0c949f0925d7c8e97a8c9ea9fcc303324a56268e
[dpdk.git] / app / test-crypto-perf / cperf_test_pmd_cyclecount.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <stdbool.h>
34
35 #include <rte_crypto.h>
36 #include <rte_cryptodev.h>
37 #include <rte_cycles.h>
38 #include <rte_malloc.h>
39
40 #include "cperf_ops.h"
41 #include "cperf_test_pmd_cyclecount.h"
42
43 #define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
44 #define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
45 #define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
46 #define CSV_LINE_FMT "%10u;%10u;%u;%u;%u;%u;%u;%.f3;%.f3;%.f3\n"
47
48 struct cperf_pmd_cyclecount_ctx {
49         uint8_t dev_id;
50         uint16_t qp_id;
51         uint8_t lcore_id;
52
53         struct rte_mempool *pkt_mbuf_pool_in;
54         struct rte_mempool *pkt_mbuf_pool_out;
55         struct rte_mbuf **mbufs_in;
56         struct rte_mbuf **mbufs_out;
57
58         struct rte_mempool *crypto_op_pool;
59         struct rte_crypto_op **ops;
60         struct rte_crypto_op **ops_processed;
61
62         struct rte_cryptodev_sym_session *sess;
63
64         cperf_populate_ops_t populate_ops;
65
66         const struct cperf_options *options;
67         const struct cperf_test_vector *test_vector;
68 };
69
70 struct pmd_cyclecount_state {
71         struct cperf_pmd_cyclecount_ctx *ctx;
72         const struct cperf_options *opts;
73         uint32_t lcore;
74         uint64_t delay;
75         int linearize;
76         uint32_t ops_enqd;
77         uint32_t ops_deqd;
78         uint32_t ops_enq_retries;
79         uint32_t ops_deq_retries;
80         double cycles_per_build;
81         double cycles_per_enq;
82         double cycles_per_deq;
83 };
84
85 static const uint16_t iv_offset =
86                 sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
87
88 static void
89 cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx,
90                 uint32_t mbuf_nb)
91 {
92         uint32_t i;
93
94         if (ctx) {
95                 if (ctx->sess) {
96                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
97                         rte_cryptodev_sym_session_free(ctx->sess);
98                 }
99
100                 if (ctx->mbufs_in) {
101                         for (i = 0; i < mbuf_nb; i++)
102                                 rte_pktmbuf_free(ctx->mbufs_in[i]);
103
104                         rte_free(ctx->mbufs_in);
105                 }
106
107                 if (ctx->mbufs_out) {
108                         for (i = 0; i < mbuf_nb; i++) {
109                                 if (ctx->mbufs_out[i] != NULL)
110                                         rte_pktmbuf_free(ctx->mbufs_out[i]);
111                         }
112
113                         rte_free(ctx->mbufs_out);
114                 }
115
116                 if (ctx->pkt_mbuf_pool_in)
117                         rte_mempool_free(ctx->pkt_mbuf_pool_in);
118
119                 if (ctx->pkt_mbuf_pool_out)
120                         rte_mempool_free(ctx->pkt_mbuf_pool_out);
121
122                 if (ctx->ops)
123                         rte_free(ctx->ops);
124
125                 if (ctx->ops_processed)
126                         rte_free(ctx->ops_processed);
127
128                 if (ctx->crypto_op_pool)
129                         rte_mempool_free(ctx->crypto_op_pool);
130
131                 rte_free(ctx);
132         }
133 }
134
135 static struct rte_mbuf *
136 cperf_mbuf_create(struct rte_mempool *mempool, uint32_t segments_nb,
137                 const struct cperf_options *options,
138                 const struct cperf_test_vector *test_vector)
139 {
140         struct rte_mbuf *mbuf;
141         uint32_t segment_sz = options->max_buffer_size / segments_nb;
142         uint32_t last_sz = options->max_buffer_size % segments_nb;
143         uint8_t *mbuf_data;
144         uint8_t *test_data =
145                         (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
146                         test_vector->plaintext.data :
147                         test_vector->ciphertext.data;
148
149         mbuf = rte_pktmbuf_alloc(mempool);
150         if (mbuf == NULL)
151                 goto error;
152
153         mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
154         if (mbuf_data == NULL)
155                 goto error;
156
157         memcpy(mbuf_data, test_data, segment_sz);
158         test_data += segment_sz;
159         segments_nb--;
160
161         while (segments_nb) {
162                 struct rte_mbuf *m;
163
164                 m = rte_pktmbuf_alloc(mempool);
165                 if (m == NULL)
166                         goto error;
167
168                 rte_pktmbuf_chain(mbuf, m);
169
170                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
171                 if (mbuf_data == NULL)
172                         goto error;
173
174                 memcpy(mbuf_data, test_data, segment_sz);
175                 test_data += segment_sz;
176                 segments_nb--;
177         }
178
179         if (last_sz) {
180                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
181                 if (mbuf_data == NULL)
182                         goto error;
183
184                 memcpy(mbuf_data, test_data, last_sz);
185         }
186
187         if (options->op_type != CPERF_CIPHER_ONLY) {
188                 mbuf_data = (uint8_t *)rte_pktmbuf_append(
189                                 mbuf, options->digest_sz);
190                 if (mbuf_data == NULL)
191                         goto error;
192         }
193
194         if (options->op_type == CPERF_AEAD) {
195                 uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(
196                                 mbuf, RTE_ALIGN_CEIL(options->aead_aad_sz, 16));
197
198                 if (aead == NULL)
199                         goto error;
200
201                 memcpy(aead, test_vector->aad.data, test_vector->aad.length);
202         }
203
204         return mbuf;
205 error:
206         if (mbuf != NULL)
207                 rte_pktmbuf_free(mbuf);
208
209         return NULL;
210 }
211
212 void *
213 cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
214                 uint8_t dev_id, uint16_t qp_id,
215                 const struct cperf_options *options,
216                 const struct cperf_test_vector *test_vector,
217                 const struct cperf_op_fns *op_fns)
218 {
219         struct cperf_pmd_cyclecount_ctx *ctx = NULL;
220         unsigned int mbuf_idx = 0;
221         char pool_name[32] = "";
222         uint16_t dataroom_sz = RTE_PKTMBUF_HEADROOM +
223                         RTE_CACHE_LINE_ROUNDUP(
224                                         (options->max_buffer_size /
225                                                         options->segments_nb) +
226                                         (options->max_buffer_size %
227                                                         options->segments_nb) +
228                                         options->digest_sz);
229
230         /* preallocate buffers for crypto ops as they can get quite big */
231         size_t alloc_sz = sizeof(struct rte_crypto_op *) *
232                         options->nb_descriptors;
233
234         ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
235         if (ctx == NULL)
236                 goto err;
237
238         ctx->dev_id = dev_id;
239         ctx->qp_id = qp_id;
240
241         ctx->populate_ops = op_fns->populate_ops;
242         ctx->options = options;
243         ctx->test_vector = test_vector;
244
245         /* IV goes at the end of the crypto operation */
246         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
247                         sizeof(struct rte_crypto_sym_op);
248
249         ctx->sess = op_fns->sess_create(
250                         sess_mp, dev_id, options, test_vector, iv_offset);
251         if (ctx->sess == NULL)
252                 goto err;
253
254         snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d", dev_id);
255
256         ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
257                         options->pool_sz * options->segments_nb, 0, 0,
258                         dataroom_sz, rte_socket_id());
259
260         if (ctx->pkt_mbuf_pool_in == NULL)
261                 goto err;
262
263         /* Generate mbufs_in with plaintext populated for test */
264         ctx->mbufs_in = rte_malloc(NULL,
265                         (sizeof(struct rte_mbuf *) * options->pool_sz), 0);
266
267         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
268                 ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
269                                 ctx->pkt_mbuf_pool_in, options->segments_nb,
270                                 options, test_vector);
271                 if (ctx->mbufs_in[mbuf_idx] == NULL)
272                         goto err;
273         }
274
275         if (options->out_of_place == 1) {
276                 snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
277                                 dev_id);
278
279                 ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(pool_name,
280                                 options->pool_sz, 0, 0, dataroom_sz,
281                                 rte_socket_id());
282
283                 if (ctx->pkt_mbuf_pool_out == NULL)
284                         goto err;
285         }
286
287         ctx->mbufs_out = rte_malloc(NULL,
288                         (sizeof(struct rte_mbuf *) * options->pool_sz), 0);
289
290         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
291                 if (options->out_of_place == 1) {
292                         ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
293                                         ctx->pkt_mbuf_pool_out, 1, options,
294                                         test_vector);
295                         if (ctx->mbufs_out[mbuf_idx] == NULL)
296                                 goto err;
297                 } else {
298                         ctx->mbufs_out[mbuf_idx] = NULL;
299                 }
300         }
301
302         snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d", dev_id);
303
304         uint16_t priv_size = test_vector->cipher_iv.length +
305                         test_vector->auth_iv.length +
306                         test_vector->aead_iv.length;
307
308         ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
309                         RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz, 512,
310                         priv_size, rte_socket_id());
311         if (ctx->crypto_op_pool == NULL)
312                 goto err;
313
314         ctx->ops = rte_malloc("ops", alloc_sz, 0);
315         if (!ctx->ops)
316                 goto err;
317
318         ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
319         if (!ctx->ops_processed)
320                 goto err;
321
322         return ctx;
323
324 err:
325         cperf_pmd_cyclecount_test_free(ctx, mbuf_idx);
326
327         return NULL;
328 }
329
330 /* benchmark alloc-build-free of ops */
331 static inline int
332 pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
333                 uint16_t test_burst_size)
334 {
335         uint32_t iter_ops_left = state->opts->total_ops - cur_op;
336         uint32_t iter_ops_needed =
337                         RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
338         uint32_t cur_iter_op;
339
340         for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
341                         cur_iter_op += test_burst_size) {
342                 uint32_t burst_size = RTE_MIN(state->opts->total_ops - cur_op,
343                                 test_burst_size);
344                 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
345
346                 if (burst_size != rte_crypto_op_bulk_alloc(
347                                 state->ctx->crypto_op_pool,
348                                 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
349                                 ops, burst_size))
350                         return -1;
351
352                 /* Setup crypto op, attach mbuf etc */
353                 (state->ctx->populate_ops)(ops,
354                                 &state->ctx->mbufs_in[cur_iter_op],
355                                 &state->ctx->mbufs_out[cur_iter_op], burst_size,
356                                 state->ctx->sess, state->opts,
357                                 state->ctx->test_vector, iv_offset);
358
359 #ifdef CPERF_LINEARIZATION_ENABLE
360                 /* Check if source mbufs require coalescing */
361                 if (state->linearize) {
362                         uint8_t i;
363                         for (i = 0; i < burst_size; i++) {
364                                 struct rte_mbuf *src = ops[i]->sym->m_src;
365                                 rte_pktmbuf_linearize(src);
366                         }
367                 }
368 #endif /* CPERF_LINEARIZATION_ENABLE */
369                 rte_mempool_put_bulk(state->ctx->crypto_op_pool, (void **)ops,
370                                 burst_size);
371         }
372
373         return 0;
374 }
375
376 /* allocate and build ops (no free) */
377 static int
378 pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
379                 uint32_t iter_ops_needed, uint16_t test_burst_size)
380 {
381         uint32_t cur_iter_op;
382
383         for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
384                         cur_iter_op += test_burst_size) {
385                 uint32_t burst_size = RTE_MIN(
386                                 iter_ops_needed - cur_iter_op, test_burst_size);
387                 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
388
389                 if (burst_size != rte_crypto_op_bulk_alloc(
390                                 state->ctx->crypto_op_pool,
391                                 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
392                                 ops, burst_size))
393                         return -1;
394
395                 /* Setup crypto op, attach mbuf etc */
396                 (state->ctx->populate_ops)(ops,
397                                 &state->ctx->mbufs_in[cur_iter_op],
398                                 &state->ctx->mbufs_out[cur_iter_op], burst_size,
399                                 state->ctx->sess, state->opts,
400                                 state->ctx->test_vector, iv_offset);
401         }
402         return 0;
403 }
404
405 /* benchmark enqueue, returns number of ops enqueued */
406 static uint32_t
407 pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
408                 uint32_t iter_ops_needed, uint16_t test_burst_size)
409 {
410         /* Enqueue full descriptor ring of ops on crypto device */
411         uint32_t cur_iter_op = 0;
412         while (cur_iter_op < iter_ops_needed) {
413                 uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
414                                 test_burst_size);
415                 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
416                 uint32_t burst_enqd;
417
418                 burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
419                                 state->ctx->qp_id, ops, burst_size);
420
421                 /* if we couldn't enqueue anything, the queue is full */
422                 if (!burst_enqd) {
423                         /* don't try to dequeue anything we didn't enqueue */
424                         return cur_iter_op;
425                 }
426
427                 if (burst_enqd < burst_size)
428                         state->ops_enq_retries++;
429                 state->ops_enqd += burst_enqd;
430                 cur_iter_op += burst_enqd;
431         }
432         return iter_ops_needed;
433 }
434
435 /* benchmark dequeue */
436 static void
437 pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
438                 uint32_t iter_ops_needed, uint16_t test_burst_size)
439 {
440         /* Dequeue full descriptor ring of ops on crypto device */
441         uint32_t cur_iter_op = 0;
442         while (cur_iter_op < iter_ops_needed) {
443                 uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
444                                 test_burst_size);
445                 struct rte_crypto_op **ops_processed =
446                                 &state->ctx->ops[cur_iter_op];
447                 uint32_t burst_deqd;
448
449                 burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
450                                 state->ctx->qp_id, ops_processed, burst_size);
451
452                 if (burst_deqd < burst_size)
453                         state->ops_deq_retries++;
454                 state->ops_deqd += burst_deqd;
455                 cur_iter_op += burst_deqd;
456         }
457 }
458
459 /* run benchmark per burst size */
460 static inline int
461 pmd_cyclecount_bench_burst_sz(
462                 struct pmd_cyclecount_state *state, uint16_t test_burst_size)
463 {
464         uint64_t tsc_start;
465         uint64_t tsc_end;
466         uint64_t tsc_op;
467         uint64_t tsc_enq;
468         uint64_t tsc_deq;
469         uint32_t cur_op;
470
471         /* reset all counters */
472         tsc_enq = 0;
473         tsc_deq = 0;
474         state->ops_enqd = 0;
475         state->ops_enq_retries = 0;
476         state->ops_deqd = 0;
477         state->ops_deq_retries = 0;
478
479         /*
480          * Benchmark crypto op alloc-build-free separately.
481          */
482         tsc_start = rte_rdtsc_precise();
483
484         for (cur_op = 0; cur_op < state->opts->total_ops;
485                         cur_op += state->opts->nb_descriptors) {
486                 if (unlikely(pmd_cyclecount_bench_ops(
487                                 state, cur_op, test_burst_size)))
488                         return -1;
489         }
490
491         tsc_end = rte_rdtsc_precise();
492         tsc_op = tsc_end - tsc_start;
493
494
495         /*
496          * Hardware acceleration cyclecount benchmarking loop.
497          *
498          * We're benchmarking raw enq/deq performance by filling up the device
499          * queue, so we never get any failed enqs unless the driver won't accept
500          * the exact number of descriptors we requested, or the driver won't
501          * wrap around the end of the TX ring. However, since we're only
502          * dequeueing once we've filled up the queue, we have to benchmark it
503          * piecemeal and then average out the results.
504          */
505         cur_op = 0;
506         while (cur_op < state->opts->total_ops) {
507                 uint32_t iter_ops_left = state->opts->total_ops - cur_op;
508                 uint32_t iter_ops_needed = RTE_MIN(
509                                 state->opts->nb_descriptors, iter_ops_left);
510                 uint32_t iter_ops_allocd = iter_ops_needed;
511
512                 /* allocate and build ops */
513                 if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
514                                 test_burst_size)))
515                         return -1;
516
517                 tsc_start = rte_rdtsc_precise();
518
519                 /* fill up TX ring */
520                 iter_ops_needed = pmd_cyclecount_bench_enq(state,
521                                 iter_ops_needed, test_burst_size);
522
523                 tsc_end = rte_rdtsc_precise();
524
525                 tsc_enq += tsc_end - tsc_start;
526
527                 /* allow for HW to catch up */
528                 if (state->delay)
529                         rte_delay_us_block(state->delay);
530
531                 tsc_start = rte_rdtsc_precise();
532
533                 /* drain RX ring */
534                 pmd_cyclecount_bench_deq(state, iter_ops_needed,
535                                 test_burst_size);
536
537                 tsc_end = rte_rdtsc_precise();
538
539                 tsc_deq += tsc_end - tsc_start;
540
541                 cur_op += iter_ops_needed;
542
543                 /*
544                  * we may not have processed all ops that we allocated, so
545                  * free everything we've allocated.
546                  */
547                 rte_mempool_put_bulk(state->ctx->crypto_op_pool,
548                                 (void **)state->ctx->ops, iter_ops_allocd);
549         }
550
551         state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
552         state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
553         state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
554
555         return 0;
556 }
557
558 int
559 cperf_pmd_cyclecount_test_runner(void *test_ctx)
560 {
561         struct pmd_cyclecount_state state = {0};
562         const struct cperf_options *opts;
563         uint16_t test_burst_size;
564         uint8_t burst_size_idx = 0;
565
566         state.ctx = test_ctx;
567         opts = state.ctx->options;
568         state.opts = opts;
569         state.lcore = rte_lcore_id();
570         state.linearize = 0;
571
572         static int only_once;
573         static bool warmup = true;
574
575         /*
576          * We need a small delay to allow for hardware to process all the crypto
577          * operations. We can't automatically figure out what the delay should
578          * be, so we leave it up to the user (by default it's 0).
579          */
580         state.delay = 1000 * opts->pmdcc_delay;
581
582 #ifdef CPERF_LINEARIZATION_ENABLE
583         struct rte_cryptodev_info dev_info;
584
585         /* Check if source mbufs require coalescing */
586         if (opts->segments_nb > 1) {
587                 rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
588                 if ((dev_info.feature_flags &
589                                     RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
590                                 0) {
591                         state.linearize = 1;
592                 }
593         }
594 #endif /* CPERF_LINEARIZATION_ENABLE */
595
596         state.ctx->lcore_id = state.lcore;
597
598         /* Get first size from range or list */
599         if (opts->inc_burst_size != 0)
600                 test_burst_size = opts->min_burst_size;
601         else
602                 test_burst_size = opts->burst_size_list[0];
603
604         while (test_burst_size <= opts->max_burst_size) {
605                 /* do a benchmark run */
606                 if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
607                         return -1;
608
609                 /*
610                  * First run is always a warm up run.
611                  */
612                 if (warmup) {
613                         warmup = false;
614                         continue;
615                 }
616
617                 if (!opts->csv) {
618                         if (!only_once)
619                                 printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
620                                                 "Burst Size", "Enqueued",
621                                                 "Dequeued", "Enq Retries",
622                                                 "Deq Retries", "Cycles/Op",
623                                                 "Cycles/Enq", "Cycles/Deq");
624                         only_once = 1;
625
626                         printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
627                                         opts->test_buffer_size, test_burst_size,
628                                         state.ops_enqd, state.ops_deqd,
629                                         state.ops_enq_retries,
630                                         state.ops_deq_retries,
631                                         state.cycles_per_build,
632                                         state.cycles_per_enq,
633                                         state.cycles_per_deq);
634                 } else {
635                         if (!only_once)
636                                 printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
637                                                 "Burst Size", "Enqueued",
638                                                 "Dequeued", "Enq Retries",
639                                                 "Deq Retries", "Cycles/Op",
640                                                 "Cycles/Enq", "Cycles/Deq");
641                         only_once = 1;
642
643                         printf(CSV_LINE_FMT, state.ctx->lcore_id,
644                                         opts->test_buffer_size, test_burst_size,
645                                         state.ops_enqd, state.ops_deqd,
646                                         state.ops_enq_retries,
647                                         state.ops_deq_retries,
648                                         state.cycles_per_build,
649                                         state.cycles_per_enq,
650                                         state.cycles_per_deq);
651                 }
652
653                 /* Get next size from range or list */
654                 if (opts->inc_burst_size != 0)
655                         test_burst_size += opts->inc_burst_size;
656                 else {
657                         if (++burst_size_idx == opts->burst_size_count)
658                                 break;
659                         test_burst_size = opts->burst_size_list[burst_size_idx];
660                 }
661         }
662
663         return 0;
664 }
665
666 void
667 cperf_pmd_cyclecount_test_destructor(void *arg)
668 {
669         struct cperf_pmd_cyclecount_ctx *ctx = arg;
670
671         if (ctx == NULL)
672                 return;
673
674         cperf_pmd_cyclecount_test_free(ctx, ctx->options->pool_sz);
675 }