--- /dev/null
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2019 Intel Corporation
+ */
+
+#include <unistd.h>
+
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_dev.h>
+#include <rte_malloc.h>
+#include <rte_mempool.h>
+#include <rte_errno.h>
+#include <rte_pci.h>
+#include <rte_bus_pci.h>
+#include <rte_byteorder.h>
+#ifdef RTE_BBDEV_OFFLOAD_COST
+#include <rte_cycles.h>
+#endif
+
+#include <rte_bbdev.h>
+#include <rte_bbdev_pmd.h>
+
+#include "fpga_lte_fec.h"
+
+/* Turbo SW PMD logging ID */
+static int fpga_lte_fec_logtype;
+
+/* Helper macro for logging */
+#define rte_bbdev_log(level, fmt, ...) \
+ rte_log(RTE_LOG_ ## level, fpga_lte_fec_logtype, fmt "\n", \
+ ##__VA_ARGS__)
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+#define rte_bbdev_log_debug(fmt, ...) \
+ rte_bbdev_log(DEBUG, "fpga_lte_fec: " fmt, \
+ ##__VA_ARGS__)
+#else
+#define rte_bbdev_log_debug(fmt, ...)
+#endif
+
+/* FPGA LTE FEC driver names */
+#define FPGA_LTE_FEC_PF_DRIVER_NAME intel_fpga_lte_fec_pf
+#define FPGA_LTE_FEC_VF_DRIVER_NAME intel_fpga_lte_fec_vf
+
+/* FPGA LTE FEC PCI vendor & device IDs */
+#define FPGA_LTE_FEC_VENDOR_ID (0x1172)
+#define FPGA_LTE_FEC_PF_DEVICE_ID (0x5052)
+#define FPGA_LTE_FEC_VF_DEVICE_ID (0x5050)
+
+/* Align DMA descriptors to 256 bytes - cache-aligned */
+#define FPGA_RING_DESC_ENTRY_LENGTH (8)
+/* Ring size is in 256 bits (32 bytes) units */
+#define FPGA_RING_DESC_LEN_UNIT_BYTES (32)
+/* Maximum size of queue */
+#define FPGA_RING_MAX_SIZE (1024)
+#define FPGA_FLR_TIMEOUT_UNIT (16.384)
+
+#define FPGA_NUM_UL_QUEUES (32)
+#define FPGA_NUM_DL_QUEUES (32)
+#define FPGA_TOTAL_NUM_QUEUES (FPGA_NUM_UL_QUEUES + FPGA_NUM_DL_QUEUES)
+#define FPGA_NUM_INTR_VEC (FPGA_TOTAL_NUM_QUEUES - RTE_INTR_VEC_RXTX_OFFSET)
+
+#define FPGA_INVALID_HW_QUEUE_ID (0xFFFFFFFF)
+
+#define FPGA_QUEUE_FLUSH_TIMEOUT_US (1000)
+#define FPGA_TIMEOUT_CHECK_INTERVAL (5)
+
+/* FPGA LTE FEC Register mapping on BAR0 */
+enum {
+ FPGA_LTE_FEC_VERSION_ID = 0x00000000, /* len: 4B */
+ FPGA_LTE_FEC_CONFIGURATION = 0x00000004, /* len: 2B */
+ FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE = 0x00000008, /* len: 1B */
+ FPGA_LTE_FEC_LOAD_BALANCE_FACTOR = 0x0000000a, /* len: 2B */
+ FPGA_LTE_FEC_RING_DESC_LEN = 0x0000000c, /* len: 2B */
+ FPGA_LTE_FEC_FLR_TIME_OUT = 0x0000000e, /* len: 2B */
+ FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW = 0x00000018, /* len: 4B */
+ FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI = 0x0000001c, /* len: 4B */
+ FPGA_LTE_FEC_VF0_DEBUG = 0x00000020, /* len: 4B */
+ FPGA_LTE_FEC_VF1_DEBUG = 0x00000024, /* len: 4B */
+ FPGA_LTE_FEC_VF2_DEBUG = 0x00000028, /* len: 4B */
+ FPGA_LTE_FEC_VF3_DEBUG = 0x0000002c, /* len: 4B */
+ FPGA_LTE_FEC_VF4_DEBUG = 0x00000030, /* len: 4B */
+ FPGA_LTE_FEC_VF5_DEBUG = 0x00000034, /* len: 4B */
+ FPGA_LTE_FEC_VF6_DEBUG = 0x00000038, /* len: 4B */
+ FPGA_LTE_FEC_VF7_DEBUG = 0x0000003c, /* len: 4B */
+ FPGA_LTE_FEC_QUEUE_MAP = 0x00000040, /* len: 256B */
+ FPGA_LTE_FEC_RING_CTRL_REGS = 0x00000200 /* len: 2048B */
+};
+
+/* FPGA LTE FEC Ring Control Registers */
+enum {
+ FPGA_LTE_FEC_RING_HEAD_ADDR = 0x00000008,
+ FPGA_LTE_FEC_RING_SIZE = 0x00000010,
+ FPGA_LTE_FEC_RING_MISC = 0x00000014,
+ FPGA_LTE_FEC_RING_ENABLE = 0x00000015,
+ FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN = 0x00000016,
+ FPGA_LTE_FEC_RING_SHADOW_TAIL = 0x00000018,
+ FPGA_LTE_FEC_RING_HEAD_POINT = 0x0000001C
+};
+
+/* FPGA LTE FEC DESCRIPTOR ERROR */
+enum {
+ DESC_ERR_NO_ERR = 0x0,
+ DESC_ERR_K_OUT_OF_RANGE = 0x1,
+ DESC_ERR_K_NOT_NORMAL = 0x2,
+ DESC_ERR_KPAI_NOT_NORMAL = 0x3,
+ DESC_ERR_DESC_OFFSET_ERR = 0x4,
+ DESC_ERR_DESC_READ_FAIL = 0x8,
+ DESC_ERR_DESC_READ_TIMEOUT = 0x9,
+ DESC_ERR_DESC_READ_TLP_POISONED = 0xA,
+ DESC_ERR_CB_READ_FAIL = 0xC,
+ DESC_ERR_CB_READ_TIMEOUT = 0xD,
+ DESC_ERR_CB_READ_TLP_POISONED = 0xE
+};
+
+/* FPGA LTE FEC DMA Encoding Request Descriptor */
+struct __attribute__((__packed__)) fpga_dma_enc_desc {
+ uint32_t done:1,
+ rsrvd0:11,
+ error:4,
+ rsrvd1:16;
+ uint32_t ncb:16,
+ rsrvd2:14,
+ rv:2;
+ uint32_t bypass_rm:1,
+ irq_en:1,
+ crc_en:1,
+ rsrvd3:13,
+ offset:10,
+ rsrvd4:6;
+ uint16_t e;
+ uint16_t k;
+ uint32_t out_addr_lw;
+ uint32_t out_addr_hi;
+ uint32_t in_addr_lw;
+ uint32_t in_addr_hi;
+
+ union {
+ struct {
+ /* Virtual addresses used to retrieve SW context info */
+ void *op_addr;
+ /* Stores information about total number of Code Blocks
+ * in currently processed Transport Block
+ */
+ uint64_t cbs_in_op;
+ };
+
+ uint8_t sw_ctxt[FPGA_RING_DESC_LEN_UNIT_BYTES *
+ (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
+ };
+};
+
+/* FPGA LTE FEC DMA Decoding Request Descriptor */
+struct __attribute__((__packed__)) fpga_dma_dec_desc {
+ uint32_t done:1,
+ iter:5,
+ rsrvd0:2,
+ crc_pass:1,
+ rsrvd1:3,
+ error:4,
+ crc_type:1,
+ rsrvd2:7,
+ max_iter:5,
+ rsrvd3:3;
+ uint32_t rsrvd4;
+ uint32_t bypass_rm:1,
+ irq_en:1,
+ drop_crc:1,
+ rsrvd5:13,
+ offset:10,
+ rsrvd6:6;
+ uint16_t k;
+ uint16_t in_len;
+ uint32_t out_addr_lw;
+ uint32_t out_addr_hi;
+ uint32_t in_addr_lw;
+ uint32_t in_addr_hi;
+
+ union {
+ struct {
+ /* Virtual addresses used to retrieve SW context info */
+ void *op_addr;
+ /* Stores information about total number of Code Blocks
+ * in currently processed Transport Block
+ */
+ uint8_t cbs_in_op;
+ };
+
+ uint32_t sw_ctxt[8 * (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
+ };
+};
+
+/* FPGA LTE DMA Descriptor */
+union fpga_dma_desc {
+ struct fpga_dma_enc_desc enc_req;
+ struct fpga_dma_dec_desc dec_req;
+};
+
+/* FPGA LTE FEC Ring Control Register */
+struct __attribute__((__packed__)) fpga_ring_ctrl_reg {
+ uint64_t ring_base_addr;
+ uint64_t ring_head_addr;
+ uint16_t ring_size:11;
+ uint16_t rsrvd0;
+ union { /* Miscellaneous register */
+ uint8_t misc;
+ uint8_t max_ul_dec:5,
+ max_ul_dec_en:1,
+ rsrvd1:2;
+ };
+ uint8_t enable;
+ uint8_t flush_queue_en;
+ uint8_t rsrvd2;
+ uint16_t shadow_tail;
+ uint16_t rsrvd3;
+ uint16_t head_point;
+ uint16_t rsrvd4;
+
+};
+
+/* Private data structure for each FPGA FEC device */
+struct fpga_lte_fec_device {
+ /** Base address of MMIO registers (BAR0) */
+ void *mmio_base;
+ /** Base address of memory for sw rings */
+ void *sw_rings;
+ /** Physical address of sw_rings */
+ rte_iova_t sw_rings_phys;
+ /** Number of bytes available for each queue in device. */
+ uint32_t sw_ring_size;
+ /** Max number of entries available for each queue in device */
+ uint32_t sw_ring_max_depth;
+ /** Base address of response tail pointer buffer */
+ uint32_t *tail_ptrs;
+ /** Physical address of tail pointers */
+ rte_iova_t tail_ptr_phys;
+ /** Queues flush completion flag */
+ uint64_t *flush_queue_status;
+ /* Bitmap capturing which Queues are bound to the PF/VF */
+ uint64_t q_bound_bit_map;
+ /* Bitmap capturing which Queues have already been assigned */
+ uint64_t q_assigned_bit_map;
+ /** True if this is a PF FPGA FEC device */
+ bool pf_device;
+};
+
+/* Structure associated with each queue. */
+struct __rte_cache_aligned fpga_queue {
+ struct fpga_ring_ctrl_reg ring_ctrl_reg; /* Ring Control Register */
+ union fpga_dma_desc *ring_addr; /* Virtual address of software ring */
+ uint64_t *ring_head_addr; /* Virtual address of completion_head */
+ uint64_t shadow_completion_head; /* Shadow completion head value */
+ uint16_t head_free_desc; /* Ring head */
+ uint16_t tail; /* Ring tail */
+ /* Mask used to wrap enqueued descriptors on the sw ring */
+ uint32_t sw_ring_wrap_mask;
+ uint32_t irq_enable; /* Enable ops dequeue interrupts if set to 1 */
+ uint8_t q_idx; /* Queue index */
+ struct fpga_lte_fec_device *d;
+ /* MMIO register of shadow_tail used to enqueue descriptors */
+ void *shadow_tail_addr;
+};
+
+/* Write to 16 bit MMIO register address */
+static inline void
+mmio_write_16(void *addr, uint16_t value)
+{
+ *((volatile uint16_t *)(addr)) = rte_cpu_to_le_16(value);
+}
+
+/* Write to 32 bit MMIO register address */
+static inline void
+mmio_write_32(void *addr, uint32_t value)
+{
+ *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
+}
+
+/* Write to 64 bit MMIO register address */
+static inline void
+mmio_write_64(void *addr, uint64_t value)
+{
+ *((volatile uint64_t *)(addr)) = rte_cpu_to_le_64(value);
+}
+
+/* Write a 8 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_8(void *mmio_base, uint32_t offset, uint8_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ *((volatile uint8_t *)(reg_addr)) = payload;
+}
+
+/* Write a 16 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_16(void *mmio_base, uint32_t offset, uint16_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ mmio_write_16(reg_addr, payload);
+}
+
+/* Write a 32 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_32(void *mmio_base, uint32_t offset, uint32_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ mmio_write_32(reg_addr, payload);
+}
+
+/* Write a 64 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_64(void *mmio_base, uint32_t offset, uint64_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ mmio_write_64(reg_addr, payload);
+}
+
+/* Write a ring control register of a FPGA LTE FEC device */
+static inline void
+fpga_ring_reg_write(void *mmio_base, uint32_t offset,
+ struct fpga_ring_ctrl_reg payload)
+{
+ fpga_reg_write_64(mmio_base, offset, payload.ring_base_addr);
+ fpga_reg_write_64(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_ADDR,
+ payload.ring_head_addr);
+ fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SIZE,
+ payload.ring_size);
+ fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
+ payload.head_point);
+ fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN,
+ payload.flush_queue_en);
+ fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
+ payload.shadow_tail);
+ fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_MISC,
+ payload.misc);
+ fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
+ payload.enable);
+}
+
+/* Read a register of FPGA LTE FEC device */
+static uint32_t
+fpga_reg_read_32(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ uint32_t ret = *((volatile uint32_t *)(reg_addr));
+ return rte_le_to_cpu_32(ret);
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Read a register of FPGA LTE FEC device */
+static uint8_t
+fpga_reg_read_8(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ return *((volatile uint8_t *)(reg_addr));
+}
+
+/* Read a register of FPGA LTE FEC device */
+static uint16_t
+fpga_reg_read_16(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ uint16_t ret = *((volatile uint16_t *)(reg_addr));
+ return rte_le_to_cpu_16(ret);
+}
+
+/* Read a register of FPGA LTE FEC device */
+static uint64_t
+fpga_reg_read_64(void *mmio_base, uint32_t offset)
+{
+ void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+ uint64_t ret = *((volatile uint64_t *)(reg_addr));
+ return rte_le_to_cpu_64(ret);
+}
+
+/* Read Ring Control Register of FPGA LTE FEC device */
+static inline void
+print_ring_reg_debug_info(void *mmio_base, uint32_t offset)
+{
+ rte_bbdev_log_debug(
+ "FPGA MMIO base address @ %p | Ring Control Register @ offset = 0x%08"
+ PRIx32, mmio_base, offset);
+ rte_bbdev_log_debug(
+ "RING_BASE_ADDR = 0x%016"PRIx64,
+ fpga_reg_read_64(mmio_base, offset));
+ rte_bbdev_log_debug(
+ "RING_HEAD_ADDR = 0x%016"PRIx64,
+ fpga_reg_read_64(mmio_base, offset +
+ FPGA_LTE_FEC_RING_HEAD_ADDR));
+ rte_bbdev_log_debug(
+ "RING_SIZE = 0x%04"PRIx16,
+ fpga_reg_read_16(mmio_base, offset +
+ FPGA_LTE_FEC_RING_SIZE));
+ rte_bbdev_log_debug(
+ "RING_MISC = 0x%02"PRIx8,
+ fpga_reg_read_8(mmio_base, offset +
+ FPGA_LTE_FEC_RING_MISC));
+ rte_bbdev_log_debug(
+ "RING_ENABLE = 0x%02"PRIx8,
+ fpga_reg_read_8(mmio_base, offset +
+ FPGA_LTE_FEC_RING_ENABLE));
+ rte_bbdev_log_debug(
+ "RING_FLUSH_QUEUE_EN = 0x%02"PRIx8,
+ fpga_reg_read_8(mmio_base, offset +
+ FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN));
+ rte_bbdev_log_debug(
+ "RING_SHADOW_TAIL = 0x%04"PRIx16,
+ fpga_reg_read_16(mmio_base, offset +
+ FPGA_LTE_FEC_RING_SHADOW_TAIL));
+ rte_bbdev_log_debug(
+ "RING_HEAD_POINT = 0x%04"PRIx16,
+ fpga_reg_read_16(mmio_base, offset +
+ FPGA_LTE_FEC_RING_HEAD_POINT));
+}
+
+/* Read Static Register of FPGA LTE FEC device */
+static inline void
+print_static_reg_debug_info(void *mmio_base)
+{
+ uint16_t config = fpga_reg_read_16(mmio_base,
+ FPGA_LTE_FEC_CONFIGURATION);
+ uint8_t qmap_done = fpga_reg_read_8(mmio_base,
+ FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE);
+ uint16_t lb_factor = fpga_reg_read_16(mmio_base,
+ FPGA_LTE_FEC_LOAD_BALANCE_FACTOR);
+ uint16_t ring_desc_len = fpga_reg_read_16(mmio_base,
+ FPGA_LTE_FEC_RING_DESC_LEN);
+ uint16_t flr_time_out = fpga_reg_read_16(mmio_base,
+ FPGA_LTE_FEC_FLR_TIME_OUT);
+
+ rte_bbdev_log_debug("UL.DL Weights = %u.%u",
+ ((uint8_t)config), ((uint8_t)(config >> 8)));
+ rte_bbdev_log_debug("UL.DL Load Balance = %u.%u",
+ ((uint8_t)lb_factor), ((uint8_t)(lb_factor >> 8)));
+ rte_bbdev_log_debug("Queue-PF/VF Mapping Table = %s",
+ (qmap_done > 0) ? "READY" : "NOT-READY");
+ rte_bbdev_log_debug("Ring Descriptor Size = %u bytes",
+ ring_desc_len*FPGA_RING_DESC_LEN_UNIT_BYTES);
+ rte_bbdev_log_debug("FLR Timeout = %f usec",
+ (float)flr_time_out*FPGA_FLR_TIMEOUT_UNIT);
+}
+
+/* Print decode DMA Descriptor of FPGA LTE FEC device */
+static void
+print_dma_dec_desc_debug_info(union fpga_dma_desc *desc)
+{
+ rte_bbdev_log_debug("DMA response desc %p\n"
+ "\t-- done(%"PRIu32") | iter(%"PRIu32") | crc_pass(%"PRIu32")"
+ " | error (%"PRIu32") | crc_type(%"PRIu32")\n"
+ "\t-- max_iter(%"PRIu32") | bypass_rm(%"PRIu32") | "
+ "irq_en (%"PRIu32") | drop_crc(%"PRIu32") | offset(%"PRIu32")\n"
+ "\t-- k(%"PRIu32") | in_len (%"PRIu16") | op_add(%p)\n"
+ "\t-- cbs_in_op(%"PRIu32") | in_add (0x%08"PRIx32"%08"PRIx32") | "
+ "out_add (0x%08"PRIx32"%08"PRIx32")",
+ desc,
+ (uint32_t)desc->dec_req.done,
+ (uint32_t)desc->dec_req.iter,
+ (uint32_t)desc->dec_req.crc_pass,
+ (uint32_t)desc->dec_req.error,
+ (uint32_t)desc->dec_req.crc_type,
+ (uint32_t)desc->dec_req.max_iter,
+ (uint32_t)desc->dec_req.bypass_rm,
+ (uint32_t)desc->dec_req.irq_en,
+ (uint32_t)desc->dec_req.drop_crc,
+ (uint32_t)desc->dec_req.offset,
+ (uint32_t)desc->dec_req.k,
+ (uint16_t)desc->dec_req.in_len,
+ desc->dec_req.op_addr,
+ (uint32_t)desc->dec_req.cbs_in_op,
+ (uint32_t)desc->dec_req.in_addr_hi,
+ (uint32_t)desc->dec_req.in_addr_lw,
+ (uint32_t)desc->dec_req.out_addr_hi,
+ (uint32_t)desc->dec_req.out_addr_lw);
+}
+#endif
+
+static int
+fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
+{
+ /* Number of queues bound to a PF/VF */
+ uint32_t hw_q_num = 0;
+ uint32_t ring_size, payload, address, q_id, offset;
+ rte_iova_t phys_addr;
+ struct fpga_ring_ctrl_reg ring_reg;
+ struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
+
+ address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
+ if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) {
+ rte_bbdev_log(ERR,
+ "Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?",
+ dev->data->name);
+ return -EPERM;
+ }
+
+ /* Clear queue registers structure */
+ memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
+
+ /* Scan queue map.
+ * If a queue is valid and mapped to a calling PF/VF the read value is
+ * replaced with a queue ID and if it's not then
+ * FPGA_INVALID_HW_QUEUE_ID is returned.
+ */
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base,
+ FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
+
+ rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u",
+ dev->device->name, q_id, hw_q_id);
+
+ if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) {
+ fpga_dev->q_bound_bit_map |= (1ULL << q_id);
+ /* Clear queue register of found queue */
+ offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q_id);
+ fpga_ring_reg_write(fpga_dev->mmio_base,
+ offset, ring_reg);
+ ++hw_q_num;
+ }
+ }
+ if (hw_q_num == 0) {
+ rte_bbdev_log(ERR,
+ "No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!");
+ return -ENODEV;
+ }
+
+ if (num_queues > hw_q_num) {
+ rte_bbdev_log(ERR,
+ "Not enough queues for device %s! Requested: %u, available: %u",
+ dev->device->name, num_queues, hw_q_num);
+ return -EINVAL;
+ }
+
+ ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc);
+
+ /* Enforce 32 byte alignment */
+ RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0);
+
+ /* Allocate memory for SW descriptor rings */
+ fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name,
+ num_queues * ring_size, RTE_CACHE_LINE_SIZE,
+ socket_id);
+ if (fpga_dev->sw_rings == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate memory for %s:%u sw_rings",
+ dev->device->driver->name, dev->data->dev_id);
+ return -ENOMEM;
+ }
+
+ fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings);
+ fpga_dev->sw_ring_size = ring_size;
+ fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE;
+
+ /* Allocate memory for ring flush status */
+ fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL,
+ sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id);
+ if (fpga_dev->flush_queue_status == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate memory for %s:%u flush_queue_status",
+ dev->device->driver->name, dev->data->dev_id);
+ return -ENOMEM;
+ }
+
+ /* Set the flush status address registers */
+ phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status);
+
+ address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW;
+ payload = (uint32_t)(phys_addr);
+ fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
+
+ address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI;
+ payload = (uint32_t)(phys_addr >> 32);
+ fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
+
+ return 0;
+}
+
+static int
+fpga_dev_close(struct rte_bbdev *dev)
+{
+ struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
+
+ rte_free(fpga_dev->sw_rings);
+ rte_free(fpga_dev->flush_queue_status);
+
+ return 0;
+}
+
+static void
+fpga_dev_info_get(struct rte_bbdev *dev,
+ struct rte_bbdev_driver_info *dev_info)
+{
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+ uint32_t q_id = 0;
+
+ /* TODO RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN and numbers of buffers are set
+ * to temporary values as they are required by test application while
+ * validation phase.
+ */
+ static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
+ {
+ .type = RTE_BBDEV_OP_TURBO_DEC,
+ .cap.turbo_dec = {
+ .capability_flags =
+ RTE_BBDEV_TURBO_CRC_TYPE_24B |
+ RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
+ RTE_BBDEV_TURBO_DEC_INTERRUPTS |
+ RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP,
+ .max_llr_modulus = INT8_MAX,
+ .num_buffers_src =
+ RTE_BBDEV_MAX_CODE_BLOCKS,
+ .num_buffers_hard_out =
+ RTE_BBDEV_MAX_CODE_BLOCKS,
+ .num_buffers_soft_out = 0
+ }
+ },
+ {
+ .type = RTE_BBDEV_OP_TURBO_ENC,
+ .cap.turbo_enc = {
+ .capability_flags =
+ RTE_BBDEV_TURBO_CRC_24B_ATTACH |
+ RTE_BBDEV_TURBO_RATE_MATCH |
+ RTE_BBDEV_TURBO_ENC_INTERRUPTS,
+ .num_buffers_src =
+ RTE_BBDEV_MAX_CODE_BLOCKS,
+ .num_buffers_dst =
+ RTE_BBDEV_MAX_CODE_BLOCKS
+ }
+ },
+ RTE_BBDEV_END_OF_CAPABILITIES_LIST()
+ };
+
+ static struct rte_bbdev_queue_conf default_queue_conf;
+ default_queue_conf.socket = dev->data->socket_id;
+ default_queue_conf.queue_size = FPGA_RING_MAX_SIZE;
+
+
+ dev_info->driver_name = dev->device->driver->name;
+ dev_info->queue_size_lim = FPGA_RING_MAX_SIZE;
+ dev_info->hardware_accelerated = true;
+ dev_info->min_alignment = 64;
+ dev_info->default_queue_conf = default_queue_conf;
+ dev_info->capabilities = bbdev_capabilities;
+ dev_info->cpu_flag_reqs = NULL;
+
+ /* Calculates number of queues assigned to device */
+ dev_info->max_num_queues = 0;
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ uint32_t hw_q_id = fpga_reg_read_32(d->mmio_base,
+ FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
+ if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID)
+ dev_info->max_num_queues++;
+ }
+}
+
+/**
+ * Find index of queue bound to current PF/VF which is unassigned. Return -1
+ * when there is no available queue
+ */
+static int
+fpga_find_free_queue_idx(struct rte_bbdev *dev,
+ const struct rte_bbdev_queue_conf *conf)
+{
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+ uint64_t q_idx;
+ uint8_t i = 0;
+ uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1;
+
+ if (conf->op_type == RTE_BBDEV_OP_TURBO_ENC) {
+ i = FPGA_NUM_DL_QUEUES;
+ range = FPGA_TOTAL_NUM_QUEUES;
+ }
+
+ for (; i < range; ++i) {
+ q_idx = 1ULL << i;
+ /* Check if index of queue is bound to current PF/VF */
+ if (d->q_bound_bit_map & q_idx)
+ /* Check if found queue was not already assigned */
+ if (!(d->q_assigned_bit_map & q_idx)) {
+ d->q_assigned_bit_map |= q_idx;
+ return i;
+ }
+ }
+
+ rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name);
+
+ return -1;
+}
+
+static int
+fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
+ const struct rte_bbdev_queue_conf *conf)
+{
+ uint32_t address, ring_offset;
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+ struct fpga_queue *q;
+ int8_t q_idx;
+
+ /* Check if there is a free queue to assign */
+ q_idx = fpga_find_free_queue_idx(dev, conf);
+ if (q_idx == -1)
+ return -1;
+
+ /* Allocate the queue data structure. */
+ q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
+ RTE_CACHE_LINE_SIZE, conf->socket);
+ if (q == NULL) {
+ /* Mark queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+ rte_bbdev_log(ERR, "Failed to allocate queue memory");
+ return -ENOMEM;
+ }
+
+ q->d = d;
+ q->q_idx = q_idx;
+
+ /* Set ring_base_addr */
+ q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
+ q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys +
+ (d->sw_ring_size * queue_id);
+
+ /* Allocate memory for Completion Head variable*/
+ q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name,
+ sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket);
+ if (q->ring_head_addr == NULL) {
+ /* Mark queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+ rte_free(q);
+ rte_bbdev_log(ERR,
+ "Failed to allocate memory for %s:%u completion_head",
+ dev->device->driver->name, dev->data->dev_id);
+ return -ENOMEM;
+ }
+ /* Set ring_head_addr */
+ q->ring_ctrl_reg.ring_head_addr =
+ rte_malloc_virt2iova(q->ring_head_addr);
+
+ /* Clear shadow_completion_head */
+ q->shadow_completion_head = 0;
+
+ /* Set ring_size */
+ if (conf->queue_size > FPGA_RING_MAX_SIZE) {
+ /* Mark queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+ rte_free(q->ring_head_addr);
+ rte_free(q);
+ rte_bbdev_log(ERR,
+ "Size of queue is too big %d (MAX: %d ) for %s:%u",
+ conf->queue_size, FPGA_RING_MAX_SIZE,
+ dev->device->driver->name, dev->data->dev_id);
+ return -EINVAL;
+ }
+ q->ring_ctrl_reg.ring_size = conf->queue_size;
+
+ /* Set Miscellaneous FPGA register*/
+ /* Max iteration number for TTI mitigation - todo */
+ q->ring_ctrl_reg.max_ul_dec = 0;
+ /* Enable max iteration number for TTI - todo */
+ q->ring_ctrl_reg.max_ul_dec_en = 0;
+
+ /* Enable the ring */
+ q->ring_ctrl_reg.enable = 1;
+
+ /* Set FPGA head_point and tail registers */
+ q->ring_ctrl_reg.head_point = q->tail = 0;
+
+ /* Set FPGA shadow_tail register */
+ q->ring_ctrl_reg.shadow_tail = q->tail;
+
+ /* Calculates the ring offset for found queue */
+ ring_offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q_idx);
+
+ /* Set FPGA Ring Control Registers */
+ fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg);
+
+ /* Store MMIO register of shadow_tail */
+ address = ring_offset + FPGA_LTE_FEC_RING_SHADOW_TAIL;
+ q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address);
+
+ q->head_free_desc = q->tail;
+
+ /* Set wrap mask */
+ q->sw_ring_wrap_mask = conf->queue_size - 1;
+
+ rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u",
+ dev->data->dev_id, queue_id, q->q_idx);
+
+ dev->data->queues[queue_id].queue_private = q;
+
+ rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]",
+ queue_id, q_idx);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Read FPGA Ring Control Registers after configuration*/
+ print_ring_reg_debug_info(d->mmio_base, ring_offset);
+#endif
+ return 0;
+}
+
+static int
+fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ struct fpga_ring_ctrl_reg ring_reg;
+ uint32_t offset;
+
+ rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id);
+
+ if (q != NULL) {
+ memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
+ offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+ /* Disable queue */
+ fpga_reg_write_8(d->mmio_base,
+ offset + FPGA_LTE_FEC_RING_ENABLE, 0x00);
+ /* Clear queue registers */
+ fpga_ring_reg_write(d->mmio_base, offset, ring_reg);
+
+ /* Mark the Queue as un-assigned */
+ d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx));
+ rte_free(q->ring_head_addr);
+ rte_free(q);
+ dev->data->queues[queue_id].queue_private = NULL;
+ }
+
+ return 0;
+}
+
+/* Function starts a device queue. */
+static int
+fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (d == NULL) {
+ rte_bbdev_log(ERR, "Invalid device pointer");
+ return -1;
+ }
+#endif
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+ uint8_t enable = 0x01;
+ uint16_t zero = 0x0000;
+
+ /* Clear queue head and tail variables */
+ q->tail = q->head_free_desc = 0;
+
+ /* Clear FPGA head_point and tail registers */
+ fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
+ zero);
+ fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
+ zero);
+
+ /* Enable queue */
+ fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
+ enable);
+
+ rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id);
+ return 0;
+}
+
+/* Function stops a device queue. */
+static int
+fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_lte_fec_device *d = dev->data->dev_private;
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (d == NULL) {
+ rte_bbdev_log(ERR, "Invalid device pointer");
+ return -1;
+ }
+#endif
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+ (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+ uint8_t payload = 0x01;
+ uint8_t counter = 0;
+ uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US /
+ FPGA_TIMEOUT_CHECK_INTERVAL;
+
+ /* Set flush_queue_en bit to trigger queue flushing */
+ fpga_reg_write_8(d->mmio_base,
+ offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN, payload);
+
+ /** Check if queue flush is completed.
+ * FPGA will update the completion flag after queue flushing is
+ * completed. If completion flag is not updated within 1ms it is
+ * considered as a failure.
+ */
+ while (!(*((uint8_t *)d->flush_queue_status + q->q_idx) & payload)) {
+ if (counter > timeout) {
+ rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d",
+ queue_id);
+ return -1;
+ }
+ usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
+ counter++;
+ }
+
+ /* Disable queue */
+ payload = 0x00;
+ fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
+ payload);
+
+ rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id);
+ return 0;
+}
+
+static inline uint16_t
+get_queue_id(struct rte_bbdev_data *data, uint8_t q_idx)
+{
+ uint16_t queue_id;
+
+ for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
+ struct fpga_queue *q = data->queues[queue_id].queue_private;
+ if (q != NULL && q->q_idx == q_idx)
+ return queue_id;
+ }
+
+ return -1;
+}
+
+/* Interrupt handler triggered by FPGA dev for handling specific interrupt */
+static void
+fpga_dev_interrupt_handler(void *cb_arg)
+{
+ struct rte_bbdev *dev = cb_arg;
+ struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
+ struct fpga_queue *q;
+ uint64_t ring_head;
+ uint64_t q_idx;
+ uint16_t queue_id;
+ uint8_t i;
+
+ /* Scan queue assigned to this device */
+ for (i = 0; i < FPGA_TOTAL_NUM_QUEUES; ++i) {
+ q_idx = 1ULL << i;
+ if (fpga_dev->q_bound_bit_map & q_idx) {
+ queue_id = get_queue_id(dev->data, i);
+ if (queue_id == (uint16_t) -1)
+ continue;
+
+ /* Check if completion head was changed */
+ q = dev->data->queues[queue_id].queue_private;
+ ring_head = *q->ring_head_addr;
+ if (q->shadow_completion_head != ring_head &&
+ q->irq_enable == 1) {
+ q->shadow_completion_head = ring_head;
+ rte_bbdev_pmd_callback_process(
+ dev,
+ RTE_BBDEV_EVENT_DEQUEUE,
+ &queue_id);
+ }
+ }
+ }
+}
+
+static int
+fpga_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+
+ if (!rte_intr_cap_multiple(dev->intr_handle))
+ return -ENOTSUP;
+
+ q->irq_enable = 1;
+
+ return 0;
+}
+
+static int
+fpga_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
+{
+ struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+ q->irq_enable = 0;
+
+ return 0;
+}
+
+static int
+fpga_intr_enable(struct rte_bbdev *dev)
+{
+ int ret;
+ uint8_t i;
+
+ if (!rte_intr_cap_multiple(dev->intr_handle)) {
+ rte_bbdev_log(ERR, "Multiple intr vector is not supported by FPGA (%s)",
+ dev->data->name);
+ return -ENOTSUP;
+ }
+
+ /* Create event file descriptors for each of 64 queue. Event fds will be
+ * mapped to FPGA IRQs in rte_intr_enable(). This is a 1:1 mapping where
+ * the IRQ number is a direct translation to the queue number.
+ *
+ * 63 (FPGA_NUM_INTR_VEC) event fds are created as rte_intr_enable()
+ * mapped the first IRQ to already created interrupt event file
+ * descriptor (intr_handle->fd).
+ */
+ if (rte_intr_efd_enable(dev->intr_handle, FPGA_NUM_INTR_VEC)) {
+ rte_bbdev_log(ERR, "Failed to create fds for %u queues",
+ dev->data->num_queues);
+ return -1;
+ }
+
+ /* TODO Each event file descriptor is overwritten by interrupt event
+ * file descriptor. That descriptor is added to epoll observed list.
+ * It ensures that callback function assigned to that descriptor will
+ * invoked when any FPGA queue issues interrupt.
+ */
+ for (i = 0; i < FPGA_NUM_INTR_VEC; ++i)
+ dev->intr_handle->efds[i] = dev->intr_handle->fd;
+
+ if (!dev->intr_handle->intr_vec) {
+ dev->intr_handle->intr_vec = rte_zmalloc("intr_vec",
+ dev->data->num_queues * sizeof(int), 0);
+ if (!dev->intr_handle->intr_vec) {
+ rte_bbdev_log(ERR, "Failed to allocate %u vectors",
+ dev->data->num_queues);
+ return -ENOMEM;
+ }
+ }
+
+ ret = rte_intr_enable(dev->intr_handle);
+ if (ret < 0) {
+ rte_bbdev_log(ERR,
+ "Couldn't enable interrupts for device: %s",
+ dev->data->name);
+ return ret;
+ }
+
+ ret = rte_intr_callback_register(dev->intr_handle,
+ fpga_dev_interrupt_handler, dev);
+ if (ret < 0) {
+ rte_bbdev_log(ERR,
+ "Couldn't register interrupt callback for device: %s",
+ dev->data->name);
+ return ret;
+ }
+
+ return 0;
+}
+
+static const struct rte_bbdev_ops fpga_ops = {
+ .setup_queues = fpga_setup_queues,
+ .intr_enable = fpga_intr_enable,
+ .close = fpga_dev_close,
+ .info_get = fpga_dev_info_get,
+ .queue_setup = fpga_queue_setup,
+ .queue_stop = fpga_queue_stop,
+ .queue_start = fpga_queue_start,
+ .queue_release = fpga_queue_release,
+ .queue_intr_enable = fpga_queue_intr_enable,
+ .queue_intr_disable = fpga_queue_intr_disable
+};
+
+static inline void
+fpga_dma_enqueue(struct fpga_queue *q, uint16_t num_desc,
+ struct rte_bbdev_stats *queue_stats)
+{
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ uint64_t start_time = 0;
+ queue_stats->acc_offload_cycles = 0;
+#else
+ RTE_SET_USED(queue_stats);
+#endif
+
+ /* Update tail and shadow_tail register */
+ q->tail = (q->tail + num_desc) & q->sw_ring_wrap_mask;
+
+ rte_wmb();
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ /* Start time measurement for enqueue function offload. */
+ start_time = rte_rdtsc_precise();
+#endif
+ mmio_write_16(q->shadow_tail_addr, q->tail);
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ rte_wmb();
+ queue_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+}
+
+/* Calculates number of CBs in processed encoder TB based on 'r' and input
+ * length.
+ */
+static inline uint8_t
+get_num_cbs_in_op_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
+{
+ uint8_t c, c_neg, r, crc24_bits = 0;
+ uint16_t k, k_neg, k_pos;
+ uint8_t cbs_in_op = 0;
+ int32_t length;
+
+ length = turbo_enc->input.length;
+ r = turbo_enc->tb_params.r;
+ c = turbo_enc->tb_params.c;
+ c_neg = turbo_enc->tb_params.c_neg;
+ k_neg = turbo_enc->tb_params.k_neg;
+ k_pos = turbo_enc->tb_params.k_pos;
+ crc24_bits = 24;
+ while (length > 0 && r < c) {
+ k = (r < c_neg) ? k_neg : k_pos;
+ length -= (k - crc24_bits) >> 3;
+ r++;
+ cbs_in_op++;
+ }
+
+ return cbs_in_op;
+}
+
+/* Calculates number of CBs in processed decoder TB based on 'r' and input
+ * length.
+ */
+static inline uint16_t
+get_num_cbs_in_op_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
+{
+ uint8_t c, c_neg, r = 0;
+ uint16_t kw, k, k_neg, k_pos, cbs_in_op = 0;
+ int32_t length;
+
+ length = turbo_dec->input.length;
+ r = turbo_dec->tb_params.r;
+ c = turbo_dec->tb_params.c;
+ c_neg = turbo_dec->tb_params.c_neg;
+ k_neg = turbo_dec->tb_params.k_neg;
+ k_pos = turbo_dec->tb_params.k_pos;
+ while (length > 0 && r < c) {
+ k = (r < c_neg) ? k_neg : k_pos;
+ kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
+ length -= kw;
+ r++;
+ cbs_in_op++;
+ }
+
+ return cbs_in_op;
+}
+
+/* Read flag value 0/1/ from bitmap */
+static inline bool
+check_bit(uint32_t bitmap, uint32_t bitmask)
+{
+ return bitmap & bitmask;
+}
+
+/* Print an error if a descriptor error has occurred.
+ * Return 0 on success, 1 on failure
+ */
+static inline int
+check_desc_error(uint32_t error_code) {
+ switch (error_code) {
+ case DESC_ERR_NO_ERR:
+ return 0;
+ case DESC_ERR_K_OUT_OF_RANGE:
+ rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144)");
+ break;
+ case DESC_ERR_K_NOT_NORMAL:
+ rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range");
+ break;
+ case DESC_ERR_KPAI_NOT_NORMAL:
+ rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only");
+ break;
+ case DESC_ERR_DESC_OFFSET_ERR:
+ rte_bbdev_log(ERR, "Queue offset does not meet the expectation in the FPGA");
+ break;
+ case (DESC_ERR_K_OUT_OF_RANGE | DESC_ERR_DESC_OFFSET_ERR):
+ rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144) and queue offset error");
+ break;
+ case (DESC_ERR_K_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
+ rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range and queue offset error");
+ break;
+ case (DESC_ERR_KPAI_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
+ rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only and queue offset error");
+ break;
+ case DESC_ERR_DESC_READ_FAIL:
+ rte_bbdev_log(ERR, "Unsuccessful completion for descriptor read");
+ break;
+ case DESC_ERR_DESC_READ_TIMEOUT:
+ rte_bbdev_log(ERR, "Descriptor read time-out");
+ break;
+ case DESC_ERR_DESC_READ_TLP_POISONED:
+ rte_bbdev_log(ERR, "Descriptor read TLP poisoned");
+ break;
+ case DESC_ERR_CB_READ_FAIL:
+ rte_bbdev_log(ERR, "Unsuccessful completion for code block");
+ break;
+ case DESC_ERR_CB_READ_TIMEOUT:
+ rte_bbdev_log(ERR, "Code block read time-out");
+ break;
+ case DESC_ERR_CB_READ_TLP_POISONED:
+ rte_bbdev_log(ERR, "Code block read TLP poisoned");
+ break;
+ default:
+ rte_bbdev_log(ERR, "Descriptor error unknown error code %u",
+ error_code);
+ break;
+ }
+ return 1;
+}
+
+/**
+ * Set DMA descriptor for encode operation (1 Code Block)
+ *
+ * @param op
+ * Pointer to a single encode operation.
+ * @param desc
+ * Pointer to DMA descriptor.
+ * @param input
+ * Pointer to pointer to input data which will be decoded.
+ * @param k
+ * K value (length of input in bits).
+ * @param e
+ * E value (length of output in bits).
+ * @param ncb
+ * Ncb value (size of the soft buffer).
+ * @param out_length
+ * Length of output buffer
+ * @param in_offset
+ * Input offset in rte_mbuf structure. It is used for calculating the point
+ * where data is starting.
+ * @param out_offset
+ * Output offset in rte_mbuf structure. It is used for calculating the point
+ * where hard output data will be stored.
+ * @param cbs_in_op
+ * Number of CBs contained in one operation.
+ */
+static inline int
+fpga_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
+ struct fpga_dma_enc_desc *desc, struct rte_mbuf *input,
+ struct rte_mbuf *output, uint16_t k, uint16_t e, uint16_t ncb,
+ uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
+ uint8_t cbs_in_op)
+
+{
+ /* reset */
+ desc->done = 0;
+ desc->crc_en = check_bit(op->turbo_enc.op_flags,
+ RTE_BBDEV_TURBO_CRC_24B_ATTACH);
+ desc->bypass_rm = !check_bit(op->turbo_enc.op_flags,
+ RTE_BBDEV_TURBO_RATE_MATCH);
+ desc->k = k;
+ desc->e = e;
+ desc->ncb = ncb;
+ desc->rv = op->turbo_enc.rv_index;
+ desc->offset = desc_offset;
+ /* Set inbound data buffer address */
+ desc->in_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset) >> 32);
+ desc->in_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset));
+
+ desc->out_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset) >> 32);
+ desc->out_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset));
+
+ /* Save software context needed for dequeue */
+ desc->op_addr = op;
+
+ /* Set total number of CBs in an op */
+ desc->cbs_in_op = cbs_in_op;
+
+ return 0;
+}
+
+/**
+ * Set DMA descriptor for encode operation (1 Code Block)
+ *
+ * @param op
+ * Pointer to a single encode operation.
+ * @param desc
+ * Pointer to DMA descriptor.
+ * @param input
+ * Pointer to pointer to input data which will be decoded.
+ * @param in_length
+ * Length of an input.
+ * @param k
+ * K value (length of an output in bits).
+ * @param in_offset
+ * Input offset in rte_mbuf structure. It is used for calculating the point
+ * where data is starting.
+ * @param out_offset
+ * Output offset in rte_mbuf structure. It is used for calculating the point
+ * where hard output data will be stored.
+ * @param cbs_in_op
+ * Number of CBs contained in one operation.
+ */
+static inline int
+fpga_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
+ struct fpga_dma_dec_desc *desc, struct rte_mbuf *input,
+ struct rte_mbuf *output, uint16_t in_length, uint16_t k,
+ uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
+ uint8_t cbs_in_op)
+{
+ /* reset */
+ desc->done = 0;
+ /* Set inbound data buffer address */
+ desc->in_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset) >> 32);
+ desc->in_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(input, in_offset));
+ desc->in_len = in_length;
+ desc->k = k;
+ desc->crc_type = !check_bit(op->turbo_dec.op_flags,
+ RTE_BBDEV_TURBO_CRC_TYPE_24B);
+ if ((op->turbo_dec.code_block_mode == 0)
+ && !check_bit(op->turbo_dec.op_flags,
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
+ desc->drop_crc = 1;
+ desc->max_iter = op->turbo_dec.iter_max * 2;
+ desc->offset = desc_offset;
+ desc->out_addr_hi = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset) >> 32);
+ desc->out_addr_lw = (uint32_t)(
+ rte_pktmbuf_mtophys_offset(output, out_offset));
+
+ /* Save software context needed for dequeue */
+ desc->op_addr = op;
+
+ /* Set total number of CBs in an op */
+ desc->cbs_in_op = cbs_in_op;
+
+ return 0;
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Validates turbo encoder parameters */
+static int
+validate_enc_op(struct rte_bbdev_enc_op *op)
+{
+ struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
+ struct rte_bbdev_op_enc_cb_params *cb = NULL;
+ struct rte_bbdev_op_enc_tb_params *tb = NULL;
+ uint16_t kw, kw_neg, kw_pos;
+
+ if (turbo_enc->input.length >
+ RTE_BBDEV_MAX_TB_SIZE >> 3) {
+ rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
+ turbo_enc->input.length, RTE_BBDEV_MAX_TB_SIZE);
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return -1;
+ }
+
+ if (op->mempool == NULL) {
+ rte_bbdev_log(ERR, "Invalid mempool pointer");
+ return -1;
+ }
+ if (turbo_enc->input.data == NULL) {
+ rte_bbdev_log(ERR, "Invalid input pointer");
+ return -1;
+ }
+ if (turbo_enc->output.data == NULL) {
+ rte_bbdev_log(ERR, "Invalid output pointer");
+ return -1;
+ }
+ if (turbo_enc->rv_index > 3) {
+ rte_bbdev_log(ERR,
+ "rv_index (%u) is out of range 0 <= value <= 3",
+ turbo_enc->rv_index);
+ return -1;
+ }
+ if (turbo_enc->code_block_mode != 0 &&
+ turbo_enc->code_block_mode != 1) {
+ rte_bbdev_log(ERR,
+ "code_block_mode (%u) is out of range 0 <= value <= 1",
+ turbo_enc->code_block_mode);
+ return -1;
+ }
+
+ if (turbo_enc->code_block_mode == 0) {
+ tb = &turbo_enc->tb_params;
+ if ((tb->k_neg < RTE_BBDEV_MIN_CB_SIZE
+ || tb->k_neg > RTE_BBDEV_MAX_CB_SIZE)
+ && tb->c_neg > 0) {
+ rte_bbdev_log(ERR,
+ "k_neg (%u) is out of range %u <= value <= %u",
+ tb->k_neg, RTE_BBDEV_MIN_CB_SIZE,
+ RTE_BBDEV_MAX_CB_SIZE);
+ return -1;
+ }
+ if (tb->k_pos < RTE_BBDEV_MIN_CB_SIZE
+ || tb->k_pos > RTE_BBDEV_MAX_CB_SIZE) {
+ rte_bbdev_log(ERR,
+ "k_pos (%u) is out of range %u <= value <= %u",
+ tb->k_pos, RTE_BBDEV_MIN_CB_SIZE,
+ RTE_BBDEV_MAX_CB_SIZE);
+ return -1;
+ }
+ if (tb->c_neg > (RTE_BBDEV_MAX_CODE_BLOCKS - 1))
+ rte_bbdev_log(ERR,
+ "c_neg (%u) is out of range 0 <= value <= %u",
+ tb->c_neg,
+ RTE_BBDEV_MAX_CODE_BLOCKS - 1);
+ if (tb->c < 1 || tb->c > RTE_BBDEV_MAX_CODE_BLOCKS) {
+ rte_bbdev_log(ERR,
+ "c (%u) is out of range 1 <= value <= %u",
+ tb->c, RTE_BBDEV_MAX_CODE_BLOCKS);
+ return -1;
+ }
+ if (tb->cab > tb->c) {
+ rte_bbdev_log(ERR,
+ "cab (%u) is greater than c (%u)",
+ tb->cab, tb->c);
+ return -1;
+ }
+ if ((tb->ea < RTE_BBDEV_MIN_CB_SIZE || (tb->ea % 2))
+ && tb->r < tb->cab) {
+ rte_bbdev_log(ERR,
+ "ea (%u) is less than %u or it is not even",
+ tb->ea, RTE_BBDEV_MIN_CB_SIZE);
+ return -1;
+ }
+ if ((tb->eb < RTE_BBDEV_MIN_CB_SIZE || (tb->eb % 2))
+ && tb->c > tb->cab) {
+ rte_bbdev_log(ERR,
+ "eb (%u) is less than %u or it is not even",
+ tb->eb, RTE_BBDEV_MIN_CB_SIZE);
+ return -1;
+ }
+
+ kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
+ RTE_BBDEV_C_SUBBLOCK);
+ if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
+ rte_bbdev_log(ERR,
+ "ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
+ tb->ncb_neg, tb->k_neg, kw_neg);
+ return -1;
+ }
+
+ kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
+ RTE_BBDEV_C_SUBBLOCK);
+ if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
+ rte_bbdev_log(ERR,
+ "ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
+ tb->ncb_pos, tb->k_pos, kw_pos);
+ return -1;
+ }
+ if (tb->r > (tb->c - 1)) {
+ rte_bbdev_log(ERR,
+ "r (%u) is greater than c - 1 (%u)",
+ tb->r, tb->c - 1);
+ return -1;
+ }
+ } else {
+ cb = &turbo_enc->cb_params;
+ if (cb->k < RTE_BBDEV_MIN_CB_SIZE
+ || cb->k > RTE_BBDEV_MAX_CB_SIZE) {
+ rte_bbdev_log(ERR,
+ "k (%u) is out of range %u <= value <= %u",
+ cb->k, RTE_BBDEV_MIN_CB_SIZE,
+ RTE_BBDEV_MAX_CB_SIZE);
+ return -1;
+ }
+
+ if (cb->e < RTE_BBDEV_MIN_CB_SIZE || (cb->e % 2)) {
+ rte_bbdev_log(ERR,
+ "e (%u) is less than %u or it is not even",
+ cb->e, RTE_BBDEV_MIN_CB_SIZE);
+ return -1;
+ }
+
+ kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
+ if (cb->ncb < cb->k || cb->ncb > kw) {
+ rte_bbdev_log(ERR,
+ "ncb (%u) is out of range (%u) k <= value <= (%u) kw",
+ cb->ncb, cb->k, kw);
+ return -1;
+ }
+ }
+
+ return 0;
+}
+#endif
+
+static inline char *
+mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
+{
+ if (unlikely(len > rte_pktmbuf_tailroom(m)))
+ return NULL;
+
+ char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
+ m->data_len = (uint16_t)(m->data_len + len);
+ m_head->pkt_len = (m_head->pkt_len + len);
+ return tail;
+}
+
+static inline int
+enqueue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ struct rte_mbuf *input;
+ struct rte_mbuf *output;
+ int ret;
+ uint16_t k, e, ncb, ring_offset;
+ uint32_t total_left, in_length, out_length, in_offset, out_offset;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Validate op structure */
+ if (validate_enc_op(op) == -1) {
+ rte_bbdev_log(ERR, "Turbo encoder validation failed");
+ return -EINVAL;
+ }
+#endif
+
+ input = op->turbo_enc.input.data;
+ output = op->turbo_enc.output.data;
+ in_offset = op->turbo_enc.input.offset;
+ out_offset = op->turbo_enc.output.offset;
+ total_left = op->turbo_enc.input.length;
+ k = op->turbo_enc.cb_params.k;
+ e = op->turbo_enc.cb_params.e;
+ ncb = op->turbo_enc.cb_params.ncb;
+
+ if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
+ in_length = ((k - 24) >> 3);
+ else
+ in_length = k >> 3;
+
+ if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
+ out_length = (e + 7) >> 3;
+ else
+ out_length = (k >> 3) * 3 + 2;
+
+ mbuf_append(output, output, out_length);
+
+ /* Offset into the ring */
+ ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+ /* Setup DMA Descriptor */
+ desc = q->ring_addr + ring_offset;
+
+ ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output, k, e,
+ ncb, in_offset, out_offset, ring_offset, 1);
+ if (unlikely(ret < 0))
+ return ret;
+
+ /* Update lengths */
+ total_left -= in_length;
+ op->turbo_enc.output.length += out_length;
+
+ if (total_left > 0) {
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
+ total_left, in_length);
+ return -1;
+ }
+
+ return 1;
+}
+
+static inline int
+enqueue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
+ uint16_t desc_offset, uint8_t cbs_in_op)
+{
+ union fpga_dma_desc *desc;
+ struct rte_mbuf *input, *output_head, *output;
+ int ret;
+ uint8_t r, c, crc24_bits = 0;
+ uint16_t k, e, ncb, ring_offset;
+ uint32_t mbuf_total_left, in_length, out_length, in_offset, out_offset;
+ uint32_t seg_total_left;
+ uint16_t current_enqueued_cbs = 0;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Validate op structure */
+ if (validate_enc_op(op) == -1) {
+ rte_bbdev_log(ERR, "Turbo encoder validation failed");
+ return -EINVAL;
+ }
+#endif
+
+ input = op->turbo_enc.input.data;
+ output_head = output = op->turbo_enc.output.data;
+ in_offset = op->turbo_enc.input.offset;
+ out_offset = op->turbo_enc.output.offset;
+ mbuf_total_left = op->turbo_enc.input.length;
+
+ c = op->turbo_enc.tb_params.c;
+ r = op->turbo_enc.tb_params.r;
+
+ if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
+ crc24_bits = 24;
+
+ while (mbuf_total_left > 0 && r < c && input != NULL) {
+ seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
+
+ e = (r < op->turbo_enc.tb_params.cab) ?
+ op->turbo_enc.tb_params.ea :
+ op->turbo_enc.tb_params.eb;
+ k = (r < op->turbo_enc.tb_params.c_neg) ?
+ op->turbo_enc.tb_params.k_neg :
+ op->turbo_enc.tb_params.k_pos;
+ ncb = (r < op->turbo_enc.tb_params.c_neg) ?
+ op->turbo_enc.tb_params.ncb_neg :
+ op->turbo_enc.tb_params.ncb_pos;
+
+ in_length = ((k - crc24_bits) >> 3);
+
+ if (check_bit(op->turbo_enc.op_flags,
+ RTE_BBDEV_TURBO_RATE_MATCH))
+ out_length = (e + 7) >> 3;
+ else
+ out_length = (k >> 3) * 3 + 2;
+
+ mbuf_append(output_head, output, out_length);
+
+ /* Setup DMA Descriptor */
+ ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + ring_offset;
+ ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output,
+ k, e, ncb, in_offset, out_offset, ring_offset,
+ cbs_in_op);
+ if (unlikely(ret < 0))
+ return ret;
+
+ rte_bbdev_log_debug("DMA request desc %p", desc);
+
+ /* Update lengths */
+ op->turbo_enc.output.length += out_length;
+ mbuf_total_left -= in_length;
+
+ /* Update offsets */
+ if (seg_total_left == in_length) {
+ /* Go to the next mbuf */
+ input = input->next;
+ output = output->next;
+ in_offset = 0;
+ out_offset = 0;
+ } else {
+ in_offset += in_length;
+ out_offset += out_length;
+ }
+
+ r++;
+ desc_offset++;
+ current_enqueued_cbs++;
+ }
+
+ if (mbuf_total_left > 0) {
+ rte_bbdev_log(ERR,
+ "Some date still left for processing: mbuf_total_left = %u",
+ mbuf_total_left);
+ return -1;
+ }
+
+ return current_enqueued_cbs;
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Validates turbo decoder parameters */
+static int
+validate_dec_op(struct rte_bbdev_dec_op *op)
+{
+ struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
+ struct rte_bbdev_op_dec_cb_params *cb = NULL;
+ struct rte_bbdev_op_dec_tb_params *tb = NULL;
+
+ if (op->mempool == NULL) {
+ rte_bbdev_log(ERR, "Invalid mempool pointer");
+ return -1;
+ }
+ if (turbo_dec->input.data == NULL) {
+ rte_bbdev_log(ERR, "Invalid input pointer");
+ return -1;
+ }
+ if (turbo_dec->hard_output.data == NULL) {
+ rte_bbdev_log(ERR, "Invalid hard_output pointer");
+ return -1;
+ }
+ if (turbo_dec->rv_index > 3) {
+ rte_bbdev_log(ERR,
+ "rv_index (%u) is out of range 0 <= value <= 3",
+ turbo_dec->rv_index);
+ return -1;
+ }
+ if (turbo_dec->iter_min < 1) {
+ rte_bbdev_log(ERR,
+ "iter_min (%u) is less than 1",
+ turbo_dec->iter_min);
+ return -1;
+ }
+ if (turbo_dec->iter_max <= 2) {
+ rte_bbdev_log(ERR,
+ "iter_max (%u) is less than or equal to 2",
+ turbo_dec->iter_max);
+ return -1;
+ }
+ if (turbo_dec->iter_min > turbo_dec->iter_max) {
+ rte_bbdev_log(ERR,
+ "iter_min (%u) is greater than iter_max (%u)",
+ turbo_dec->iter_min, turbo_dec->iter_max);
+ return -1;
+ }
+ if (turbo_dec->code_block_mode != 0 &&
+ turbo_dec->code_block_mode != 1) {
+ rte_bbdev_log(ERR,
+ "code_block_mode (%u) is out of range 0 <= value <= 1",
+ turbo_dec->code_block_mode);
+ return -1;
+ }
+
+ if (turbo_dec->code_block_mode == 0) {
+
+ if ((turbo_dec->op_flags &
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) &&
+ !(turbo_dec->op_flags & RTE_BBDEV_TURBO_CRC_TYPE_24B)) {
+ rte_bbdev_log(ERR,
+ "RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP should accompany RTE_BBDEV_TURBO_CRC_TYPE_24B");
+ return -1;
+ }
+
+ tb = &turbo_dec->tb_params;
+ if ((tb->k_neg < RTE_BBDEV_MIN_CB_SIZE
+ || tb->k_neg > RTE_BBDEV_MAX_CB_SIZE)
+ && tb->c_neg > 0) {
+ rte_bbdev_log(ERR,
+ "k_neg (%u) is out of range %u <= value <= %u",
+ tb->k_neg, RTE_BBDEV_MIN_CB_SIZE,
+ RTE_BBDEV_MAX_CB_SIZE);
+ return -1;
+ }
+ if ((tb->k_pos < RTE_BBDEV_MIN_CB_SIZE
+ || tb->k_pos > RTE_BBDEV_MAX_CB_SIZE)
+ && tb->c > tb->c_neg) {
+ rte_bbdev_log(ERR,
+ "k_pos (%u) is out of range %u <= value <= %u",
+ tb->k_pos, RTE_BBDEV_MIN_CB_SIZE,
+ RTE_BBDEV_MAX_CB_SIZE);
+ return -1;
+ }
+ if (tb->c_neg > (RTE_BBDEV_MAX_CODE_BLOCKS - 1))
+ rte_bbdev_log(ERR,
+ "c_neg (%u) is out of range 0 <= value <= %u",
+ tb->c_neg,
+ RTE_BBDEV_MAX_CODE_BLOCKS - 1);
+ if (tb->c < 1 || tb->c > RTE_BBDEV_MAX_CODE_BLOCKS) {
+ rte_bbdev_log(ERR,
+ "c (%u) is out of range 1 <= value <= %u",
+ tb->c, RTE_BBDEV_MAX_CODE_BLOCKS);
+ return -1;
+ }
+ if (tb->cab > tb->c) {
+ rte_bbdev_log(ERR,
+ "cab (%u) is greater than c (%u)",
+ tb->cab, tb->c);
+ return -1;
+ }
+ } else {
+
+ if (turbo_dec->op_flags & RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) {
+ rte_bbdev_log(ERR,
+ "RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP is invalid in CB-mode");
+ return -1;
+ }
+
+ cb = &turbo_dec->cb_params;
+ if (cb->k < RTE_BBDEV_MIN_CB_SIZE
+ || cb->k > RTE_BBDEV_MAX_CB_SIZE) {
+ rte_bbdev_log(ERR,
+ "k (%u) is out of range %u <= value <= %u",
+ cb->k, RTE_BBDEV_MIN_CB_SIZE,
+ RTE_BBDEV_MAX_CB_SIZE);
+ return -1;
+ }
+ }
+
+ return 0;
+}
+#endif
+
+static inline int
+enqueue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ struct rte_mbuf *input;
+ struct rte_mbuf *output;
+ int ret;
+ uint16_t k, kw, ring_offset;
+ uint32_t total_left, in_length, out_length, in_offset, out_offset;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Validate op structure */
+ if (validate_dec_op(op) == -1) {
+ rte_bbdev_log(ERR, "Turbo decoder validation failed");
+ return -EINVAL;
+ }
+#endif
+
+ input = op->turbo_dec.input.data;
+ output = op->turbo_dec.hard_output.data;
+ total_left = op->turbo_dec.input.length;
+ in_offset = op->turbo_dec.input.offset;
+ out_offset = op->turbo_dec.hard_output.offset;
+
+ k = op->turbo_dec.cb_params.k;
+ kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
+ in_length = kw;
+ out_length = k >> 3;
+
+ mbuf_append(output, output, out_length);
+
+ /* Setup DMA Descriptor */
+ ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + ring_offset;
+ ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
+ in_length, k, in_offset, out_offset, ring_offset, 1);
+ if (unlikely(ret < 0))
+ return ret;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ print_dma_dec_desc_debug_info(desc);
+#endif
+
+ /* Update lengths */
+ total_left -= in_length;
+ op->turbo_dec.hard_output.length += out_length;
+
+ if (total_left > 0) {
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
+ total_left, in_length);
+ return -1;
+ }
+
+ return 1;
+}
+
+
+static inline int
+enqueue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
+ uint16_t desc_offset, uint8_t cbs_in_op)
+{
+ union fpga_dma_desc *desc;
+ struct rte_mbuf *input, *output_head, *output;
+ int ret;
+ uint8_t r, c;
+ uint16_t k, kw, in_length, out_length, ring_offset;
+ uint32_t mbuf_total_left, seg_total_left, in_offset, out_offset;
+ uint16_t current_enqueued_cbs = 0;
+ uint16_t crc24_overlap = 0;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ /* Validate op structure */
+ if (validate_dec_op(op) == -1) {
+ rte_bbdev_log(ERR, "Turbo decoder validation failed");
+ return -EINVAL;
+ }
+#endif
+
+ input = op->turbo_dec.input.data;
+ output_head = output = op->turbo_dec.hard_output.data;
+ mbuf_total_left = op->turbo_dec.input.length;
+ in_offset = op->turbo_dec.input.offset;
+ out_offset = op->turbo_dec.hard_output.offset;
+
+ if (!check_bit(op->turbo_dec.op_flags,
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
+ crc24_overlap = 24;
+
+ c = op->turbo_dec.tb_params.c;
+ r = op->turbo_dec.tb_params.r;
+
+ while (mbuf_total_left > 0 && r < c && input != NULL) {
+ seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
+ k = (r < op->turbo_dec.tb_params.c_neg) ?
+ op->turbo_dec.tb_params.k_neg :
+ op->turbo_dec.tb_params.k_pos;
+ kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
+
+ in_length = kw;
+ out_length = (k - crc24_overlap) >> 3;
+
+ mbuf_append(output_head, output, out_length);
+
+ if (seg_total_left < in_length) {
+ rte_bbdev_log(ERR,
+ "Partial CB found in a TB. FPGA Driver doesn't support scatter-gather operations!");
+ return -1;
+ }
+
+ /* Setup DMA Descriptor */
+ ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + ring_offset;
+ ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
+ in_length, k, in_offset, out_offset,
+ ring_offset, cbs_in_op);
+ if (unlikely(ret < 0))
+ return ret;
+
+ /* Update lengths */
+ ret = rte_pktmbuf_trim(op->turbo_dec.hard_output.data,
+ (crc24_overlap >> 3));
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (ret < 0) {
+ rte_bbdev_log(ERR,
+ "The length to remove is greater than the length of the last segment");
+ return -EINVAL;
+ }
+#endif
+ op->turbo_dec.hard_output.length += out_length;
+ mbuf_total_left -= in_length;
+
+ /* Update offsets */
+ if (seg_total_left == in_length) {
+ /* Go to the next mbuf */
+ input = input->next;
+ output = output->next;
+ in_offset = 0;
+ out_offset = 0;
+ } else {
+ in_offset += in_length;
+ out_offset += out_length;
+ }
+
+ r++;
+ desc_offset++;
+ current_enqueued_cbs++;
+ }
+
+ if (mbuf_total_left > 0) {
+ rte_bbdev_log(ERR,
+ "Some date still left for processing: mbuf_total_left = %u",
+ mbuf_total_left);
+ return -1;
+ }
+
+ return current_enqueued_cbs;
+}
+
+static uint16_t
+fpga_enqueue_enc(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+ uint8_t cbs_in_op;
+ uint16_t i, total_enqueued_cbs = 0;
+ int32_t avail;
+ int enqueued_cbs;
+ struct fpga_queue *q = q_data->queue_private;
+ union fpga_dma_desc *desc;
+
+ /* Check if queue is not full */
+ if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
+ q->head_free_desc))
+ return 0;
+
+ /* Calculates available space */
+ avail = (q->head_free_desc > q->tail) ?
+ q->head_free_desc - q->tail - 1 :
+ q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
+
+ for (i = 0; i < num; ++i) {
+ if (ops[i]->turbo_enc.code_block_mode == 0) {
+ cbs_in_op = get_num_cbs_in_op_enc(&ops[i]->turbo_enc);
+ /* Check if there is available space for further
+ * processing
+ */
+ if (unlikely(avail - cbs_in_op < 0))
+ break;
+ avail -= cbs_in_op;
+ enqueued_cbs = enqueue_enc_one_op_tb(q, ops[i],
+ total_enqueued_cbs, cbs_in_op);
+ } else {
+ /* Check if there is available space for further
+ * processing
+ */
+ if (unlikely(avail - 1 < 0))
+ break;
+ avail -= 1;
+ enqueued_cbs = enqueue_enc_one_op_cb(q, ops[i],
+ total_enqueued_cbs);
+ }
+
+ if (enqueued_cbs < 0)
+ break;
+
+ total_enqueued_cbs += enqueued_cbs;
+
+ rte_bbdev_log_debug("enqueuing enc ops [%d/%d] | head %d | tail %d",
+ total_enqueued_cbs, num,
+ q->head_free_desc, q->tail);
+ }
+
+ /* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
+ * only when all previous CBs were already processed.
+ */
+ desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
+ & q->sw_ring_wrap_mask);
+ desc->enc_req.irq_en = q->irq_enable;
+
+ fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
+
+ /* Update stats */
+ q_data->queue_stats.enqueued_count += i;
+ q_data->queue_stats.enqueue_err_count += num - i;
+
+ return i;
+}
+
+static uint16_t
+fpga_enqueue_dec(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+ uint8_t cbs_in_op;
+ uint16_t i, total_enqueued_cbs = 0;
+ int32_t avail;
+ int enqueued_cbs;
+ struct fpga_queue *q = q_data->queue_private;
+ union fpga_dma_desc *desc;
+
+ /* Check if queue is not full */
+ if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
+ q->head_free_desc))
+ return 0;
+
+ /* Calculates available space */
+ avail = (q->head_free_desc > q->tail) ?
+ q->head_free_desc - q->tail - 1 :
+ q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
+
+ for (i = 0; i < num; ++i) {
+ if (ops[i]->turbo_dec.code_block_mode == 0) {
+ cbs_in_op = get_num_cbs_in_op_dec(&ops[i]->turbo_dec);
+ /* Check if there is available space for further
+ * processing
+ */
+ if (unlikely(avail - cbs_in_op < 0))
+ break;
+ avail -= cbs_in_op;
+ enqueued_cbs = enqueue_dec_one_op_tb(q, ops[i],
+ total_enqueued_cbs, cbs_in_op);
+ } else {
+ /* Check if there is available space for further
+ * processing
+ */
+ if (unlikely(avail - 1 < 0))
+ break;
+ avail -= 1;
+ enqueued_cbs = enqueue_dec_one_op_cb(q, ops[i],
+ total_enqueued_cbs);
+ }
+
+ if (enqueued_cbs < 0)
+ break;
+
+ total_enqueued_cbs += enqueued_cbs;
+
+ rte_bbdev_log_debug("enqueuing dec ops [%d/%d] | head %d | tail %d",
+ total_enqueued_cbs, num,
+ q->head_free_desc, q->tail);
+ }
+
+ /* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
+ * only when all previous CBs were already processed.
+ */
+ desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
+ & q->sw_ring_wrap_mask);
+ desc->dec_req.irq_en = q->irq_enable;
+
+ fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
+
+ /* Update stats */
+ q_data->queue_stats.enqueued_count += i;
+ q_data->queue_stats.enqueue_err_count += num - i;
+
+ return i;
+}
+
+static inline int
+dequeue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ int desc_error = 0;
+
+ /* Set current desc */
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+ & q->sw_ring_wrap_mask);
+
+ /*check if done */
+ if (desc->enc_req.done == 0)
+ return -1;
+
+ /* make sure the response is read atomically */
+ rte_smp_rmb();
+
+ rte_bbdev_log_debug("DMA response desc %p", desc);
+
+ *op = desc->enc_req.op_addr;
+ /* Check the decriptor error field, return 1 on error */
+ desc_error = check_desc_error(desc->enc_req.error);
+ (*op)->status = desc_error << RTE_BBDEV_DATA_ERROR;
+
+ return 1;
+}
+
+static inline int
+dequeue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ uint8_t cbs_in_op, cb_idx;
+ int desc_error = 0;
+ int status = 0;
+
+ /* Set descriptor */
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+ & q->sw_ring_wrap_mask);
+
+ /* Verify if done bit is set */
+ if (desc->enc_req.done == 0)
+ return -1;
+
+ /* Make sure the response is read atomically */
+ rte_smp_rmb();
+
+ /* Verify if done bit in all CBs is set */
+ cbs_in_op = desc->enc_req.cbs_in_op;
+ for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+ cb_idx) & q->sw_ring_wrap_mask);
+ if (desc->enc_req.done == 0)
+ return -1;
+ }
+
+ /* Make sure the response is read atomically */
+ rte_smp_rmb();
+
+ for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+ cb_idx) & q->sw_ring_wrap_mask);
+ /* Check the decriptor error field, return 1 on error */
+ desc_error = check_desc_error(desc->enc_req.error);
+ status |= desc_error << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log_debug("DMA response desc %p", desc);
+ }
+
+ *op = desc->enc_req.op_addr;
+ (*op)->status = status;
+ return cbs_in_op;
+}
+
+static inline int
+dequeue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ int desc_error = 0;
+ /* Set descriptor */
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+ & q->sw_ring_wrap_mask);
+
+ /* Verify done bit is set */
+ if (desc->dec_req.done == 0)
+ return -1;
+
+ /* make sure the response is read atomically */
+ rte_smp_rmb();
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ print_dma_dec_desc_debug_info(desc);
+
+#endif
+
+ *op = desc->dec_req.op_addr;
+ /* FPGA reports in half-iterations, from 0 to 31. get ceiling */
+ (*op)->turbo_dec.iter_count = (desc->dec_req.iter + 2) >> 1;
+ /* crc_pass = 0 when decoder fails */
+ (*op)->status = !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
+ /* Check the decriptor error field, return 1 on error */
+ desc_error = check_desc_error(desc->enc_req.error);
+ (*op)->status |= desc_error << RTE_BBDEV_DATA_ERROR;
+ return 1;
+}
+
+static inline int
+dequeue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
+ uint16_t desc_offset)
+{
+ union fpga_dma_desc *desc;
+ uint8_t cbs_in_op, cb_idx, iter_count = 0;
+ int status = 0;
+ int desc_error = 0;
+ /* Set descriptor */
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+ & q->sw_ring_wrap_mask);
+
+ /* Verify if done bit is set */
+ if (desc->dec_req.done == 0)
+ return -1;
+
+ /* Make sure the response is read atomically */
+ rte_smp_rmb();
+
+ /* Verify if done bit in all CBs is set */
+ cbs_in_op = desc->dec_req.cbs_in_op;
+ for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+ cb_idx) & q->sw_ring_wrap_mask);
+ if (desc->dec_req.done == 0)
+ return -1;
+ }
+
+ /* Make sure the response is read atomically */
+ rte_smp_rmb();
+
+ for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
+ desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+ cb_idx) & q->sw_ring_wrap_mask);
+ /* get max iter_count for all CBs in op */
+ iter_count = RTE_MAX(iter_count, (uint8_t) desc->dec_req.iter);
+ /* crc_pass = 0 when decoder fails, one fails all */
+ status |= !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
+ /* Check the decriptor error field, return 1 on error */
+ desc_error = check_desc_error(desc->enc_req.error);
+ status |= desc_error << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log_debug("DMA response desc %p", desc);
+ }
+
+ *op = desc->dec_req.op_addr;
+
+ /* FPGA reports in half-iterations, get ceiling */
+ (*op)->turbo_dec.iter_count = (iter_count + 2) >> 1;
+ (*op)->status = status;
+ return cbs_in_op;
+}
+
+static uint16_t
+fpga_dequeue_enc(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+ struct fpga_queue *q = q_data->queue_private;
+ uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
+ uint16_t i;
+ uint16_t dequeued_cbs = 0;
+ struct rte_bbdev_enc_op *op;
+ int ret;
+
+ for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
+ op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
+ & q->sw_ring_wrap_mask))->enc_req.op_addr;
+ if (op->turbo_enc.code_block_mode == 0)
+ ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs);
+ else
+ ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs);
+
+ if (ret < 0)
+ break;
+
+ dequeued_cbs += ret;
+
+ rte_bbdev_log_debug("dequeuing enc ops [%d/%d] | head %d | tail %d",
+ dequeued_cbs, num, q->head_free_desc, q->tail);
+ }
+
+ /* Update head */
+ q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
+ q->sw_ring_wrap_mask;
+
+ /* Update stats */
+ q_data->queue_stats.dequeued_count += i;
+
+ return i;
+}
+
+static uint16_t
+fpga_dequeue_dec(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+ struct fpga_queue *q = q_data->queue_private;
+ uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
+ uint16_t i;
+ uint16_t dequeued_cbs = 0;
+ struct rte_bbdev_dec_op *op;
+ int ret;
+
+ for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
+ op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
+ & q->sw_ring_wrap_mask))->dec_req.op_addr;
+ if (op->turbo_dec.code_block_mode == 0)
+ ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs);
+ else
+ ret = dequeue_dec_one_op_cb(q, &ops[i], dequeued_cbs);
+
+ if (ret < 0)
+ break;
+
+ dequeued_cbs += ret;
+
+ rte_bbdev_log_debug("dequeuing dec ops [%d/%d] | head %d | tail %d",
+ dequeued_cbs, num, q->head_free_desc, q->tail);
+ }
+
+ /* Update head */
+ q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
+ q->sw_ring_wrap_mask;
+
+ /* Update stats */
+ q_data->queue_stats.dequeued_count += i;
+
+ return i;
+}
+
+/* Initialization Function */
+static void
+fpga_lte_fec_init(struct rte_bbdev *dev)
+{
+ struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
+
+ dev->dev_ops = &fpga_ops;
+ dev->enqueue_enc_ops = fpga_enqueue_enc;
+ dev->enqueue_dec_ops = fpga_enqueue_dec;
+ dev->dequeue_enc_ops = fpga_dequeue_enc;
+ dev->dequeue_dec_ops = fpga_dequeue_dec;
+
+ ((struct fpga_lte_fec_device *) dev->data->dev_private)->pf_device =
+ !strcmp(dev->device->driver->name,
+ RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME));
+ ((struct fpga_lte_fec_device *) dev->data->dev_private)->mmio_base =
+ pci_dev->mem_resource[0].addr;
+
+ rte_bbdev_log_debug(
+ "Init device %s [%s] @ virtaddr %p phyaddr %#"PRIx64,
+ dev->device->driver->name, dev->data->name,
+ (void *)pci_dev->mem_resource[0].addr,
+ pci_dev->mem_resource[0].phys_addr);
+}
+
+static int
+fpga_lte_fec_probe(struct rte_pci_driver *pci_drv __rte_unused,
+ struct rte_pci_device *pci_dev)
+{
+ struct rte_bbdev *bbdev = NULL;
+ char dev_name[RTE_BBDEV_NAME_MAX_LEN];
+
+ if (pci_dev == NULL) {
+ rte_bbdev_log(ERR, "NULL PCI device");
+ return -EINVAL;
+ }
+
+ rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
+
+ /* Allocate memory to be used privately by drivers */
+ bbdev = rte_bbdev_allocate(pci_dev->device.name);
+ if (bbdev == NULL)
+ return -ENODEV;
+
+ /* allocate device private memory */
+ bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
+ sizeof(struct fpga_lte_fec_device), RTE_CACHE_LINE_SIZE,
+ pci_dev->device.numa_node);
+
+ if (bbdev->data->dev_private == NULL) {
+ rte_bbdev_log(CRIT,
+ "Allocate of %zu bytes for device \"%s\" failed",
+ sizeof(struct fpga_lte_fec_device), dev_name);
+ rte_bbdev_release(bbdev);
+ return -ENOMEM;
+ }
+
+ /* Fill HW specific part of device structure */
+ bbdev->device = &pci_dev->device;
+ bbdev->intr_handle = &pci_dev->intr_handle;
+ bbdev->data->socket_id = pci_dev->device.numa_node;
+
+ /* Invoke FEC FPGA device initialization function */
+ fpga_lte_fec_init(bbdev);
+
+ rte_bbdev_log_debug("bbdev id = %u [%s]",
+ bbdev->data->dev_id, dev_name);
+
+ struct fpga_lte_fec_device *d = bbdev->data->dev_private;
+ uint32_t version_id = fpga_reg_read_32(d->mmio_base,
+ FPGA_LTE_FEC_VERSION_ID);
+ rte_bbdev_log(INFO, "FEC FPGA RTL v%u.%u",
+ ((uint16_t)(version_id >> 16)), ((uint16_t)version_id));
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (!strcmp(bbdev->device->driver->name,
+ RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME)))
+ print_static_reg_debug_info(d->mmio_base);
+#endif
+ return 0;
+}
+
+static int
+fpga_lte_fec_remove(struct rte_pci_device *pci_dev)
+{
+ struct rte_bbdev *bbdev;
+ int ret;
+ uint8_t dev_id;
+
+ if (pci_dev == NULL)
+ return -EINVAL;
+
+ /* Find device */
+ bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
+ if (bbdev == NULL) {
+ rte_bbdev_log(CRIT,
+ "Couldn't find HW dev \"%s\" to uninitialise it",
+ pci_dev->device.name);
+ return -ENODEV;
+ }
+ dev_id = bbdev->data->dev_id;
+
+ /* free device private memory before close */
+ rte_free(bbdev->data->dev_private);
+
+ /* Close device */
+ ret = rte_bbdev_close(dev_id);
+ if (ret < 0)
+ rte_bbdev_log(ERR,
+ "Device %i failed to close during uninit: %i",
+ dev_id, ret);
+
+ /* release bbdev from library */
+ ret = rte_bbdev_release(bbdev);
+ if (ret)
+ rte_bbdev_log(ERR, "Device %i failed to uninit: %i", dev_id,
+ ret);
+
+ rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
+
+ return 0;
+}
+
+static inline void
+set_default_fpga_conf(struct fpga_lte_fec_conf *def_conf)
+{
+ /* clear default configuration before initialization */
+ memset(def_conf, 0, sizeof(struct fpga_lte_fec_conf));
+ /* Set pf mode to true */
+ def_conf->pf_mode_en = true;
+
+ /* Set ratio between UL and DL to 1:1 (unit of weight is 3 CBs) */
+ def_conf->ul_bandwidth = 3;
+ def_conf->dl_bandwidth = 3;
+
+ /* Set Load Balance Factor to 64 */
+ def_conf->dl_load_balance = 64;
+ def_conf->ul_load_balance = 64;
+}
+
+/* Initial configuration of FPGA LTE FEC device */
+int
+fpga_lte_fec_configure(const char *dev_name,
+ const struct fpga_lte_fec_conf *conf)
+{
+ uint32_t payload_32, address;
+ uint16_t payload_16;
+ uint8_t payload_8;
+ uint16_t q_id, vf_id, total_q_id, total_ul_q_id, total_dl_q_id;
+ struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
+ struct fpga_lte_fec_conf def_conf;
+
+ if (bbdev == NULL) {
+ rte_bbdev_log(ERR,
+ "Invalid dev_name (%s), or device is not yet initialised",
+ dev_name);
+ return -ENODEV;
+ }
+
+ struct fpga_lte_fec_device *d = bbdev->data->dev_private;
+
+ if (conf == NULL) {
+ rte_bbdev_log(ERR,
+ "FPGA Configuration was not provided. Default configuration will be loaded.");
+ set_default_fpga_conf(&def_conf);
+ conf = &def_conf;
+ }
+
+ /*
+ * Configure UL:DL ratio.
+ * [7:0]: UL weight
+ * [15:8]: DL weight
+ */
+ payload_16 = (conf->dl_bandwidth << 8) | conf->ul_bandwidth;
+ address = FPGA_LTE_FEC_CONFIGURATION;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Clear all queues registers */
+ payload_32 = FPGA_INVALID_HW_QUEUE_ID;
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
+ fpga_reg_write_32(d->mmio_base, address, payload_32);
+ }
+
+ /*
+ * If PF mode is enabled allocate all queues for PF only.
+ *
+ * For VF mode each VF can have different number of UL and DL queues.
+ * Total number of queues to configure cannot exceed FPGA
+ * capabilities - 64 queues - 32 queues for UL and 32 queues for DL.
+ * Queues mapping is done according to configuration:
+ *
+ * UL queues:
+ * | Q_ID | VF_ID |
+ * | 0 | 0 |
+ * | ... | 0 |
+ * | conf->vf_dl_queues_number[0] - 1 | 0 |
+ * | conf->vf_dl_queues_number[0] | 1 |
+ * | ... | 1 |
+ * | conf->vf_dl_queues_number[1] - 1 | 1 |
+ * | ... | ... |
+ * | conf->vf_dl_queues_number[7] - 1 | 7 |
+ *
+ * DL queues:
+ * | Q_ID | VF_ID |
+ * | 32 | 0 |
+ * | ... | 0 |
+ * | conf->vf_ul_queues_number[0] - 1 | 0 |
+ * | conf->vf_ul_queues_number[0] | 1 |
+ * | ... | 1 |
+ * | conf->vf_ul_queues_number[1] - 1 | 1 |
+ * | ... | ... |
+ * | conf->vf_ul_queues_number[7] - 1 | 7 |
+ *
+ * Example of configuration:
+ * conf->vf_ul_queues_number[0] = 4; -> 4 UL queues for VF0
+ * conf->vf_dl_queues_number[0] = 4; -> 4 DL queues for VF0
+ * conf->vf_ul_queues_number[1] = 2; -> 2 UL queues for VF1
+ * conf->vf_dl_queues_number[1] = 2; -> 2 DL queues for VF1
+ *
+ * UL:
+ * | Q_ID | VF_ID |
+ * | 0 | 0 |
+ * | 1 | 0 |
+ * | 2 | 0 |
+ * | 3 | 0 |
+ * | 4 | 1 |
+ * | 5 | 1 |
+ *
+ * DL:
+ * | Q_ID | VF_ID |
+ * | 32 | 0 |
+ * | 33 | 0 |
+ * | 34 | 0 |
+ * | 35 | 0 |
+ * | 36 | 1 |
+ * | 37 | 1 |
+ */
+ if (conf->pf_mode_en) {
+ payload_32 = 0x1;
+ for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+ address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
+ fpga_reg_write_32(d->mmio_base, address, payload_32);
+ }
+ } else {
+ /* Calculate total number of UL and DL queues to configure */
+ total_ul_q_id = total_dl_q_id = 0;
+ for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
+ total_ul_q_id += conf->vf_ul_queues_number[vf_id];
+ total_dl_q_id += conf->vf_dl_queues_number[vf_id];
+ }
+ total_q_id = total_dl_q_id + total_ul_q_id;
+ /*
+ * Check if total number of queues to configure does not exceed
+ * FPGA capabilities (64 queues - 32 UL and 32 DL queues)
+ */
+ if ((total_ul_q_id > FPGA_NUM_UL_QUEUES) ||
+ (total_dl_q_id > FPGA_NUM_DL_QUEUES) ||
+ (total_q_id > FPGA_TOTAL_NUM_QUEUES)) {
+ rte_bbdev_log(ERR,
+ "FPGA Configuration failed. Too many queues to configure: UL_Q %u, DL_Q %u, FPGA_Q %u",
+ total_ul_q_id, total_dl_q_id,
+ FPGA_TOTAL_NUM_QUEUES);
+ return -EINVAL;
+ }
+ total_ul_q_id = 0;
+ for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
+ for (q_id = 0; q_id < conf->vf_ul_queues_number[vf_id];
+ ++q_id, ++total_ul_q_id) {
+ address = (total_ul_q_id << 2) +
+ FPGA_LTE_FEC_QUEUE_MAP;
+ payload_32 = ((0x80 + vf_id) << 16) | 0x1;
+ fpga_reg_write_32(d->mmio_base, address,
+ payload_32);
+ }
+ }
+ total_dl_q_id = 0;
+ for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
+ for (q_id = 0; q_id < conf->vf_dl_queues_number[vf_id];
+ ++q_id, ++total_dl_q_id) {
+ address = ((total_dl_q_id + FPGA_NUM_UL_QUEUES)
+ << 2) + FPGA_LTE_FEC_QUEUE_MAP;
+ payload_32 = ((0x80 + vf_id) << 16) | 0x1;
+ fpga_reg_write_32(d->mmio_base, address,
+ payload_32);
+ }
+ }
+ }
+
+ /* Setting Load Balance Factor */
+ payload_16 = (conf->dl_load_balance << 8) | (conf->ul_load_balance);
+ address = FPGA_LTE_FEC_LOAD_BALANCE_FACTOR;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Setting length of ring descriptor entry */
+ payload_16 = FPGA_RING_DESC_ENTRY_LENGTH;
+ address = FPGA_LTE_FEC_RING_DESC_LEN;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Setting FLR timeout value */
+ payload_16 = conf->flr_time_out;
+ address = FPGA_LTE_FEC_FLR_TIME_OUT;
+ fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+ /* Queue PF/VF mapping table is ready */
+ payload_8 = 0x1;
+ address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
+ fpga_reg_write_8(d->mmio_base, address, payload_8);
+
+ rte_bbdev_log_debug("PF FPGA LTE FEC configuration complete for %s",
+ dev_name);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ print_static_reg_debug_info(d->mmio_base);
+#endif
+ return 0;
+}
+
+/* FPGA LTE FEC PCI PF address map */
+static struct rte_pci_id pci_id_fpga_lte_fec_pf_map[] = {
+ {
+ RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
+ FPGA_LTE_FEC_PF_DEVICE_ID)
+ },
+ {.device_id = 0},
+};
+
+static struct rte_pci_driver fpga_lte_fec_pci_pf_driver = {
+ .probe = fpga_lte_fec_probe,
+ .remove = fpga_lte_fec_remove,
+ .id_table = pci_id_fpga_lte_fec_pf_map,
+ .drv_flags = RTE_PCI_DRV_NEED_MAPPING
+};
+
+/* FPGA LTE FEC PCI VF address map */
+static struct rte_pci_id pci_id_fpga_lte_fec_vf_map[] = {
+ {
+ RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
+ FPGA_LTE_FEC_VF_DEVICE_ID)
+ },
+ {.device_id = 0},
+};
+
+static struct rte_pci_driver fpga_lte_fec_pci_vf_driver = {
+ .probe = fpga_lte_fec_probe,
+ .remove = fpga_lte_fec_remove,
+ .id_table = pci_id_fpga_lte_fec_vf_map,
+ .drv_flags = RTE_PCI_DRV_NEED_MAPPING
+};
+
+
+RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_PF_DRIVER_NAME, fpga_lte_fec_pci_pf_driver);
+RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_PF_DRIVER_NAME,
+ pci_id_fpga_lte_fec_pf_map);
+RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_VF_DRIVER_NAME, fpga_lte_fec_pci_vf_driver);
+RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_VF_DRIVER_NAME,
+ pci_id_fpga_lte_fec_vf_map);
+
+RTE_INIT(fpga_lte_fec_init_log)
+{
+ fpga_lte_fec_logtype = rte_log_register("pmd.bb.fpga_lte_fec");
+ if (fpga_lte_fec_logtype >= 0)
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ rte_log_set_level(fpga_lte_fec_logtype, RTE_LOG_DEBUG);
+#else
+ rte_log_set_level(fpga_lte_fec_logtype, RTE_LOG_NOTICE);
+#endif
+}