ /* reassemble any packets that need reassembly*/
+ unsigned int i = 0;
+
+ if (!rxq->pkt_first_seg) {
+ /* find the first split flag, and only reassemble then*/
+ while (i < nb_bufs && !split_flags[i])
+ i++;
+ if (i == nb_bufs)
+ return nb_bufs;
+ rxq->pkt_first_seg = rx_pkts[i];
+ }
+ return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
+ &split_flags[i]);
+}
+
+/**
+ * vPMD receive routine that reassembles scattered packets.
+ * Main receive routine that can handle arbitrary burst sizes
+ * Notice:
+ * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+i40e_recv_scattered_pkts_vec_avx512(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t retval = 0;
+
+ while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
+ uint16_t burst = i40e_recv_scattered_burst_vec_avx512(rx_queue,
+ rx_pkts + retval, RTE_I40E_VPMD_RX_BURST);
+ retval += burst;
+ nb_pkts -= burst;
+ if (burst < RTE_I40E_VPMD_RX_BURST)
+ return retval;
+ }
+ return retval + i40e_recv_scattered_burst_vec_avx512(rx_queue,
+ rx_pkts + retval, nb_pkts);
+}
+
+static inline void
+vtx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags)
+{
+ uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
+ ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
+ ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
+
+ __m128i descriptor = _mm_set_epi64x(high_qw,
+ pkt->buf_iova + pkt->data_off);
+ _mm_store_si128((__m128i *)txdp, descriptor);
+}
+
+static inline void
+vtx(volatile struct i40e_tx_desc *txdp,
+ struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
+{
+ const uint64_t hi_qw_tmpl = (I40E_TX_DESC_DTYPE_DATA |
+ ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT));
+
+ /* if unaligned on 32-bit boundary, do one to align */
+ if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
+ vtx1(txdp, *pkt, flags);
+ nb_pkts--, txdp++, pkt++;
+ }
+
+ /* do two at a time while possible, in bursts */
+ for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
+ uint64_t hi_qw3 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[3]->data_len <<
+ I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
+ uint64_t hi_qw2 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[2]->data_len <<
+ I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
+ uint64_t hi_qw1 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[1]->data_len <<
+ I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
+ uint64_t hi_qw0 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[0]->data_len <<
+ I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
+
+ __m256i desc2_3 = _mm256_set_epi64x
+ (hi_qw3, pkt[3]->buf_iova + pkt[3]->data_off,
+ hi_qw2, pkt[2]->buf_iova + pkt[2]->data_off);
+ __m256i desc0_1 = _mm256_set_epi64x
+ (hi_qw1, pkt[1]->buf_iova + pkt[1]->data_off,
+ hi_qw0, pkt[0]->buf_iova + pkt[0]->data_off);
+ _mm256_store_si256((void *)(txdp + 2), desc2_3);
+ _mm256_store_si256((void *)txdp, desc0_1);
+ }
+
+ /* do any last ones */
+ while (nb_pkts) {
+ vtx1(txdp, *pkt, flags);
+ txdp++, pkt++, nb_pkts--;
+ }
+}
+
+static inline uint16_t
+i40e_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
+ volatile struct i40e_tx_desc *txdp;
+ struct i40e_tx_entry *txep;
+ uint16_t n, nb_commit, tx_id;
+ uint64_t flags = I40E_TD_CMD;
+ uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
+
+ /* cross rx_thresh boundary is not allowed */
+ nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
+
+ if (txq->nb_tx_free < txq->tx_free_thresh)
+ i40e_tx_free_bufs(txq);
+
+ nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
+ if (unlikely(nb_pkts == 0))
+ return 0;
+
+ tx_id = txq->tx_tail;
+ txdp = &txq->tx_ring[tx_id];
+ txep = &txq->sw_ring[tx_id];
+
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
+
+ n = (uint16_t)(txq->nb_tx_desc - tx_id);
+ if (nb_commit >= n) {
+ tx_backlog_entry(txep, tx_pkts, n);
+
+ vtx(txdp, tx_pkts, n - 1, flags);
+ tx_pkts += (n - 1);
+ txdp += (n - 1);
+
+ vtx1(txdp, *tx_pkts++, rs);
+
+ nb_commit = (uint16_t)(nb_commit - n);
+
+ tx_id = 0;
+ txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+
+ /* avoid reach the end of ring */
+ txdp = &txq->tx_ring[tx_id];
+ txep = &txq->sw_ring[tx_id];
+ }
+
+ tx_backlog_entry(txep, tx_pkts, nb_commit);
+
+ vtx(txdp, tx_pkts, nb_commit, flags);
+
+ tx_id = (uint16_t)(tx_id + nb_commit);
+ if (tx_id > txq->tx_next_rs) {
+ txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
+ rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
+ I40E_TXD_QW1_CMD_SHIFT);
+ txq->tx_next_rs =
+ (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
+ }
+
+ txq->tx_tail = tx_id;
+
+ I40E_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
+
+ return nb_pkts;
+}
+
+uint16_t
+i40e_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t nb_tx = 0;
+ struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
+
+ while (nb_pkts) {
+ uint16_t ret, num;
+
+ num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
+ ret = i40e_xmit_fixed_burst_vec_avx512
+ (tx_queue, &tx_pkts[nb_tx], num);
+ nb_tx += ret;
+ nb_pkts -= ret;
+ if (ret < num)
+ break;
+ }
+
+ return nb_tx;
+}