8565d0836124d7e8af20beabbc5cc6a6772df576
[dpdk.git] / app / test-crypto-perf / cperf_test_latency.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9
10 #include "cperf_test_latency.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13
14 struct cperf_op_result {
15         uint64_t tsc_start;
16         uint64_t tsc_end;
17         enum rte_crypto_op_status status;
18 };
19
20 struct cperf_latency_ctx {
21         uint8_t dev_id;
22         uint16_t qp_id;
23         uint8_t lcore_id;
24
25         struct rte_mempool *pool;
26
27         struct rte_cryptodev_sym_session *sess;
28
29         cperf_populate_ops_t populate_ops;
30
31         uint32_t src_buf_offset;
32         uint32_t dst_buf_offset;
33
34         const struct cperf_options *options;
35         const struct cperf_test_vector *test_vector;
36         struct cperf_op_result *res;
37 };
38
39 struct priv_op_data {
40         struct cperf_op_result *result;
41 };
42
43 #define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b)
44 #define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b)
45
46 static void
47 cperf_latency_test_free(struct cperf_latency_ctx *ctx)
48 {
49         if (ctx) {
50                 if (ctx->sess) {
51                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
52                         rte_cryptodev_sym_session_free(ctx->sess);
53                 }
54
55                 if (ctx->pool)
56                         rte_mempool_free(ctx->pool);
57
58                 rte_free(ctx->res);
59                 rte_free(ctx);
60         }
61 }
62
63 void *
64 cperf_latency_test_constructor(struct rte_mempool *sess_mp,
65                 uint8_t dev_id, uint16_t qp_id,
66                 const struct cperf_options *options,
67                 const struct cperf_test_vector *test_vector,
68                 const struct cperf_op_fns *op_fns)
69 {
70         struct cperf_latency_ctx *ctx = NULL;
71         size_t extra_op_priv_size = sizeof(struct priv_op_data);
72
73         ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
74         if (ctx == NULL)
75                 goto err;
76
77         ctx->dev_id = dev_id;
78         ctx->qp_id = qp_id;
79
80         ctx->populate_ops = op_fns->populate_ops;
81         ctx->options = options;
82         ctx->test_vector = test_vector;
83
84         /* IV goes at the end of the crypto operation */
85         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
86                 sizeof(struct rte_crypto_sym_op) +
87                 sizeof(struct cperf_op_result *);
88
89         ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
90                         iv_offset);
91         if (ctx->sess == NULL)
92                 goto err;
93
94         if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id,
95                         extra_op_priv_size,
96                         &ctx->src_buf_offset, &ctx->dst_buf_offset,
97                         &ctx->pool) < 0)
98                 goto err;
99
100         ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
101                         ctx->options->total_ops, 0);
102
103         if (ctx->res == NULL)
104                 goto err;
105
106         return ctx;
107 err:
108         cperf_latency_test_free(ctx);
109
110         return NULL;
111 }
112
113 static inline void
114 store_timestamp(struct rte_crypto_op *op, uint64_t timestamp)
115 {
116         struct priv_op_data *priv_data;
117
118         priv_data = (struct priv_op_data *) (op->sym + 1);
119         priv_data->result->status = op->status;
120         priv_data->result->tsc_end = timestamp;
121 }
122
123 int
124 cperf_latency_test_runner(void *arg)
125 {
126         struct cperf_latency_ctx *ctx = arg;
127         uint16_t test_burst_size;
128         uint8_t burst_size_idx = 0;
129
130         static int only_once;
131
132         if (ctx == NULL)
133                 return 0;
134
135         struct rte_crypto_op *ops[ctx->options->max_burst_size];
136         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
137         uint64_t i;
138         struct priv_op_data *priv_data;
139
140         uint32_t lcore = rte_lcore_id();
141
142 #ifdef CPERF_LINEARIZATION_ENABLE
143         struct rte_cryptodev_info dev_info;
144         int linearize = 0;
145
146         /* Check if source mbufs require coalescing */
147         if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
148                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
149                 if ((dev_info.feature_flags &
150                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
151                         linearize = 1;
152         }
153 #endif /* CPERF_LINEARIZATION_ENABLE */
154
155         ctx->lcore_id = lcore;
156
157         /* Warm up the host CPU before starting the test */
158         for (i = 0; i < ctx->options->total_ops; i++)
159                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
160
161         /* Get first size from range or list */
162         if (ctx->options->inc_burst_size != 0)
163                 test_burst_size = ctx->options->min_burst_size;
164         else
165                 test_burst_size = ctx->options->burst_size_list[0];
166
167         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
168                 sizeof(struct rte_crypto_sym_op) +
169                 sizeof(struct cperf_op_result *);
170
171         while (test_burst_size <= ctx->options->max_burst_size) {
172                 uint64_t ops_enqd = 0, ops_deqd = 0;
173                 uint64_t b_idx = 0;
174
175                 uint64_t tsc_val, tsc_end, tsc_start;
176                 uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
177                 uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
178                 uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;
179
180                 while (enqd_tot < ctx->options->total_ops) {
181
182                         uint16_t burst_size = ((enqd_tot + test_burst_size)
183                                         <= ctx->options->total_ops) ?
184                                                         test_burst_size :
185                                                         ctx->options->total_ops -
186                                                         enqd_tot;
187
188                         /* Allocate objects containing crypto operations and mbufs */
189                         if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
190                                                 burst_size) != 0) {
191                                 RTE_LOG(ERR, USER1,
192                                         "Failed to allocate more crypto operations "
193                                         "from the crypto operation pool.\n"
194                                         "Consider increasing the pool size "
195                                         "with --pool-sz\n");
196                                 return -1;
197                         }
198
199                         /* Setup crypto op, attach mbuf etc */
200                         (ctx->populate_ops)(ops, ctx->src_buf_offset,
201                                         ctx->dst_buf_offset,
202                                         burst_size, ctx->sess, ctx->options,
203                                         ctx->test_vector, iv_offset);
204
205                         tsc_start = rte_rdtsc_precise();
206
207 #ifdef CPERF_LINEARIZATION_ENABLE
208                         if (linearize) {
209                                 /* PMD doesn't support scatter-gather and source buffer
210                                  * is segmented.
211                                  * We need to linearize it before enqueuing.
212                                  */
213                                 for (i = 0; i < burst_size; i++)
214                                         rte_pktmbuf_linearize(ops[i]->sym->m_src);
215                         }
216 #endif /* CPERF_LINEARIZATION_ENABLE */
217
218                         /* Enqueue burst of ops on crypto device */
219                         ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
220                                         ops, burst_size);
221
222                         /* Dequeue processed burst of ops from crypto device */
223                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
224                                         ops_processed, test_burst_size);
225
226                         tsc_end = rte_rdtsc_precise();
227
228                         /* Free memory for not enqueued operations */
229                         if (ops_enqd != burst_size)
230                                 rte_mempool_put_bulk(ctx->pool,
231                                                 (void **)&ops[ops_enqd],
232                                                 burst_size - ops_enqd);
233
234                         for (i = 0; i < ops_enqd; i++) {
235                                 ctx->res[tsc_idx].tsc_start = tsc_start;
236                                 /*
237                                  * Private data structure starts after the end of the
238                                  * rte_crypto_sym_op structure.
239                                  */
240                                 priv_data = (struct priv_op_data *) (ops[i]->sym + 1);
241                                 priv_data->result = (void *)&ctx->res[tsc_idx];
242                                 tsc_idx++;
243                         }
244
245                         if (likely(ops_deqd))  {
246                                 /* Free crypto ops so they can be reused. */
247                                 for (i = 0; i < ops_deqd; i++)
248                                         store_timestamp(ops_processed[i], tsc_end);
249
250                                 rte_mempool_put_bulk(ctx->pool,
251                                                 (void **)ops_processed, ops_deqd);
252
253                                 deqd_tot += ops_deqd;
254                                 deqd_max = max(ops_deqd, deqd_max);
255                                 deqd_min = min(ops_deqd, deqd_min);
256                         }
257
258                         enqd_tot += ops_enqd;
259                         enqd_max = max(ops_enqd, enqd_max);
260                         enqd_min = min(ops_enqd, enqd_min);
261
262                         b_idx++;
263                 }
264
265                 /* Dequeue any operations still in the crypto device */
266                 while (deqd_tot < ctx->options->total_ops) {
267                         /* Sending 0 length burst to flush sw crypto device */
268                         rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
269
270                         /* dequeue burst */
271                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
272                                         ops_processed, test_burst_size);
273
274                         tsc_end = rte_rdtsc_precise();
275
276                         if (ops_deqd != 0) {
277                                 for (i = 0; i < ops_deqd; i++)
278                                         store_timestamp(ops_processed[i], tsc_end);
279
280                                 rte_mempool_put_bulk(ctx->pool,
281                                                 (void **)ops_processed, ops_deqd);
282
283                                 deqd_tot += ops_deqd;
284                                 deqd_max = max(ops_deqd, deqd_max);
285                                 deqd_min = min(ops_deqd, deqd_min);
286                         }
287                 }
288
289                 for (i = 0; i < tsc_idx; i++) {
290                         tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
291                         tsc_max = max(tsc_val, tsc_max);
292                         tsc_min = min(tsc_val, tsc_min);
293                         tsc_tot += tsc_val;
294                 }
295
296                 double time_tot, time_avg, time_max, time_min;
297
298                 const uint64_t tunit = 1000000; /* us */
299                 const uint64_t tsc_hz = rte_get_tsc_hz();
300
301                 uint64_t enqd_avg = enqd_tot / b_idx;
302                 uint64_t deqd_avg = deqd_tot / b_idx;
303                 uint64_t tsc_avg = tsc_tot / tsc_idx;
304
305                 time_tot = tunit*(double)(tsc_tot) / tsc_hz;
306                 time_avg = tunit*(double)(tsc_avg) / tsc_hz;
307                 time_max = tunit*(double)(tsc_max) / tsc_hz;
308                 time_min = tunit*(double)(tsc_min) / tsc_hz;
309
310                 if (ctx->options->csv) {
311                         if (!only_once)
312                                 printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
313                                                 "Packet Size, cycles, time (us)");
314
315                         for (i = 0; i < ctx->options->total_ops; i++) {
316
317                                 printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f",
318                                         ctx->lcore_id, ctx->options->test_buffer_size,
319                                         test_burst_size, i + 1,
320                                         ctx->res[i].tsc_end - ctx->res[i].tsc_start,
321                                         tunit * (double) (ctx->res[i].tsc_end
322                                                         - ctx->res[i].tsc_start)
323                                                 / tsc_hz);
324
325                         }
326                         only_once = 1;
327                 } else {
328                         printf("\n# Device %d on lcore %u\n", ctx->dev_id,
329                                 ctx->lcore_id);
330                         printf("\n# total operations: %u", ctx->options->total_ops);
331                         printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
332                         printf("\n# Burst size: %u", test_burst_size);
333                         printf("\n#     Number of bursts: %"PRIu64,
334                                         b_idx);
335
336                         printf("\n#");
337                         printf("\n#          \t       Total\t   Average\t   "
338                                         "Maximum\t   Minimum");
339                         printf("\n#  enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
340                                         "%10"PRIu64"\t%10"PRIu64, enqd_tot,
341                                         enqd_avg, enqd_max, enqd_min);
342                         printf("\n#  dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
343                                         "%10"PRIu64"\t%10"PRIu64, deqd_tot,
344                                         deqd_avg, deqd_max, deqd_min);
345                         printf("\n#    cycles\t%12"PRIu64"\t%10"PRIu64"\t"
346                                         "%10"PRIu64"\t%10"PRIu64, tsc_tot,
347                                         tsc_avg, tsc_max, tsc_min);
348                         printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
349                                         time_tot, time_avg, time_max, time_min);
350                         printf("\n\n");
351
352                 }
353
354                 /* Get next size from range or list */
355                 if (ctx->options->inc_burst_size != 0)
356                         test_burst_size += ctx->options->inc_burst_size;
357                 else {
358                         if (++burst_size_idx == ctx->options->burst_size_count)
359                                 break;
360                         test_burst_size =
361                                 ctx->options->burst_size_list[burst_size_idx];
362                 }
363         }
364
365         return 0;
366 }
367
368 void
369 cperf_latency_test_destructor(void *arg)
370 {
371         struct cperf_latency_ctx *ctx = arg;
372
373         if (ctx == NULL)
374                 return;
375
376         cperf_latency_test_free(ctx);
377 }