--- /dev/null
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
+ */
+
+#include <dirent.h>
+#include <fcntl.h>
+#include <stdio.h>
+#include <string.h>
+#include <sys/mman.h>
+#include <sys/queue.h>
+#include <sys/types.h>
+#include <sys/file.h>
+#include <unistd.h>
+
+#include <rte_hexdump.h>
+#include <rte_memzone.h>
+#include <rte_malloc.h>
+#include <rte_memory.h>
+#include <rte_spinlock.h>
+#include <rte_string_fns.h>
+
+#include "ccp_dev.h"
+#include "ccp_pci.h"
+#include "ccp_pmd_private.h"
+
+struct ccp_list ccp_list = TAILQ_HEAD_INITIALIZER(ccp_list);
+static int ccp_dev_id;
+
+static const struct rte_memzone *
+ccp_queue_dma_zone_reserve(const char *queue_name,
+ uint32_t queue_size,
+ int socket_id)
+{
+ const struct rte_memzone *mz;
+
+ mz = rte_memzone_lookup(queue_name);
+ if (mz != 0) {
+ if (((size_t)queue_size <= mz->len) &&
+ ((socket_id == SOCKET_ID_ANY) ||
+ (socket_id == mz->socket_id))) {
+ CCP_LOG_INFO("re-use memzone already "
+ "allocated for %s", queue_name);
+ return mz;
+ }
+ CCP_LOG_ERR("Incompatible memzone already "
+ "allocated %s, size %u, socket %d. "
+ "Requested size %u, socket %u",
+ queue_name, (uint32_t)mz->len,
+ mz->socket_id, queue_size, socket_id);
+ return NULL;
+ }
+
+ CCP_LOG_INFO("Allocate memzone for %s, size %u on socket %u",
+ queue_name, queue_size, socket_id);
+
+ return rte_memzone_reserve_aligned(queue_name, queue_size,
+ socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
+}
+
+/* bitmap support apis */
+static inline void
+ccp_set_bit(unsigned long *bitmap, int n)
+{
+ __sync_fetch_and_or(&bitmap[WORD_OFFSET(n)], (1UL << BIT_OFFSET(n)));
+}
+
+static inline void
+ccp_clear_bit(unsigned long *bitmap, int n)
+{
+ __sync_fetch_and_and(&bitmap[WORD_OFFSET(n)], ~(1UL << BIT_OFFSET(n)));
+}
+
+static inline uint32_t
+ccp_get_bit(unsigned long *bitmap, int n)
+{
+ return ((bitmap[WORD_OFFSET(n)] & (1 << BIT_OFFSET(n))) != 0);
+}
+
+
+static inline uint32_t
+ccp_ffz(unsigned long word)
+{
+ unsigned long first_zero;
+
+ first_zero = __builtin_ffsl(~word);
+ return first_zero ? (first_zero - 1) :
+ BITS_PER_WORD;
+}
+
+static inline uint32_t
+ccp_find_first_zero_bit(unsigned long *addr, uint32_t limit)
+{
+ uint32_t i;
+ uint32_t nwords = 0;
+
+ nwords = (limit - 1) / BITS_PER_WORD + 1;
+ for (i = 0; i < nwords; i++) {
+ if (addr[i] == 0UL)
+ return i * BITS_PER_WORD;
+ if (addr[i] < ~(0UL))
+ break;
+ }
+ return (i == nwords) ? limit : i * BITS_PER_WORD + ccp_ffz(addr[i]);
+}
+
+static void
+ccp_bitmap_set(unsigned long *map, unsigned int start, int len)
+{
+ unsigned long *p = map + WORD_OFFSET(start);
+ const unsigned int size = start + len;
+ int bits_to_set = BITS_PER_WORD - (start % BITS_PER_WORD);
+ unsigned long mask_to_set = CCP_BITMAP_FIRST_WORD_MASK(start);
+
+ while (len - bits_to_set >= 0) {
+ *p |= mask_to_set;
+ len -= bits_to_set;
+ bits_to_set = BITS_PER_WORD;
+ mask_to_set = ~0UL;
+ p++;
+ }
+ if (len) {
+ mask_to_set &= CCP_BITMAP_LAST_WORD_MASK(size);
+ *p |= mask_to_set;
+ }
+}
+
+static void
+ccp_bitmap_clear(unsigned long *map, unsigned int start, int len)
+{
+ unsigned long *p = map + WORD_OFFSET(start);
+ const unsigned int size = start + len;
+ int bits_to_clear = BITS_PER_WORD - (start % BITS_PER_WORD);
+ unsigned long mask_to_clear = CCP_BITMAP_FIRST_WORD_MASK(start);
+
+ while (len - bits_to_clear >= 0) {
+ *p &= ~mask_to_clear;
+ len -= bits_to_clear;
+ bits_to_clear = BITS_PER_WORD;
+ mask_to_clear = ~0UL;
+ p++;
+ }
+ if (len) {
+ mask_to_clear &= CCP_BITMAP_LAST_WORD_MASK(size);
+ *p &= ~mask_to_clear;
+ }
+}
+
+
+static unsigned long
+_ccp_find_next_bit(const unsigned long *addr,
+ unsigned long nbits,
+ unsigned long start,
+ unsigned long invert)
+{
+ unsigned long tmp;
+
+ if (!nbits || start >= nbits)
+ return nbits;
+
+ tmp = addr[start / BITS_PER_WORD] ^ invert;
+
+ /* Handle 1st word. */
+ tmp &= CCP_BITMAP_FIRST_WORD_MASK(start);
+ start = ccp_round_down(start, BITS_PER_WORD);
+
+ while (!tmp) {
+ start += BITS_PER_WORD;
+ if (start >= nbits)
+ return nbits;
+
+ tmp = addr[start / BITS_PER_WORD] ^ invert;
+ }
+
+ return RTE_MIN(start + (ffs(tmp) - 1), nbits);
+}
+
+static unsigned long
+ccp_find_next_bit(const unsigned long *addr,
+ unsigned long size,
+ unsigned long offset)
+{
+ return _ccp_find_next_bit(addr, size, offset, 0UL);
+}
+
+static unsigned long
+ccp_find_next_zero_bit(const unsigned long *addr,
+ unsigned long size,
+ unsigned long offset)
+{
+ return _ccp_find_next_bit(addr, size, offset, ~0UL);
+}
+
+/**
+ * bitmap_find_next_zero_area - find a contiguous aligned zero area
+ * @map: The address to base the search on
+ * @size: The bitmap size in bits
+ * @start: The bitnumber to start searching at
+ * @nr: The number of zeroed bits we're looking for
+ */
+static unsigned long
+ccp_bitmap_find_next_zero_area(unsigned long *map,
+ unsigned long size,
+ unsigned long start,
+ unsigned int nr)
+{
+ unsigned long index, end, i;
+
+again:
+ index = ccp_find_next_zero_bit(map, size, start);
+
+ end = index + nr;
+ if (end > size)
+ return end;
+ i = ccp_find_next_bit(map, end, index);
+ if (i < end) {
+ start = i + 1;
+ goto again;
+ }
+ return index;
+}
+
+static uint32_t
+ccp_lsb_alloc(struct ccp_queue *cmd_q, unsigned int count)
+{
+ struct ccp_device *ccp;
+ int start;
+
+ /* First look at the map for the queue */
+ if (cmd_q->lsb >= 0) {
+ start = (uint32_t)ccp_bitmap_find_next_zero_area(cmd_q->lsbmap,
+ LSB_SIZE, 0,
+ count);
+ if (start < LSB_SIZE) {
+ ccp_bitmap_set(cmd_q->lsbmap, start, count);
+ return start + cmd_q->lsb * LSB_SIZE;
+ }
+ }
+
+ /* try to get an entry from the shared blocks */
+ ccp = cmd_q->dev;
+
+ rte_spinlock_lock(&ccp->lsb_lock);
+
+ start = (uint32_t)ccp_bitmap_find_next_zero_area(ccp->lsbmap,
+ MAX_LSB_CNT * LSB_SIZE,
+ 0, count);
+ if (start <= MAX_LSB_CNT * LSB_SIZE) {
+ ccp_bitmap_set(ccp->lsbmap, start, count);
+ rte_spinlock_unlock(&ccp->lsb_lock);
+ return start * LSB_ITEM_SIZE;
+ }
+ CCP_LOG_ERR("NO LSBs available");
+
+ rte_spinlock_unlock(&ccp->lsb_lock);
+
+ return 0;
+}
+
+static void __rte_unused
+ccp_lsb_free(struct ccp_queue *cmd_q,
+ unsigned int start,
+ unsigned int count)
+{
+ int lsbno = start / LSB_SIZE;
+
+ if (!start)
+ return;
+
+ if (cmd_q->lsb == lsbno) {
+ /* An entry from the private LSB */
+ ccp_bitmap_clear(cmd_q->lsbmap, start % LSB_SIZE, count);
+ } else {
+ /* From the shared LSBs */
+ struct ccp_device *ccp = cmd_q->dev;
+
+ rte_spinlock_lock(&ccp->lsb_lock);
+ ccp_bitmap_clear(ccp->lsbmap, start, count);
+ rte_spinlock_unlock(&ccp->lsb_lock);
+ }
+}
+
+static int
+ccp_find_lsb_regions(struct ccp_queue *cmd_q, uint64_t status)
+{
+ int q_mask = 1 << cmd_q->id;
+ int weight = 0;
+ int j;
+
+ /* Build a bit mask to know which LSBs
+ * this queue has access to.
+ * Don't bother with segment 0
+ * as it has special
+ * privileges.
+ */
+ cmd_q->lsbmask = 0;
+ status >>= LSB_REGION_WIDTH;
+ for (j = 1; j < MAX_LSB_CNT; j++) {
+ if (status & q_mask)
+ ccp_set_bit(&cmd_q->lsbmask, j);
+
+ status >>= LSB_REGION_WIDTH;
+ }
+
+ for (j = 0; j < MAX_LSB_CNT; j++)
+ if (ccp_get_bit(&cmd_q->lsbmask, j))
+ weight++;
+
+ printf("Queue %d can access %d LSB regions of mask %lu\n",
+ (int)cmd_q->id, weight, cmd_q->lsbmask);
+
+ return weight ? 0 : -EINVAL;
+}
+
+static int
+ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
+ int lsb_cnt, int n_lsbs,
+ unsigned long *lsb_pub)
+{
+ unsigned long qlsb = 0;
+ int bitno = 0;
+ int qlsb_wgt = 0;
+ int i, j;
+
+ /* For each queue:
+ * If the count of potential LSBs available to a queue matches the
+ * ordinal given to us in lsb_cnt:
+ * Copy the mask of possible LSBs for this queue into "qlsb";
+ * For each bit in qlsb, see if the corresponding bit in the
+ * aggregation mask is set; if so, we have a match.
+ * If we have a match, clear the bit in the aggregation to
+ * mark it as no longer available.
+ * If there is no match, clear the bit in qlsb and keep looking.
+ */
+ for (i = 0; i < ccp->cmd_q_count; i++) {
+ struct ccp_queue *cmd_q = &ccp->cmd_q[i];
+
+ qlsb_wgt = 0;
+ for (j = 0; j < MAX_LSB_CNT; j++)
+ if (ccp_get_bit(&cmd_q->lsbmask, j))
+ qlsb_wgt++;
+
+ if (qlsb_wgt == lsb_cnt) {
+ qlsb = cmd_q->lsbmask;
+
+ bitno = ffs(qlsb) - 1;
+ while (bitno < MAX_LSB_CNT) {
+ if (ccp_get_bit(lsb_pub, bitno)) {
+ /* We found an available LSB
+ * that this queue can access
+ */
+ cmd_q->lsb = bitno;
+ ccp_clear_bit(lsb_pub, bitno);
+ break;
+ }
+ ccp_clear_bit(&qlsb, bitno);
+ bitno = ffs(qlsb) - 1;
+ }
+ if (bitno >= MAX_LSB_CNT)
+ return -EINVAL;
+ n_lsbs--;
+ }
+ }
+ return n_lsbs;
+}
+
+/* For each queue, from the most- to least-constrained:
+ * find an LSB that can be assigned to the queue. If there are N queues that
+ * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
+ * dedicated LSB. Remaining LSB regions become a shared resource.
+ * If we have fewer LSBs than queues, all LSB regions become shared
+ * resources.
+ */
+static int
+ccp_assign_lsbs(struct ccp_device *ccp)
+{
+ unsigned long lsb_pub = 0, qlsb = 0;
+ int n_lsbs = 0;
+ int bitno;
+ int i, lsb_cnt;
+ int rc = 0;
+
+ rte_spinlock_init(&ccp->lsb_lock);
+
+ /* Create an aggregate bitmap to get a total count of available LSBs */
+ for (i = 0; i < ccp->cmd_q_count; i++)
+ lsb_pub |= ccp->cmd_q[i].lsbmask;
+
+ for (i = 0; i < MAX_LSB_CNT; i++)
+ if (ccp_get_bit(&lsb_pub, i))
+ n_lsbs++;
+
+ if (n_lsbs >= ccp->cmd_q_count) {
+ /* We have enough LSBS to give every queue a private LSB.
+ * Brute force search to start with the queues that are more
+ * constrained in LSB choice. When an LSB is privately
+ * assigned, it is removed from the public mask.
+ * This is an ugly N squared algorithm with some optimization.
+ */
+ for (lsb_cnt = 1; n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
+ lsb_cnt++) {
+ rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
+ &lsb_pub);
+ if (rc < 0)
+ return -EINVAL;
+ n_lsbs = rc;
+ }
+ }
+
+ rc = 0;
+ /* What's left of the LSBs, according to the public mask, now become
+ * shared. Any zero bits in the lsb_pub mask represent an LSB region
+ * that can't be used as a shared resource, so mark the LSB slots for
+ * them as "in use".
+ */
+ qlsb = lsb_pub;
+ bitno = ccp_find_first_zero_bit(&qlsb, MAX_LSB_CNT);
+ while (bitno < MAX_LSB_CNT) {
+ ccp_bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
+ ccp_set_bit(&qlsb, bitno);
+ bitno = ccp_find_first_zero_bit(&qlsb, MAX_LSB_CNT);
+ }
+
+ return rc;
+}
+
+static int
+ccp_add_device(struct ccp_device *dev, int type)
+{
+ int i;
+ uint32_t qmr, status_lo, status_hi, dma_addr_lo, dma_addr_hi;
+ uint64_t status;
+ struct ccp_queue *cmd_q;
+ const struct rte_memzone *q_mz;
+ void *vaddr;
+
+ if (dev == NULL)
+ return -1;
+
+ dev->id = ccp_dev_id++;
+ dev->qidx = 0;
+ vaddr = (void *)(dev->pci.mem_resource[2].addr);
+
+ if (type == CCP_VERSION_5B) {
+ CCP_WRITE_REG(vaddr, CMD_TRNG_CTL_OFFSET, 0x00012D57);
+ CCP_WRITE_REG(vaddr, CMD_CONFIG_0_OFFSET, 0x00000003);
+ for (i = 0; i < 12; i++) {
+ CCP_WRITE_REG(vaddr, CMD_AES_MASK_OFFSET,
+ CCP_READ_REG(vaddr, TRNG_OUT_REG));
+ }
+ CCP_WRITE_REG(vaddr, CMD_QUEUE_MASK_OFFSET, 0x0000001F);
+ CCP_WRITE_REG(vaddr, CMD_QUEUE_PRIO_OFFSET, 0x00005B6D);
+ CCP_WRITE_REG(vaddr, CMD_CMD_TIMEOUT_OFFSET, 0x00000000);
+
+ CCP_WRITE_REG(vaddr, LSB_PRIVATE_MASK_LO_OFFSET, 0x3FFFFFFF);
+ CCP_WRITE_REG(vaddr, LSB_PRIVATE_MASK_HI_OFFSET, 0x000003FF);
+
+ CCP_WRITE_REG(vaddr, CMD_CLK_GATE_CTL_OFFSET, 0x00108823);
+ }
+ CCP_WRITE_REG(vaddr, CMD_REQID_CONFIG_OFFSET, 0x00001249);
+
+ /* Copy the private LSB mask to the public registers */
+ status_lo = CCP_READ_REG(vaddr, LSB_PRIVATE_MASK_LO_OFFSET);
+ status_hi = CCP_READ_REG(vaddr, LSB_PRIVATE_MASK_HI_OFFSET);
+ CCP_WRITE_REG(vaddr, LSB_PUBLIC_MASK_LO_OFFSET, status_lo);
+ CCP_WRITE_REG(vaddr, LSB_PUBLIC_MASK_HI_OFFSET, status_hi);
+ status = ((uint64_t)status_hi<<30) | ((uint64_t)status_lo);
+
+ dev->cmd_q_count = 0;
+ /* Find available queues */
+ qmr = CCP_READ_REG(vaddr, Q_MASK_REG);
+ for (i = 0; i < MAX_HW_QUEUES; i++) {
+ if (!(qmr & (1 << i)))
+ continue;
+ cmd_q = &dev->cmd_q[dev->cmd_q_count++];
+ cmd_q->dev = dev;
+ cmd_q->id = i;
+ cmd_q->qidx = 0;
+ cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
+
+ cmd_q->reg_base = (uint8_t *)vaddr +
+ CMD_Q_STATUS_INCR * (i + 1);
+
+ /* CCP queue memory */
+ snprintf(cmd_q->memz_name, sizeof(cmd_q->memz_name),
+ "%s_%d_%s_%d_%s",
+ "ccp_dev",
+ (int)dev->id, "queue",
+ (int)cmd_q->id, "mem");
+ q_mz = ccp_queue_dma_zone_reserve(cmd_q->memz_name,
+ cmd_q->qsize, SOCKET_ID_ANY);
+ cmd_q->qbase_addr = (void *)q_mz->addr;
+ cmd_q->qbase_desc = (void *)q_mz->addr;
+ cmd_q->qbase_phys_addr = q_mz->phys_addr;
+
+ cmd_q->qcontrol = 0;
+ /* init control reg to zero */
+ CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_CONTROL_BASE,
+ cmd_q->qcontrol);
+
+ /* Disable the interrupts */
+ CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_INT_ENABLE_BASE, 0x00);
+ CCP_READ_REG(cmd_q->reg_base, CMD_Q_INT_STATUS_BASE);
+ CCP_READ_REG(cmd_q->reg_base, CMD_Q_STATUS_BASE);
+
+ /* Clear the interrupts */
+ CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_INTERRUPT_STATUS_BASE,
+ ALL_INTERRUPTS);
+
+ /* Configure size of each virtual queue accessible to host */
+ cmd_q->qcontrol &= ~(CMD_Q_SIZE << CMD_Q_SHIFT);
+ cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD_Q_SHIFT;
+
+ dma_addr_lo = low32_value(cmd_q->qbase_phys_addr);
+ CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_TAIL_LO_BASE,
+ (uint32_t)dma_addr_lo);
+ CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_HEAD_LO_BASE,
+ (uint32_t)dma_addr_lo);
+
+ dma_addr_hi = high32_value(cmd_q->qbase_phys_addr);
+ cmd_q->qcontrol |= (dma_addr_hi << 16);
+ CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_CONTROL_BASE,
+ cmd_q->qcontrol);
+
+ /* create LSB Mask map */
+ if (ccp_find_lsb_regions(cmd_q, status))
+ CCP_LOG_ERR("queue doesn't have lsb regions");
+ cmd_q->lsb = -1;
+
+ rte_atomic64_init(&cmd_q->free_slots);
+ rte_atomic64_set(&cmd_q->free_slots, (COMMANDS_PER_QUEUE - 1));
+ /* unused slot barrier b/w H&T */
+ }
+
+ if (ccp_assign_lsbs(dev))
+ CCP_LOG_ERR("Unable to assign lsb region");
+
+ /* pre-allocate LSB slots */
+ for (i = 0; i < dev->cmd_q_count; i++) {
+ dev->cmd_q[i].sb_key =
+ ccp_lsb_alloc(&dev->cmd_q[i], 1);
+ dev->cmd_q[i].sb_iv =
+ ccp_lsb_alloc(&dev->cmd_q[i], 1);
+ dev->cmd_q[i].sb_sha =
+ ccp_lsb_alloc(&dev->cmd_q[i], 2);
+ dev->cmd_q[i].sb_hmac =
+ ccp_lsb_alloc(&dev->cmd_q[i], 2);
+ }
+
+ TAILQ_INSERT_TAIL(&ccp_list, dev, next);
+ return 0;
+}
+
+static void
+ccp_remove_device(struct ccp_device *dev)
+{
+ if (dev == NULL)
+ return;
+
+ TAILQ_REMOVE(&ccp_list, dev, next);
+}
+
+static int
+is_ccp_device(const char *dirname,
+ const struct rte_pci_id *ccp_id,
+ int *type)
+{
+ char filename[PATH_MAX];
+ const struct rte_pci_id *id;
+ uint16_t vendor, device_id;
+ int i;
+ unsigned long tmp;
+
+ /* get vendor id */
+ snprintf(filename, sizeof(filename), "%s/vendor", dirname);
+ if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
+ return 0;
+ vendor = (uint16_t)tmp;
+
+ /* get device id */
+ snprintf(filename, sizeof(filename), "%s/device", dirname);
+ if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
+ return 0;
+ device_id = (uint16_t)tmp;
+
+ for (id = ccp_id, i = 0; id->vendor_id != 0; id++, i++) {
+ if (vendor == id->vendor_id &&
+ device_id == id->device_id) {
+ *type = i;
+ return 1; /* Matched device */
+ }
+ }
+ return 0;
+}
+
+static int
+ccp_probe_device(const char *dirname, uint16_t domain,
+ uint8_t bus, uint8_t devid,
+ uint8_t function, int ccp_type)
+{
+ struct ccp_device *ccp_dev = NULL;
+ struct rte_pci_device *pci;
+ char filename[PATH_MAX];
+ unsigned long tmp;
+ int uio_fd = -1, i, uio_num;
+ char uio_devname[PATH_MAX];
+ void *map_addr;
+
+ ccp_dev = rte_zmalloc("ccp_device", sizeof(*ccp_dev),
+ RTE_CACHE_LINE_SIZE);
+ if (ccp_dev == NULL)
+ goto fail;
+ pci = &(ccp_dev->pci);
+
+ pci->addr.domain = domain;
+ pci->addr.bus = bus;
+ pci->addr.devid = devid;
+ pci->addr.function = function;
+
+ /* get vendor id */
+ snprintf(filename, sizeof(filename), "%s/vendor", dirname);
+ if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
+ goto fail;
+ pci->id.vendor_id = (uint16_t)tmp;
+
+ /* get device id */
+ snprintf(filename, sizeof(filename), "%s/device", dirname);
+ if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
+ goto fail;
+ pci->id.device_id = (uint16_t)tmp;
+
+ /* get subsystem_vendor id */
+ snprintf(filename, sizeof(filename), "%s/subsystem_vendor",
+ dirname);
+ if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
+ goto fail;
+ pci->id.subsystem_vendor_id = (uint16_t)tmp;
+
+ /* get subsystem_device id */
+ snprintf(filename, sizeof(filename), "%s/subsystem_device",
+ dirname);
+ if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
+ goto fail;
+ pci->id.subsystem_device_id = (uint16_t)tmp;
+
+ /* get class_id */
+ snprintf(filename, sizeof(filename), "%s/class",
+ dirname);
+ if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
+ goto fail;
+ /* the least 24 bits are valid: class, subclass, program interface */
+ pci->id.class_id = (uint32_t)tmp & RTE_CLASS_ANY_ID;
+
+ /* parse resources */
+ snprintf(filename, sizeof(filename), "%s/resource", dirname);
+ if (ccp_pci_parse_sysfs_resource(filename, pci) < 0)
+ goto fail;
+
+ uio_num = ccp_find_uio_devname(dirname);
+ if (uio_num < 0) {
+ /*
+ * It may take time for uio device to appear,
+ * wait here and try again
+ */
+ usleep(100000);
+ uio_num = ccp_find_uio_devname(dirname);
+ if (uio_num < 0)
+ goto fail;
+ }
+ snprintf(uio_devname, sizeof(uio_devname), "/dev/uio%u", uio_num);
+
+ uio_fd = open(uio_devname, O_RDWR | O_NONBLOCK);
+ if (uio_fd < 0)
+ goto fail;
+ if (flock(uio_fd, LOCK_EX | LOCK_NB))
+ goto fail;
+
+ /* Map the PCI memory resource of device */
+ for (i = 0; i < PCI_MAX_RESOURCE; i++) {
+
+ char devname[PATH_MAX];
+ int res_fd;
+
+ if (pci->mem_resource[i].phys_addr == 0)
+ continue;
+ snprintf(devname, sizeof(devname), "%s/resource%d", dirname, i);
+ res_fd = open(devname, O_RDWR);
+ if (res_fd < 0)
+ goto fail;
+ map_addr = mmap(NULL, pci->mem_resource[i].len,
+ PROT_READ | PROT_WRITE,
+ MAP_SHARED, res_fd, 0);
+ if (map_addr == MAP_FAILED)
+ goto fail;
+
+ pci->mem_resource[i].addr = map_addr;
+ }
+
+ /* device is valid, add in list */
+ if (ccp_add_device(ccp_dev, ccp_type)) {
+ ccp_remove_device(ccp_dev);
+ goto fail;
+ }
+
+ return 0;
+fail:
+ CCP_LOG_ERR("CCP Device probe failed");
+ if (uio_fd > 0)
+ close(uio_fd);
+ if (ccp_dev)
+ rte_free(ccp_dev);
+ return -1;
+}
+
+int
+ccp_probe_devices(const struct rte_pci_id *ccp_id)
+{
+ int dev_cnt = 0;
+ int ccp_type = 0;
+ struct dirent *d;
+ DIR *dir;
+ int ret = 0;
+ int module_idx = 0;
+ uint16_t domain;
+ uint8_t bus, devid, function;
+ char dirname[PATH_MAX];
+
+ module_idx = ccp_check_pci_uio_module();
+ if (module_idx < 0)
+ return -1;
+
+ TAILQ_INIT(&ccp_list);
+ dir = opendir(SYSFS_PCI_DEVICES);
+ if (dir == NULL)
+ return -1;
+ while ((d = readdir(dir)) != NULL) {
+ if (d->d_name[0] == '.')
+ continue;
+ if (ccp_parse_pci_addr_format(d->d_name, sizeof(d->d_name),
+ &domain, &bus, &devid, &function) != 0)
+ continue;
+ snprintf(dirname, sizeof(dirname), "%s/%s",
+ SYSFS_PCI_DEVICES, d->d_name);
+ if (is_ccp_device(dirname, ccp_id, &ccp_type)) {
+ printf("CCP : Detected CCP device with ID = 0x%x\n",
+ ccp_id[ccp_type].device_id);
+ ret = ccp_probe_device(dirname, domain, bus, devid,
+ function, ccp_type);
+ if (ret == 0)
+ dev_cnt++;
+ }
+ }
+ closedir(dir);
+ return dev_cnt;
+}
--- /dev/null
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
+ */
+
+#ifndef _CCP_DEV_H_
+#define _CCP_DEV_H_
+
+#include <limits.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <string.h>
+
+#include <rte_bus_pci.h>
+#include <rte_atomic.h>
+#include <rte_byteorder.h>
+#include <rte_io.h>
+#include <rte_pci.h>
+#include <rte_spinlock.h>
+#include <rte_crypto_sym.h>
+#include <rte_cryptodev.h>
+
+/**< CCP sspecific */
+#define MAX_HW_QUEUES 5
+
+/**< CCP Register Mappings */
+#define Q_MASK_REG 0x000
+#define TRNG_OUT_REG 0x00c
+
+/* CCP Version 5 Specifics */
+#define CMD_QUEUE_MASK_OFFSET 0x00
+#define CMD_QUEUE_PRIO_OFFSET 0x04
+#define CMD_REQID_CONFIG_OFFSET 0x08
+#define CMD_CMD_TIMEOUT_OFFSET 0x10
+#define LSB_PUBLIC_MASK_LO_OFFSET 0x18
+#define LSB_PUBLIC_MASK_HI_OFFSET 0x1C
+#define LSB_PRIVATE_MASK_LO_OFFSET 0x20
+#define LSB_PRIVATE_MASK_HI_OFFSET 0x24
+
+#define CMD_Q_CONTROL_BASE 0x0000
+#define CMD_Q_TAIL_LO_BASE 0x0004
+#define CMD_Q_HEAD_LO_BASE 0x0008
+#define CMD_Q_INT_ENABLE_BASE 0x000C
+#define CMD_Q_INTERRUPT_STATUS_BASE 0x0010
+
+#define CMD_Q_STATUS_BASE 0x0100
+#define CMD_Q_INT_STATUS_BASE 0x0104
+
+#define CMD_CONFIG_0_OFFSET 0x6000
+#define CMD_TRNG_CTL_OFFSET 0x6008
+#define CMD_AES_MASK_OFFSET 0x6010
+#define CMD_CLK_GATE_CTL_OFFSET 0x603C
+
+/* Address offset between two virtual queue registers */
+#define CMD_Q_STATUS_INCR 0x1000
+
+/* Bit masks */
+#define CMD_Q_RUN 0x1
+#define CMD_Q_SIZE 0x1F
+#define CMD_Q_SHIFT 3
+#define COMMANDS_PER_QUEUE 2048
+
+#define QUEUE_SIZE_VAL ((ffs(COMMANDS_PER_QUEUE) - 2) & \
+ CMD_Q_SIZE)
+#define Q_DESC_SIZE sizeof(struct ccp_desc)
+#define Q_SIZE(n) (COMMANDS_PER_QUEUE*(n))
+
+#define INT_COMPLETION 0x1
+#define INT_ERROR 0x2
+#define INT_QUEUE_STOPPED 0x4
+#define ALL_INTERRUPTS (INT_COMPLETION| \
+ INT_ERROR| \
+ INT_QUEUE_STOPPED)
+
+#define LSB_REGION_WIDTH 5
+#define MAX_LSB_CNT 8
+
+#define LSB_SIZE 16
+#define LSB_ITEM_SIZE 32
+#define SLSB_MAP_SIZE (MAX_LSB_CNT * LSB_SIZE)
+
+/* bitmap */
+enum {
+ BITS_PER_WORD = sizeof(unsigned long) * CHAR_BIT
+};
+
+#define WORD_OFFSET(b) ((b) / BITS_PER_WORD)
+#define BIT_OFFSET(b) ((b) % BITS_PER_WORD)
+
+#define CCP_DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
+#define CCP_BITMAP_SIZE(nr) \
+ CCP_DIV_ROUND_UP(nr, CHAR_BIT * sizeof(unsigned long))
+
+#define CCP_BITMAP_FIRST_WORD_MASK(start) \
+ (~0UL << ((start) & (BITS_PER_WORD - 1)))
+#define CCP_BITMAP_LAST_WORD_MASK(nbits) \
+ (~0UL >> (-(nbits) & (BITS_PER_WORD - 1)))
+
+#define __ccp_round_mask(x, y) ((typeof(x))((y)-1))
+#define ccp_round_down(x, y) ((x) & ~__ccp_round_mask(x, y))
+
+/** CCP registers Write/Read */
+
+static inline void ccp_pci_reg_write(void *base, int offset,
+ uint32_t value)
+{
+ volatile void *reg_addr = ((uint8_t *)base + offset);
+
+ rte_write32((rte_cpu_to_le_32(value)), reg_addr);
+}
+
+static inline uint32_t ccp_pci_reg_read(void *base, int offset)
+{
+ volatile void *reg_addr = ((uint8_t *)base + offset);
+
+ return rte_le_to_cpu_32(rte_read32(reg_addr));
+}
+
+#define CCP_READ_REG(hw_addr, reg_offset) \
+ ccp_pci_reg_read(hw_addr, reg_offset)
+
+#define CCP_WRITE_REG(hw_addr, reg_offset, value) \
+ ccp_pci_reg_write(hw_addr, reg_offset, value)
+
+TAILQ_HEAD(ccp_list, ccp_device);
+
+extern struct ccp_list ccp_list;
+
+/**
+ * CCP device version
+ */
+enum ccp_device_version {
+ CCP_VERSION_5A = 0,
+ CCP_VERSION_5B,
+};
+
+/**
+ * A structure describing a CCP command queue.
+ */
+struct ccp_queue {
+ struct ccp_device *dev;
+ char memz_name[RTE_MEMZONE_NAMESIZE];
+
+ rte_atomic64_t free_slots;
+ /**< available free slots updated from enq/deq calls */
+
+ /* Queue identifier */
+ uint64_t id; /**< queue id */
+ uint64_t qidx; /**< queue index */
+ uint64_t qsize; /**< queue size */
+
+ /* Queue address */
+ struct ccp_desc *qbase_desc;
+ void *qbase_addr;
+ phys_addr_t qbase_phys_addr;
+ /**< queue-page registers addr */
+ void *reg_base;
+
+ uint32_t qcontrol;
+ /**< queue ctrl reg */
+
+ int lsb;
+ /**< lsb region assigned to queue */
+ unsigned long lsbmask;
+ /**< lsb regions queue can access */
+ unsigned long lsbmap[CCP_BITMAP_SIZE(LSB_SIZE)];
+ /**< all lsb resources which queue is using */
+ uint32_t sb_key;
+ /**< lsb assigned for queue */
+ uint32_t sb_iv;
+ /**< lsb assigned for iv */
+ uint32_t sb_sha;
+ /**< lsb assigned for sha ctx */
+ uint32_t sb_hmac;
+ /**< lsb assigned for hmac ctx */
+} ____cacheline_aligned;
+
+/**
+ * A structure describing a CCP device.
+ */
+struct ccp_device {
+ TAILQ_ENTRY(ccp_device) next;
+ int id;
+ /**< ccp dev id on platform */
+ struct ccp_queue cmd_q[MAX_HW_QUEUES];
+ /**< ccp queue */
+ int cmd_q_count;
+ /**< no. of ccp Queues */
+ struct rte_pci_device pci;
+ /**< ccp pci identifier */
+ unsigned long lsbmap[CCP_BITMAP_SIZE(SLSB_MAP_SIZE)];
+ /**< shared lsb mask of ccp */
+ rte_spinlock_t lsb_lock;
+ /**< protection for shared lsb region allocation */
+ int qidx;
+ /**< current queue index */
+} __rte_cache_aligned;
+
+/**
+ * descriptor for version 5 CPP commands
+ * 8 32-bit words:
+ * word 0: function; engine; control bits
+ * word 1: length of source data
+ * word 2: low 32 bits of source pointer
+ * word 3: upper 16 bits of source pointer; source memory type
+ * word 4: low 32 bits of destination pointer
+ * word 5: upper 16 bits of destination pointer; destination memory
+ * type
+ * word 6: low 32 bits of key pointer
+ * word 7: upper 16 bits of key pointer; key memory type
+ */
+struct dword0 {
+ uint32_t soc:1;
+ uint32_t ioc:1;
+ uint32_t rsvd1:1;
+ uint32_t init:1;
+ uint32_t eom:1;
+ uint32_t function:15;
+ uint32_t engine:4;
+ uint32_t prot:1;
+ uint32_t rsvd2:7;
+};
+
+struct dword3 {
+ uint32_t src_hi:16;
+ uint32_t src_mem:2;
+ uint32_t lsb_cxt_id:8;
+ uint32_t rsvd1:5;
+ uint32_t fixed:1;
+};
+
+union dword4 {
+ uint32_t dst_lo; /* NON-SHA */
+ uint32_t sha_len_lo; /* SHA */
+};
+
+union dword5 {
+ struct {
+ uint32_t dst_hi:16;
+ uint32_t dst_mem:2;
+ uint32_t rsvd1:13;
+ uint32_t fixed:1;
+ }
+ fields;
+ uint32_t sha_len_hi;
+};
+
+struct dword7 {
+ uint32_t key_hi:16;
+ uint32_t key_mem:2;
+ uint32_t rsvd1:14;
+};
+
+struct ccp_desc {
+ struct dword0 dw0;
+ uint32_t length;
+ uint32_t src_lo;
+ struct dword3 dw3;
+ union dword4 dw4;
+ union dword5 dw5;
+ uint32_t key_lo;
+ struct dword7 dw7;
+};
+
+static inline uint32_t
+low32_value(unsigned long addr)
+{
+ return ((uint64_t)addr) & 0x0ffffffff;
+}
+
+static inline uint32_t
+high32_value(unsigned long addr)
+{
+ return ((uint64_t)addr >> 32) & 0x00000ffff;
+}
+
+/**
+ * Detect ccp platform and initialize all ccp devices
+ *
+ * @param ccp_id rte_pci_id list for supported CCP devices
+ * @return no. of successfully initialized CCP devices
+ */
+int ccp_probe_devices(const struct rte_pci_id *ccp_id);
+
+#endif /* _CCP_DEV_H_ */
--- /dev/null
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
+ */
+
+#include <dirent.h>
+#include <fcntl.h>
+#include <stdio.h>
+#include <string.h>
+#include <unistd.h>
+
+#include <rte_string_fns.h>
+
+#include "ccp_pci.h"
+
+static const char * const uio_module_names[] = {
+ "igb_uio",
+ "uio_pci_generic",
+};
+
+int
+ccp_check_pci_uio_module(void)
+{
+ FILE *fp;
+ int i;
+ char buf[BUFSIZ];
+
+ fp = fopen(PROC_MODULES, "r");
+ if (fp == NULL)
+ return -1;
+ i = 0;
+ while (uio_module_names[i] != NULL) {
+ while (fgets(buf, sizeof(buf), fp) != NULL) {
+ if (!strncmp(buf, uio_module_names[i],
+ strlen(uio_module_names[i])))
+ return i;
+ }
+ i++;
+ rewind(fp);
+ }
+ printf("Insert igb_uio or uio_pci_generic kernel module(s)");
+ return -1;/* uio not inserted */
+}
+
+/*
+ * split up a pci address into its constituent parts.
+ */
+int
+ccp_parse_pci_addr_format(const char *buf, int bufsize, uint16_t *domain,
+ uint8_t *bus, uint8_t *devid, uint8_t *function)
+{
+ /* first split on ':' */
+ union splitaddr {
+ struct {
+ char *domain;
+ char *bus;
+ char *devid;
+ char *function;
+ };
+ char *str[PCI_FMT_NVAL];
+ /* last element-separator is "." not ":" */
+ } splitaddr;
+
+ char *buf_copy = strndup(buf, bufsize);
+
+ if (buf_copy == NULL)
+ return -1;
+
+ if (rte_strsplit(buf_copy, bufsize, splitaddr.str, PCI_FMT_NVAL, ':')
+ != PCI_FMT_NVAL - 1)
+ goto error;
+ /* final split is on '.' between devid and function */
+ splitaddr.function = strchr(splitaddr.devid, '.');
+ if (splitaddr.function == NULL)
+ goto error;
+ *splitaddr.function++ = '\0';
+
+ /* now convert to int values */
+ errno = 0;
+ *domain = (uint8_t)strtoul(splitaddr.domain, NULL, 16);
+ *bus = (uint8_t)strtoul(splitaddr.bus, NULL, 16);
+ *devid = (uint8_t)strtoul(splitaddr.devid, NULL, 16);
+ *function = (uint8_t)strtoul(splitaddr.function, NULL, 10);
+ if (errno != 0)
+ goto error;
+
+ free(buf_copy); /* free the copy made with strdup */
+ return 0;
+error:
+ free(buf_copy);
+ return -1;
+}
+
+int
+ccp_pci_parse_sysfs_value(const char *filename, unsigned long *val)
+{
+ FILE *f;
+ char buf[BUFSIZ];
+ char *end = NULL;
+
+ f = fopen(filename, "r");
+ if (f == NULL)
+ return -1;
+ if (fgets(buf, sizeof(buf), f) == NULL) {
+ fclose(f);
+ return -1;
+ }
+ *val = strtoul(buf, &end, 0);
+ if ((buf[0] == '\0') || (end == NULL) || (*end != '\n')) {
+ fclose(f);
+ return -1;
+ }
+ fclose(f);
+ return 0;
+}
+
+/** IO resource type: */
+#define IORESOURCE_IO 0x00000100
+#define IORESOURCE_MEM 0x00000200
+
+/* parse one line of the "resource" sysfs file (note that the 'line'
+ * string is modified)
+ */
+static int
+ccp_pci_parse_one_sysfs_resource(char *line, size_t len, uint64_t *phys_addr,
+ uint64_t *end_addr, uint64_t *flags)
+{
+ union pci_resource_info {
+ struct {
+ char *phys_addr;
+ char *end_addr;
+ char *flags;
+ };
+ char *ptrs[PCI_RESOURCE_FMT_NVAL];
+ } res_info;
+
+ if (rte_strsplit(line, len, res_info.ptrs, 3, ' ') != 3)
+ return -1;
+ errno = 0;
+ *phys_addr = strtoull(res_info.phys_addr, NULL, 16);
+ *end_addr = strtoull(res_info.end_addr, NULL, 16);
+ *flags = strtoull(res_info.flags, NULL, 16);
+ if (errno != 0)
+ return -1;
+
+ return 0;
+}
+
+/* parse the "resource" sysfs file */
+int
+ccp_pci_parse_sysfs_resource(const char *filename, struct rte_pci_device *dev)
+{
+ FILE *fp;
+ char buf[BUFSIZ];
+ int i;
+ uint64_t phys_addr, end_addr, flags;
+
+ fp = fopen(filename, "r");
+ if (fp == NULL)
+ return -1;
+
+ for (i = 0; i < PCI_MAX_RESOURCE; i++) {
+ if (fgets(buf, sizeof(buf), fp) == NULL)
+ goto error;
+ if (ccp_pci_parse_one_sysfs_resource(buf, sizeof(buf),
+ &phys_addr, &end_addr, &flags) < 0)
+ goto error;
+
+ if (flags & IORESOURCE_MEM) {
+ dev->mem_resource[i].phys_addr = phys_addr;
+ dev->mem_resource[i].len = end_addr - phys_addr + 1;
+ /* not mapped for now */
+ dev->mem_resource[i].addr = NULL;
+ }
+ }
+ fclose(fp);
+ return 0;
+
+error:
+ fclose(fp);
+ return -1;
+}
+
+int
+ccp_find_uio_devname(const char *dirname)
+{
+
+ DIR *dir;
+ struct dirent *e;
+ char dirname_uio[PATH_MAX];
+ unsigned int uio_num;
+ int ret = -1;
+
+ /* depending on kernel version, uio can be located in uio/uioX
+ * or uio:uioX
+ */
+ snprintf(dirname_uio, sizeof(dirname_uio), "%s/uio", dirname);
+ dir = opendir(dirname_uio);
+ if (dir == NULL) {
+ /* retry with the parent directory might be different kernel version*/
+ dir = opendir(dirname);
+ if (dir == NULL)
+ return -1;
+ }
+
+ /* take the first file starting with "uio" */
+ while ((e = readdir(dir)) != NULL) {
+ /* format could be uio%d ...*/
+ int shortprefix_len = sizeof("uio") - 1;
+ /* ... or uio:uio%d */
+ int longprefix_len = sizeof("uio:uio") - 1;
+ char *endptr;
+
+ if (strncmp(e->d_name, "uio", 3) != 0)
+ continue;
+
+ /* first try uio%d */
+ errno = 0;
+ uio_num = strtoull(e->d_name + shortprefix_len, &endptr, 10);
+ if (errno == 0 && endptr != (e->d_name + shortprefix_len)) {
+ ret = uio_num;
+ break;
+ }
+
+ /* then try uio:uio%d */
+ errno = 0;
+ uio_num = strtoull(e->d_name + longprefix_len, &endptr, 10);
+ if (errno == 0 && endptr != (e->d_name + longprefix_len)) {
+ ret = uio_num;
+ break;
+ }
+ }
+ closedir(dir);
+ return ret;
+
+
+}
* Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
*/
+#include <rte_bus_pci.h>
#include <rte_bus_vdev.h>
+#include <rte_common.h>
+#include <rte_config.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
+#include <rte_pci.h>
+#include <rte_dev.h>
+#include <rte_malloc.h>
+#include "ccp_dev.h"
+#include "ccp_pmd_private.h"
+
+/**
+ * Global static parameter used to find if CCP device is already initialized.
+ */
+static unsigned int ccp_pmd_init_done;
uint8_t ccp_cryptodev_driver_id;
+static uint16_t
+ccp_pmd_enqueue_burst(void *queue_pair __rte_unused,
+ struct rte_crypto_op **ops __rte_unused,
+ uint16_t nb_ops __rte_unused)
+{
+ uint16_t enq_cnt = 0;
+
+ return enq_cnt;
+}
+
+static uint16_t
+ccp_pmd_dequeue_burst(void *queue_pair __rte_unused,
+ struct rte_crypto_op **ops __rte_unused,
+ uint16_t nb_ops __rte_unused)
+{
+ uint16_t nb_dequeued = 0;
+
+ return nb_dequeued;
+}
+
+/*
+ * The set of PCI devices this driver supports
+ */
+static struct rte_pci_id ccp_pci_id[] = {
+ {
+ RTE_PCI_DEVICE(0x1022, 0x1456), /* AMD CCP-5a */
+ },
+ {
+ RTE_PCI_DEVICE(0x1022, 0x1468), /* AMD CCP-5b */
+ },
+ {.device_id = 0},
+};
+
/** Remove ccp pmd */
static int
-cryptodev_ccp_remove(struct rte_vdev_device *dev __rte_unused)
+cryptodev_ccp_remove(struct rte_vdev_device *dev)
{
+ const char *name;
+
+ ccp_pmd_init_done = 0;
+ name = rte_vdev_device_name(dev);
+ if (name == NULL)
+ return -EINVAL;
+
+ RTE_LOG(INFO, PMD, "Closing ccp device %s on numa socket %u\n",
+ name, rte_socket_id());
+
return 0;
}
+/** Create crypto device */
+static int
+cryptodev_ccp_create(const char *name,
+ struct rte_vdev_device *vdev,
+ struct rte_cryptodev_pmd_init_params *init_params)
+{
+ struct rte_cryptodev *dev;
+ struct ccp_private *internals;
+ uint8_t cryptodev_cnt = 0;
+
+ if (init_params->name[0] == '\0')
+ snprintf(init_params->name, sizeof(init_params->name),
+ "%s", name);
+
+ dev = rte_cryptodev_pmd_create(init_params->name,
+ &vdev->device,
+ init_params);
+ if (dev == NULL) {
+ CCP_LOG_ERR("failed to create cryptodev vdev");
+ goto init_error;
+ }
+
+ cryptodev_cnt = ccp_probe_devices(ccp_pci_id);
+
+ if (cryptodev_cnt == 0) {
+ CCP_LOG_ERR("failed to detect CCP crypto device");
+ goto init_error;
+ }
+
+ printf("CCP : Crypto device count = %d\n", cryptodev_cnt);
+ dev->driver_id = ccp_cryptodev_driver_id;
+
+ /* register rx/tx burst functions for data path */
+ dev->dev_ops = ccp_pmd_ops;
+ dev->enqueue_burst = ccp_pmd_enqueue_burst;
+ dev->dequeue_burst = ccp_pmd_dequeue_burst;
+
+ dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
+ RTE_CRYPTODEV_FF_HW_ACCELERATED |
+ RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING;
+
+ internals = dev->data->dev_private;
+
+ internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
+ internals->max_nb_sessions = init_params->max_nb_sessions;
+ internals->crypto_num_dev = cryptodev_cnt;
+
+ return 0;
+
+init_error:
+ CCP_LOG_ERR("driver %s: %s() failed",
+ init_params->name, __func__);
+ cryptodev_ccp_remove(vdev);
+
+ return -EFAULT;
+}
+
/** Probe ccp pmd */
static int
-cryptodev_ccp_probe(struct rte_vdev_device *vdev __rte_unused)
+cryptodev_ccp_probe(struct rte_vdev_device *vdev)
{
+ int rc = 0;
+ const char *name;
+ struct rte_cryptodev_pmd_init_params init_params = {
+ "",
+ sizeof(struct ccp_private),
+ rte_socket_id(),
+ CCP_PMD_MAX_QUEUE_PAIRS,
+ RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_SESSIONS
+ };
+ const char *input_args;
+
+ if (ccp_pmd_init_done) {
+ RTE_LOG(INFO, PMD, "CCP PMD already initialized\n");
+ return -EFAULT;
+ }
+ name = rte_vdev_device_name(vdev);
+ if (name == NULL)
+ return -EINVAL;
+
+ input_args = rte_vdev_device_args(vdev);
+ rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
+ init_params.max_nb_queue_pairs = CCP_PMD_MAX_QUEUE_PAIRS;
+
+ RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name,
+ init_params.socket_id);
+ RTE_LOG(INFO, PMD, "Max number of queue pairs = %d\n",
+ init_params.max_nb_queue_pairs);
+ RTE_LOG(INFO, PMD, "Max number of sessions = %d\n",
+ init_params.max_nb_sessions);
+
+ rc = cryptodev_ccp_create(name, vdev, &init_params);
+ if (rc)
+ return rc;
+ ccp_pmd_init_done = 1;
return 0;
}