313665ef872e8e022748febd446c3a19c23afbee
[dpdk.git] / app / test-crypto-perf / cperf_test_latency.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <rte_malloc.h>
34 #include <rte_cycles.h>
35 #include <rte_crypto.h>
36 #include <rte_cryptodev.h>
37
38 #include "cperf_test_latency.h"
39 #include "cperf_ops.h"
40 #include "cperf_test_common.h"
41
42 struct cperf_op_result {
43         uint64_t tsc_start;
44         uint64_t tsc_end;
45         enum rte_crypto_op_status status;
46 };
47
48 struct cperf_latency_ctx {
49         uint8_t dev_id;
50         uint16_t qp_id;
51         uint8_t lcore_id;
52
53         struct rte_mempool *pkt_mbuf_pool_in;
54         struct rte_mempool *pkt_mbuf_pool_out;
55         struct rte_mbuf **mbufs_in;
56         struct rte_mbuf **mbufs_out;
57
58         struct rte_mempool *crypto_op_pool;
59
60         struct rte_cryptodev_sym_session *sess;
61
62         cperf_populate_ops_t populate_ops;
63
64         const struct cperf_options *options;
65         const struct cperf_test_vector *test_vector;
66         struct cperf_op_result *res;
67 };
68
69 struct priv_op_data {
70         struct cperf_op_result *result;
71 };
72
73 #define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b)
74 #define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b)
75
76 static void
77 cperf_latency_test_free(struct cperf_latency_ctx *ctx)
78 {
79         if (ctx) {
80                 if (ctx->sess) {
81                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
82                         rte_cryptodev_sym_session_free(ctx->sess);
83                 }
84
85                 cperf_free_common_memory(ctx->options,
86                                 ctx->pkt_mbuf_pool_in,
87                                 ctx->pkt_mbuf_pool_out,
88                                 ctx->mbufs_in, ctx->mbufs_out,
89                                 ctx->crypto_op_pool);
90
91                 rte_free(ctx->res);
92                 rte_free(ctx);
93         }
94 }
95
96 void *
97 cperf_latency_test_constructor(struct rte_mempool *sess_mp,
98                 uint8_t dev_id, uint16_t qp_id,
99                 const struct cperf_options *options,
100                 const struct cperf_test_vector *test_vector,
101                 const struct cperf_op_fns *op_fns)
102 {
103         struct cperf_latency_ctx *ctx = NULL;
104         size_t extra_op_priv_size = sizeof(struct priv_op_data);
105
106         ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
107         if (ctx == NULL)
108                 goto err;
109
110         ctx->dev_id = dev_id;
111         ctx->qp_id = qp_id;
112
113         ctx->populate_ops = op_fns->populate_ops;
114         ctx->options = options;
115         ctx->test_vector = test_vector;
116
117         /* IV goes at the end of the crypto operation */
118         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
119                 sizeof(struct rte_crypto_sym_op) +
120                 sizeof(struct cperf_op_result *);
121
122         ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
123                         iv_offset);
124         if (ctx->sess == NULL)
125                 goto err;
126
127         if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id,
128                         extra_op_priv_size,
129                         &ctx->pkt_mbuf_pool_in, &ctx->pkt_mbuf_pool_out,
130                         &ctx->mbufs_in, &ctx->mbufs_out,
131                         &ctx->crypto_op_pool) < 0)
132                 goto err;
133
134         ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
135                         ctx->options->total_ops, 0);
136
137         if (ctx->res == NULL)
138                 goto err;
139
140         return ctx;
141 err:
142         cperf_latency_test_free(ctx);
143
144         return NULL;
145 }
146
147 static inline void
148 store_timestamp(struct rte_crypto_op *op, uint64_t timestamp)
149 {
150         struct priv_op_data *priv_data;
151
152         priv_data = (struct priv_op_data *) (op->sym + 1);
153         priv_data->result->status = op->status;
154         priv_data->result->tsc_end = timestamp;
155 }
156
157 int
158 cperf_latency_test_runner(void *arg)
159 {
160         struct cperf_latency_ctx *ctx = arg;
161         uint16_t test_burst_size;
162         uint8_t burst_size_idx = 0;
163
164         static int only_once;
165
166         if (ctx == NULL)
167                 return 0;
168
169         struct rte_crypto_op *ops[ctx->options->max_burst_size];
170         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
171         uint64_t i;
172         struct priv_op_data *priv_data;
173
174         uint32_t lcore = rte_lcore_id();
175
176 #ifdef CPERF_LINEARIZATION_ENABLE
177         struct rte_cryptodev_info dev_info;
178         int linearize = 0;
179
180         /* Check if source mbufs require coalescing */
181         if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
182                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
183                 if ((dev_info.feature_flags &
184                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
185                         linearize = 1;
186         }
187 #endif /* CPERF_LINEARIZATION_ENABLE */
188
189         ctx->lcore_id = lcore;
190
191         /* Warm up the host CPU before starting the test */
192         for (i = 0; i < ctx->options->total_ops; i++)
193                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
194
195         /* Get first size from range or list */
196         if (ctx->options->inc_burst_size != 0)
197                 test_burst_size = ctx->options->min_burst_size;
198         else
199                 test_burst_size = ctx->options->burst_size_list[0];
200
201         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
202                 sizeof(struct rte_crypto_sym_op) +
203                 sizeof(struct cperf_op_result *);
204
205         while (test_burst_size <= ctx->options->max_burst_size) {
206                 uint64_t ops_enqd = 0, ops_deqd = 0;
207                 uint64_t m_idx = 0, b_idx = 0;
208
209                 uint64_t tsc_val, tsc_end, tsc_start;
210                 uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
211                 uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
212                 uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;
213
214                 while (enqd_tot < ctx->options->total_ops) {
215
216                         uint16_t burst_size = ((enqd_tot + test_burst_size)
217                                         <= ctx->options->total_ops) ?
218                                                         test_burst_size :
219                                                         ctx->options->total_ops -
220                                                         enqd_tot;
221
222                         /* Allocate crypto ops from pool */
223                         if (burst_size != rte_crypto_op_bulk_alloc(
224                                         ctx->crypto_op_pool,
225                                         RTE_CRYPTO_OP_TYPE_SYMMETRIC,
226                                         ops, burst_size)) {
227                                 RTE_LOG(ERR, USER1,
228                                         "Failed to allocate more crypto operations "
229                                         "from the the crypto operation pool.\n"
230                                         "Consider increasing the pool size "
231                                         "with --pool-sz\n");
232                                 return -1;
233                         }
234
235                         /* Setup crypto op, attach mbuf etc */
236                         (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
237                                         &ctx->mbufs_out[m_idx],
238                                         burst_size, ctx->sess, ctx->options,
239                                         ctx->test_vector, iv_offset);
240
241                         tsc_start = rte_rdtsc_precise();
242
243 #ifdef CPERF_LINEARIZATION_ENABLE
244                         if (linearize) {
245                                 /* PMD doesn't support scatter-gather and source buffer
246                                  * is segmented.
247                                  * We need to linearize it before enqueuing.
248                                  */
249                                 for (i = 0; i < burst_size; i++)
250                                         rte_pktmbuf_linearize(ops[i]->sym->m_src);
251                         }
252 #endif /* CPERF_LINEARIZATION_ENABLE */
253
254                         /* Enqueue burst of ops on crypto device */
255                         ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
256                                         ops, burst_size);
257
258                         /* Dequeue processed burst of ops from crypto device */
259                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
260                                         ops_processed, test_burst_size);
261
262                         tsc_end = rte_rdtsc_precise();
263
264                         /* Free memory for not enqueued operations */
265                         if (ops_enqd != burst_size)
266                                 rte_mempool_put_bulk(ctx->crypto_op_pool,
267                                                 (void **)&ops[ops_enqd],
268                                                 burst_size - ops_enqd);
269
270                         for (i = 0; i < ops_enqd; i++) {
271                                 ctx->res[tsc_idx].tsc_start = tsc_start;
272                                 /*
273                                  * Private data structure starts after the end of the
274                                  * rte_crypto_sym_op structure.
275                                  */
276                                 priv_data = (struct priv_op_data *) (ops[i]->sym + 1);
277                                 priv_data->result = (void *)&ctx->res[tsc_idx];
278                                 tsc_idx++;
279                         }
280
281                         if (likely(ops_deqd))  {
282                                 /*
283                                  * free crypto ops so they can be reused. We don't free
284                                  * the mbufs here as we don't want to reuse them as
285                                  * the crypto operation will change the data and cause
286                                  * failures.
287                                  */
288                                 for (i = 0; i < ops_deqd; i++)
289                                         store_timestamp(ops_processed[i], tsc_end);
290
291                                 rte_mempool_put_bulk(ctx->crypto_op_pool,
292                                                 (void **)ops_processed, ops_deqd);
293
294                                 deqd_tot += ops_deqd;
295                                 deqd_max = max(ops_deqd, deqd_max);
296                                 deqd_min = min(ops_deqd, deqd_min);
297                         }
298
299                         enqd_tot += ops_enqd;
300                         enqd_max = max(ops_enqd, enqd_max);
301                         enqd_min = min(ops_enqd, enqd_min);
302
303                         m_idx += ops_enqd;
304                         m_idx = m_idx + test_burst_size > ctx->options->pool_sz ?
305                                         0 : m_idx;
306                         b_idx++;
307                 }
308
309                 /* Dequeue any operations still in the crypto device */
310                 while (deqd_tot < ctx->options->total_ops) {
311                         /* Sending 0 length burst to flush sw crypto device */
312                         rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
313
314                         /* dequeue burst */
315                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
316                                         ops_processed, test_burst_size);
317
318                         tsc_end = rte_rdtsc_precise();
319
320                         if (ops_deqd != 0) {
321                                 for (i = 0; i < ops_deqd; i++)
322                                         store_timestamp(ops_processed[i], tsc_end);
323
324                                 rte_mempool_put_bulk(ctx->crypto_op_pool,
325                                                 (void **)ops_processed, ops_deqd);
326
327                                 deqd_tot += ops_deqd;
328                                 deqd_max = max(ops_deqd, deqd_max);
329                                 deqd_min = min(ops_deqd, deqd_min);
330                         }
331                 }
332
333                 for (i = 0; i < tsc_idx; i++) {
334                         tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
335                         tsc_max = max(tsc_val, tsc_max);
336                         tsc_min = min(tsc_val, tsc_min);
337                         tsc_tot += tsc_val;
338                 }
339
340                 double time_tot, time_avg, time_max, time_min;
341
342                 const uint64_t tunit = 1000000; /* us */
343                 const uint64_t tsc_hz = rte_get_tsc_hz();
344
345                 uint64_t enqd_avg = enqd_tot / b_idx;
346                 uint64_t deqd_avg = deqd_tot / b_idx;
347                 uint64_t tsc_avg = tsc_tot / tsc_idx;
348
349                 time_tot = tunit*(double)(tsc_tot) / tsc_hz;
350                 time_avg = tunit*(double)(tsc_avg) / tsc_hz;
351                 time_max = tunit*(double)(tsc_max) / tsc_hz;
352                 time_min = tunit*(double)(tsc_min) / tsc_hz;
353
354                 if (ctx->options->csv) {
355                         if (!only_once)
356                                 printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
357                                                 "Packet Size, cycles, time (us)");
358
359                         for (i = 0; i < ctx->options->total_ops; i++) {
360
361                                 printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f",
362                                         ctx->lcore_id, ctx->options->test_buffer_size,
363                                         test_burst_size, i + 1,
364                                         ctx->res[i].tsc_end - ctx->res[i].tsc_start,
365                                         tunit * (double) (ctx->res[i].tsc_end
366                                                         - ctx->res[i].tsc_start)
367                                                 / tsc_hz);
368
369                         }
370                         only_once = 1;
371                 } else {
372                         printf("\n# Device %d on lcore %u\n", ctx->dev_id,
373                                 ctx->lcore_id);
374                         printf("\n# total operations: %u", ctx->options->total_ops);
375                         printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
376                         printf("\n# Burst size: %u", test_burst_size);
377                         printf("\n#     Number of bursts: %"PRIu64,
378                                         b_idx);
379
380                         printf("\n#");
381                         printf("\n#          \t       Total\t   Average\t   "
382                                         "Maximum\t   Minimum");
383                         printf("\n#  enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
384                                         "%10"PRIu64"\t%10"PRIu64, enqd_tot,
385                                         enqd_avg, enqd_max, enqd_min);
386                         printf("\n#  dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
387                                         "%10"PRIu64"\t%10"PRIu64, deqd_tot,
388                                         deqd_avg, deqd_max, deqd_min);
389                         printf("\n#    cycles\t%12"PRIu64"\t%10"PRIu64"\t"
390                                         "%10"PRIu64"\t%10"PRIu64, tsc_tot,
391                                         tsc_avg, tsc_max, tsc_min);
392                         printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
393                                         time_tot, time_avg, time_max, time_min);
394                         printf("\n\n");
395
396                 }
397
398                 /* Get next size from range or list */
399                 if (ctx->options->inc_burst_size != 0)
400                         test_burst_size += ctx->options->inc_burst_size;
401                 else {
402                         if (++burst_size_idx == ctx->options->burst_size_count)
403                                 break;
404                         test_burst_size =
405                                 ctx->options->burst_size_list[burst_size_idx];
406                 }
407         }
408
409         return 0;
410 }
411
412 void
413 cperf_latency_test_destructor(void *arg)
414 {
415         struct cperf_latency_ctx *ctx = arg;
416
417         if (ctx == NULL)
418                 return;
419
420         cperf_latency_test_free(ctx);
421 }