85603eed5bf16d74b3c2e767a62de7345ddd0e61
[dpdk.git] / app / test-crypto-perf / cperf_test_common.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <rte_malloc.h>
6 #include <rte_mbuf_pool_ops.h>
7
8 #include "cperf_test_common.h"
9
10 struct obj_params {
11         uint32_t src_buf_offset;
12         uint32_t dst_buf_offset;
13         uint16_t segment_sz;
14         uint16_t headroom_sz;
15         uint16_t data_len;
16         uint16_t segments_nb;
17 };
18
19 static void
20 fill_single_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp,
21                 void *obj, uint32_t mbuf_offset, uint16_t segment_sz,
22                 uint16_t headroom, uint16_t data_len)
23 {
24         uint32_t mbuf_hdr_size = sizeof(struct rte_mbuf);
25
26         /* start of buffer is after mbuf structure and priv data */
27         m->priv_size = 0;
28         m->buf_addr = (char *)m + mbuf_hdr_size;
29         m->buf_iova = rte_mempool_virt2iova(obj) +
30                 mbuf_offset + mbuf_hdr_size;
31         m->buf_len = segment_sz;
32         m->data_len = data_len;
33         m->pkt_len = data_len;
34
35         /* Use headroom specified for the buffer */
36         m->data_off = headroom;
37
38         /* init some constant fields */
39         m->pool = mp;
40         m->nb_segs = 1;
41         m->port = 0xff;
42         rte_mbuf_refcnt_set(m, 1);
43         m->next = NULL;
44 }
45
46 static void
47 fill_multi_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp,
48                 void *obj, uint32_t mbuf_offset, uint16_t segment_sz,
49                 uint16_t headroom, uint16_t data_len, uint16_t segments_nb)
50 {
51         uint16_t mbuf_hdr_size = sizeof(struct rte_mbuf);
52         uint16_t remaining_segments = segments_nb;
53         struct rte_mbuf *next_mbuf;
54         rte_iova_t next_seg_phys_addr = rte_mempool_virt2iova(obj) +
55                          mbuf_offset + mbuf_hdr_size;
56
57         do {
58                 /* start of buffer is after mbuf structure and priv data */
59                 m->priv_size = 0;
60                 m->buf_addr = (char *)m + mbuf_hdr_size;
61                 m->buf_iova = next_seg_phys_addr;
62                 next_seg_phys_addr += mbuf_hdr_size + segment_sz;
63                 m->buf_len = segment_sz;
64                 m->data_len = data_len;
65
66                 /* Use headroom specified for the buffer */
67                 m->data_off = headroom;
68
69                 /* init some constant fields */
70                 m->pool = mp;
71                 m->nb_segs = segments_nb;
72                 m->port = 0xff;
73                 rte_mbuf_refcnt_set(m, 1);
74                 next_mbuf = (struct rte_mbuf *) ((uint8_t *) m +
75                                         mbuf_hdr_size + segment_sz);
76                 m->next = next_mbuf;
77                 m = next_mbuf;
78                 remaining_segments--;
79
80         } while (remaining_segments > 0);
81
82         m->next = NULL;
83 }
84
85 static void
86 mempool_obj_init(struct rte_mempool *mp,
87                  void *opaque_arg,
88                  void *obj,
89                  __attribute__((unused)) unsigned int i)
90 {
91         struct obj_params *params = opaque_arg;
92         struct rte_crypto_op *op = obj;
93         struct rte_mbuf *m = (struct rte_mbuf *) ((uint8_t *) obj +
94                                         params->src_buf_offset);
95         /* Set crypto operation */
96         op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
97         op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
98         op->sess_type = RTE_CRYPTO_OP_WITH_SESSION;
99         op->phys_addr = rte_mem_virt2iova(obj);
100         op->mempool = mp;
101
102         /* Set source buffer */
103         op->sym->m_src = m;
104         if (params->segments_nb == 1)
105                 fill_single_seg_mbuf(m, mp, obj, params->src_buf_offset,
106                                 params->segment_sz, params->headroom_sz,
107                                 params->data_len);
108         else
109                 fill_multi_seg_mbuf(m, mp, obj, params->src_buf_offset,
110                                 params->segment_sz, params->headroom_sz,
111                                 params->data_len, params->segments_nb);
112
113
114         /* Set destination buffer */
115         if (params->dst_buf_offset) {
116                 m = (struct rte_mbuf *) ((uint8_t *) obj +
117                                 params->dst_buf_offset);
118                 fill_single_seg_mbuf(m, mp, obj, params->dst_buf_offset,
119                                 params->segment_sz, params->headroom_sz,
120                                 params->data_len);
121                 op->sym->m_dst = m;
122         } else
123                 op->sym->m_dst = NULL;
124 }
125
126 int
127 cperf_alloc_common_memory(const struct cperf_options *options,
128                         const struct cperf_test_vector *test_vector,
129                         uint8_t dev_id, uint16_t qp_id,
130                         size_t extra_op_priv_size,
131                         uint32_t *src_buf_offset,
132                         uint32_t *dst_buf_offset,
133                         struct rte_mempool **pool)
134 {
135         const char *mp_ops_name;
136         char pool_name[32] = "";
137         int ret;
138
139         /* Calculate the object size */
140         uint16_t crypto_op_size = sizeof(struct rte_crypto_op) +
141                 sizeof(struct rte_crypto_sym_op);
142         uint16_t crypto_op_private_size;
143         /*
144          * If doing AES-CCM, IV field needs to be 16 bytes long,
145          * and AAD field needs to be long enough to have 18 bytes,
146          * plus the length of the AAD, and all rounded to a
147          * multiple of 16 bytes.
148          */
149         if (options->aead_algo == RTE_CRYPTO_AEAD_AES_CCM) {
150                 crypto_op_private_size = extra_op_priv_size +
151                         test_vector->cipher_iv.length +
152                         test_vector->auth_iv.length +
153                         RTE_ALIGN_CEIL(test_vector->aead_iv.length, 16) +
154                         RTE_ALIGN_CEIL(options->aead_aad_sz + 18, 16);
155         } else {
156                 crypto_op_private_size = extra_op_priv_size +
157                         test_vector->cipher_iv.length +
158                         test_vector->auth_iv.length +
159                         test_vector->aead_iv.length +
160                         options->aead_aad_sz;
161         }
162
163         uint16_t crypto_op_total_size = crypto_op_size +
164                                 crypto_op_private_size;
165         uint16_t crypto_op_total_size_padded =
166                                 RTE_CACHE_LINE_ROUNDUP(crypto_op_total_size);
167         uint32_t mbuf_size = sizeof(struct rte_mbuf) + options->segment_sz;
168         uint32_t max_size = options->max_buffer_size + options->digest_sz;
169         uint16_t segments_nb = (max_size % options->segment_sz) ?
170                         (max_size / options->segment_sz) + 1 :
171                         max_size / options->segment_sz;
172         uint32_t obj_size = crypto_op_total_size_padded +
173                                 (mbuf_size * segments_nb);
174
175         snprintf(pool_name, sizeof(pool_name), "pool_cdev_%u_qp_%u",
176                         dev_id, qp_id);
177
178         *src_buf_offset = crypto_op_total_size_padded;
179
180         struct obj_params params = {
181                 .segment_sz = options->segment_sz,
182                 .headroom_sz = options->headroom_sz,
183                 /* Data len = segment size - (headroom + tailroom) */
184                 .data_len = options->segment_sz -
185                             options->headroom_sz -
186                             options->tailroom_sz,
187                 .segments_nb = segments_nb,
188                 .src_buf_offset = crypto_op_total_size_padded,
189                 .dst_buf_offset = 0
190         };
191
192         if (options->out_of_place) {
193                 *dst_buf_offset = *src_buf_offset +
194                                 (mbuf_size * segments_nb);
195                 params.dst_buf_offset = *dst_buf_offset;
196                 /* Destination buffer will be one segment only */
197                 obj_size += max_size;
198         }
199
200         *pool = rte_mempool_create_empty(pool_name,
201                         options->pool_sz, obj_size, 512, 0,
202                         rte_socket_id(), 0);
203         if (*pool == NULL) {
204                 RTE_LOG(ERR, USER1,
205                         "Cannot allocate mempool for device %u\n",
206                         dev_id);
207                 return -1;
208         }
209
210         mp_ops_name = rte_mbuf_best_mempool_ops();
211
212         ret = rte_mempool_set_ops_byname(*pool,
213                 mp_ops_name, NULL);
214         if (ret != 0) {
215                 RTE_LOG(ERR, USER1,
216                          "Error setting mempool handler for device %u\n",
217                          dev_id);
218                 return -1;
219         }
220
221         ret = rte_mempool_populate_default(*pool);
222         if (ret < 0) {
223                 RTE_LOG(ERR, USER1,
224                          "Error populating mempool for device %u\n",
225                          dev_id);
226                 return -1;
227         }
228
229         rte_mempool_obj_iter(*pool, mempool_obj_init, (void *)&params);
230
231         return 0;
232 }