needs to be registered.
Once registered, the user needs to log in, and look for
-*Intel FlexRAN Software Release Package -1-6-0* to download or directly through
-this `link <https://cdrdv2.intel.com/v1/dl/getContent/600609>`_.
+*Intel FlexRAN Software Release Package -18-09* to download or directly through
+this `link <https://cdrdv2.intel.com/v1/dl/getContent/605167>`_.
After download is complete, the user needs to unpack and compile on their
system before building DPDK.
18.02 1.3.0
18.05 1.4.0
18.08 1.6.0
+ 19.02 18.09
===================== ============================
FlexRAN SDK Installation
source <path-to-icc-compiler-install-folder>/linux/bin/compilervars.sh intel64 -platform linux
-#. Extract the ``flexran-1-6-0-tar.gz.zip`` package:
+#. Extract the ``605167-flexran-18-09-tar.gz`` package:
.. code-block:: console
- unzip flexran-1-6-0-tar.gz.zip
- tar xvzf flexran-1-6-0-tar.gz -C FlexRAN-1.6.0/
+ mkdir FlexRAN-18.09
+ tar xvzf 605167-flexran-18-09-tar.gz -C FlexRAN-18.09/
#. Run the SDK extractor script and accept the license:
.. code-block:: console
- cd <path-to-workspace>/FlexRAN-1.6.0/
- ./SDK-R1.6.0.sh
+ cd <path-to-workspace>/FlexRAN-18.09/
+ ./SDK-18.09.sh
#. Generate makefiles based on system configuration:
.. code-block:: console
- cd <path-to-workspace>/FlexRAN-1.6.0/SDK-R1.6.0/sdk/
+ cd <path-to-workspace>/FlexRAN-18.09/SDK-18.09/sdk/
./create-makefiles-linux.sh
#. A build folder is generated in this form ``build-<ISA>-<CC>``, enter that
.. code-block:: console
- export FLEXRAN_SDK=<path-to-workspace>/FlexRAN-1.6.0/SDK-R1.6.0/sdk/build-avx2-icc/install
- export DIR_WIRELESS_SDK=<path-to-workspace>/FlexRAN-1.6.0/SDK-R1.6.0/sdk/
+ export FLEXRAN_SDK=<path-to-workspace>/FlexRAN-18.09/SDK-18.09/sdk/build-avx2-icc/install
+ export DIR_WIRELESS_SDK=<path-to-workspace>/FlexRAN-18.09/SDK-18.09/sdk/
* Set ``CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW=y`` in DPDK common configuration
NULL);
}
-/* Remove the padding bytes from a cyclic buffer.
- * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
- * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
- * The output buffer is a data stream wk with pruned padding bytes. It's length
- * is 3*D bytes and the order of non-padding bytes is preserved.
- */
-static inline void
-remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
- uint16_t ncb)
-{
- uint32_t in_idx, out_idx, c_idx;
- const uint32_t d = k + 4;
- const uint32_t kw = (ncb / 3);
- const uint32_t nd = kw - d;
- const uint32_t r_subblock = kw / RTE_BBDEV_C_SUBBLOCK;
- /* Inter-column permutation pattern */
- const uint32_t P[RTE_BBDEV_C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28,
- 2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13,
- 29, 3, 19, 11, 27, 7, 23, 15, 31};
- in_idx = 0;
- out_idx = 0;
-
- /* The padding bytes are at the first Nd positions in the first row. */
- for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
- if (P[c_idx] < nd) {
- rte_memcpy(&out[out_idx], &in[in_idx + 1],
- r_subblock - 1);
- out_idx += r_subblock - 1;
- } else {
- rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
- out_idx += r_subblock;
- }
- }
-
- /* First and second parity bits sub-blocks are interlaced. */
- for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
- in_idx += 2 * r_subblock, ++c_idx) {
- uint32_t second_block_c_idx = P[c_idx];
- uint32_t third_block_c_idx = P[c_idx] + 1;
-
- if (second_block_c_idx < nd && third_block_c_idx < nd) {
- rte_memcpy(&out[out_idx], &in[in_idx + 2],
- 2 * r_subblock - 2);
- out_idx += 2 * r_subblock - 2;
- } else if (second_block_c_idx >= nd &&
- third_block_c_idx >= nd) {
- rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
- out_idx += 2 * r_subblock;
- } else if (second_block_c_idx < nd) {
- out[out_idx++] = in[in_idx];
- rte_memcpy(&out[out_idx], &in[in_idx + 2],
- 2 * r_subblock - 2);
- out_idx += 2 * r_subblock - 2;
- } else {
- rte_memcpy(&out[out_idx], &in[in_idx + 1],
- 2 * r_subblock - 1);
- out_idx += 2 * r_subblock - 1;
- }
- }
-
- /* Last interlaced row is different - its last byte is the only padding
- * byte. We can have from 4 up to 28 padding bytes (Nd) per sub-block.
- * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
- * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
- * (moving to another column). 2nd parity sub-block uses the same
- * inter-column permutation pattern as the systematic and 1st parity
- * sub-blocks but it adds '1' to the resulting index and calculates the
- * modulus of the result and Kw. Last column is mapped to itself (id 31)
- * so the first byte taken from the 2nd parity sub-block will be the
- * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
- * last byte will be the first byte from the sub-block:
- * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't be smaller
- * than 4 so we know that bytes with ids 0, 1, 2 and 3 must be the
- * padding bytes. The bytes from the 1st parity sub-block are the bytes
- * from the 31st column - Nd can't be greater than 28 so we are sure
- * that there are no padding bytes in 31st column.
- */
- rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
-}
-
static inline void
move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
uint16_t ncb)
struct bblib_deinterleave_ul_request deint_req;
struct bblib_deinterleave_ul_response deint_resp;
- /* SW decoder accepts only a circular buffer without NULL bytes
- * so the input needs to be converted.
- */
- remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
-
- deint_req.pharqbuffer = q->deint_input;
- deint_req.ncb = ncb_without_null;
+ deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER;
+ deint_req.pharqbuffer = in;
+ deint_req.ncb = ncb;
deint_resp.pinteleavebuffer = q->deint_output;
#ifdef RTE_BBDEV_OFFLOAD_COST