double ops_per_sec;
double mbps;
uint8_t iter_count;
+ double iter_average;
+ double bler;
rte_atomic16_t nb_dequeued;
rte_atomic16_t processing_status;
rte_atomic16_t burst_sz;
}
}
+
+/* Returns a random number drawn from a normal distribution
+ * with mean of 0 and variance of 1
+ * Marsaglia algorithm
+ */
+static double
+randn(int n)
+{
+ double S, Z, U1, U2, u, v, fac;
+
+ do {
+ U1 = (double)rand() / RAND_MAX;
+ U2 = (double)rand() / RAND_MAX;
+ u = 2. * U1 - 1.;
+ v = 2. * U2 - 1.;
+ S = u * u + v * v;
+ } while (S >= 1 || S == 0);
+ fac = sqrt(-2. * log(S) / S);
+ Z = (n % 2) ? u * fac : v * fac;
+ return Z;
+}
+
+static inline double
+maxstar(double A, double B)
+{
+ if (fabs(A - B) > 5)
+ return RTE_MAX(A, B);
+ else
+ return RTE_MAX(A, B) + log1p(exp(-fabs(A - B)));
+}
+
+/*
+ * Generate Qm LLRS for Qm==8
+ * Modulation, AWGN and LLR estimation from max log development
+ */
+static void
+gen_qm8_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
+{
+ int qm = 8;
+ int qam = 256;
+ int m, k;
+ double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
+ /* 5.1.4 of TS38.211 */
+ const double symbols_I[256] = {
+ 5, 5, 7, 7, 5, 5, 7, 7, 3, 3, 1, 1, 3, 3, 1, 1, 5,
+ 5, 7, 7, 5, 5, 7, 7, 3, 3, 1, 1, 3, 3, 1, 1, 11,
+ 11, 9, 9, 11, 11, 9, 9, 13, 13, 15, 15, 13, 13,
+ 15, 15, 11, 11, 9, 9, 11, 11, 9, 9, 13, 13, 15,
+ 15, 13, 13, 15, 15, 5, 5, 7, 7, 5, 5, 7, 7, 3, 3,
+ 1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7, 3, 3, 1,
+ 1, 3, 3, 1, 1, 11, 11, 9, 9, 11, 11, 9, 9, 13, 13,
+ 15, 15, 13, 13, 15, 15, 11, 11, 9, 9, 11, 11, 9, 9,
+ 13, 13, 15, 15, 13, 13, 15, 15, -5, -5, -7, -7, -5,
+ -5, -7, -7, -3, -3, -1, -1, -3, -3, -1, -1, -5, -5,
+ -7, -7, -5, -5, -7, -7, -3, -3, -1, -1, -3, -3,
+ -1, -1, -11, -11, -9, -9, -11, -11, -9, -9, -13,
+ -13, -15, -15, -13, -13, -15, -15, -11, -11, -9,
+ -9, -11, -11, -9, -9, -13, -13, -15, -15, -13,
+ -13, -15, -15, -5, -5, -7, -7, -5, -5, -7, -7, -3,
+ -3, -1, -1, -3, -3, -1, -1, -5, -5, -7, -7, -5, -5,
+ -7, -7, -3, -3, -1, -1, -3, -3, -1, -1, -11, -11,
+ -9, -9, -11, -11, -9, -9, -13, -13, -15, -15, -13,
+ -13, -15, -15, -11, -11, -9, -9, -11, -11, -9, -9,
+ -13, -13, -15, -15, -13, -13, -15, -15};
+ const double symbols_Q[256] = {
+ 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 11,
+ 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13, 15, 13,
+ 15, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1,
+ 11, 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13,
+ 15, 13, 15, -5, -7, -5, -7, -3, -1, -3, -1, -5,
+ -7, -5, -7, -3, -1, -3, -1, -11, -9, -11, -9, -13,
+ -15, -13, -15, -11, -9, -11, -9, -13, -15, -13,
+ -15, -5, -7, -5, -7, -3, -1, -3, -1, -5, -7, -5,
+ -7, -3, -1, -3, -1, -11, -9, -11, -9, -13, -15,
+ -13, -15, -11, -9, -11, -9, -13, -15, -13, -15, 5,
+ 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 11,
+ 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13, 15,
+ 13, 15, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1,
+ 3, 1, 11, 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9,
+ 13, 15, 13, 15, -5, -7, -5, -7, -3, -1, -3, -1,
+ -5, -7, -5, -7, -3, -1, -3, -1, -11, -9, -11, -9,
+ -13, -15, -13, -15, -11, -9, -11, -9, -13, -15,
+ -13, -15, -5, -7, -5, -7, -3, -1, -3, -1, -5, -7,
+ -5, -7, -3, -1, -3, -1, -11, -9, -11, -9, -13, -15,
+ -13, -15, -11, -9, -11, -9, -13, -15, -13, -15};
+ /* Average constellation point energy */
+ N0 *= 170.0;
+ for (k = 0; k < qm; k++)
+ b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
+ /* 5.1.4 of TS38.211 */
+ I = (1 - 2 * b[0]) * (8 - (1 - 2 * b[2]) *
+ (4 - (1 - 2 * b[4]) * (2 - (1 - 2 * b[6]))));
+ Q = (1 - 2 * b[1]) * (8 - (1 - 2 * b[3]) *
+ (4 - (1 - 2 * b[5]) * (2 - (1 - 2 * b[7]))));
+ /* AWGN channel */
+ I += sqrt(N0 / 2) * randn(0);
+ Q += sqrt(N0 / 2) * randn(1);
+ /*
+ * Calculate the log of the probability that each of
+ * the constellation points was transmitted
+ */
+ for (m = 0; m < qam; m++)
+ log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
+ + pow(Q - symbols_Q[m], 2.0)) / N0;
+ /* Calculate an LLR for each of the k_64QAM bits in the set */
+ for (k = 0; k < qm; k++) {
+ p0 = -999999;
+ p1 = -999999;
+ /* For each constellation point */
+ for (m = 0; m < qam; m++) {
+ if ((m >> (qm - k - 1)) & 1)
+ p1 = maxstar(p1, log_syml_prob[m]);
+ else
+ p0 = maxstar(p0, log_syml_prob[m]);
+ }
+ /* Calculate the LLR */
+ llr_ = p0 - p1;
+ llr_ *= (1 << ldpc_llr_decimals);
+ llr_ = round(llr_);
+ if (llr_ > llr_max)
+ llr_ = llr_max;
+ if (llr_ < -llr_max)
+ llr_ = -llr_max;
+ llrs[qm * i + k] = (int8_t) llr_;
+ }
+}
+
+
+/*
+ * Generate Qm LLRS for Qm==6
+ * Modulation, AWGN and LLR estimation from max log development
+ */
+static void
+gen_qm6_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
+{
+ int qm = 6;
+ int qam = 64;
+ int m, k;
+ double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
+ /* 5.1.4 of TS38.211 */
+ const double symbols_I[64] = {
+ 3, 3, 1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7,
+ 3, 3, 1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7,
+ -3, -3, -1, -1, -3, -3, -1, -1, -5, -5, -7, -7,
+ -5, -5, -7, -7, -3, -3, -1, -1, -3, -3, -1, -1,
+ -5, -5, -7, -7, -5, -5, -7, -7};
+ const double symbols_Q[64] = {
+ 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7,
+ -3, -1, -3, -1, -5, -7, -5, -7, -3, -1, -3, -1,
+ -5, -7, -5, -7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1,
+ 5, 7, 5, 7, -3, -1, -3, -1, -5, -7, -5, -7,
+ -3, -1, -3, -1, -5, -7, -5, -7};
+ /* Average constellation point energy */
+ N0 *= 42.0;
+ for (k = 0; k < qm; k++)
+ b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
+ /* 5.1.4 of TS38.211 */
+ I = (1 - 2 * b[0])*(4 - (1 - 2 * b[2]) * (2 - (1 - 2 * b[4])));
+ Q = (1 - 2 * b[1])*(4 - (1 - 2 * b[3]) * (2 - (1 - 2 * b[5])));
+ /* AWGN channel */
+ I += sqrt(N0 / 2) * randn(0);
+ Q += sqrt(N0 / 2) * randn(1);
+ /*
+ * Calculate the log of the probability that each of
+ * the constellation points was transmitted
+ */
+ for (m = 0; m < qam; m++)
+ log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
+ + pow(Q - symbols_Q[m], 2.0)) / N0;
+ /* Calculate an LLR for each of the k_64QAM bits in the set */
+ for (k = 0; k < qm; k++) {
+ p0 = -999999;
+ p1 = -999999;
+ /* For each constellation point */
+ for (m = 0; m < qam; m++) {
+ if ((m >> (qm - k - 1)) & 1)
+ p1 = maxstar(p1, log_syml_prob[m]);
+ else
+ p0 = maxstar(p0, log_syml_prob[m]);
+ }
+ /* Calculate the LLR */
+ llr_ = p0 - p1;
+ llr_ *= (1 << ldpc_llr_decimals);
+ llr_ = round(llr_);
+ if (llr_ > llr_max)
+ llr_ = llr_max;
+ if (llr_ < -llr_max)
+ llr_ = -llr_max;
+ llrs[qm * i + k] = (int8_t) llr_;
+ }
+}
+
+/*
+ * Generate Qm LLRS for Qm==4
+ * Modulation, AWGN and LLR estimation from max log development
+ */
+static void
+gen_qm4_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
+{
+ int qm = 4;
+ int qam = 16;
+ int m, k;
+ double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
+ /* 5.1.4 of TS38.211 */
+ const double symbols_I[16] = {1, 1, 3, 3, 1, 1, 3, 3,
+ -1, -1, -3, -3, -1, -1, -3, -3};
+ const double symbols_Q[16] = {1, 3, 1, 3, -1, -3, -1, -3,
+ 1, 3, 1, 3, -1, -3, -1, -3};
+ /* Average constellation point energy */
+ N0 *= 10.0;
+ for (k = 0; k < qm; k++)
+ b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
+ /* 5.1.4 of TS38.211 */
+ I = (1 - 2 * b[0]) * (2 - (1 - 2 * b[2]));
+ Q = (1 - 2 * b[1]) * (2 - (1 - 2 * b[3]));
+ /* AWGN channel */
+ I += sqrt(N0 / 2) * randn(0);
+ Q += sqrt(N0 / 2) * randn(1);
+ /*
+ * Calculate the log of the probability that each of
+ * the constellation points was transmitted
+ */
+ for (m = 0; m < qam; m++)
+ log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
+ + pow(Q - symbols_Q[m], 2.0)) / N0;
+ /* Calculate an LLR for each of the k_64QAM bits in the set */
+ for (k = 0; k < qm; k++) {
+ p0 = -999999;
+ p1 = -999999;
+ /* For each constellation point */
+ for (m = 0; m < qam; m++) {
+ if ((m >> (qm - k - 1)) & 1)
+ p1 = maxstar(p1, log_syml_prob[m]);
+ else
+ p0 = maxstar(p0, log_syml_prob[m]);
+ }
+ /* Calculate the LLR */
+ llr_ = p0 - p1;
+ llr_ *= (1 << ldpc_llr_decimals);
+ llr_ = round(llr_);
+ if (llr_ > llr_max)
+ llr_ = llr_max;
+ if (llr_ < -llr_max)
+ llr_ = -llr_max;
+ llrs[qm * i + k] = (int8_t) llr_;
+ }
+}
+
+static void
+gen_qm2_llr(int8_t *llrs, uint32_t j, double N0, double llr_max)
+{
+ double b, b1, n;
+ double coeff = 2.0 * sqrt(N0);
+
+ /* Ignore in vectors rare quasi null LLRs not to be saturated */
+ if (llrs[j] < 8 && llrs[j] > -8)
+ return;
+
+ /* Note don't change sign here */
+ n = randn(j % 2);
+ b1 = ((llrs[j] > 0 ? 2.0 : -2.0)
+ + coeff * n) / N0;
+ b = b1 * (1 << ldpc_llr_decimals);
+ b = round(b);
+ if (b > llr_max)
+ b = llr_max;
+ if (b < -llr_max)
+ b = -llr_max;
+ llrs[j] = (int8_t) b;
+}
+
+/* Generate LLR for a given SNR */
+static void
+generate_llr_input(uint16_t n, struct rte_bbdev_op_data *inputs,
+ struct rte_bbdev_dec_op *ref_op)
+{
+ struct rte_mbuf *m;
+ uint16_t qm;
+ uint32_t i, j, e, range;
+ double N0, llr_max;
+
+ e = ref_op->ldpc_dec.cb_params.e;
+ qm = ref_op->ldpc_dec.q_m;
+ llr_max = (1 << (ldpc_llr_size - 1)) - 1;
+ range = e / qm;
+ N0 = 1.0 / pow(10.0, get_snr() / 10.0);
+
+ for (i = 0; i < n; ++i) {
+ m = inputs[i].data;
+ int8_t *llrs = rte_pktmbuf_mtod_offset(m, int8_t *, 0);
+ if (qm == 8) {
+ for (j = 0; j < range; ++j)
+ gen_qm8_llr(llrs, j, N0, llr_max);
+ } else if (qm == 6) {
+ for (j = 0; j < range; ++j)
+ gen_qm6_llr(llrs, j, N0, llr_max);
+ } else if (qm == 4) {
+ for (j = 0; j < range; ++j)
+ gen_qm4_llr(llrs, j, N0, llr_max);
+ } else {
+ for (j = 0; j < e; ++j)
+ gen_qm2_llr(llrs, j, N0, llr_max);
+ }
+ }
+}
+
static void
copy_reference_ldpc_dec_op(struct rte_bbdev_dec_op **ops, unsigned int n,
unsigned int start_idx,
return TEST_SUCCESS;
}
+/* Check Number of code blocks errors */
+static int
+validate_ldpc_bler(struct rte_bbdev_dec_op **ops, const uint16_t n)
+{
+ unsigned int i;
+ struct op_data_entries *hard_data_orig =
+ &test_vector.entries[DATA_HARD_OUTPUT];
+ struct rte_bbdev_op_ldpc_dec *ops_td;
+ struct rte_bbdev_op_data *hard_output;
+ int errors = 0;
+ struct rte_mbuf *m;
+
+ for (i = 0; i < n; ++i) {
+ ops_td = &ops[i]->ldpc_dec;
+ hard_output = &ops_td->hard_output;
+ m = hard_output->data;
+ if (memcmp(rte_pktmbuf_mtod_offset(m, uint32_t *, 0),
+ hard_data_orig->segments[0].addr,
+ hard_data_orig->segments[0].length))
+ errors++;
+ }
+ return errors;
+}
+
static int
validate_ldpc_dec_op(struct rte_bbdev_dec_op **ops, const uint16_t n,
struct rte_bbdev_dec_op *ref_op, const int vector_mask)
return TEST_SUCCESS;
}
+static int
+bler_pmd_lcore_ldpc_dec(void *arg)
+{
+ struct thread_params *tp = arg;
+ uint16_t enq, deq;
+ uint64_t total_time = 0, start_time;
+ const uint16_t queue_id = tp->queue_id;
+ const uint16_t burst_sz = tp->op_params->burst_sz;
+ const uint16_t num_ops = tp->op_params->num_to_process;
+ struct rte_bbdev_dec_op *ops_enq[num_ops];
+ struct rte_bbdev_dec_op *ops_deq[num_ops];
+ struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
+ struct test_buffers *bufs = NULL;
+ int i, j, ret;
+ float parity_bler = 0;
+ struct rte_bbdev_info info;
+ uint16_t num_to_enq;
+ bool extDdr = check_bit(ldpc_cap_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE);
+ bool loopback = check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK);
+ bool hc_out = check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ rte_bbdev_info_get(tp->dev_id, &info);
+
+ TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
+ "NUM_OPS cannot exceed %u for this device",
+ info.drv.queue_size_lim);
+
+ bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
+ rte_pause();
+
+ ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops_enq, num_ops);
+ TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops", num_ops);
+
+ /* For BLER tests we need to enable early termination */
+ if (!check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
+ ref_op->ldpc_dec.op_flags +=
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
+ ref_op->ldpc_dec.iter_max = get_iter_max();
+ ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_ldpc_dec_op(ops_enq, num_ops, 0, bufs->inputs,
+ bufs->hard_outputs, bufs->soft_outputs,
+ bufs->harq_inputs, bufs->harq_outputs, ref_op);
+ generate_llr_input(num_ops, bufs->inputs, ref_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_ops; ++j)
+ ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
+
+ for (i = 0; i < 1; ++i) { /* Could add more iterations */
+ for (j = 0; j < num_ops; ++j) {
+ if (!loopback)
+ mbuf_reset(
+ ops_enq[j]->ldpc_dec.hard_output.data);
+ if (hc_out || loopback)
+ mbuf_reset(
+ ops_enq[j]->ldpc_dec.harq_combined_output.data);
+ }
+ if (extDdr) {
+ bool preload = i == (TEST_REPETITIONS - 1);
+ preload_harq_ddr(tp->dev_id, queue_id, ops_enq,
+ num_ops, preload);
+ }
+ start_time = rte_rdtsc_precise();
+
+ for (enq = 0, deq = 0; enq < num_ops;) {
+ num_to_enq = burst_sz;
+
+ if (unlikely(num_ops - enq < num_to_enq))
+ num_to_enq = num_ops - enq;
+
+ enq += rte_bbdev_enqueue_ldpc_dec_ops(tp->dev_id,
+ queue_id, &ops_enq[enq], num_to_enq);
+
+ deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ /* dequeue the remaining */
+ while (deq < enq) {
+ deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ total_time += rte_rdtsc_precise() - start_time;
+ }
+
+ tp->iter_count = 0;
+ tp->iter_average = 0;
+ /* get the max of iter_count for all dequeued ops */
+ for (i = 0; i < num_ops; ++i) {
+ tp->iter_count = RTE_MAX(ops_enq[i]->ldpc_dec.iter_count,
+ tp->iter_count);
+ tp->iter_average += (double) ops_enq[i]->ldpc_dec.iter_count;
+ if (ops_enq[i]->status & (1 << RTE_BBDEV_SYNDROME_ERROR))
+ parity_bler += 1.0;
+ }
+
+ parity_bler /= num_ops; /* This one is based on SYND */
+ tp->iter_average /= num_ops;
+ tp->bler = (double) validate_ldpc_bler(ops_deq, num_ops) / num_ops;
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE
+ && tp->bler == 0
+ && parity_bler == 0
+ && !hc_out) {
+ ret = validate_ldpc_dec_op(ops_deq, num_ops, ref_op,
+ tp->op_params->vector_mask);
+ TEST_ASSERT_SUCCESS(ret, "Validation failed!");
+ }
+
+ rte_bbdev_dec_op_free_bulk(ops_enq, num_ops);
+
+ double tb_len_bits = calc_ldpc_dec_TB_size(ref_op);
+ tp->ops_per_sec = ((double)num_ops * 1) /
+ ((double)total_time / (double)rte_get_tsc_hz());
+ tp->mbps = (((double)(num_ops * 1 * tb_len_bits)) /
+ 1000000.0) / ((double)total_time /
+ (double)rte_get_tsc_hz());
+
+ return TEST_SUCCESS;
+}
+
static int
throughput_pmd_lcore_ldpc_dec(void *arg)
{
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
ref_op->ldpc_dec.op_flags -=
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
- ref_op->ldpc_dec.iter_max = 6;
+ ref_op->ldpc_dec.iter_max = get_iter_max();
ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
used_cores, total_mops, total_mbps);
}
+/* Aggregate the performance results over the number of cores used */
static void
print_dec_throughput(struct thread_params *t_params, unsigned int used_cores)
{
- unsigned int iter = 0;
+ unsigned int core_idx = 0;
double total_mops = 0, total_mbps = 0;
uint8_t iter_count = 0;
- for (iter = 0; iter < used_cores; iter++) {
+ for (core_idx = 0; core_idx < used_cores; core_idx++) {
printf(
"Throughput for core (%u): %.8lg Ops/s, %.8lg Mbps @ max %u iterations\n",
- t_params[iter].lcore_id, t_params[iter].ops_per_sec,
- t_params[iter].mbps, t_params[iter].iter_count);
- total_mops += t_params[iter].ops_per_sec;
- total_mbps += t_params[iter].mbps;
- iter_count = RTE_MAX(iter_count, t_params[iter].iter_count);
+ t_params[core_idx].lcore_id,
+ t_params[core_idx].ops_per_sec,
+ t_params[core_idx].mbps,
+ t_params[core_idx].iter_count);
+ total_mops += t_params[core_idx].ops_per_sec;
+ total_mbps += t_params[core_idx].mbps;
+ iter_count = RTE_MAX(iter_count,
+ t_params[core_idx].iter_count);
}
printf(
"\nTotal throughput for %u cores: %.8lg MOPS, %.8lg Mbps @ max %u iterations\n",
used_cores, total_mops, total_mbps, iter_count);
}
+/* Aggregate the performance results over the number of cores used */
+static void
+print_dec_bler(struct thread_params *t_params, unsigned int used_cores)
+{
+ unsigned int core_idx = 0;
+ double total_mbps = 0, total_bler = 0, total_iter = 0;
+ double snr = get_snr();
+
+ for (core_idx = 0; core_idx < used_cores; core_idx++) {
+ printf("Core%u BLER %.1f %% - Iters %.1f - Tp %.1f Mbps %s\n",
+ t_params[core_idx].lcore_id,
+ t_params[core_idx].bler * 100,
+ t_params[core_idx].iter_average,
+ t_params[core_idx].mbps,
+ get_vector_filename());
+ total_mbps += t_params[core_idx].mbps;
+ total_bler += t_params[core_idx].bler;
+ total_iter += t_params[core_idx].iter_average;
+ }
+ total_bler /= used_cores;
+ total_iter /= used_cores;
+
+ printf("SNR %.2f BLER %.1f %% - Iterations %.1f %d - Tp %.1f Mbps %s\n",
+ snr, total_bler * 100, total_iter, get_iter_max(),
+ total_mbps, get_vector_filename());
+}
+
+/*
+ * Test function that determines BLER wireless performance
+ */
+static int
+bler_test(struct active_device *ad,
+ struct test_op_params *op_params)
+{
+ int ret;
+ unsigned int lcore_id, used_cores = 0;
+ struct thread_params *t_params;
+ struct rte_bbdev_info info;
+ lcore_function_t *bler_function;
+ uint16_t num_lcores;
+ const char *op_type_str;
+
+ rte_bbdev_info_get(ad->dev_id, &info);
+
+ op_type_str = rte_bbdev_op_type_str(test_vector.op_type);
+ TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u",
+ test_vector.op_type);
+
+ printf("+ ------------------------------------------------------- +\n");
+ printf("== test: bler\ndev: %s, nb_queues: %u, burst size: %u, num ops: %u, num_lcores: %u, op type: %s, itr mode: %s, GHz: %lg\n",
+ info.dev_name, ad->nb_queues, op_params->burst_sz,
+ op_params->num_to_process, op_params->num_lcores,
+ op_type_str,
+ intr_enabled ? "Interrupt mode" : "PMD mode",
+ (double)rte_get_tsc_hz() / 1000000000.0);
+
+ /* Set number of lcores */
+ num_lcores = (ad->nb_queues < (op_params->num_lcores))
+ ? ad->nb_queues
+ : op_params->num_lcores;
+
+ /* Allocate memory for thread parameters structure */
+ t_params = rte_zmalloc(NULL, num_lcores * sizeof(struct thread_params),
+ RTE_CACHE_LINE_SIZE);
+ TEST_ASSERT_NOT_NULL(t_params, "Failed to alloc %zuB for t_params",
+ RTE_ALIGN(sizeof(struct thread_params) * num_lcores,
+ RTE_CACHE_LINE_SIZE));
+
+ if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
+ bler_function = bler_pmd_lcore_ldpc_dec;
+ else
+ return TEST_SKIPPED;
+
+ rte_atomic16_set(&op_params->sync, SYNC_WAIT);
+
+ /* Master core is set at first entry */
+ t_params[0].dev_id = ad->dev_id;
+ t_params[0].lcore_id = rte_lcore_id();
+ t_params[0].op_params = op_params;
+ t_params[0].queue_id = ad->queue_ids[used_cores++];
+ t_params[0].iter_count = 0;
+
+ RTE_LCORE_FOREACH_SLAVE(lcore_id) {
+ if (used_cores >= num_lcores)
+ break;
+
+ t_params[used_cores].dev_id = ad->dev_id;
+ t_params[used_cores].lcore_id = lcore_id;
+ t_params[used_cores].op_params = op_params;
+ t_params[used_cores].queue_id = ad->queue_ids[used_cores];
+ t_params[used_cores].iter_count = 0;
+
+ rte_eal_remote_launch(bler_function,
+ &t_params[used_cores++], lcore_id);
+ }
+
+ rte_atomic16_set(&op_params->sync, SYNC_START);
+ ret = bler_function(&t_params[0]);
+
+ /* Master core is always used */
+ for (used_cores = 1; used_cores < num_lcores; used_cores++)
+ ret |= rte_eal_wait_lcore(t_params[used_cores].lcore_id);
+
+ print_dec_bler(t_params, num_lcores);
+
+ /* Return if test failed */
+ if (ret) {
+ rte_free(t_params);
+ return ret;
+ }
+
+ /* Function to print something here*/
+ rte_free(t_params);
+ return ret;
+}
+
/*
* Test function that determines how long an enqueue + dequeue of a burst
* takes on available lcores.
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
ref_op->ldpc_dec.op_flags -=
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
- ref_op->ldpc_dec.iter_max = 6;
+ ref_op->ldpc_dec.iter_max = get_iter_max();
ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
#endif
}
+static int
+bler_tc(void)
+{
+ return run_test_case(bler_test);
+}
+
static int
throughput_tc(void)
{
return run_test_case(throughput_test);
}
+static struct unit_test_suite bbdev_bler_testsuite = {
+ .suite_name = "BBdev BLER Tests",
+ .setup = testsuite_setup,
+ .teardown = testsuite_teardown,
+ .unit_test_cases = {
+ TEST_CASE_ST(ut_setup, ut_teardown, bler_tc),
+ TEST_CASES_END() /**< NULL terminate unit test array */
+ }
+};
+
static struct unit_test_suite bbdev_throughput_testsuite = {
.suite_name = "BBdev Throughput Tests",
.setup = testsuite_setup,
}
};
+REGISTER_TEST_COMMAND(bler, bbdev_bler_testsuite);
REGISTER_TEST_COMMAND(throughput, bbdev_throughput_testsuite);
REGISTER_TEST_COMMAND(validation, bbdev_validation_testsuite);
REGISTER_TEST_COMMAND(latency, bbdev_latency_testsuite);