--- /dev/null
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2017-2018 Intel Corporation
+ */
+
+#ifndef _RTE_COMP_H_
+#define _RTE_COMP_H_
+
+/**
+ * @file rte_comp.h
+ *
+ * RTE definitions for Data Compression Service
+ *
+ */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <rte_mempool.h>
+#include <rte_mbuf.h>
+
+/** Status of comp operation */
+enum rte_comp_op_status {
+ RTE_COMP_OP_STATUS_SUCCESS = 0,
+ /**< Operation completed successfully */
+ RTE_COMP_OP_STATUS_NOT_PROCESSED,
+ /**< Operation has not yet been processed by the device */
+ RTE_COMP_OP_STATUS_INVALID_ARGS,
+ /**< Operation failed due to invalid arguments in request */
+ RTE_COMP_OP_STATUS_ERROR,
+ /**< Error handling operation */
+ RTE_COMP_OP_STATUS_INVALID_STATE,
+ /**< Operation is invoked in invalid state */
+ RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED,
+ /**< Output buffer ran out of space before operation completed.
+ * Error case. Application must resubmit all data with a larger
+ * output buffer.
+ */
+ RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE,
+ /**< Output buffer ran out of space before operation completed, but this
+ * is not an error case. Output data up to op.produced can be used and
+ * next op in the stream should continue on from op.consumed+1.
+ */
+};
+
+/** Compression Algorithms */
+enum rte_comp_algorithm {
+ RTE_COMP_ALGO_UNSPECIFIED = 0,
+ /** No Compression algorithm */
+ RTE_COMP_ALGO_NULL,
+ /**< No compression.
+ * Pass-through, data is copied unchanged from source buffer to
+ * destination buffer.
+ */
+ RTE_COMP_ALGO_DEFLATE,
+ /**< DEFLATE compression algorithm
+ * https://tools.ietf.org/html/rfc1951
+ */
+ RTE_COMP_ALGO_LZS,
+ /**< LZS compression algorithm
+ * https://tools.ietf.org/html/rfc2395
+ */
+ RTE_COMP_ALGO_LIST_END
+};
+
+/**< Compression Level.
+ * The number is interpreted by each PMD differently. However, lower numbers
+ * give fastest compression, at the expense of compression ratio while
+ * higher numbers may give better compression ratios but are likely slower.
+ */
+#define RTE_COMP_LEVEL_PMD_DEFAULT (-1)
+/** Use PMD Default */
+#define RTE_COMP_LEVEL_NONE (0)
+/** Output uncompressed blocks if supported by the specified algorithm */
+#define RTE_COMP_LEVEL_MIN (1)
+/** Use minimum compression level supported by the PMD */
+#define RTE_COMP_LEVEL_MAX (9)
+/** Use maximum compression level supported by the PMD */
+
+/** Compression checksum types */
+enum rte_comp_checksum_type {
+ RTE_COMP_CHECKSUM_NONE,
+ /**< No checksum generated */
+ RTE_COMP_CHECKSUM_CRC32,
+ /**< Generates a CRC32 checksum, as used by gzip */
+ RTE_COMP_CHECKSUM_ADLER32,
+ /**< Generates an Adler-32 checksum, as used by zlib */
+ RTE_COMP_CHECKSUM_CRC32_ADLER32,
+ /**< Generates both Adler-32 and CRC32 checksums, concatenated.
+ * CRC32 is in the lower 32bits, Adler-32 in the upper 32 bits.
+ */
+};
+
+
+/** Compression Huffman Type - used by DEFLATE algorithm */
+enum rte_comp_huffman {
+ RTE_COMP_HUFFMAN_DEFAULT,
+ /**< PMD may choose which Huffman codes to use */
+ RTE_COMP_HUFFMAN_FIXED,
+ /**< Use Fixed Huffman codes */
+ RTE_COMP_HUFFMAN_DYNAMIC,
+ /**< Use Dynamic Huffman codes */
+};
+
+/** Compression flush flags */
+enum rte_comp_flush_flag {
+ RTE_COMP_FLUSH_NONE,
+ /**< Data is not flushed. Output may remain in the compressor and be
+ * processed during a following op. It may not be possible to decompress
+ * output until a later op with some other flush flag has been sent.
+ */
+ RTE_COMP_FLUSH_SYNC,
+ /**< All data should be flushed to output buffer. Output data can be
+ * decompressed. However state and history is not cleared, so future
+ * operations may use history from this operation.
+ */
+ RTE_COMP_FLUSH_FULL,
+ /**< All data should be flushed to output buffer. Output data can be
+ * decompressed. State and history data is cleared, so future
+ * ops will be independent of ops processed before this.
+ */
+ RTE_COMP_FLUSH_FINAL
+ /**< Same as RTE_COMP_FLUSH_FULL but if op.algo is RTE_COMP_ALGO_DEFLATE
+ * then bfinal bit is set in the last block.
+ */
+};
+
+/** Compression transform types */
+enum rte_comp_xform_type {
+ RTE_COMP_COMPRESS,
+ /**< Compression service - compress */
+ RTE_COMP_DECOMPRESS,
+ /**< Compression service - decompress */
+};
+
+/** Compression operation type */
+enum rte_comp_op_type {
+ RTE_COMP_OP_STATELESS,
+ /**< All data to be processed is submitted in the op, no state or
+ * history from previous ops is used and none will be stored for future
+ * ops. Flush flag must be set to either FLUSH_FULL or FLUSH_FINAL.
+ */
+ RTE_COMP_OP_STATEFUL
+ /**< There may be more data to be processed after this op, it's part of
+ * a stream of data. State and history from previous ops can be used
+ * and resulting state and history can be stored for future ops,
+ * depending on flush flag.
+ */
+};
+
+
+/** Parameters specific to the deflate algorithm */
+struct rte_comp_deflate_params {
+ enum rte_comp_huffman huffman;
+ /**< Compression huffman encoding type */
+};
+
+/** Setup Data for compression */
+struct rte_comp_compress_xform {
+ enum rte_comp_algorithm algo;
+ /**< Algorithm to use for compress operation */
+ union {
+ struct rte_comp_deflate_params deflate;
+ /**< Parameters specific to the deflate algorithm */
+ }; /**< Algorithm specific parameters */
+ int level;
+ /**< Compression level */
+ uint8_t window_size;
+ /**< Base two log value of sliding window to be used. If window size
+ * can't be supported by the PMD then it may fall back to a smaller
+ * size. This is likely to result in a worse compression ratio.
+ */
+ enum rte_comp_checksum_type chksum;
+ /**< Type of checksum to generate on the uncompressed data */
+};
+
+/**
+ * Setup Data for decompression.
+ */
+struct rte_comp_decompress_xform {
+ enum rte_comp_algorithm algo;
+ /**< Algorithm to use for decompression */
+ enum rte_comp_checksum_type chksum;
+ /**< Type of checksum to generate on the decompressed data */
+ uint8_t window_size;
+ /**< Base two log value of sliding window which was used to generate
+ * compressed data. If window size can't be supported by the PMD then
+ * setup of stream or private_xform should fail.
+ */
+};
+
+/**
+ * Compression transform structure.
+ *
+ * This is used to specify the compression transforms required.
+ * Each transform structure can hold a single transform, the type field is
+ * used to specify which transform is contained within the union.
+ */
+struct rte_comp_xform {
+ enum rte_comp_xform_type type;
+ /**< xform type */
+ union {
+ struct rte_comp_compress_xform compress;
+ /**< xform for compress operation */
+ struct rte_comp_decompress_xform decompress;
+ /**< decompress xform */
+ };
+};
+
+/**
+ * Compression Operation.
+ *
+ * This structure contains data relating to performing a compression
+ * operation on the referenced mbuf data buffers.
+ *
+ * Comp operations are enqueued and dequeued in comp PMDs using the
+ * rte_compressdev_enqueue_burst() / rte_compressdev_dequeue_burst() APIs
+ */
+struct rte_comp_op {
+ enum rte_comp_op_type op_type;
+ union {
+ void *private_xform;
+ /**< Stateless private PMD data derived from an rte_comp_xform.
+ * A handle returned by rte_compressdev_private_xform_create()
+ * must be attached to operations of op_type RTE_COMP_STATELESS.
+ */
+ void *stream;
+ /**< Private PMD data derived initially from an rte_comp_xform,
+ * which holds state and history data and evolves as operations
+ * are processed. rte_compressdev_stream_create() must be called
+ * on a device for all STATEFUL data streams and the resulting
+ * stream attached to the one or more operations associated
+ * with the data stream.
+ * All operations in a stream must be sent to the same device.
+ */
+ };
+
+ struct rte_mempool *mempool;
+ /**< Pool from which operation is allocated */
+ rte_iova_t iova_addr;
+ /**< IOVA address of this operation */
+ struct rte_mbuf *m_src;
+ /**< source mbuf
+ * The total size of the input buffer(s) can be retrieved using
+ * rte_pktmbuf_data_len(m_src)
+ */
+ struct rte_mbuf *m_dst;
+ /**< destination mbuf
+ * The total size of the output buffer(s) can be retrieved using
+ * rte_pktmbuf_data_len(m_dst)
+ */
+
+ struct {
+ uint32_t offset;
+ /**< Starting point for compression or decompression,
+ * specified as number of bytes from start of packet in
+ * source buffer.
+ * Starting point for checksum generation in compress direction.
+ */
+ uint32_t length;
+ /**< The length, in bytes, of the data in source buffer
+ * to be compressed or decompressed.
+ * Also the length of the data over which the checksum
+ * should be generated in compress direction
+ */
+ } src;
+ struct {
+ uint32_t offset;
+ /**< Starting point for writing output data, specified as
+ * number of bytes from start of packet in dest
+ * buffer. Starting point for checksum generation in
+ * decompress direction.
+ */
+ } dst;
+ enum rte_comp_flush_flag flush_flag;
+ /**< Defines flush characteristics for the output data.
+ * Only applicable in compress direction
+ */
+ uint64_t input_chksum;
+ /**< An input checksum can be provided to generate a
+ * cumulative checksum across sequential blocks in a STATELESS stream.
+ * Checksum type is as specified in xform chksum_type
+ */
+ uint64_t output_chksum;
+ /**< If a checksum is generated it will be written in here.
+ * Checksum type is as specified in xform chksum_type.
+ */
+ uint32_t consumed;
+ /**< The number of bytes from the source buffer
+ * which were compressed/decompressed.
+ */
+ uint32_t produced;
+ /**< The number of bytes written to the destination buffer
+ * which were compressed/decompressed.
+ */
+ uint64_t debug_status;
+ /**<
+ * Status of the operation is returned in the status param.
+ * This field allows the PMD to pass back extra
+ * pmd-specific debug information. Value is not defined on the API.
+ */
+ uint8_t status;
+ /**<
+ * Operation status - use values from enum rte_comp_status.
+ * This is reset to
+ * RTE_COMP_OP_STATUS_NOT_PROCESSED on allocation from mempool and
+ * will be set to RTE_COMP_OP_STATUS_SUCCESS after operation
+ * is successfully processed by a PMD
+ */
+} __rte_cache_aligned;
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _RTE_COMP_H_ */