62478a2df51402074094254f7fdbb9c8280216cd
[dpdk.git] / app / test-crypto-perf / cperf_test_latency.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9
10 #include "cperf_test_latency.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13
14 struct cperf_op_result {
15         uint64_t tsc_start;
16         uint64_t tsc_end;
17         enum rte_crypto_op_status status;
18 };
19
20 struct cperf_latency_ctx {
21         uint8_t dev_id;
22         uint16_t qp_id;
23         uint8_t lcore_id;
24
25         struct rte_mempool *pool;
26
27         struct rte_cryptodev_sym_session *sess;
28
29         cperf_populate_ops_t populate_ops;
30
31         uint32_t src_buf_offset;
32         uint32_t dst_buf_offset;
33
34         const struct cperf_options *options;
35         const struct cperf_test_vector *test_vector;
36         struct cperf_op_result *res;
37 };
38
39 struct priv_op_data {
40         struct cperf_op_result *result;
41 };
42
43 #define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b)
44 #define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b)
45
46 static void
47 cperf_latency_test_free(struct cperf_latency_ctx *ctx)
48 {
49         if (ctx) {
50                 if (ctx->sess) {
51                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
52                         rte_cryptodev_sym_session_free(ctx->sess);
53                 }
54
55                 if (ctx->pool)
56                         rte_mempool_free(ctx->pool);
57
58                 rte_free(ctx->res);
59                 rte_free(ctx);
60         }
61 }
62
63 void *
64 cperf_latency_test_constructor(struct rte_mempool *sess_mp,
65                 struct rte_mempool *sess_priv_mp,
66                 uint8_t dev_id, uint16_t qp_id,
67                 const struct cperf_options *options,
68                 const struct cperf_test_vector *test_vector,
69                 const struct cperf_op_fns *op_fns)
70 {
71         struct cperf_latency_ctx *ctx = NULL;
72         size_t extra_op_priv_size = sizeof(struct priv_op_data);
73
74         ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
75         if (ctx == NULL)
76                 goto err;
77
78         ctx->dev_id = dev_id;
79         ctx->qp_id = qp_id;
80
81         ctx->populate_ops = op_fns->populate_ops;
82         ctx->options = options;
83         ctx->test_vector = test_vector;
84
85         /* IV goes at the end of the crypto operation */
86         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
87                 sizeof(struct rte_crypto_sym_op) +
88                 sizeof(struct cperf_op_result *);
89
90         ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
91                         test_vector, iv_offset);
92         if (ctx->sess == NULL)
93                 goto err;
94
95         if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id,
96                         extra_op_priv_size,
97                         &ctx->src_buf_offset, &ctx->dst_buf_offset,
98                         &ctx->pool) < 0)
99                 goto err;
100
101         ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
102                         ctx->options->total_ops, 0);
103
104         if (ctx->res == NULL)
105                 goto err;
106
107         return ctx;
108 err:
109         cperf_latency_test_free(ctx);
110
111         return NULL;
112 }
113
114 static inline void
115 store_timestamp(struct rte_crypto_op *op, uint64_t timestamp)
116 {
117         struct priv_op_data *priv_data;
118
119         priv_data = (struct priv_op_data *) (op->sym + 1);
120         priv_data->result->status = op->status;
121         priv_data->result->tsc_end = timestamp;
122 }
123
124 int
125 cperf_latency_test_runner(void *arg)
126 {
127         struct cperf_latency_ctx *ctx = arg;
128         uint16_t test_burst_size;
129         uint8_t burst_size_idx = 0;
130         uint32_t imix_idx = 0;
131
132         static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
133
134         if (ctx == NULL)
135                 return 0;
136
137         struct rte_crypto_op *ops[ctx->options->max_burst_size];
138         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
139         uint64_t i;
140         struct priv_op_data *priv_data;
141
142         uint32_t lcore = rte_lcore_id();
143
144 #ifdef CPERF_LINEARIZATION_ENABLE
145         struct rte_cryptodev_info dev_info;
146         int linearize = 0;
147
148         /* Check if source mbufs require coalescing */
149         if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
150                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
151                 if ((dev_info.feature_flags &
152                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
153                         linearize = 1;
154         }
155 #endif /* CPERF_LINEARIZATION_ENABLE */
156
157         ctx->lcore_id = lcore;
158
159         /* Warm up the host CPU before starting the test */
160         for (i = 0; i < ctx->options->total_ops; i++)
161                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
162
163         /* Get first size from range or list */
164         if (ctx->options->inc_burst_size != 0)
165                 test_burst_size = ctx->options->min_burst_size;
166         else
167                 test_burst_size = ctx->options->burst_size_list[0];
168
169         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
170                 sizeof(struct rte_crypto_sym_op) +
171                 sizeof(struct cperf_op_result *);
172
173         while (test_burst_size <= ctx->options->max_burst_size) {
174                 uint64_t ops_enqd = 0, ops_deqd = 0;
175                 uint64_t b_idx = 0;
176
177                 uint64_t tsc_val, tsc_end, tsc_start;
178                 uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
179                 uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
180                 uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;
181
182                 while (enqd_tot < ctx->options->total_ops) {
183
184                         uint16_t burst_size = ((enqd_tot + test_burst_size)
185                                         <= ctx->options->total_ops) ?
186                                                         test_burst_size :
187                                                         ctx->options->total_ops -
188                                                         enqd_tot;
189
190                         /* Allocate objects containing crypto operations and mbufs */
191                         if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
192                                                 burst_size) != 0) {
193                                 RTE_LOG(ERR, USER1,
194                                         "Failed to allocate more crypto operations "
195                                         "from the crypto operation pool.\n"
196                                         "Consider increasing the pool size "
197                                         "with --pool-sz\n");
198                                 return -1;
199                         }
200
201                         /* Setup crypto op, attach mbuf etc */
202                         (ctx->populate_ops)(ops, ctx->src_buf_offset,
203                                         ctx->dst_buf_offset,
204                                         burst_size, ctx->sess, ctx->options,
205                                         ctx->test_vector, iv_offset,
206                                         &imix_idx);
207
208                         tsc_start = rte_rdtsc_precise();
209
210 #ifdef CPERF_LINEARIZATION_ENABLE
211                         if (linearize) {
212                                 /* PMD doesn't support scatter-gather and source buffer
213                                  * is segmented.
214                                  * We need to linearize it before enqueuing.
215                                  */
216                                 for (i = 0; i < burst_size; i++)
217                                         rte_pktmbuf_linearize(ops[i]->sym->m_src);
218                         }
219 #endif /* CPERF_LINEARIZATION_ENABLE */
220
221                         /* Enqueue burst of ops on crypto device */
222                         ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
223                                         ops, burst_size);
224
225                         /* Dequeue processed burst of ops from crypto device */
226                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
227                                         ops_processed, test_burst_size);
228
229                         tsc_end = rte_rdtsc_precise();
230
231                         /* Free memory for not enqueued operations */
232                         if (ops_enqd != burst_size)
233                                 rte_mempool_put_bulk(ctx->pool,
234                                                 (void **)&ops[ops_enqd],
235                                                 burst_size - ops_enqd);
236
237                         for (i = 0; i < ops_enqd; i++) {
238                                 ctx->res[tsc_idx].tsc_start = tsc_start;
239                                 /*
240                                  * Private data structure starts after the end of the
241                                  * rte_crypto_sym_op structure.
242                                  */
243                                 priv_data = (struct priv_op_data *) (ops[i]->sym + 1);
244                                 priv_data->result = (void *)&ctx->res[tsc_idx];
245                                 tsc_idx++;
246                         }
247
248                         if (likely(ops_deqd))  {
249                                 /* Free crypto ops so they can be reused. */
250                                 for (i = 0; i < ops_deqd; i++)
251                                         store_timestamp(ops_processed[i], tsc_end);
252
253                                 rte_mempool_put_bulk(ctx->pool,
254                                                 (void **)ops_processed, ops_deqd);
255
256                                 deqd_tot += ops_deqd;
257                                 deqd_max = max(ops_deqd, deqd_max);
258                                 deqd_min = min(ops_deqd, deqd_min);
259                         }
260
261                         enqd_tot += ops_enqd;
262                         enqd_max = max(ops_enqd, enqd_max);
263                         enqd_min = min(ops_enqd, enqd_min);
264
265                         b_idx++;
266                 }
267
268                 /* Dequeue any operations still in the crypto device */
269                 while (deqd_tot < ctx->options->total_ops) {
270                         /* Sending 0 length burst to flush sw crypto device */
271                         rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
272
273                         /* dequeue burst */
274                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
275                                         ops_processed, test_burst_size);
276
277                         tsc_end = rte_rdtsc_precise();
278
279                         if (ops_deqd != 0) {
280                                 for (i = 0; i < ops_deqd; i++)
281                                         store_timestamp(ops_processed[i], tsc_end);
282
283                                 rte_mempool_put_bulk(ctx->pool,
284                                                 (void **)ops_processed, ops_deqd);
285
286                                 deqd_tot += ops_deqd;
287                                 deqd_max = max(ops_deqd, deqd_max);
288                                 deqd_min = min(ops_deqd, deqd_min);
289                         }
290                 }
291
292                 for (i = 0; i < tsc_idx; i++) {
293                         tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
294                         tsc_max = max(tsc_val, tsc_max);
295                         tsc_min = min(tsc_val, tsc_min);
296                         tsc_tot += tsc_val;
297                 }
298
299                 double time_tot, time_avg, time_max, time_min;
300
301                 const uint64_t tunit = 1000000; /* us */
302                 const uint64_t tsc_hz = rte_get_tsc_hz();
303
304                 uint64_t enqd_avg = enqd_tot / b_idx;
305                 uint64_t deqd_avg = deqd_tot / b_idx;
306                 uint64_t tsc_avg = tsc_tot / tsc_idx;
307
308                 time_tot = tunit*(double)(tsc_tot) / tsc_hz;
309                 time_avg = tunit*(double)(tsc_avg) / tsc_hz;
310                 time_max = tunit*(double)(tsc_max) / tsc_hz;
311                 time_min = tunit*(double)(tsc_min) / tsc_hz;
312
313                 if (ctx->options->csv) {
314                         if (rte_atomic16_test_and_set(&display_once))
315                                 printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
316                                                 "Packet Size, cycles, time (us)");
317
318                         for (i = 0; i < ctx->options->total_ops; i++) {
319
320                                 printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f",
321                                         ctx->lcore_id, ctx->options->test_buffer_size,
322                                         test_burst_size, i + 1,
323                                         ctx->res[i].tsc_end - ctx->res[i].tsc_start,
324                                         tunit * (double) (ctx->res[i].tsc_end
325                                                         - ctx->res[i].tsc_start)
326                                                 / tsc_hz);
327
328                         }
329                 } else {
330                         printf("\n# Device %d on lcore %u\n", ctx->dev_id,
331                                 ctx->lcore_id);
332                         printf("\n# total operations: %u", ctx->options->total_ops);
333                         printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
334                         printf("\n# Burst size: %u", test_burst_size);
335                         printf("\n#     Number of bursts: %"PRIu64,
336                                         b_idx);
337
338                         printf("\n#");
339                         printf("\n#          \t       Total\t   Average\t   "
340                                         "Maximum\t   Minimum");
341                         printf("\n#  enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
342                                         "%10"PRIu64"\t%10"PRIu64, enqd_tot,
343                                         enqd_avg, enqd_max, enqd_min);
344                         printf("\n#  dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
345                                         "%10"PRIu64"\t%10"PRIu64, deqd_tot,
346                                         deqd_avg, deqd_max, deqd_min);
347                         printf("\n#    cycles\t%12"PRIu64"\t%10"PRIu64"\t"
348                                         "%10"PRIu64"\t%10"PRIu64, tsc_tot,
349                                         tsc_avg, tsc_max, tsc_min);
350                         printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
351                                         time_tot, time_avg, time_max, time_min);
352                         printf("\n\n");
353
354                 }
355
356                 /* Get next size from range or list */
357                 if (ctx->options->inc_burst_size != 0)
358                         test_burst_size += ctx->options->inc_burst_size;
359                 else {
360                         if (++burst_size_idx == ctx->options->burst_size_count)
361                                 break;
362                         test_burst_size =
363                                 ctx->options->burst_size_list[burst_size_idx];
364                 }
365         }
366
367         return 0;
368 }
369
370 void
371 cperf_latency_test_destructor(void *arg)
372 {
373         struct cperf_latency_ctx *ctx = arg;
374
375         if (ctx == NULL)
376                 return;
377
378         cperf_latency_test_free(ctx);
379 }