972d52088fcc82d113b917de628a735fa630d648
[dpdk.git] / app / test-crypto-perf / cperf_test_throughput.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9
10 #include "cperf_test_throughput.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13
14 struct cperf_throughput_ctx {
15         uint8_t dev_id;
16         uint16_t qp_id;
17         uint8_t lcore_id;
18
19         struct rte_mempool *pool;
20
21         struct rte_cryptodev_sym_session *sess;
22
23         cperf_populate_ops_t populate_ops;
24
25         uint32_t src_buf_offset;
26         uint32_t dst_buf_offset;
27
28         const struct cperf_options *options;
29         const struct cperf_test_vector *test_vector;
30 };
31
32 static void
33 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
34 {
35         if (ctx) {
36                 if (ctx->sess) {
37                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
38                         rte_cryptodev_sym_session_free(ctx->sess);
39                 }
40
41                 if (ctx->pool)
42                         rte_mempool_free(ctx->pool);
43
44                 rte_free(ctx);
45         }
46 }
47
48 void *
49 cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
50                 struct rte_mempool *sess_priv_mp,
51                 uint8_t dev_id, uint16_t qp_id,
52                 const struct cperf_options *options,
53                 const struct cperf_test_vector *test_vector,
54                 const struct cperf_op_fns *op_fns)
55 {
56         struct cperf_throughput_ctx *ctx = NULL;
57
58         ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
59         if (ctx == NULL)
60                 goto err;
61
62         ctx->dev_id = dev_id;
63         ctx->qp_id = qp_id;
64
65         ctx->populate_ops = op_fns->populate_ops;
66         ctx->options = options;
67         ctx->test_vector = test_vector;
68
69         /* IV goes at the end of the crypto operation */
70         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
71                 sizeof(struct rte_crypto_sym_op);
72
73         ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
74                         test_vector, iv_offset);
75         if (ctx->sess == NULL)
76                 goto err;
77
78         if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
79                         &ctx->src_buf_offset, &ctx->dst_buf_offset,
80                         &ctx->pool) < 0)
81                 goto err;
82
83         return ctx;
84 err:
85         cperf_throughput_test_free(ctx);
86
87         return NULL;
88 }
89
90 int
91 cperf_throughput_test_runner(void *test_ctx)
92 {
93         struct cperf_throughput_ctx *ctx = test_ctx;
94         uint16_t test_burst_size;
95         uint8_t burst_size_idx = 0;
96         uint32_t imix_idx = 0;
97
98         static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
99
100         struct rte_crypto_op *ops[ctx->options->max_burst_size];
101         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
102         uint64_t i;
103
104         uint32_t lcore = rte_lcore_id();
105
106 #ifdef CPERF_LINEARIZATION_ENABLE
107         struct rte_cryptodev_info dev_info;
108         int linearize = 0;
109
110         /* Check if source mbufs require coalescing */
111         if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
112                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
113                 if ((dev_info.feature_flags &
114                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
115                         linearize = 1;
116         }
117 #endif /* CPERF_LINEARIZATION_ENABLE */
118
119         ctx->lcore_id = lcore;
120
121         /* Warm up the host CPU before starting the test */
122         for (i = 0; i < ctx->options->total_ops; i++)
123                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
124
125         /* Get first size from range or list */
126         if (ctx->options->inc_burst_size != 0)
127                 test_burst_size = ctx->options->min_burst_size;
128         else
129                 test_burst_size = ctx->options->burst_size_list[0];
130
131         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
132                 sizeof(struct rte_crypto_sym_op);
133
134         while (test_burst_size <= ctx->options->max_burst_size) {
135                 uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
136                 uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
137
138                 uint64_t tsc_start, tsc_end, tsc_duration;
139
140                 uint16_t ops_unused = 0;
141
142                 tsc_start = rte_rdtsc_precise();
143
144                 while (ops_enqd_total < ctx->options->total_ops) {
145
146                         uint16_t burst_size = ((ops_enqd_total + test_burst_size)
147                                         <= ctx->options->total_ops) ?
148                                                         test_burst_size :
149                                                         ctx->options->total_ops -
150                                                         ops_enqd_total;
151
152                         uint16_t ops_needed = burst_size - ops_unused;
153
154                         /* Allocate objects containing crypto operations and mbufs */
155                         if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
156                                                 ops_needed) != 0) {
157                                 RTE_LOG(ERR, USER1,
158                                         "Failed to allocate more crypto operations "
159                                         "from the crypto operation pool.\n"
160                                         "Consider increasing the pool size "
161                                         "with --pool-sz\n");
162                                 return -1;
163                         }
164
165                         /* Setup crypto op, attach mbuf etc */
166                         (ctx->populate_ops)(ops, ctx->src_buf_offset,
167                                         ctx->dst_buf_offset,
168                                         ops_needed, ctx->sess,
169                                         ctx->options, ctx->test_vector,
170                                         iv_offset, &imix_idx);
171
172                         /**
173                          * When ops_needed is smaller than ops_enqd, the
174                          * unused ops need to be moved to the front for
175                          * next round use.
176                          */
177                         if (unlikely(ops_enqd > ops_needed)) {
178                                 size_t nb_b_to_mov = ops_unused * sizeof(
179                                                 struct rte_crypto_op *);
180
181                                 memmove(&ops[ops_needed], &ops[ops_enqd],
182                                         nb_b_to_mov);
183                         }
184
185 #ifdef CPERF_LINEARIZATION_ENABLE
186                         if (linearize) {
187                                 /* PMD doesn't support scatter-gather and source buffer
188                                  * is segmented.
189                                  * We need to linearize it before enqueuing.
190                                  */
191                                 for (i = 0; i < burst_size; i++)
192                                         rte_pktmbuf_linearize(ops[i]->sym->m_src);
193                         }
194 #endif /* CPERF_LINEARIZATION_ENABLE */
195
196                         /* Enqueue burst of ops on crypto device */
197                         ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
198                                         ops, burst_size);
199                         if (ops_enqd < burst_size)
200                                 ops_enqd_failed++;
201
202                         /**
203                          * Calculate number of ops not enqueued (mainly for hw
204                          * accelerators whose ingress queue can fill up).
205                          */
206                         ops_unused = burst_size - ops_enqd;
207                         ops_enqd_total += ops_enqd;
208
209
210                         /* Dequeue processed burst of ops from crypto device */
211                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
212                                         ops_processed, test_burst_size);
213
214                         if (likely(ops_deqd))  {
215                                 /* Free crypto ops so they can be reused. */
216                                 rte_mempool_put_bulk(ctx->pool,
217                                                 (void **)ops_processed, ops_deqd);
218
219                                 ops_deqd_total += ops_deqd;
220                         } else {
221                                 /**
222                                  * Count dequeue polls which didn't return any
223                                  * processed operations. This statistic is mainly
224                                  * relevant to hw accelerators.
225                                  */
226                                 ops_deqd_failed++;
227                         }
228
229                 }
230
231                 /* Dequeue any operations still in the crypto device */
232
233                 while (ops_deqd_total < ctx->options->total_ops) {
234                         /* Sending 0 length burst to flush sw crypto device */
235                         rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
236
237                         /* dequeue burst */
238                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
239                                         ops_processed, test_burst_size);
240                         if (ops_deqd == 0)
241                                 ops_deqd_failed++;
242                         else {
243                                 rte_mempool_put_bulk(ctx->pool,
244                                                 (void **)ops_processed, ops_deqd);
245                                 ops_deqd_total += ops_deqd;
246                         }
247                 }
248
249                 tsc_end = rte_rdtsc_precise();
250                 tsc_duration = (tsc_end - tsc_start);
251
252                 /* Calculate average operations processed per second */
253                 double ops_per_second = ((double)ctx->options->total_ops /
254                                 tsc_duration) * rte_get_tsc_hz();
255
256                 /* Calculate average throughput (Gbps) in bits per second */
257                 double throughput_gbps = ((ops_per_second *
258                                 ctx->options->test_buffer_size * 8) / 1000000000);
259
260                 /* Calculate average cycles per packet */
261                 double cycles_per_packet = ((double)tsc_duration /
262                                 ctx->options->total_ops);
263
264                 if (!ctx->options->csv) {
265                         if (rte_atomic16_test_and_set(&display_once))
266                                 printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
267                                         "lcore id", "Buf Size", "Burst Size",
268                                         "Enqueued", "Dequeued", "Failed Enq",
269                                         "Failed Deq", "MOps", "Gbps",
270                                         "Cycles/Buf");
271
272                         printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
273                                         "%12"PRIu64"%12.4f%12.4f%12.2f\n",
274                                         ctx->lcore_id,
275                                         ctx->options->test_buffer_size,
276                                         test_burst_size,
277                                         ops_enqd_total,
278                                         ops_deqd_total,
279                                         ops_enqd_failed,
280                                         ops_deqd_failed,
281                                         ops_per_second/1000000,
282                                         throughput_gbps,
283                                         cycles_per_packet);
284                 } else {
285                         if (rte_atomic16_test_and_set(&display_once))
286                                 printf("#lcore id,Buffer Size(B),"
287                                         "Burst Size,Enqueued,Dequeued,Failed Enq,"
288                                         "Failed Deq,Ops(Millions),Throughput(Gbps),"
289                                         "Cycles/Buf\n\n");
290
291                         printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
292                                         "%.3f;%.3f;%.3f\n",
293                                         ctx->lcore_id,
294                                         ctx->options->test_buffer_size,
295                                         test_burst_size,
296                                         ops_enqd_total,
297                                         ops_deqd_total,
298                                         ops_enqd_failed,
299                                         ops_deqd_failed,
300                                         ops_per_second/1000000,
301                                         throughput_gbps,
302                                         cycles_per_packet);
303                 }
304
305                 /* Get next size from range or list */
306                 if (ctx->options->inc_burst_size != 0)
307                         test_burst_size += ctx->options->inc_burst_size;
308                 else {
309                         if (++burst_size_idx == ctx->options->burst_size_count)
310                                 break;
311                         test_burst_size = ctx->options->burst_size_list[burst_size_idx];
312                 }
313
314         }
315
316         return 0;
317 }
318
319
320 void
321 cperf_throughput_test_destructor(void *arg)
322 {
323         struct cperf_throughput_ctx *ctx = arg;
324
325         if (ctx == NULL)
326                 return;
327
328         cperf_throughput_test_free(ctx);
329 }