ethdev: extend flow metadata
[dpdk.git] / app / test-pmd / cmdline_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <cmdline_parse_string.h>
23 #include <cmdline_parse_num.h>
24 #include <rte_flow.h>
25 #include <rte_hexdump.h>
26
27 #include "testpmd.h"
28
29 /** Parser token indices. */
30 enum index {
31         /* Special tokens. */
32         ZERO = 0,
33         END,
34         START_SET,
35         END_SET,
36
37         /* Common tokens. */
38         INTEGER,
39         UNSIGNED,
40         PREFIX,
41         BOOLEAN,
42         STRING,
43         HEX,
44         MAC_ADDR,
45         IPV4_ADDR,
46         IPV6_ADDR,
47         RULE_ID,
48         PORT_ID,
49         GROUP_ID,
50         PRIORITY_LEVEL,
51
52         /* Top-level command. */
53         SET,
54         /* Sub-leve commands. */
55         SET_RAW_ENCAP,
56         SET_RAW_DECAP,
57         SET_RAW_INDEX,
58
59         /* Top-level command. */
60         FLOW,
61         /* Sub-level commands. */
62         VALIDATE,
63         CREATE,
64         DESTROY,
65         FLUSH,
66         QUERY,
67         LIST,
68         ISOLATE,
69
70         /* Destroy arguments. */
71         DESTROY_RULE,
72
73         /* Query arguments. */
74         QUERY_ACTION,
75
76         /* List arguments. */
77         LIST_GROUP,
78
79         /* Validate/create arguments. */
80         GROUP,
81         PRIORITY,
82         INGRESS,
83         EGRESS,
84         TRANSFER,
85
86         /* Validate/create pattern. */
87         PATTERN,
88         ITEM_PARAM_IS,
89         ITEM_PARAM_SPEC,
90         ITEM_PARAM_LAST,
91         ITEM_PARAM_MASK,
92         ITEM_PARAM_PREFIX,
93         ITEM_NEXT,
94         ITEM_END,
95         ITEM_VOID,
96         ITEM_INVERT,
97         ITEM_ANY,
98         ITEM_ANY_NUM,
99         ITEM_PF,
100         ITEM_VF,
101         ITEM_VF_ID,
102         ITEM_PHY_PORT,
103         ITEM_PHY_PORT_INDEX,
104         ITEM_PORT_ID,
105         ITEM_PORT_ID_ID,
106         ITEM_MARK,
107         ITEM_MARK_ID,
108         ITEM_RAW,
109         ITEM_RAW_RELATIVE,
110         ITEM_RAW_SEARCH,
111         ITEM_RAW_OFFSET,
112         ITEM_RAW_LIMIT,
113         ITEM_RAW_PATTERN,
114         ITEM_ETH,
115         ITEM_ETH_DST,
116         ITEM_ETH_SRC,
117         ITEM_ETH_TYPE,
118         ITEM_VLAN,
119         ITEM_VLAN_TCI,
120         ITEM_VLAN_PCP,
121         ITEM_VLAN_DEI,
122         ITEM_VLAN_VID,
123         ITEM_VLAN_INNER_TYPE,
124         ITEM_IPV4,
125         ITEM_IPV4_TOS,
126         ITEM_IPV4_TTL,
127         ITEM_IPV4_PROTO,
128         ITEM_IPV4_SRC,
129         ITEM_IPV4_DST,
130         ITEM_IPV6,
131         ITEM_IPV6_TC,
132         ITEM_IPV6_FLOW,
133         ITEM_IPV6_PROTO,
134         ITEM_IPV6_HOP,
135         ITEM_IPV6_SRC,
136         ITEM_IPV6_DST,
137         ITEM_ICMP,
138         ITEM_ICMP_TYPE,
139         ITEM_ICMP_CODE,
140         ITEM_UDP,
141         ITEM_UDP_SRC,
142         ITEM_UDP_DST,
143         ITEM_TCP,
144         ITEM_TCP_SRC,
145         ITEM_TCP_DST,
146         ITEM_TCP_FLAGS,
147         ITEM_SCTP,
148         ITEM_SCTP_SRC,
149         ITEM_SCTP_DST,
150         ITEM_SCTP_TAG,
151         ITEM_SCTP_CKSUM,
152         ITEM_VXLAN,
153         ITEM_VXLAN_VNI,
154         ITEM_E_TAG,
155         ITEM_E_TAG_GRP_ECID_B,
156         ITEM_NVGRE,
157         ITEM_NVGRE_TNI,
158         ITEM_MPLS,
159         ITEM_MPLS_LABEL,
160         ITEM_MPLS_TC,
161         ITEM_MPLS_S,
162         ITEM_GRE,
163         ITEM_GRE_PROTO,
164         ITEM_GRE_C_RSVD0_VER,
165         ITEM_GRE_C_BIT,
166         ITEM_GRE_K_BIT,
167         ITEM_GRE_S_BIT,
168         ITEM_FUZZY,
169         ITEM_FUZZY_THRESH,
170         ITEM_GTP,
171         ITEM_GTP_TEID,
172         ITEM_GTPC,
173         ITEM_GTPU,
174         ITEM_GENEVE,
175         ITEM_GENEVE_VNI,
176         ITEM_GENEVE_PROTO,
177         ITEM_VXLAN_GPE,
178         ITEM_VXLAN_GPE_VNI,
179         ITEM_ARP_ETH_IPV4,
180         ITEM_ARP_ETH_IPV4_SHA,
181         ITEM_ARP_ETH_IPV4_SPA,
182         ITEM_ARP_ETH_IPV4_THA,
183         ITEM_ARP_ETH_IPV4_TPA,
184         ITEM_IPV6_EXT,
185         ITEM_IPV6_EXT_NEXT_HDR,
186         ITEM_ICMP6,
187         ITEM_ICMP6_TYPE,
188         ITEM_ICMP6_CODE,
189         ITEM_ICMP6_ND_NS,
190         ITEM_ICMP6_ND_NS_TARGET_ADDR,
191         ITEM_ICMP6_ND_NA,
192         ITEM_ICMP6_ND_NA_TARGET_ADDR,
193         ITEM_ICMP6_ND_OPT,
194         ITEM_ICMP6_ND_OPT_TYPE,
195         ITEM_ICMP6_ND_OPT_SLA_ETH,
196         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
197         ITEM_ICMP6_ND_OPT_TLA_ETH,
198         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
199         ITEM_META,
200         ITEM_META_DATA,
201         ITEM_GRE_KEY,
202         ITEM_GRE_KEY_VALUE,
203         ITEM_GTP_PSC,
204         ITEM_GTP_PSC_QFI,
205         ITEM_GTP_PSC_PDU_T,
206         ITEM_PPPOES,
207         ITEM_PPPOED,
208         ITEM_PPPOE_SEID,
209         ITEM_PPPOE_PROTO_ID,
210         ITEM_HIGIG2,
211         ITEM_HIGIG2_CLASSIFICATION,
212         ITEM_HIGIG2_VID,
213         ITEM_TAG,
214         ITEM_TAG_DATA,
215         ITEM_TAG_INDEX,
216
217         /* Validate/create actions. */
218         ACTIONS,
219         ACTION_NEXT,
220         ACTION_END,
221         ACTION_VOID,
222         ACTION_PASSTHRU,
223         ACTION_JUMP,
224         ACTION_JUMP_GROUP,
225         ACTION_MARK,
226         ACTION_MARK_ID,
227         ACTION_FLAG,
228         ACTION_QUEUE,
229         ACTION_QUEUE_INDEX,
230         ACTION_DROP,
231         ACTION_COUNT,
232         ACTION_COUNT_SHARED,
233         ACTION_COUNT_ID,
234         ACTION_RSS,
235         ACTION_RSS_FUNC,
236         ACTION_RSS_LEVEL,
237         ACTION_RSS_FUNC_DEFAULT,
238         ACTION_RSS_FUNC_TOEPLITZ,
239         ACTION_RSS_FUNC_SIMPLE_XOR,
240         ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ,
241         ACTION_RSS_TYPES,
242         ACTION_RSS_TYPE,
243         ACTION_RSS_KEY,
244         ACTION_RSS_KEY_LEN,
245         ACTION_RSS_QUEUES,
246         ACTION_RSS_QUEUE,
247         ACTION_PF,
248         ACTION_VF,
249         ACTION_VF_ORIGINAL,
250         ACTION_VF_ID,
251         ACTION_PHY_PORT,
252         ACTION_PHY_PORT_ORIGINAL,
253         ACTION_PHY_PORT_INDEX,
254         ACTION_PORT_ID,
255         ACTION_PORT_ID_ORIGINAL,
256         ACTION_PORT_ID_ID,
257         ACTION_METER,
258         ACTION_METER_ID,
259         ACTION_OF_SET_MPLS_TTL,
260         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
261         ACTION_OF_DEC_MPLS_TTL,
262         ACTION_OF_SET_NW_TTL,
263         ACTION_OF_SET_NW_TTL_NW_TTL,
264         ACTION_OF_DEC_NW_TTL,
265         ACTION_OF_COPY_TTL_OUT,
266         ACTION_OF_COPY_TTL_IN,
267         ACTION_OF_POP_VLAN,
268         ACTION_OF_PUSH_VLAN,
269         ACTION_OF_PUSH_VLAN_ETHERTYPE,
270         ACTION_OF_SET_VLAN_VID,
271         ACTION_OF_SET_VLAN_VID_VLAN_VID,
272         ACTION_OF_SET_VLAN_PCP,
273         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
274         ACTION_OF_POP_MPLS,
275         ACTION_OF_POP_MPLS_ETHERTYPE,
276         ACTION_OF_PUSH_MPLS,
277         ACTION_OF_PUSH_MPLS_ETHERTYPE,
278         ACTION_VXLAN_ENCAP,
279         ACTION_VXLAN_DECAP,
280         ACTION_NVGRE_ENCAP,
281         ACTION_NVGRE_DECAP,
282         ACTION_L2_ENCAP,
283         ACTION_L2_DECAP,
284         ACTION_MPLSOGRE_ENCAP,
285         ACTION_MPLSOGRE_DECAP,
286         ACTION_MPLSOUDP_ENCAP,
287         ACTION_MPLSOUDP_DECAP,
288         ACTION_SET_IPV4_SRC,
289         ACTION_SET_IPV4_SRC_IPV4_SRC,
290         ACTION_SET_IPV4_DST,
291         ACTION_SET_IPV4_DST_IPV4_DST,
292         ACTION_SET_IPV6_SRC,
293         ACTION_SET_IPV6_SRC_IPV6_SRC,
294         ACTION_SET_IPV6_DST,
295         ACTION_SET_IPV6_DST_IPV6_DST,
296         ACTION_SET_TP_SRC,
297         ACTION_SET_TP_SRC_TP_SRC,
298         ACTION_SET_TP_DST,
299         ACTION_SET_TP_DST_TP_DST,
300         ACTION_MAC_SWAP,
301         ACTION_DEC_TTL,
302         ACTION_SET_TTL,
303         ACTION_SET_TTL_TTL,
304         ACTION_SET_MAC_SRC,
305         ACTION_SET_MAC_SRC_MAC_SRC,
306         ACTION_SET_MAC_DST,
307         ACTION_SET_MAC_DST_MAC_DST,
308         ACTION_INC_TCP_SEQ,
309         ACTION_INC_TCP_SEQ_VALUE,
310         ACTION_DEC_TCP_SEQ,
311         ACTION_DEC_TCP_SEQ_VALUE,
312         ACTION_INC_TCP_ACK,
313         ACTION_INC_TCP_ACK_VALUE,
314         ACTION_DEC_TCP_ACK,
315         ACTION_DEC_TCP_ACK_VALUE,
316         ACTION_RAW_ENCAP,
317         ACTION_RAW_DECAP,
318         ACTION_RAW_ENCAP_INDEX,
319         ACTION_RAW_ENCAP_INDEX_VALUE,
320         ACTION_RAW_DECAP_INDEX,
321         ACTION_RAW_DECAP_INDEX_VALUE,
322         ACTION_SET_TAG,
323         ACTION_SET_TAG_DATA,
324         ACTION_SET_TAG_INDEX,
325         ACTION_SET_TAG_MASK,
326         ACTION_SET_META,
327         ACTION_SET_META_DATA,
328         ACTION_SET_META_MASK,
329 };
330
331 /** Maximum size for pattern in struct rte_flow_item_raw. */
332 #define ITEM_RAW_PATTERN_SIZE 40
333
334 /** Storage size for struct rte_flow_item_raw including pattern. */
335 #define ITEM_RAW_SIZE \
336         (sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
337
338 /** Maximum number of queue indices in struct rte_flow_action_rss. */
339 #define ACTION_RSS_QUEUE_NUM 128
340
341 /** Storage for struct rte_flow_action_rss including external data. */
342 struct action_rss_data {
343         struct rte_flow_action_rss conf;
344         uint8_t key[RSS_HASH_KEY_LENGTH];
345         uint16_t queue[ACTION_RSS_QUEUE_NUM];
346 };
347
348 /** Maximum data size in struct rte_flow_action_raw_encap. */
349 #define ACTION_RAW_ENCAP_MAX_DATA 128
350 #define RAW_ENCAP_CONFS_MAX_NUM 8
351
352 /** Storage for struct rte_flow_action_raw_encap. */
353 struct raw_encap_conf {
354         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
355         uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
356         size_t size;
357 };
358
359 struct raw_encap_conf raw_encap_confs[RAW_ENCAP_CONFS_MAX_NUM];
360
361 /** Storage for struct rte_flow_action_raw_encap including external data. */
362 struct action_raw_encap_data {
363         struct rte_flow_action_raw_encap conf;
364         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
365         uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
366         uint16_t idx;
367 };
368
369 /** Storage for struct rte_flow_action_raw_decap. */
370 struct raw_decap_conf {
371         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
372         size_t size;
373 };
374
375 struct raw_decap_conf raw_decap_confs[RAW_ENCAP_CONFS_MAX_NUM];
376
377 /** Storage for struct rte_flow_action_raw_decap including external data. */
378 struct action_raw_decap_data {
379         struct rte_flow_action_raw_decap conf;
380         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
381         uint16_t idx;
382 };
383
384 struct vxlan_encap_conf vxlan_encap_conf = {
385         .select_ipv4 = 1,
386         .select_vlan = 0,
387         .select_tos_ttl = 0,
388         .vni = "\x00\x00\x00",
389         .udp_src = 0,
390         .udp_dst = RTE_BE16(4789),
391         .ipv4_src = RTE_IPV4(127, 0, 0, 1),
392         .ipv4_dst = RTE_IPV4(255, 255, 255, 255),
393         .ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
394                 "\x00\x00\x00\x00\x00\x00\x00\x01",
395         .ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
396                 "\x00\x00\x00\x00\x00\x00\x11\x11",
397         .vlan_tci = 0,
398         .ip_tos = 0,
399         .ip_ttl = 255,
400         .eth_src = "\x00\x00\x00\x00\x00\x00",
401         .eth_dst = "\xff\xff\xff\xff\xff\xff",
402 };
403
404 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
405 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
406
407 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
408 struct action_vxlan_encap_data {
409         struct rte_flow_action_vxlan_encap conf;
410         struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
411         struct rte_flow_item_eth item_eth;
412         struct rte_flow_item_vlan item_vlan;
413         union {
414                 struct rte_flow_item_ipv4 item_ipv4;
415                 struct rte_flow_item_ipv6 item_ipv6;
416         };
417         struct rte_flow_item_udp item_udp;
418         struct rte_flow_item_vxlan item_vxlan;
419 };
420
421 struct nvgre_encap_conf nvgre_encap_conf = {
422         .select_ipv4 = 1,
423         .select_vlan = 0,
424         .tni = "\x00\x00\x00",
425         .ipv4_src = RTE_IPV4(127, 0, 0, 1),
426         .ipv4_dst = RTE_IPV4(255, 255, 255, 255),
427         .ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
428                 "\x00\x00\x00\x00\x00\x00\x00\x01",
429         .ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
430                 "\x00\x00\x00\x00\x00\x00\x11\x11",
431         .vlan_tci = 0,
432         .eth_src = "\x00\x00\x00\x00\x00\x00",
433         .eth_dst = "\xff\xff\xff\xff\xff\xff",
434 };
435
436 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
437 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
438
439 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
440 struct action_nvgre_encap_data {
441         struct rte_flow_action_nvgre_encap conf;
442         struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
443         struct rte_flow_item_eth item_eth;
444         struct rte_flow_item_vlan item_vlan;
445         union {
446                 struct rte_flow_item_ipv4 item_ipv4;
447                 struct rte_flow_item_ipv6 item_ipv6;
448         };
449         struct rte_flow_item_nvgre item_nvgre;
450 };
451
452 struct l2_encap_conf l2_encap_conf;
453
454 struct l2_decap_conf l2_decap_conf;
455
456 struct mplsogre_encap_conf mplsogre_encap_conf;
457
458 struct mplsogre_decap_conf mplsogre_decap_conf;
459
460 struct mplsoudp_encap_conf mplsoudp_encap_conf;
461
462 struct mplsoudp_decap_conf mplsoudp_decap_conf;
463
464 /** Maximum number of subsequent tokens and arguments on the stack. */
465 #define CTX_STACK_SIZE 16
466
467 /** Parser context. */
468 struct context {
469         /** Stack of subsequent token lists to process. */
470         const enum index *next[CTX_STACK_SIZE];
471         /** Arguments for stacked tokens. */
472         const void *args[CTX_STACK_SIZE];
473         enum index curr; /**< Current token index. */
474         enum index prev; /**< Index of the last token seen. */
475         int next_num; /**< Number of entries in next[]. */
476         int args_num; /**< Number of entries in args[]. */
477         uint32_t eol:1; /**< EOL has been detected. */
478         uint32_t last:1; /**< No more arguments. */
479         portid_t port; /**< Current port ID (for completions). */
480         uint32_t objdata; /**< Object-specific data. */
481         void *object; /**< Address of current object for relative offsets. */
482         void *objmask; /**< Object a full mask must be written to. */
483 };
484
485 /** Token argument. */
486 struct arg {
487         uint32_t hton:1; /**< Use network byte ordering. */
488         uint32_t sign:1; /**< Value is signed. */
489         uint32_t bounded:1; /**< Value is bounded. */
490         uintmax_t min; /**< Minimum value if bounded. */
491         uintmax_t max; /**< Maximum value if bounded. */
492         uint32_t offset; /**< Relative offset from ctx->object. */
493         uint32_t size; /**< Field size. */
494         const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
495 };
496
497 /** Parser token definition. */
498 struct token {
499         /** Type displayed during completion (defaults to "TOKEN"). */
500         const char *type;
501         /** Help displayed during completion (defaults to token name). */
502         const char *help;
503         /** Private data used by parser functions. */
504         const void *priv;
505         /**
506          * Lists of subsequent tokens to push on the stack. Each call to the
507          * parser consumes the last entry of that stack.
508          */
509         const enum index *const *next;
510         /** Arguments stack for subsequent tokens that need them. */
511         const struct arg *const *args;
512         /**
513          * Token-processing callback, returns -1 in case of error, the
514          * length of the matched string otherwise. If NULL, attempts to
515          * match the token name.
516          *
517          * If buf is not NULL, the result should be stored in it according
518          * to context. An error is returned if not large enough.
519          */
520         int (*call)(struct context *ctx, const struct token *token,
521                     const char *str, unsigned int len,
522                     void *buf, unsigned int size);
523         /**
524          * Callback that provides possible values for this token, used for
525          * completion. Returns -1 in case of error, the number of possible
526          * values otherwise. If NULL, the token name is used.
527          *
528          * If buf is not NULL, entry index ent is written to buf and the
529          * full length of the entry is returned (same behavior as
530          * snprintf()).
531          */
532         int (*comp)(struct context *ctx, const struct token *token,
533                     unsigned int ent, char *buf, unsigned int size);
534         /** Mandatory token name, no default value. */
535         const char *name;
536 };
537
538 /** Static initializer for the next field. */
539 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
540
541 /** Static initializer for a NEXT() entry. */
542 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
543
544 /** Static initializer for the args field. */
545 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
546
547 /** Static initializer for ARGS() to target a field. */
548 #define ARGS_ENTRY(s, f) \
549         (&(const struct arg){ \
550                 .offset = offsetof(s, f), \
551                 .size = sizeof(((s *)0)->f), \
552         })
553
554 /** Static initializer for ARGS() to target a bit-field. */
555 #define ARGS_ENTRY_BF(s, f, b) \
556         (&(const struct arg){ \
557                 .size = sizeof(s), \
558                 .mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
559         })
560
561 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
562 #define ARGS_ENTRY_MASK(s, f, m) \
563         (&(const struct arg){ \
564                 .offset = offsetof(s, f), \
565                 .size = sizeof(((s *)0)->f), \
566                 .mask = (const void *)(m), \
567         })
568
569 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
570 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
571         (&(const struct arg){ \
572                 .hton = 1, \
573                 .offset = offsetof(s, f), \
574                 .size = sizeof(((s *)0)->f), \
575                 .mask = (const void *)(m), \
576         })
577
578 /** Static initializer for ARGS() to target a pointer. */
579 #define ARGS_ENTRY_PTR(s, f) \
580         (&(const struct arg){ \
581                 .size = sizeof(*((s *)0)->f), \
582         })
583
584 /** Static initializer for ARGS() with arbitrary offset and size. */
585 #define ARGS_ENTRY_ARB(o, s) \
586         (&(const struct arg){ \
587                 .offset = (o), \
588                 .size = (s), \
589         })
590
591 /** Same as ARGS_ENTRY_ARB() with bounded values. */
592 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
593         (&(const struct arg){ \
594                 .bounded = 1, \
595                 .min = (i), \
596                 .max = (a), \
597                 .offset = (o), \
598                 .size = (s), \
599         })
600
601 /** Same as ARGS_ENTRY() using network byte ordering. */
602 #define ARGS_ENTRY_HTON(s, f) \
603         (&(const struct arg){ \
604                 .hton = 1, \
605                 .offset = offsetof(s, f), \
606                 .size = sizeof(((s *)0)->f), \
607         })
608
609 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
610 #define ARG_ENTRY_HTON(s) \
611         (&(const struct arg){ \
612                 .hton = 1, \
613                 .offset = 0, \
614                 .size = sizeof(s), \
615         })
616
617 /** Parser output buffer layout expected by cmd_flow_parsed(). */
618 struct buffer {
619         enum index command; /**< Flow command. */
620         portid_t port; /**< Affected port ID. */
621         union {
622                 struct {
623                         struct rte_flow_attr attr;
624                         struct rte_flow_item *pattern;
625                         struct rte_flow_action *actions;
626                         uint32_t pattern_n;
627                         uint32_t actions_n;
628                         uint8_t *data;
629                 } vc; /**< Validate/create arguments. */
630                 struct {
631                         uint32_t *rule;
632                         uint32_t rule_n;
633                 } destroy; /**< Destroy arguments. */
634                 struct {
635                         uint32_t rule;
636                         struct rte_flow_action action;
637                 } query; /**< Query arguments. */
638                 struct {
639                         uint32_t *group;
640                         uint32_t group_n;
641                 } list; /**< List arguments. */
642                 struct {
643                         int set;
644                 } isolate; /**< Isolated mode arguments. */
645         } args; /**< Command arguments. */
646 };
647
648 /** Private data for pattern items. */
649 struct parse_item_priv {
650         enum rte_flow_item_type type; /**< Item type. */
651         uint32_t size; /**< Size of item specification structure. */
652 };
653
654 #define PRIV_ITEM(t, s) \
655         (&(const struct parse_item_priv){ \
656                 .type = RTE_FLOW_ITEM_TYPE_ ## t, \
657                 .size = s, \
658         })
659
660 /** Private data for actions. */
661 struct parse_action_priv {
662         enum rte_flow_action_type type; /**< Action type. */
663         uint32_t size; /**< Size of action configuration structure. */
664 };
665
666 #define PRIV_ACTION(t, s) \
667         (&(const struct parse_action_priv){ \
668                 .type = RTE_FLOW_ACTION_TYPE_ ## t, \
669                 .size = s, \
670         })
671
672 static const enum index next_vc_attr[] = {
673         GROUP,
674         PRIORITY,
675         INGRESS,
676         EGRESS,
677         TRANSFER,
678         PATTERN,
679         ZERO,
680 };
681
682 static const enum index next_destroy_attr[] = {
683         DESTROY_RULE,
684         END,
685         ZERO,
686 };
687
688 static const enum index next_list_attr[] = {
689         LIST_GROUP,
690         END,
691         ZERO,
692 };
693
694 static const enum index item_param[] = {
695         ITEM_PARAM_IS,
696         ITEM_PARAM_SPEC,
697         ITEM_PARAM_LAST,
698         ITEM_PARAM_MASK,
699         ITEM_PARAM_PREFIX,
700         ZERO,
701 };
702
703 static const enum index next_item[] = {
704         ITEM_END,
705         ITEM_VOID,
706         ITEM_INVERT,
707         ITEM_ANY,
708         ITEM_PF,
709         ITEM_VF,
710         ITEM_PHY_PORT,
711         ITEM_PORT_ID,
712         ITEM_MARK,
713         ITEM_RAW,
714         ITEM_ETH,
715         ITEM_VLAN,
716         ITEM_IPV4,
717         ITEM_IPV6,
718         ITEM_ICMP,
719         ITEM_UDP,
720         ITEM_TCP,
721         ITEM_SCTP,
722         ITEM_VXLAN,
723         ITEM_E_TAG,
724         ITEM_NVGRE,
725         ITEM_MPLS,
726         ITEM_GRE,
727         ITEM_FUZZY,
728         ITEM_GTP,
729         ITEM_GTPC,
730         ITEM_GTPU,
731         ITEM_GENEVE,
732         ITEM_VXLAN_GPE,
733         ITEM_ARP_ETH_IPV4,
734         ITEM_IPV6_EXT,
735         ITEM_ICMP6,
736         ITEM_ICMP6_ND_NS,
737         ITEM_ICMP6_ND_NA,
738         ITEM_ICMP6_ND_OPT,
739         ITEM_ICMP6_ND_OPT_SLA_ETH,
740         ITEM_ICMP6_ND_OPT_TLA_ETH,
741         ITEM_META,
742         ITEM_GRE_KEY,
743         ITEM_GTP_PSC,
744         ITEM_PPPOES,
745         ITEM_PPPOED,
746         ITEM_PPPOE_PROTO_ID,
747         ITEM_HIGIG2,
748         ITEM_TAG,
749         END_SET,
750         ZERO,
751 };
752
753 static const enum index item_fuzzy[] = {
754         ITEM_FUZZY_THRESH,
755         ITEM_NEXT,
756         ZERO,
757 };
758
759 static const enum index item_any[] = {
760         ITEM_ANY_NUM,
761         ITEM_NEXT,
762         ZERO,
763 };
764
765 static const enum index item_vf[] = {
766         ITEM_VF_ID,
767         ITEM_NEXT,
768         ZERO,
769 };
770
771 static const enum index item_phy_port[] = {
772         ITEM_PHY_PORT_INDEX,
773         ITEM_NEXT,
774         ZERO,
775 };
776
777 static const enum index item_port_id[] = {
778         ITEM_PORT_ID_ID,
779         ITEM_NEXT,
780         ZERO,
781 };
782
783 static const enum index item_mark[] = {
784         ITEM_MARK_ID,
785         ITEM_NEXT,
786         ZERO,
787 };
788
789 static const enum index item_raw[] = {
790         ITEM_RAW_RELATIVE,
791         ITEM_RAW_SEARCH,
792         ITEM_RAW_OFFSET,
793         ITEM_RAW_LIMIT,
794         ITEM_RAW_PATTERN,
795         ITEM_NEXT,
796         ZERO,
797 };
798
799 static const enum index item_eth[] = {
800         ITEM_ETH_DST,
801         ITEM_ETH_SRC,
802         ITEM_ETH_TYPE,
803         ITEM_NEXT,
804         ZERO,
805 };
806
807 static const enum index item_vlan[] = {
808         ITEM_VLAN_TCI,
809         ITEM_VLAN_PCP,
810         ITEM_VLAN_DEI,
811         ITEM_VLAN_VID,
812         ITEM_VLAN_INNER_TYPE,
813         ITEM_NEXT,
814         ZERO,
815 };
816
817 static const enum index item_ipv4[] = {
818         ITEM_IPV4_TOS,
819         ITEM_IPV4_TTL,
820         ITEM_IPV4_PROTO,
821         ITEM_IPV4_SRC,
822         ITEM_IPV4_DST,
823         ITEM_NEXT,
824         ZERO,
825 };
826
827 static const enum index item_ipv6[] = {
828         ITEM_IPV6_TC,
829         ITEM_IPV6_FLOW,
830         ITEM_IPV6_PROTO,
831         ITEM_IPV6_HOP,
832         ITEM_IPV6_SRC,
833         ITEM_IPV6_DST,
834         ITEM_NEXT,
835         ZERO,
836 };
837
838 static const enum index item_icmp[] = {
839         ITEM_ICMP_TYPE,
840         ITEM_ICMP_CODE,
841         ITEM_NEXT,
842         ZERO,
843 };
844
845 static const enum index item_udp[] = {
846         ITEM_UDP_SRC,
847         ITEM_UDP_DST,
848         ITEM_NEXT,
849         ZERO,
850 };
851
852 static const enum index item_tcp[] = {
853         ITEM_TCP_SRC,
854         ITEM_TCP_DST,
855         ITEM_TCP_FLAGS,
856         ITEM_NEXT,
857         ZERO,
858 };
859
860 static const enum index item_sctp[] = {
861         ITEM_SCTP_SRC,
862         ITEM_SCTP_DST,
863         ITEM_SCTP_TAG,
864         ITEM_SCTP_CKSUM,
865         ITEM_NEXT,
866         ZERO,
867 };
868
869 static const enum index item_vxlan[] = {
870         ITEM_VXLAN_VNI,
871         ITEM_NEXT,
872         ZERO,
873 };
874
875 static const enum index item_e_tag[] = {
876         ITEM_E_TAG_GRP_ECID_B,
877         ITEM_NEXT,
878         ZERO,
879 };
880
881 static const enum index item_nvgre[] = {
882         ITEM_NVGRE_TNI,
883         ITEM_NEXT,
884         ZERO,
885 };
886
887 static const enum index item_mpls[] = {
888         ITEM_MPLS_LABEL,
889         ITEM_MPLS_TC,
890         ITEM_MPLS_S,
891         ITEM_NEXT,
892         ZERO,
893 };
894
895 static const enum index item_gre[] = {
896         ITEM_GRE_PROTO,
897         ITEM_GRE_C_RSVD0_VER,
898         ITEM_GRE_C_BIT,
899         ITEM_GRE_K_BIT,
900         ITEM_GRE_S_BIT,
901         ITEM_NEXT,
902         ZERO,
903 };
904
905 static const enum index item_gre_key[] = {
906         ITEM_GRE_KEY_VALUE,
907         ITEM_NEXT,
908         ZERO,
909 };
910
911 static const enum index item_gtp[] = {
912         ITEM_GTP_TEID,
913         ITEM_NEXT,
914         ZERO,
915 };
916
917 static const enum index item_geneve[] = {
918         ITEM_GENEVE_VNI,
919         ITEM_GENEVE_PROTO,
920         ITEM_NEXT,
921         ZERO,
922 };
923
924 static const enum index item_vxlan_gpe[] = {
925         ITEM_VXLAN_GPE_VNI,
926         ITEM_NEXT,
927         ZERO,
928 };
929
930 static const enum index item_arp_eth_ipv4[] = {
931         ITEM_ARP_ETH_IPV4_SHA,
932         ITEM_ARP_ETH_IPV4_SPA,
933         ITEM_ARP_ETH_IPV4_THA,
934         ITEM_ARP_ETH_IPV4_TPA,
935         ITEM_NEXT,
936         ZERO,
937 };
938
939 static const enum index item_ipv6_ext[] = {
940         ITEM_IPV6_EXT_NEXT_HDR,
941         ITEM_NEXT,
942         ZERO,
943 };
944
945 static const enum index item_icmp6[] = {
946         ITEM_ICMP6_TYPE,
947         ITEM_ICMP6_CODE,
948         ITEM_NEXT,
949         ZERO,
950 };
951
952 static const enum index item_icmp6_nd_ns[] = {
953         ITEM_ICMP6_ND_NS_TARGET_ADDR,
954         ITEM_NEXT,
955         ZERO,
956 };
957
958 static const enum index item_icmp6_nd_na[] = {
959         ITEM_ICMP6_ND_NA_TARGET_ADDR,
960         ITEM_NEXT,
961         ZERO,
962 };
963
964 static const enum index item_icmp6_nd_opt[] = {
965         ITEM_ICMP6_ND_OPT_TYPE,
966         ITEM_NEXT,
967         ZERO,
968 };
969
970 static const enum index item_icmp6_nd_opt_sla_eth[] = {
971         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
972         ITEM_NEXT,
973         ZERO,
974 };
975
976 static const enum index item_icmp6_nd_opt_tla_eth[] = {
977         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
978         ITEM_NEXT,
979         ZERO,
980 };
981
982 static const enum index item_meta[] = {
983         ITEM_META_DATA,
984         ITEM_NEXT,
985         ZERO,
986 };
987
988 static const enum index item_gtp_psc[] = {
989         ITEM_GTP_PSC_QFI,
990         ITEM_GTP_PSC_PDU_T,
991         ITEM_NEXT,
992         ZERO,
993 };
994
995 static const enum index item_pppoed[] = {
996         ITEM_PPPOE_SEID,
997         ITEM_NEXT,
998         ZERO,
999 };
1000
1001 static const enum index item_pppoes[] = {
1002         ITEM_PPPOE_SEID,
1003         ITEM_NEXT,
1004         ZERO,
1005 };
1006
1007 static const enum index item_pppoe_proto_id[] = {
1008         ITEM_PPPOE_PROTO_ID,
1009         ITEM_NEXT,
1010         ZERO,
1011 };
1012
1013 static const enum index item_higig2[] = {
1014         ITEM_HIGIG2_CLASSIFICATION,
1015         ITEM_HIGIG2_VID,
1016         ITEM_NEXT,
1017         ZERO,
1018 };
1019
1020 static const enum index next_set_raw[] = {
1021         SET_RAW_INDEX,
1022         ITEM_ETH,
1023         ZERO,
1024 };
1025
1026 static const enum index item_tag[] = {
1027         ITEM_TAG_DATA,
1028         ITEM_TAG_INDEX,
1029         ITEM_NEXT,
1030         ZERO,
1031 };
1032
1033 static const enum index next_action[] = {
1034         ACTION_END,
1035         ACTION_VOID,
1036         ACTION_PASSTHRU,
1037         ACTION_JUMP,
1038         ACTION_MARK,
1039         ACTION_FLAG,
1040         ACTION_QUEUE,
1041         ACTION_DROP,
1042         ACTION_COUNT,
1043         ACTION_RSS,
1044         ACTION_PF,
1045         ACTION_VF,
1046         ACTION_PHY_PORT,
1047         ACTION_PORT_ID,
1048         ACTION_METER,
1049         ACTION_OF_SET_MPLS_TTL,
1050         ACTION_OF_DEC_MPLS_TTL,
1051         ACTION_OF_SET_NW_TTL,
1052         ACTION_OF_DEC_NW_TTL,
1053         ACTION_OF_COPY_TTL_OUT,
1054         ACTION_OF_COPY_TTL_IN,
1055         ACTION_OF_POP_VLAN,
1056         ACTION_OF_PUSH_VLAN,
1057         ACTION_OF_SET_VLAN_VID,
1058         ACTION_OF_SET_VLAN_PCP,
1059         ACTION_OF_POP_MPLS,
1060         ACTION_OF_PUSH_MPLS,
1061         ACTION_VXLAN_ENCAP,
1062         ACTION_VXLAN_DECAP,
1063         ACTION_NVGRE_ENCAP,
1064         ACTION_NVGRE_DECAP,
1065         ACTION_L2_ENCAP,
1066         ACTION_L2_DECAP,
1067         ACTION_MPLSOGRE_ENCAP,
1068         ACTION_MPLSOGRE_DECAP,
1069         ACTION_MPLSOUDP_ENCAP,
1070         ACTION_MPLSOUDP_DECAP,
1071         ACTION_SET_IPV4_SRC,
1072         ACTION_SET_IPV4_DST,
1073         ACTION_SET_IPV6_SRC,
1074         ACTION_SET_IPV6_DST,
1075         ACTION_SET_TP_SRC,
1076         ACTION_SET_TP_DST,
1077         ACTION_MAC_SWAP,
1078         ACTION_DEC_TTL,
1079         ACTION_SET_TTL,
1080         ACTION_SET_MAC_SRC,
1081         ACTION_SET_MAC_DST,
1082         ACTION_INC_TCP_SEQ,
1083         ACTION_DEC_TCP_SEQ,
1084         ACTION_INC_TCP_ACK,
1085         ACTION_DEC_TCP_ACK,
1086         ACTION_RAW_ENCAP,
1087         ACTION_RAW_DECAP,
1088         ACTION_SET_TAG,
1089         ACTION_SET_META,
1090         ZERO,
1091 };
1092
1093 static const enum index action_mark[] = {
1094         ACTION_MARK_ID,
1095         ACTION_NEXT,
1096         ZERO,
1097 };
1098
1099 static const enum index action_queue[] = {
1100         ACTION_QUEUE_INDEX,
1101         ACTION_NEXT,
1102         ZERO,
1103 };
1104
1105 static const enum index action_count[] = {
1106         ACTION_COUNT_ID,
1107         ACTION_COUNT_SHARED,
1108         ACTION_NEXT,
1109         ZERO,
1110 };
1111
1112 static const enum index action_rss[] = {
1113         ACTION_RSS_FUNC,
1114         ACTION_RSS_LEVEL,
1115         ACTION_RSS_TYPES,
1116         ACTION_RSS_KEY,
1117         ACTION_RSS_KEY_LEN,
1118         ACTION_RSS_QUEUES,
1119         ACTION_NEXT,
1120         ZERO,
1121 };
1122
1123 static const enum index action_vf[] = {
1124         ACTION_VF_ORIGINAL,
1125         ACTION_VF_ID,
1126         ACTION_NEXT,
1127         ZERO,
1128 };
1129
1130 static const enum index action_phy_port[] = {
1131         ACTION_PHY_PORT_ORIGINAL,
1132         ACTION_PHY_PORT_INDEX,
1133         ACTION_NEXT,
1134         ZERO,
1135 };
1136
1137 static const enum index action_port_id[] = {
1138         ACTION_PORT_ID_ORIGINAL,
1139         ACTION_PORT_ID_ID,
1140         ACTION_NEXT,
1141         ZERO,
1142 };
1143
1144 static const enum index action_meter[] = {
1145         ACTION_METER_ID,
1146         ACTION_NEXT,
1147         ZERO,
1148 };
1149
1150 static const enum index action_of_set_mpls_ttl[] = {
1151         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
1152         ACTION_NEXT,
1153         ZERO,
1154 };
1155
1156 static const enum index action_of_set_nw_ttl[] = {
1157         ACTION_OF_SET_NW_TTL_NW_TTL,
1158         ACTION_NEXT,
1159         ZERO,
1160 };
1161
1162 static const enum index action_of_push_vlan[] = {
1163         ACTION_OF_PUSH_VLAN_ETHERTYPE,
1164         ACTION_NEXT,
1165         ZERO,
1166 };
1167
1168 static const enum index action_of_set_vlan_vid[] = {
1169         ACTION_OF_SET_VLAN_VID_VLAN_VID,
1170         ACTION_NEXT,
1171         ZERO,
1172 };
1173
1174 static const enum index action_of_set_vlan_pcp[] = {
1175         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1176         ACTION_NEXT,
1177         ZERO,
1178 };
1179
1180 static const enum index action_of_pop_mpls[] = {
1181         ACTION_OF_POP_MPLS_ETHERTYPE,
1182         ACTION_NEXT,
1183         ZERO,
1184 };
1185
1186 static const enum index action_of_push_mpls[] = {
1187         ACTION_OF_PUSH_MPLS_ETHERTYPE,
1188         ACTION_NEXT,
1189         ZERO,
1190 };
1191
1192 static const enum index action_set_ipv4_src[] = {
1193         ACTION_SET_IPV4_SRC_IPV4_SRC,
1194         ACTION_NEXT,
1195         ZERO,
1196 };
1197
1198 static const enum index action_set_mac_src[] = {
1199         ACTION_SET_MAC_SRC_MAC_SRC,
1200         ACTION_NEXT,
1201         ZERO,
1202 };
1203
1204 static const enum index action_set_ipv4_dst[] = {
1205         ACTION_SET_IPV4_DST_IPV4_DST,
1206         ACTION_NEXT,
1207         ZERO,
1208 };
1209
1210 static const enum index action_set_ipv6_src[] = {
1211         ACTION_SET_IPV6_SRC_IPV6_SRC,
1212         ACTION_NEXT,
1213         ZERO,
1214 };
1215
1216 static const enum index action_set_ipv6_dst[] = {
1217         ACTION_SET_IPV6_DST_IPV6_DST,
1218         ACTION_NEXT,
1219         ZERO,
1220 };
1221
1222 static const enum index action_set_tp_src[] = {
1223         ACTION_SET_TP_SRC_TP_SRC,
1224         ACTION_NEXT,
1225         ZERO,
1226 };
1227
1228 static const enum index action_set_tp_dst[] = {
1229         ACTION_SET_TP_DST_TP_DST,
1230         ACTION_NEXT,
1231         ZERO,
1232 };
1233
1234 static const enum index action_set_ttl[] = {
1235         ACTION_SET_TTL_TTL,
1236         ACTION_NEXT,
1237         ZERO,
1238 };
1239
1240 static const enum index action_jump[] = {
1241         ACTION_JUMP_GROUP,
1242         ACTION_NEXT,
1243         ZERO,
1244 };
1245
1246 static const enum index action_set_mac_dst[] = {
1247         ACTION_SET_MAC_DST_MAC_DST,
1248         ACTION_NEXT,
1249         ZERO,
1250 };
1251
1252 static const enum index action_inc_tcp_seq[] = {
1253         ACTION_INC_TCP_SEQ_VALUE,
1254         ACTION_NEXT,
1255         ZERO,
1256 };
1257
1258 static const enum index action_dec_tcp_seq[] = {
1259         ACTION_DEC_TCP_SEQ_VALUE,
1260         ACTION_NEXT,
1261         ZERO,
1262 };
1263
1264 static const enum index action_inc_tcp_ack[] = {
1265         ACTION_INC_TCP_ACK_VALUE,
1266         ACTION_NEXT,
1267         ZERO,
1268 };
1269
1270 static const enum index action_dec_tcp_ack[] = {
1271         ACTION_DEC_TCP_ACK_VALUE,
1272         ACTION_NEXT,
1273         ZERO,
1274 };
1275
1276 static const enum index action_raw_encap[] = {
1277         ACTION_RAW_ENCAP_INDEX,
1278         ACTION_NEXT,
1279         ZERO,
1280 };
1281
1282 static const enum index action_raw_decap[] = {
1283         ACTION_RAW_DECAP_INDEX,
1284         ACTION_NEXT,
1285         ZERO,
1286 };
1287
1288 static const enum index action_set_tag[] = {
1289         ACTION_SET_TAG_DATA,
1290         ACTION_SET_TAG_INDEX,
1291         ACTION_SET_TAG_MASK,
1292         ACTION_NEXT,
1293         ZERO,
1294 };
1295
1296 static const enum index action_set_meta[] = {
1297         ACTION_SET_META_DATA,
1298         ACTION_SET_META_MASK,
1299         ACTION_NEXT,
1300         ZERO,
1301 };
1302
1303 static int parse_set_raw_encap_decap(struct context *, const struct token *,
1304                                      const char *, unsigned int,
1305                                      void *, unsigned int);
1306 static int parse_set_init(struct context *, const struct token *,
1307                           const char *, unsigned int,
1308                           void *, unsigned int);
1309 static int parse_init(struct context *, const struct token *,
1310                       const char *, unsigned int,
1311                       void *, unsigned int);
1312 static int parse_vc(struct context *, const struct token *,
1313                     const char *, unsigned int,
1314                     void *, unsigned int);
1315 static int parse_vc_spec(struct context *, const struct token *,
1316                          const char *, unsigned int, void *, unsigned int);
1317 static int parse_vc_conf(struct context *, const struct token *,
1318                          const char *, unsigned int, void *, unsigned int);
1319 static int parse_vc_action_rss(struct context *, const struct token *,
1320                                const char *, unsigned int, void *,
1321                                unsigned int);
1322 static int parse_vc_action_rss_func(struct context *, const struct token *,
1323                                     const char *, unsigned int, void *,
1324                                     unsigned int);
1325 static int parse_vc_action_rss_type(struct context *, const struct token *,
1326                                     const char *, unsigned int, void *,
1327                                     unsigned int);
1328 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1329                                      const char *, unsigned int, void *,
1330                                      unsigned int);
1331 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1332                                        const char *, unsigned int, void *,
1333                                        unsigned int);
1334 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1335                                        const char *, unsigned int, void *,
1336                                        unsigned int);
1337 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1338                                     const char *, unsigned int, void *,
1339                                     unsigned int);
1340 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1341                                     const char *, unsigned int, void *,
1342                                     unsigned int);
1343 static int parse_vc_action_mplsogre_encap(struct context *,
1344                                           const struct token *, const char *,
1345                                           unsigned int, void *, unsigned int);
1346 static int parse_vc_action_mplsogre_decap(struct context *,
1347                                           const struct token *, const char *,
1348                                           unsigned int, void *, unsigned int);
1349 static int parse_vc_action_mplsoudp_encap(struct context *,
1350                                           const struct token *, const char *,
1351                                           unsigned int, void *, unsigned int);
1352 static int parse_vc_action_mplsoudp_decap(struct context *,
1353                                           const struct token *, const char *,
1354                                           unsigned int, void *, unsigned int);
1355 static int parse_vc_action_raw_encap(struct context *,
1356                                      const struct token *, const char *,
1357                                      unsigned int, void *, unsigned int);
1358 static int parse_vc_action_raw_decap(struct context *,
1359                                      const struct token *, const char *,
1360                                      unsigned int, void *, unsigned int);
1361 static int parse_vc_action_raw_encap_index(struct context *,
1362                                            const struct token *, const char *,
1363                                            unsigned int, void *, unsigned int);
1364 static int parse_vc_action_raw_decap_index(struct context *,
1365                                            const struct token *, const char *,
1366                                            unsigned int, void *, unsigned int);
1367 static int parse_vc_action_set_meta(struct context *ctx,
1368                                     const struct token *token, const char *str,
1369                                     unsigned int len, void *buf,
1370                                     unsigned int size);
1371 static int parse_destroy(struct context *, const struct token *,
1372                          const char *, unsigned int,
1373                          void *, unsigned int);
1374 static int parse_flush(struct context *, const struct token *,
1375                        const char *, unsigned int,
1376                        void *, unsigned int);
1377 static int parse_query(struct context *, const struct token *,
1378                        const char *, unsigned int,
1379                        void *, unsigned int);
1380 static int parse_action(struct context *, const struct token *,
1381                         const char *, unsigned int,
1382                         void *, unsigned int);
1383 static int parse_list(struct context *, const struct token *,
1384                       const char *, unsigned int,
1385                       void *, unsigned int);
1386 static int parse_isolate(struct context *, const struct token *,
1387                          const char *, unsigned int,
1388                          void *, unsigned int);
1389 static int parse_int(struct context *, const struct token *,
1390                      const char *, unsigned int,
1391                      void *, unsigned int);
1392 static int parse_prefix(struct context *, const struct token *,
1393                         const char *, unsigned int,
1394                         void *, unsigned int);
1395 static int parse_boolean(struct context *, const struct token *,
1396                          const char *, unsigned int,
1397                          void *, unsigned int);
1398 static int parse_string(struct context *, const struct token *,
1399                         const char *, unsigned int,
1400                         void *, unsigned int);
1401 static int parse_hex(struct context *ctx, const struct token *token,
1402                         const char *str, unsigned int len,
1403                         void *buf, unsigned int size);
1404 static int parse_mac_addr(struct context *, const struct token *,
1405                           const char *, unsigned int,
1406                           void *, unsigned int);
1407 static int parse_ipv4_addr(struct context *, const struct token *,
1408                            const char *, unsigned int,
1409                            void *, unsigned int);
1410 static int parse_ipv6_addr(struct context *, const struct token *,
1411                            const char *, unsigned int,
1412                            void *, unsigned int);
1413 static int parse_port(struct context *, const struct token *,
1414                       const char *, unsigned int,
1415                       void *, unsigned int);
1416 static int comp_none(struct context *, const struct token *,
1417                      unsigned int, char *, unsigned int);
1418 static int comp_boolean(struct context *, const struct token *,
1419                         unsigned int, char *, unsigned int);
1420 static int comp_action(struct context *, const struct token *,
1421                        unsigned int, char *, unsigned int);
1422 static int comp_port(struct context *, const struct token *,
1423                      unsigned int, char *, unsigned int);
1424 static int comp_rule_id(struct context *, const struct token *,
1425                         unsigned int, char *, unsigned int);
1426 static int comp_vc_action_rss_type(struct context *, const struct token *,
1427                                    unsigned int, char *, unsigned int);
1428 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1429                                     unsigned int, char *, unsigned int);
1430 static int comp_set_raw_index(struct context *, const struct token *,
1431                               unsigned int, char *, unsigned int);
1432
1433 /** Token definitions. */
1434 static const struct token token_list[] = {
1435         /* Special tokens. */
1436         [ZERO] = {
1437                 .name = "ZERO",
1438                 .help = "null entry, abused as the entry point",
1439                 .next = NEXT(NEXT_ENTRY(FLOW)),
1440         },
1441         [END] = {
1442                 .name = "",
1443                 .type = "RETURN",
1444                 .help = "command may end here",
1445         },
1446         [START_SET] = {
1447                 .name = "START_SET",
1448                 .help = "null entry, abused as the entry point for set",
1449                 .next = NEXT(NEXT_ENTRY(SET)),
1450         },
1451         [END_SET] = {
1452                 .name = "end_set",
1453                 .type = "RETURN",
1454                 .help = "set command may end here",
1455         },
1456         /* Common tokens. */
1457         [INTEGER] = {
1458                 .name = "{int}",
1459                 .type = "INTEGER",
1460                 .help = "integer value",
1461                 .call = parse_int,
1462                 .comp = comp_none,
1463         },
1464         [UNSIGNED] = {
1465                 .name = "{unsigned}",
1466                 .type = "UNSIGNED",
1467                 .help = "unsigned integer value",
1468                 .call = parse_int,
1469                 .comp = comp_none,
1470         },
1471         [PREFIX] = {
1472                 .name = "{prefix}",
1473                 .type = "PREFIX",
1474                 .help = "prefix length for bit-mask",
1475                 .call = parse_prefix,
1476                 .comp = comp_none,
1477         },
1478         [BOOLEAN] = {
1479                 .name = "{boolean}",
1480                 .type = "BOOLEAN",
1481                 .help = "any boolean value",
1482                 .call = parse_boolean,
1483                 .comp = comp_boolean,
1484         },
1485         [STRING] = {
1486                 .name = "{string}",
1487                 .type = "STRING",
1488                 .help = "fixed string",
1489                 .call = parse_string,
1490                 .comp = comp_none,
1491         },
1492         [HEX] = {
1493                 .name = "{hex}",
1494                 .type = "HEX",
1495                 .help = "fixed string",
1496                 .call = parse_hex,
1497                 .comp = comp_none,
1498         },
1499         [MAC_ADDR] = {
1500                 .name = "{MAC address}",
1501                 .type = "MAC-48",
1502                 .help = "standard MAC address notation",
1503                 .call = parse_mac_addr,
1504                 .comp = comp_none,
1505         },
1506         [IPV4_ADDR] = {
1507                 .name = "{IPv4 address}",
1508                 .type = "IPV4 ADDRESS",
1509                 .help = "standard IPv4 address notation",
1510                 .call = parse_ipv4_addr,
1511                 .comp = comp_none,
1512         },
1513         [IPV6_ADDR] = {
1514                 .name = "{IPv6 address}",
1515                 .type = "IPV6 ADDRESS",
1516                 .help = "standard IPv6 address notation",
1517                 .call = parse_ipv6_addr,
1518                 .comp = comp_none,
1519         },
1520         [RULE_ID] = {
1521                 .name = "{rule id}",
1522                 .type = "RULE ID",
1523                 .help = "rule identifier",
1524                 .call = parse_int,
1525                 .comp = comp_rule_id,
1526         },
1527         [PORT_ID] = {
1528                 .name = "{port_id}",
1529                 .type = "PORT ID",
1530                 .help = "port identifier",
1531                 .call = parse_port,
1532                 .comp = comp_port,
1533         },
1534         [GROUP_ID] = {
1535                 .name = "{group_id}",
1536                 .type = "GROUP ID",
1537                 .help = "group identifier",
1538                 .call = parse_int,
1539                 .comp = comp_none,
1540         },
1541         [PRIORITY_LEVEL] = {
1542                 .name = "{level}",
1543                 .type = "PRIORITY",
1544                 .help = "priority level",
1545                 .call = parse_int,
1546                 .comp = comp_none,
1547         },
1548         /* Top-level command. */
1549         [FLOW] = {
1550                 .name = "flow",
1551                 .type = "{command} {port_id} [{arg} [...]]",
1552                 .help = "manage ingress/egress flow rules",
1553                 .next = NEXT(NEXT_ENTRY
1554                              (VALIDATE,
1555                               CREATE,
1556                               DESTROY,
1557                               FLUSH,
1558                               LIST,
1559                               QUERY,
1560                               ISOLATE)),
1561                 .call = parse_init,
1562         },
1563         /* Sub-level commands. */
1564         [VALIDATE] = {
1565                 .name = "validate",
1566                 .help = "check whether a flow rule can be created",
1567                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1568                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1569                 .call = parse_vc,
1570         },
1571         [CREATE] = {
1572                 .name = "create",
1573                 .help = "create a flow rule",
1574                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1575                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1576                 .call = parse_vc,
1577         },
1578         [DESTROY] = {
1579                 .name = "destroy",
1580                 .help = "destroy specific flow rules",
1581                 .next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1582                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1583                 .call = parse_destroy,
1584         },
1585         [FLUSH] = {
1586                 .name = "flush",
1587                 .help = "destroy all flow rules",
1588                 .next = NEXT(NEXT_ENTRY(PORT_ID)),
1589                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1590                 .call = parse_flush,
1591         },
1592         [QUERY] = {
1593                 .name = "query",
1594                 .help = "query an existing flow rule",
1595                 .next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1596                              NEXT_ENTRY(RULE_ID),
1597                              NEXT_ENTRY(PORT_ID)),
1598                 .args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1599                              ARGS_ENTRY(struct buffer, args.query.rule),
1600                              ARGS_ENTRY(struct buffer, port)),
1601                 .call = parse_query,
1602         },
1603         [LIST] = {
1604                 .name = "list",
1605                 .help = "list existing flow rules",
1606                 .next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1607                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1608                 .call = parse_list,
1609         },
1610         [ISOLATE] = {
1611                 .name = "isolate",
1612                 .help = "restrict ingress traffic to the defined flow rules",
1613                 .next = NEXT(NEXT_ENTRY(BOOLEAN),
1614                              NEXT_ENTRY(PORT_ID)),
1615                 .args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1616                              ARGS_ENTRY(struct buffer, port)),
1617                 .call = parse_isolate,
1618         },
1619         /* Destroy arguments. */
1620         [DESTROY_RULE] = {
1621                 .name = "rule",
1622                 .help = "specify a rule identifier",
1623                 .next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1624                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1625                 .call = parse_destroy,
1626         },
1627         /* Query arguments. */
1628         [QUERY_ACTION] = {
1629                 .name = "{action}",
1630                 .type = "ACTION",
1631                 .help = "action to query, must be part of the rule",
1632                 .call = parse_action,
1633                 .comp = comp_action,
1634         },
1635         /* List arguments. */
1636         [LIST_GROUP] = {
1637                 .name = "group",
1638                 .help = "specify a group",
1639                 .next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1640                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1641                 .call = parse_list,
1642         },
1643         /* Validate/create attributes. */
1644         [GROUP] = {
1645                 .name = "group",
1646                 .help = "specify a group",
1647                 .next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1648                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1649                 .call = parse_vc,
1650         },
1651         [PRIORITY] = {
1652                 .name = "priority",
1653                 .help = "specify a priority level",
1654                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1655                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1656                 .call = parse_vc,
1657         },
1658         [INGRESS] = {
1659                 .name = "ingress",
1660                 .help = "affect rule to ingress",
1661                 .next = NEXT(next_vc_attr),
1662                 .call = parse_vc,
1663         },
1664         [EGRESS] = {
1665                 .name = "egress",
1666                 .help = "affect rule to egress",
1667                 .next = NEXT(next_vc_attr),
1668                 .call = parse_vc,
1669         },
1670         [TRANSFER] = {
1671                 .name = "transfer",
1672                 .help = "apply rule directly to endpoints found in pattern",
1673                 .next = NEXT(next_vc_attr),
1674                 .call = parse_vc,
1675         },
1676         /* Validate/create pattern. */
1677         [PATTERN] = {
1678                 .name = "pattern",
1679                 .help = "submit a list of pattern items",
1680                 .next = NEXT(next_item),
1681                 .call = parse_vc,
1682         },
1683         [ITEM_PARAM_IS] = {
1684                 .name = "is",
1685                 .help = "match value perfectly (with full bit-mask)",
1686                 .call = parse_vc_spec,
1687         },
1688         [ITEM_PARAM_SPEC] = {
1689                 .name = "spec",
1690                 .help = "match value according to configured bit-mask",
1691                 .call = parse_vc_spec,
1692         },
1693         [ITEM_PARAM_LAST] = {
1694                 .name = "last",
1695                 .help = "specify upper bound to establish a range",
1696                 .call = parse_vc_spec,
1697         },
1698         [ITEM_PARAM_MASK] = {
1699                 .name = "mask",
1700                 .help = "specify bit-mask with relevant bits set to one",
1701                 .call = parse_vc_spec,
1702         },
1703         [ITEM_PARAM_PREFIX] = {
1704                 .name = "prefix",
1705                 .help = "generate bit-mask from a prefix length",
1706                 .call = parse_vc_spec,
1707         },
1708         [ITEM_NEXT] = {
1709                 .name = "/",
1710                 .help = "specify next pattern item",
1711                 .next = NEXT(next_item),
1712         },
1713         [ITEM_END] = {
1714                 .name = "end",
1715                 .help = "end list of pattern items",
1716                 .priv = PRIV_ITEM(END, 0),
1717                 .next = NEXT(NEXT_ENTRY(ACTIONS)),
1718                 .call = parse_vc,
1719         },
1720         [ITEM_VOID] = {
1721                 .name = "void",
1722                 .help = "no-op pattern item",
1723                 .priv = PRIV_ITEM(VOID, 0),
1724                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1725                 .call = parse_vc,
1726         },
1727         [ITEM_INVERT] = {
1728                 .name = "invert",
1729                 .help = "perform actions when pattern does not match",
1730                 .priv = PRIV_ITEM(INVERT, 0),
1731                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1732                 .call = parse_vc,
1733         },
1734         [ITEM_ANY] = {
1735                 .name = "any",
1736                 .help = "match any protocol for the current layer",
1737                 .priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1738                 .next = NEXT(item_any),
1739                 .call = parse_vc,
1740         },
1741         [ITEM_ANY_NUM] = {
1742                 .name = "num",
1743                 .help = "number of layers covered",
1744                 .next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1745                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1746         },
1747         [ITEM_PF] = {
1748                 .name = "pf",
1749                 .help = "match traffic from/to the physical function",
1750                 .priv = PRIV_ITEM(PF, 0),
1751                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1752                 .call = parse_vc,
1753         },
1754         [ITEM_VF] = {
1755                 .name = "vf",
1756                 .help = "match traffic from/to a virtual function ID",
1757                 .priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1758                 .next = NEXT(item_vf),
1759                 .call = parse_vc,
1760         },
1761         [ITEM_VF_ID] = {
1762                 .name = "id",
1763                 .help = "VF ID",
1764                 .next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1765                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1766         },
1767         [ITEM_PHY_PORT] = {
1768                 .name = "phy_port",
1769                 .help = "match traffic from/to a specific physical port",
1770                 .priv = PRIV_ITEM(PHY_PORT,
1771                                   sizeof(struct rte_flow_item_phy_port)),
1772                 .next = NEXT(item_phy_port),
1773                 .call = parse_vc,
1774         },
1775         [ITEM_PHY_PORT_INDEX] = {
1776                 .name = "index",
1777                 .help = "physical port index",
1778                 .next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1779                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1780         },
1781         [ITEM_PORT_ID] = {
1782                 .name = "port_id",
1783                 .help = "match traffic from/to a given DPDK port ID",
1784                 .priv = PRIV_ITEM(PORT_ID,
1785                                   sizeof(struct rte_flow_item_port_id)),
1786                 .next = NEXT(item_port_id),
1787                 .call = parse_vc,
1788         },
1789         [ITEM_PORT_ID_ID] = {
1790                 .name = "id",
1791                 .help = "DPDK port ID",
1792                 .next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1793                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1794         },
1795         [ITEM_MARK] = {
1796                 .name = "mark",
1797                 .help = "match traffic against value set in previously matched rule",
1798                 .priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1799                 .next = NEXT(item_mark),
1800                 .call = parse_vc,
1801         },
1802         [ITEM_MARK_ID] = {
1803                 .name = "id",
1804                 .help = "Integer value to match against",
1805                 .next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1806                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1807         },
1808         [ITEM_RAW] = {
1809                 .name = "raw",
1810                 .help = "match an arbitrary byte string",
1811                 .priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1812                 .next = NEXT(item_raw),
1813                 .call = parse_vc,
1814         },
1815         [ITEM_RAW_RELATIVE] = {
1816                 .name = "relative",
1817                 .help = "look for pattern after the previous item",
1818                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1819                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1820                                            relative, 1)),
1821         },
1822         [ITEM_RAW_SEARCH] = {
1823                 .name = "search",
1824                 .help = "search pattern from offset (see also limit)",
1825                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1826                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1827                                            search, 1)),
1828         },
1829         [ITEM_RAW_OFFSET] = {
1830                 .name = "offset",
1831                 .help = "absolute or relative offset for pattern",
1832                 .next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1833                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1834         },
1835         [ITEM_RAW_LIMIT] = {
1836                 .name = "limit",
1837                 .help = "search area limit for start of pattern",
1838                 .next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1839                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1840         },
1841         [ITEM_RAW_PATTERN] = {
1842                 .name = "pattern",
1843                 .help = "byte string to look for",
1844                 .next = NEXT(item_raw,
1845                              NEXT_ENTRY(STRING),
1846                              NEXT_ENTRY(ITEM_PARAM_IS,
1847                                         ITEM_PARAM_SPEC,
1848                                         ITEM_PARAM_MASK)),
1849                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1850                              ARGS_ENTRY(struct rte_flow_item_raw, length),
1851                              ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1852                                             ITEM_RAW_PATTERN_SIZE)),
1853         },
1854         [ITEM_ETH] = {
1855                 .name = "eth",
1856                 .help = "match Ethernet header",
1857                 .priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1858                 .next = NEXT(item_eth),
1859                 .call = parse_vc,
1860         },
1861         [ITEM_ETH_DST] = {
1862                 .name = "dst",
1863                 .help = "destination MAC",
1864                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1865                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1866         },
1867         [ITEM_ETH_SRC] = {
1868                 .name = "src",
1869                 .help = "source MAC",
1870                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1871                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1872         },
1873         [ITEM_ETH_TYPE] = {
1874                 .name = "type",
1875                 .help = "EtherType",
1876                 .next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1877                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1878         },
1879         [ITEM_VLAN] = {
1880                 .name = "vlan",
1881                 .help = "match 802.1Q/ad VLAN tag",
1882                 .priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1883                 .next = NEXT(item_vlan),
1884                 .call = parse_vc,
1885         },
1886         [ITEM_VLAN_TCI] = {
1887                 .name = "tci",
1888                 .help = "tag control information",
1889                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1890                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1891         },
1892         [ITEM_VLAN_PCP] = {
1893                 .name = "pcp",
1894                 .help = "priority code point",
1895                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1896                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1897                                                   tci, "\xe0\x00")),
1898         },
1899         [ITEM_VLAN_DEI] = {
1900                 .name = "dei",
1901                 .help = "drop eligible indicator",
1902                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1903                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1904                                                   tci, "\x10\x00")),
1905         },
1906         [ITEM_VLAN_VID] = {
1907                 .name = "vid",
1908                 .help = "VLAN identifier",
1909                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1910                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1911                                                   tci, "\x0f\xff")),
1912         },
1913         [ITEM_VLAN_INNER_TYPE] = {
1914                 .name = "inner_type",
1915                 .help = "inner EtherType",
1916                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1917                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1918                                              inner_type)),
1919         },
1920         [ITEM_IPV4] = {
1921                 .name = "ipv4",
1922                 .help = "match IPv4 header",
1923                 .priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1924                 .next = NEXT(item_ipv4),
1925                 .call = parse_vc,
1926         },
1927         [ITEM_IPV4_TOS] = {
1928                 .name = "tos",
1929                 .help = "type of service",
1930                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1931                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1932                                              hdr.type_of_service)),
1933         },
1934         [ITEM_IPV4_TTL] = {
1935                 .name = "ttl",
1936                 .help = "time to live",
1937                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1938                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1939                                              hdr.time_to_live)),
1940         },
1941         [ITEM_IPV4_PROTO] = {
1942                 .name = "proto",
1943                 .help = "next protocol ID",
1944                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1945                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1946                                              hdr.next_proto_id)),
1947         },
1948         [ITEM_IPV4_SRC] = {
1949                 .name = "src",
1950                 .help = "source address",
1951                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1952                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1953                                              hdr.src_addr)),
1954         },
1955         [ITEM_IPV4_DST] = {
1956                 .name = "dst",
1957                 .help = "destination address",
1958                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1959                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1960                                              hdr.dst_addr)),
1961         },
1962         [ITEM_IPV6] = {
1963                 .name = "ipv6",
1964                 .help = "match IPv6 header",
1965                 .priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1966                 .next = NEXT(item_ipv6),
1967                 .call = parse_vc,
1968         },
1969         [ITEM_IPV6_TC] = {
1970                 .name = "tc",
1971                 .help = "traffic class",
1972                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1973                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1974                                                   hdr.vtc_flow,
1975                                                   "\x0f\xf0\x00\x00")),
1976         },
1977         [ITEM_IPV6_FLOW] = {
1978                 .name = "flow",
1979                 .help = "flow label",
1980                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1981                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1982                                                   hdr.vtc_flow,
1983                                                   "\x00\x0f\xff\xff")),
1984         },
1985         [ITEM_IPV6_PROTO] = {
1986                 .name = "proto",
1987                 .help = "protocol (next header)",
1988                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1989                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1990                                              hdr.proto)),
1991         },
1992         [ITEM_IPV6_HOP] = {
1993                 .name = "hop",
1994                 .help = "hop limit",
1995                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1996                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1997                                              hdr.hop_limits)),
1998         },
1999         [ITEM_IPV6_SRC] = {
2000                 .name = "src",
2001                 .help = "source address",
2002                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2003                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2004                                              hdr.src_addr)),
2005         },
2006         [ITEM_IPV6_DST] = {
2007                 .name = "dst",
2008                 .help = "destination address",
2009                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2010                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2011                                              hdr.dst_addr)),
2012         },
2013         [ITEM_ICMP] = {
2014                 .name = "icmp",
2015                 .help = "match ICMP header",
2016                 .priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
2017                 .next = NEXT(item_icmp),
2018                 .call = parse_vc,
2019         },
2020         [ITEM_ICMP_TYPE] = {
2021                 .name = "type",
2022                 .help = "ICMP packet type",
2023                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2024                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2025                                              hdr.icmp_type)),
2026         },
2027         [ITEM_ICMP_CODE] = {
2028                 .name = "code",
2029                 .help = "ICMP packet code",
2030                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2031                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2032                                              hdr.icmp_code)),
2033         },
2034         [ITEM_UDP] = {
2035                 .name = "udp",
2036                 .help = "match UDP header",
2037                 .priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
2038                 .next = NEXT(item_udp),
2039                 .call = parse_vc,
2040         },
2041         [ITEM_UDP_SRC] = {
2042                 .name = "src",
2043                 .help = "UDP source port",
2044                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2045                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2046                                              hdr.src_port)),
2047         },
2048         [ITEM_UDP_DST] = {
2049                 .name = "dst",
2050                 .help = "UDP destination port",
2051                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2052                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2053                                              hdr.dst_port)),
2054         },
2055         [ITEM_TCP] = {
2056                 .name = "tcp",
2057                 .help = "match TCP header",
2058                 .priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
2059                 .next = NEXT(item_tcp),
2060                 .call = parse_vc,
2061         },
2062         [ITEM_TCP_SRC] = {
2063                 .name = "src",
2064                 .help = "TCP source port",
2065                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2066                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2067                                              hdr.src_port)),
2068         },
2069         [ITEM_TCP_DST] = {
2070                 .name = "dst",
2071                 .help = "TCP destination port",
2072                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2073                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2074                                              hdr.dst_port)),
2075         },
2076         [ITEM_TCP_FLAGS] = {
2077                 .name = "flags",
2078                 .help = "TCP flags",
2079                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2080                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2081                                              hdr.tcp_flags)),
2082         },
2083         [ITEM_SCTP] = {
2084                 .name = "sctp",
2085                 .help = "match SCTP header",
2086                 .priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
2087                 .next = NEXT(item_sctp),
2088                 .call = parse_vc,
2089         },
2090         [ITEM_SCTP_SRC] = {
2091                 .name = "src",
2092                 .help = "SCTP source port",
2093                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2094                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2095                                              hdr.src_port)),
2096         },
2097         [ITEM_SCTP_DST] = {
2098                 .name = "dst",
2099                 .help = "SCTP destination port",
2100                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2101                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2102                                              hdr.dst_port)),
2103         },
2104         [ITEM_SCTP_TAG] = {
2105                 .name = "tag",
2106                 .help = "validation tag",
2107                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2108                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2109                                              hdr.tag)),
2110         },
2111         [ITEM_SCTP_CKSUM] = {
2112                 .name = "cksum",
2113                 .help = "checksum",
2114                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2115                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2116                                              hdr.cksum)),
2117         },
2118         [ITEM_VXLAN] = {
2119                 .name = "vxlan",
2120                 .help = "match VXLAN header",
2121                 .priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
2122                 .next = NEXT(item_vxlan),
2123                 .call = parse_vc,
2124         },
2125         [ITEM_VXLAN_VNI] = {
2126                 .name = "vni",
2127                 .help = "VXLAN identifier",
2128                 .next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
2129                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
2130         },
2131         [ITEM_E_TAG] = {
2132                 .name = "e_tag",
2133                 .help = "match E-Tag header",
2134                 .priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
2135                 .next = NEXT(item_e_tag),
2136                 .call = parse_vc,
2137         },
2138         [ITEM_E_TAG_GRP_ECID_B] = {
2139                 .name = "grp_ecid_b",
2140                 .help = "GRP and E-CID base",
2141                 .next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
2142                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
2143                                                   rsvd_grp_ecid_b,
2144                                                   "\x3f\xff")),
2145         },
2146         [ITEM_NVGRE] = {
2147                 .name = "nvgre",
2148                 .help = "match NVGRE header",
2149                 .priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
2150                 .next = NEXT(item_nvgre),
2151                 .call = parse_vc,
2152         },
2153         [ITEM_NVGRE_TNI] = {
2154                 .name = "tni",
2155                 .help = "virtual subnet ID",
2156                 .next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
2157                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
2158         },
2159         [ITEM_MPLS] = {
2160                 .name = "mpls",
2161                 .help = "match MPLS header",
2162                 .priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
2163                 .next = NEXT(item_mpls),
2164                 .call = parse_vc,
2165         },
2166         [ITEM_MPLS_LABEL] = {
2167                 .name = "label",
2168                 .help = "MPLS label",
2169                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2170                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2171                                                   label_tc_s,
2172                                                   "\xff\xff\xf0")),
2173         },
2174         [ITEM_MPLS_TC] = {
2175                 .name = "tc",
2176                 .help = "MPLS Traffic Class",
2177                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2178                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2179                                                   label_tc_s,
2180                                                   "\x00\x00\x0e")),
2181         },
2182         [ITEM_MPLS_S] = {
2183                 .name = "s",
2184                 .help = "MPLS Bottom-of-Stack",
2185                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2186                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2187                                                   label_tc_s,
2188                                                   "\x00\x00\x01")),
2189         },
2190         [ITEM_GRE] = {
2191                 .name = "gre",
2192                 .help = "match GRE header",
2193                 .priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
2194                 .next = NEXT(item_gre),
2195                 .call = parse_vc,
2196         },
2197         [ITEM_GRE_PROTO] = {
2198                 .name = "protocol",
2199                 .help = "GRE protocol type",
2200                 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2201                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2202                                              protocol)),
2203         },
2204         [ITEM_GRE_C_RSVD0_VER] = {
2205                 .name = "c_rsvd0_ver",
2206                 .help =
2207                         "checksum (1b), undefined (1b), key bit (1b),"
2208                         " sequence number (1b), reserved 0 (9b),"
2209                         " version (3b)",
2210                 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2211                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2212                                              c_rsvd0_ver)),
2213         },
2214         [ITEM_GRE_C_BIT] = {
2215                 .name = "c_bit",
2216                 .help = "checksum bit (C)",
2217                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2218                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2219                                                   c_rsvd0_ver,
2220                                                   "\x80\x00\x00\x00")),
2221         },
2222         [ITEM_GRE_S_BIT] = {
2223                 .name = "s_bit",
2224                 .help = "sequence number bit (S)",
2225                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2226                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2227                                                   c_rsvd0_ver,
2228                                                   "\x10\x00\x00\x00")),
2229         },
2230         [ITEM_GRE_K_BIT] = {
2231                 .name = "k_bit",
2232                 .help = "key bit (K)",
2233                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2234                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2235                                                   c_rsvd0_ver,
2236                                                   "\x20\x00\x00\x00")),
2237         },
2238         [ITEM_FUZZY] = {
2239                 .name = "fuzzy",
2240                 .help = "fuzzy pattern match, expect faster than default",
2241                 .priv = PRIV_ITEM(FUZZY,
2242                                 sizeof(struct rte_flow_item_fuzzy)),
2243                 .next = NEXT(item_fuzzy),
2244                 .call = parse_vc,
2245         },
2246         [ITEM_FUZZY_THRESH] = {
2247                 .name = "thresh",
2248                 .help = "match accuracy threshold",
2249                 .next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2250                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2251                                         thresh)),
2252         },
2253         [ITEM_GTP] = {
2254                 .name = "gtp",
2255                 .help = "match GTP header",
2256                 .priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2257                 .next = NEXT(item_gtp),
2258                 .call = parse_vc,
2259         },
2260         [ITEM_GTP_TEID] = {
2261                 .name = "teid",
2262                 .help = "tunnel endpoint identifier",
2263                 .next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2264                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2265         },
2266         [ITEM_GTPC] = {
2267                 .name = "gtpc",
2268                 .help = "match GTP header",
2269                 .priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2270                 .next = NEXT(item_gtp),
2271                 .call = parse_vc,
2272         },
2273         [ITEM_GTPU] = {
2274                 .name = "gtpu",
2275                 .help = "match GTP header",
2276                 .priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2277                 .next = NEXT(item_gtp),
2278                 .call = parse_vc,
2279         },
2280         [ITEM_GENEVE] = {
2281                 .name = "geneve",
2282                 .help = "match GENEVE header",
2283                 .priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2284                 .next = NEXT(item_geneve),
2285                 .call = parse_vc,
2286         },
2287         [ITEM_GENEVE_VNI] = {
2288                 .name = "vni",
2289                 .help = "virtual network identifier",
2290                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2291                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2292         },
2293         [ITEM_GENEVE_PROTO] = {
2294                 .name = "protocol",
2295                 .help = "GENEVE protocol type",
2296                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2297                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2298                                              protocol)),
2299         },
2300         [ITEM_VXLAN_GPE] = {
2301                 .name = "vxlan-gpe",
2302                 .help = "match VXLAN-GPE header",
2303                 .priv = PRIV_ITEM(VXLAN_GPE,
2304                                   sizeof(struct rte_flow_item_vxlan_gpe)),
2305                 .next = NEXT(item_vxlan_gpe),
2306                 .call = parse_vc,
2307         },
2308         [ITEM_VXLAN_GPE_VNI] = {
2309                 .name = "vni",
2310                 .help = "VXLAN-GPE identifier",
2311                 .next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2312                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2313                                              vni)),
2314         },
2315         [ITEM_ARP_ETH_IPV4] = {
2316                 .name = "arp_eth_ipv4",
2317                 .help = "match ARP header for Ethernet/IPv4",
2318                 .priv = PRIV_ITEM(ARP_ETH_IPV4,
2319                                   sizeof(struct rte_flow_item_arp_eth_ipv4)),
2320                 .next = NEXT(item_arp_eth_ipv4),
2321                 .call = parse_vc,
2322         },
2323         [ITEM_ARP_ETH_IPV4_SHA] = {
2324                 .name = "sha",
2325                 .help = "sender hardware address",
2326                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2327                              item_param),
2328                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2329                                              sha)),
2330         },
2331         [ITEM_ARP_ETH_IPV4_SPA] = {
2332                 .name = "spa",
2333                 .help = "sender IPv4 address",
2334                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2335                              item_param),
2336                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2337                                              spa)),
2338         },
2339         [ITEM_ARP_ETH_IPV4_THA] = {
2340                 .name = "tha",
2341                 .help = "target hardware address",
2342                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2343                              item_param),
2344                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2345                                              tha)),
2346         },
2347         [ITEM_ARP_ETH_IPV4_TPA] = {
2348                 .name = "tpa",
2349                 .help = "target IPv4 address",
2350                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2351                              item_param),
2352                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2353                                              tpa)),
2354         },
2355         [ITEM_IPV6_EXT] = {
2356                 .name = "ipv6_ext",
2357                 .help = "match presence of any IPv6 extension header",
2358                 .priv = PRIV_ITEM(IPV6_EXT,
2359                                   sizeof(struct rte_flow_item_ipv6_ext)),
2360                 .next = NEXT(item_ipv6_ext),
2361                 .call = parse_vc,
2362         },
2363         [ITEM_IPV6_EXT_NEXT_HDR] = {
2364                 .name = "next_hdr",
2365                 .help = "next header",
2366                 .next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2367                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2368                                              next_hdr)),
2369         },
2370         [ITEM_ICMP6] = {
2371                 .name = "icmp6",
2372                 .help = "match any ICMPv6 header",
2373                 .priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2374                 .next = NEXT(item_icmp6),
2375                 .call = parse_vc,
2376         },
2377         [ITEM_ICMP6_TYPE] = {
2378                 .name = "type",
2379                 .help = "ICMPv6 type",
2380                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2381                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2382                                              type)),
2383         },
2384         [ITEM_ICMP6_CODE] = {
2385                 .name = "code",
2386                 .help = "ICMPv6 code",
2387                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2388                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2389                                              code)),
2390         },
2391         [ITEM_ICMP6_ND_NS] = {
2392                 .name = "icmp6_nd_ns",
2393                 .help = "match ICMPv6 neighbor discovery solicitation",
2394                 .priv = PRIV_ITEM(ICMP6_ND_NS,
2395                                   sizeof(struct rte_flow_item_icmp6_nd_ns)),
2396                 .next = NEXT(item_icmp6_nd_ns),
2397                 .call = parse_vc,
2398         },
2399         [ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2400                 .name = "target_addr",
2401                 .help = "target address",
2402                 .next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2403                              item_param),
2404                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2405                                              target_addr)),
2406         },
2407         [ITEM_ICMP6_ND_NA] = {
2408                 .name = "icmp6_nd_na",
2409                 .help = "match ICMPv6 neighbor discovery advertisement",
2410                 .priv = PRIV_ITEM(ICMP6_ND_NA,
2411                                   sizeof(struct rte_flow_item_icmp6_nd_na)),
2412                 .next = NEXT(item_icmp6_nd_na),
2413                 .call = parse_vc,
2414         },
2415         [ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2416                 .name = "target_addr",
2417                 .help = "target address",
2418                 .next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2419                              item_param),
2420                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2421                                              target_addr)),
2422         },
2423         [ITEM_ICMP6_ND_OPT] = {
2424                 .name = "icmp6_nd_opt",
2425                 .help = "match presence of any ICMPv6 neighbor discovery"
2426                         " option",
2427                 .priv = PRIV_ITEM(ICMP6_ND_OPT,
2428                                   sizeof(struct rte_flow_item_icmp6_nd_opt)),
2429                 .next = NEXT(item_icmp6_nd_opt),
2430                 .call = parse_vc,
2431         },
2432         [ITEM_ICMP6_ND_OPT_TYPE] = {
2433                 .name = "type",
2434                 .help = "ND option type",
2435                 .next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2436                              item_param),
2437                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2438                                              type)),
2439         },
2440         [ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2441                 .name = "icmp6_nd_opt_sla_eth",
2442                 .help = "match ICMPv6 neighbor discovery source Ethernet"
2443                         " link-layer address option",
2444                 .priv = PRIV_ITEM
2445                         (ICMP6_ND_OPT_SLA_ETH,
2446                          sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2447                 .next = NEXT(item_icmp6_nd_opt_sla_eth),
2448                 .call = parse_vc,
2449         },
2450         [ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2451                 .name = "sla",
2452                 .help = "source Ethernet LLA",
2453                 .next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2454                              item_param),
2455                 .args = ARGS(ARGS_ENTRY_HTON
2456                              (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2457         },
2458         [ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2459                 .name = "icmp6_nd_opt_tla_eth",
2460                 .help = "match ICMPv6 neighbor discovery target Ethernet"
2461                         " link-layer address option",
2462                 .priv = PRIV_ITEM
2463                         (ICMP6_ND_OPT_TLA_ETH,
2464                          sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2465                 .next = NEXT(item_icmp6_nd_opt_tla_eth),
2466                 .call = parse_vc,
2467         },
2468         [ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2469                 .name = "tla",
2470                 .help = "target Ethernet LLA",
2471                 .next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2472                              item_param),
2473                 .args = ARGS(ARGS_ENTRY_HTON
2474                              (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2475         },
2476         [ITEM_META] = {
2477                 .name = "meta",
2478                 .help = "match metadata header",
2479                 .priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2480                 .next = NEXT(item_meta),
2481                 .call = parse_vc,
2482         },
2483         [ITEM_META_DATA] = {
2484                 .name = "data",
2485                 .help = "metadata value",
2486                 .next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2487                 .args = ARGS(ARGS_ENTRY_MASK(struct rte_flow_item_meta,
2488                                              data, "\xff\xff\xff\xff")),
2489         },
2490         [ITEM_GRE_KEY] = {
2491                 .name = "gre_key",
2492                 .help = "match GRE key",
2493                 .priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
2494                 .next = NEXT(item_gre_key),
2495                 .call = parse_vc,
2496         },
2497         [ITEM_GRE_KEY_VALUE] = {
2498                 .name = "value",
2499                 .help = "key value",
2500                 .next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
2501                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2502         },
2503         [ITEM_GTP_PSC] = {
2504                 .name = "gtp_psc",
2505                 .help = "match GTP extension header with type 0x85",
2506                 .priv = PRIV_ITEM(GTP_PSC,
2507                                 sizeof(struct rte_flow_item_gtp_psc)),
2508                 .next = NEXT(item_gtp_psc),
2509                 .call = parse_vc,
2510         },
2511         [ITEM_GTP_PSC_QFI] = {
2512                 .name = "qfi",
2513                 .help = "QoS flow identifier",
2514                 .next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2515                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2516                                         qfi)),
2517         },
2518         [ITEM_GTP_PSC_PDU_T] = {
2519                 .name = "pdu_t",
2520                 .help = "PDU type",
2521                 .next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2522                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2523                                         pdu_type)),
2524         },
2525         [ITEM_PPPOES] = {
2526                 .name = "pppoes",
2527                 .help = "match PPPoE session header",
2528                 .priv = PRIV_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
2529                 .next = NEXT(item_pppoes),
2530                 .call = parse_vc,
2531         },
2532         [ITEM_PPPOED] = {
2533                 .name = "pppoed",
2534                 .help = "match PPPoE discovery header",
2535                 .priv = PRIV_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
2536                 .next = NEXT(item_pppoed),
2537                 .call = parse_vc,
2538         },
2539         [ITEM_PPPOE_SEID] = {
2540                 .name = "seid",
2541                 .help = "session identifier",
2542                 .next = NEXT(item_pppoes, NEXT_ENTRY(UNSIGNED), item_param),
2543                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pppoe,
2544                                         session_id)),
2545         },
2546         [ITEM_PPPOE_PROTO_ID] = {
2547                 .name = "proto_id",
2548                 .help = "match PPPoE session protocol identifier",
2549                 .priv = PRIV_ITEM(PPPOE_PROTO_ID,
2550                                 sizeof(struct rte_flow_item_pppoe_proto_id)),
2551                 .next = NEXT(item_pppoe_proto_id),
2552                 .call = parse_vc,
2553         },
2554         [ITEM_HIGIG2] = {
2555                 .name = "higig2",
2556                 .help = "matches higig2 header",
2557                 .priv = PRIV_ITEM(HIGIG2,
2558                                 sizeof(struct rte_flow_item_higig2_hdr)),
2559                 .next = NEXT(item_higig2),
2560                 .call = parse_vc,
2561         },
2562         [ITEM_HIGIG2_CLASSIFICATION] = {
2563                 .name = "classification",
2564                 .help = "matches classification of higig2 header",
2565                 .next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
2566                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
2567                                         hdr.ppt1.classification)),
2568         },
2569         [ITEM_HIGIG2_VID] = {
2570                 .name = "vid",
2571                 .help = "matches vid of higig2 header",
2572                 .next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
2573                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
2574                                         hdr.ppt1.vid)),
2575         },
2576         [ITEM_TAG] = {
2577                 .name = "tag",
2578                 .help = "match tag value",
2579                 .priv = PRIV_ITEM(TAG, sizeof(struct rte_flow_item_tag)),
2580                 .next = NEXT(item_tag),
2581                 .call = parse_vc,
2582         },
2583         [ITEM_TAG_DATA] = {
2584                 .name = "data",
2585                 .help = "tag value to match",
2586                 .next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED), item_param),
2587                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, data)),
2588         },
2589         [ITEM_TAG_INDEX] = {
2590                 .name = "index",
2591                 .help = "index of tag array to match",
2592                 .next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED),
2593                              NEXT_ENTRY(ITEM_PARAM_IS)),
2594                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, index)),
2595         },
2596         /* Validate/create actions. */
2597         [ACTIONS] = {
2598                 .name = "actions",
2599                 .help = "submit a list of associated actions",
2600                 .next = NEXT(next_action),
2601                 .call = parse_vc,
2602         },
2603         [ACTION_NEXT] = {
2604                 .name = "/",
2605                 .help = "specify next action",
2606                 .next = NEXT(next_action),
2607         },
2608         [ACTION_END] = {
2609                 .name = "end",
2610                 .help = "end list of actions",
2611                 .priv = PRIV_ACTION(END, 0),
2612                 .call = parse_vc,
2613         },
2614         [ACTION_VOID] = {
2615                 .name = "void",
2616                 .help = "no-op action",
2617                 .priv = PRIV_ACTION(VOID, 0),
2618                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2619                 .call = parse_vc,
2620         },
2621         [ACTION_PASSTHRU] = {
2622                 .name = "passthru",
2623                 .help = "let subsequent rule process matched packets",
2624                 .priv = PRIV_ACTION(PASSTHRU, 0),
2625                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2626                 .call = parse_vc,
2627         },
2628         [ACTION_JUMP] = {
2629                 .name = "jump",
2630                 .help = "redirect traffic to a given group",
2631                 .priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2632                 .next = NEXT(action_jump),
2633                 .call = parse_vc,
2634         },
2635         [ACTION_JUMP_GROUP] = {
2636                 .name = "group",
2637                 .help = "group to redirect traffic to",
2638                 .next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2639                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2640                 .call = parse_vc_conf,
2641         },
2642         [ACTION_MARK] = {
2643                 .name = "mark",
2644                 .help = "attach 32 bit value to packets",
2645                 .priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2646                 .next = NEXT(action_mark),
2647                 .call = parse_vc,
2648         },
2649         [ACTION_MARK_ID] = {
2650                 .name = "id",
2651                 .help = "32 bit value to return with packets",
2652                 .next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2653                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2654                 .call = parse_vc_conf,
2655         },
2656         [ACTION_FLAG] = {
2657                 .name = "flag",
2658                 .help = "flag packets",
2659                 .priv = PRIV_ACTION(FLAG, 0),
2660                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2661                 .call = parse_vc,
2662         },
2663         [ACTION_QUEUE] = {
2664                 .name = "queue",
2665                 .help = "assign packets to a given queue index",
2666                 .priv = PRIV_ACTION(QUEUE,
2667                                     sizeof(struct rte_flow_action_queue)),
2668                 .next = NEXT(action_queue),
2669                 .call = parse_vc,
2670         },
2671         [ACTION_QUEUE_INDEX] = {
2672                 .name = "index",
2673                 .help = "queue index to use",
2674                 .next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2675                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2676                 .call = parse_vc_conf,
2677         },
2678         [ACTION_DROP] = {
2679                 .name = "drop",
2680                 .help = "drop packets (note: passthru has priority)",
2681                 .priv = PRIV_ACTION(DROP, 0),
2682                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2683                 .call = parse_vc,
2684         },
2685         [ACTION_COUNT] = {
2686                 .name = "count",
2687                 .help = "enable counters for this rule",
2688                 .priv = PRIV_ACTION(COUNT,
2689                                     sizeof(struct rte_flow_action_count)),
2690                 .next = NEXT(action_count),
2691                 .call = parse_vc,
2692         },
2693         [ACTION_COUNT_ID] = {
2694                 .name = "identifier",
2695                 .help = "counter identifier to use",
2696                 .next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2697                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2698                 .call = parse_vc_conf,
2699         },
2700         [ACTION_COUNT_SHARED] = {
2701                 .name = "shared",
2702                 .help = "shared counter",
2703                 .next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2704                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2705                                            shared, 1)),
2706                 .call = parse_vc_conf,
2707         },
2708         [ACTION_RSS] = {
2709                 .name = "rss",
2710                 .help = "spread packets among several queues",
2711                 .priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2712                 .next = NEXT(action_rss),
2713                 .call = parse_vc_action_rss,
2714         },
2715         [ACTION_RSS_FUNC] = {
2716                 .name = "func",
2717                 .help = "RSS hash function to apply",
2718                 .next = NEXT(action_rss,
2719                              NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2720                                         ACTION_RSS_FUNC_TOEPLITZ,
2721                                         ACTION_RSS_FUNC_SIMPLE_XOR,
2722                                         ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ)),
2723         },
2724         [ACTION_RSS_FUNC_DEFAULT] = {
2725                 .name = "default",
2726                 .help = "default hash function",
2727                 .call = parse_vc_action_rss_func,
2728         },
2729         [ACTION_RSS_FUNC_TOEPLITZ] = {
2730                 .name = "toeplitz",
2731                 .help = "Toeplitz hash function",
2732                 .call = parse_vc_action_rss_func,
2733         },
2734         [ACTION_RSS_FUNC_SIMPLE_XOR] = {
2735                 .name = "simple_xor",
2736                 .help = "simple XOR hash function",
2737                 .call = parse_vc_action_rss_func,
2738         },
2739         [ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ] = {
2740                 .name = "symmetric_toeplitz",
2741                 .help = "Symmetric Toeplitz hash function",
2742                 .call = parse_vc_action_rss_func,
2743         },
2744         [ACTION_RSS_LEVEL] = {
2745                 .name = "level",
2746                 .help = "encapsulation level for \"types\"",
2747                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2748                 .args = ARGS(ARGS_ENTRY_ARB
2749                              (offsetof(struct action_rss_data, conf) +
2750                               offsetof(struct rte_flow_action_rss, level),
2751                               sizeof(((struct rte_flow_action_rss *)0)->
2752                                      level))),
2753         },
2754         [ACTION_RSS_TYPES] = {
2755                 .name = "types",
2756                 .help = "specific RSS hash types",
2757                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2758         },
2759         [ACTION_RSS_TYPE] = {
2760                 .name = "{type}",
2761                 .help = "RSS hash type",
2762                 .call = parse_vc_action_rss_type,
2763                 .comp = comp_vc_action_rss_type,
2764         },
2765         [ACTION_RSS_KEY] = {
2766                 .name = "key",
2767                 .help = "RSS hash key",
2768                 .next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2769                 .args = ARGS(ARGS_ENTRY_ARB(0, 0),
2770                              ARGS_ENTRY_ARB
2771                              (offsetof(struct action_rss_data, conf) +
2772                               offsetof(struct rte_flow_action_rss, key_len),
2773                               sizeof(((struct rte_flow_action_rss *)0)->
2774                                      key_len)),
2775                              ARGS_ENTRY(struct action_rss_data, key)),
2776         },
2777         [ACTION_RSS_KEY_LEN] = {
2778                 .name = "key_len",
2779                 .help = "RSS hash key length in bytes",
2780                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2781                 .args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2782                              (offsetof(struct action_rss_data, conf) +
2783                               offsetof(struct rte_flow_action_rss, key_len),
2784                               sizeof(((struct rte_flow_action_rss *)0)->
2785                                      key_len),
2786                               0,
2787                               RSS_HASH_KEY_LENGTH)),
2788         },
2789         [ACTION_RSS_QUEUES] = {
2790                 .name = "queues",
2791                 .help = "queue indices to use",
2792                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2793                 .call = parse_vc_conf,
2794         },
2795         [ACTION_RSS_QUEUE] = {
2796                 .name = "{queue}",
2797                 .help = "queue index",
2798                 .call = parse_vc_action_rss_queue,
2799                 .comp = comp_vc_action_rss_queue,
2800         },
2801         [ACTION_PF] = {
2802                 .name = "pf",
2803                 .help = "direct traffic to physical function",
2804                 .priv = PRIV_ACTION(PF, 0),
2805                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2806                 .call = parse_vc,
2807         },
2808         [ACTION_VF] = {
2809                 .name = "vf",
2810                 .help = "direct traffic to a virtual function ID",
2811                 .priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2812                 .next = NEXT(action_vf),
2813                 .call = parse_vc,
2814         },
2815         [ACTION_VF_ORIGINAL] = {
2816                 .name = "original",
2817                 .help = "use original VF ID if possible",
2818                 .next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2819                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2820                                            original, 1)),
2821                 .call = parse_vc_conf,
2822         },
2823         [ACTION_VF_ID] = {
2824                 .name = "id",
2825                 .help = "VF ID",
2826                 .next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2827                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2828                 .call = parse_vc_conf,
2829         },
2830         [ACTION_PHY_PORT] = {
2831                 .name = "phy_port",
2832                 .help = "direct packets to physical port index",
2833                 .priv = PRIV_ACTION(PHY_PORT,
2834                                     sizeof(struct rte_flow_action_phy_port)),
2835                 .next = NEXT(action_phy_port),
2836                 .call = parse_vc,
2837         },
2838         [ACTION_PHY_PORT_ORIGINAL] = {
2839                 .name = "original",
2840                 .help = "use original port index if possible",
2841                 .next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2842                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2843                                            original, 1)),
2844                 .call = parse_vc_conf,
2845         },
2846         [ACTION_PHY_PORT_INDEX] = {
2847                 .name = "index",
2848                 .help = "physical port index",
2849                 .next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2850                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2851                                         index)),
2852                 .call = parse_vc_conf,
2853         },
2854         [ACTION_PORT_ID] = {
2855                 .name = "port_id",
2856                 .help = "direct matching traffic to a given DPDK port ID",
2857                 .priv = PRIV_ACTION(PORT_ID,
2858                                     sizeof(struct rte_flow_action_port_id)),
2859                 .next = NEXT(action_port_id),
2860                 .call = parse_vc,
2861         },
2862         [ACTION_PORT_ID_ORIGINAL] = {
2863                 .name = "original",
2864                 .help = "use original DPDK port ID if possible",
2865                 .next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2866                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2867                                            original, 1)),
2868                 .call = parse_vc_conf,
2869         },
2870         [ACTION_PORT_ID_ID] = {
2871                 .name = "id",
2872                 .help = "DPDK port ID",
2873                 .next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2874                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2875                 .call = parse_vc_conf,
2876         },
2877         [ACTION_METER] = {
2878                 .name = "meter",
2879                 .help = "meter the directed packets at given id",
2880                 .priv = PRIV_ACTION(METER,
2881                                     sizeof(struct rte_flow_action_meter)),
2882                 .next = NEXT(action_meter),
2883                 .call = parse_vc,
2884         },
2885         [ACTION_METER_ID] = {
2886                 .name = "mtr_id",
2887                 .help = "meter id to use",
2888                 .next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2889                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2890                 .call = parse_vc_conf,
2891         },
2892         [ACTION_OF_SET_MPLS_TTL] = {
2893                 .name = "of_set_mpls_ttl",
2894                 .help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2895                 .priv = PRIV_ACTION
2896                         (OF_SET_MPLS_TTL,
2897                          sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2898                 .next = NEXT(action_of_set_mpls_ttl),
2899                 .call = parse_vc,
2900         },
2901         [ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2902                 .name = "mpls_ttl",
2903                 .help = "MPLS TTL",
2904                 .next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2905                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2906                                         mpls_ttl)),
2907                 .call = parse_vc_conf,
2908         },
2909         [ACTION_OF_DEC_MPLS_TTL] = {
2910                 .name = "of_dec_mpls_ttl",
2911                 .help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2912                 .priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2913                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2914                 .call = parse_vc,
2915         },
2916         [ACTION_OF_SET_NW_TTL] = {
2917                 .name = "of_set_nw_ttl",
2918                 .help = "OpenFlow's OFPAT_SET_NW_TTL",
2919                 .priv = PRIV_ACTION
2920                         (OF_SET_NW_TTL,
2921                          sizeof(struct rte_flow_action_of_set_nw_ttl)),
2922                 .next = NEXT(action_of_set_nw_ttl),
2923                 .call = parse_vc,
2924         },
2925         [ACTION_OF_SET_NW_TTL_NW_TTL] = {
2926                 .name = "nw_ttl",
2927                 .help = "IP TTL",
2928                 .next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2929                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2930                                         nw_ttl)),
2931                 .call = parse_vc_conf,
2932         },
2933         [ACTION_OF_DEC_NW_TTL] = {
2934                 .name = "of_dec_nw_ttl",
2935                 .help = "OpenFlow's OFPAT_DEC_NW_TTL",
2936                 .priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2937                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2938                 .call = parse_vc,
2939         },
2940         [ACTION_OF_COPY_TTL_OUT] = {
2941                 .name = "of_copy_ttl_out",
2942                 .help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2943                 .priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2944                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2945                 .call = parse_vc,
2946         },
2947         [ACTION_OF_COPY_TTL_IN] = {
2948                 .name = "of_copy_ttl_in",
2949                 .help = "OpenFlow's OFPAT_COPY_TTL_IN",
2950                 .priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2951                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2952                 .call = parse_vc,
2953         },
2954         [ACTION_OF_POP_VLAN] = {
2955                 .name = "of_pop_vlan",
2956                 .help = "OpenFlow's OFPAT_POP_VLAN",
2957                 .priv = PRIV_ACTION(OF_POP_VLAN, 0),
2958                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2959                 .call = parse_vc,
2960         },
2961         [ACTION_OF_PUSH_VLAN] = {
2962                 .name = "of_push_vlan",
2963                 .help = "OpenFlow's OFPAT_PUSH_VLAN",
2964                 .priv = PRIV_ACTION
2965                         (OF_PUSH_VLAN,
2966                          sizeof(struct rte_flow_action_of_push_vlan)),
2967                 .next = NEXT(action_of_push_vlan),
2968                 .call = parse_vc,
2969         },
2970         [ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2971                 .name = "ethertype",
2972                 .help = "EtherType",
2973                 .next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2974                 .args = ARGS(ARGS_ENTRY_HTON
2975                              (struct rte_flow_action_of_push_vlan,
2976                               ethertype)),
2977                 .call = parse_vc_conf,
2978         },
2979         [ACTION_OF_SET_VLAN_VID] = {
2980                 .name = "of_set_vlan_vid",
2981                 .help = "OpenFlow's OFPAT_SET_VLAN_VID",
2982                 .priv = PRIV_ACTION
2983                         (OF_SET_VLAN_VID,
2984                          sizeof(struct rte_flow_action_of_set_vlan_vid)),
2985                 .next = NEXT(action_of_set_vlan_vid),
2986                 .call = parse_vc,
2987         },
2988         [ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2989                 .name = "vlan_vid",
2990                 .help = "VLAN id",
2991                 .next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2992                 .args = ARGS(ARGS_ENTRY_HTON
2993                              (struct rte_flow_action_of_set_vlan_vid,
2994                               vlan_vid)),
2995                 .call = parse_vc_conf,
2996         },
2997         [ACTION_OF_SET_VLAN_PCP] = {
2998                 .name = "of_set_vlan_pcp",
2999                 .help = "OpenFlow's OFPAT_SET_VLAN_PCP",
3000                 .priv = PRIV_ACTION
3001                         (OF_SET_VLAN_PCP,
3002                          sizeof(struct rte_flow_action_of_set_vlan_pcp)),
3003                 .next = NEXT(action_of_set_vlan_pcp),
3004                 .call = parse_vc,
3005         },
3006         [ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
3007                 .name = "vlan_pcp",
3008                 .help = "VLAN priority",
3009                 .next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
3010                 .args = ARGS(ARGS_ENTRY_HTON
3011                              (struct rte_flow_action_of_set_vlan_pcp,
3012                               vlan_pcp)),
3013                 .call = parse_vc_conf,
3014         },
3015         [ACTION_OF_POP_MPLS] = {
3016                 .name = "of_pop_mpls",
3017                 .help = "OpenFlow's OFPAT_POP_MPLS",
3018                 .priv = PRIV_ACTION(OF_POP_MPLS,
3019                                     sizeof(struct rte_flow_action_of_pop_mpls)),
3020                 .next = NEXT(action_of_pop_mpls),
3021                 .call = parse_vc,
3022         },
3023         [ACTION_OF_POP_MPLS_ETHERTYPE] = {
3024                 .name = "ethertype",
3025                 .help = "EtherType",
3026                 .next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
3027                 .args = ARGS(ARGS_ENTRY_HTON
3028                              (struct rte_flow_action_of_pop_mpls,
3029                               ethertype)),
3030                 .call = parse_vc_conf,
3031         },
3032         [ACTION_OF_PUSH_MPLS] = {
3033                 .name = "of_push_mpls",
3034                 .help = "OpenFlow's OFPAT_PUSH_MPLS",
3035                 .priv = PRIV_ACTION
3036                         (OF_PUSH_MPLS,
3037                          sizeof(struct rte_flow_action_of_push_mpls)),
3038                 .next = NEXT(action_of_push_mpls),
3039                 .call = parse_vc,
3040         },
3041         [ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
3042                 .name = "ethertype",
3043                 .help = "EtherType",
3044                 .next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
3045                 .args = ARGS(ARGS_ENTRY_HTON
3046                              (struct rte_flow_action_of_push_mpls,
3047                               ethertype)),
3048                 .call = parse_vc_conf,
3049         },
3050         [ACTION_VXLAN_ENCAP] = {
3051                 .name = "vxlan_encap",
3052                 .help = "VXLAN encapsulation, uses configuration set by \"set"
3053                         " vxlan\"",
3054                 .priv = PRIV_ACTION(VXLAN_ENCAP,
3055                                     sizeof(struct action_vxlan_encap_data)),
3056                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3057                 .call = parse_vc_action_vxlan_encap,
3058         },
3059         [ACTION_VXLAN_DECAP] = {
3060                 .name = "vxlan_decap",
3061                 .help = "Performs a decapsulation action by stripping all"
3062                         " headers of the VXLAN tunnel network overlay from the"
3063                         " matched flow.",
3064                 .priv = PRIV_ACTION(VXLAN_DECAP, 0),
3065                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3066                 .call = parse_vc,
3067         },
3068         [ACTION_NVGRE_ENCAP] = {
3069                 .name = "nvgre_encap",
3070                 .help = "NVGRE encapsulation, uses configuration set by \"set"
3071                         " nvgre\"",
3072                 .priv = PRIV_ACTION(NVGRE_ENCAP,
3073                                     sizeof(struct action_nvgre_encap_data)),
3074                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3075                 .call = parse_vc_action_nvgre_encap,
3076         },
3077         [ACTION_NVGRE_DECAP] = {
3078                 .name = "nvgre_decap",
3079                 .help = "Performs a decapsulation action by stripping all"
3080                         " headers of the NVGRE tunnel network overlay from the"
3081                         " matched flow.",
3082                 .priv = PRIV_ACTION(NVGRE_DECAP, 0),
3083                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3084                 .call = parse_vc,
3085         },
3086         [ACTION_L2_ENCAP] = {
3087                 .name = "l2_encap",
3088                 .help = "l2 encap, uses configuration set by"
3089                         " \"set l2_encap\"",
3090                 .priv = PRIV_ACTION(RAW_ENCAP,
3091                                     sizeof(struct action_raw_encap_data)),
3092                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3093                 .call = parse_vc_action_l2_encap,
3094         },
3095         [ACTION_L2_DECAP] = {
3096                 .name = "l2_decap",
3097                 .help = "l2 decap, uses configuration set by"
3098                         " \"set l2_decap\"",
3099                 .priv = PRIV_ACTION(RAW_DECAP,
3100                                     sizeof(struct action_raw_decap_data)),
3101                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3102                 .call = parse_vc_action_l2_decap,
3103         },
3104         [ACTION_MPLSOGRE_ENCAP] = {
3105                 .name = "mplsogre_encap",
3106                 .help = "mplsogre encapsulation, uses configuration set by"
3107                         " \"set mplsogre_encap\"",
3108                 .priv = PRIV_ACTION(RAW_ENCAP,
3109                                     sizeof(struct action_raw_encap_data)),
3110                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3111                 .call = parse_vc_action_mplsogre_encap,
3112         },
3113         [ACTION_MPLSOGRE_DECAP] = {
3114                 .name = "mplsogre_decap",
3115                 .help = "mplsogre decapsulation, uses configuration set by"
3116                         " \"set mplsogre_decap\"",
3117                 .priv = PRIV_ACTION(RAW_DECAP,
3118                                     sizeof(struct action_raw_decap_data)),
3119                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3120                 .call = parse_vc_action_mplsogre_decap,
3121         },
3122         [ACTION_MPLSOUDP_ENCAP] = {
3123                 .name = "mplsoudp_encap",
3124                 .help = "mplsoudp encapsulation, uses configuration set by"
3125                         " \"set mplsoudp_encap\"",
3126                 .priv = PRIV_ACTION(RAW_ENCAP,
3127                                     sizeof(struct action_raw_encap_data)),
3128                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3129                 .call = parse_vc_action_mplsoudp_encap,
3130         },
3131         [ACTION_MPLSOUDP_DECAP] = {
3132                 .name = "mplsoudp_decap",
3133                 .help = "mplsoudp decapsulation, uses configuration set by"
3134                         " \"set mplsoudp_decap\"",
3135                 .priv = PRIV_ACTION(RAW_DECAP,
3136                                     sizeof(struct action_raw_decap_data)),
3137                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3138                 .call = parse_vc_action_mplsoudp_decap,
3139         },
3140         [ACTION_SET_IPV4_SRC] = {
3141                 .name = "set_ipv4_src",
3142                 .help = "Set a new IPv4 source address in the outermost"
3143                         " IPv4 header",
3144                 .priv = PRIV_ACTION(SET_IPV4_SRC,
3145                         sizeof(struct rte_flow_action_set_ipv4)),
3146                 .next = NEXT(action_set_ipv4_src),
3147                 .call = parse_vc,
3148         },
3149         [ACTION_SET_IPV4_SRC_IPV4_SRC] = {
3150                 .name = "ipv4_addr",
3151                 .help = "new IPv4 source address to set",
3152                 .next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
3153                 .args = ARGS(ARGS_ENTRY_HTON
3154                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
3155                 .call = parse_vc_conf,
3156         },
3157         [ACTION_SET_IPV4_DST] = {
3158                 .name = "set_ipv4_dst",
3159                 .help = "Set a new IPv4 destination address in the outermost"
3160                         " IPv4 header",
3161                 .priv = PRIV_ACTION(SET_IPV4_DST,
3162                         sizeof(struct rte_flow_action_set_ipv4)),
3163                 .next = NEXT(action_set_ipv4_dst),
3164                 .call = parse_vc,
3165         },
3166         [ACTION_SET_IPV4_DST_IPV4_DST] = {
3167                 .name = "ipv4_addr",
3168                 .help = "new IPv4 destination address to set",
3169                 .next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
3170                 .args = ARGS(ARGS_ENTRY_HTON
3171                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
3172                 .call = parse_vc_conf,
3173         },
3174         [ACTION_SET_IPV6_SRC] = {
3175                 .name = "set_ipv6_src",
3176                 .help = "Set a new IPv6 source address in the outermost"
3177                         " IPv6 header",
3178                 .priv = PRIV_ACTION(SET_IPV6_SRC,
3179                         sizeof(struct rte_flow_action_set_ipv6)),
3180                 .next = NEXT(action_set_ipv6_src),
3181                 .call = parse_vc,
3182         },
3183         [ACTION_SET_IPV6_SRC_IPV6_SRC] = {
3184                 .name = "ipv6_addr",
3185                 .help = "new IPv6 source address to set",
3186                 .next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
3187                 .args = ARGS(ARGS_ENTRY_HTON
3188                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
3189                 .call = parse_vc_conf,
3190         },
3191         [ACTION_SET_IPV6_DST] = {
3192                 .name = "set_ipv6_dst",
3193                 .help = "Set a new IPv6 destination address in the outermost"
3194                         " IPv6 header",
3195                 .priv = PRIV_ACTION(SET_IPV6_DST,
3196                         sizeof(struct rte_flow_action_set_ipv6)),
3197                 .next = NEXT(action_set_ipv6_dst),
3198                 .call = parse_vc,
3199         },
3200         [ACTION_SET_IPV6_DST_IPV6_DST] = {
3201                 .name = "ipv6_addr",
3202                 .help = "new IPv6 destination address to set",
3203                 .next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
3204                 .args = ARGS(ARGS_ENTRY_HTON
3205                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
3206                 .call = parse_vc_conf,
3207         },
3208         [ACTION_SET_TP_SRC] = {
3209                 .name = "set_tp_src",
3210                 .help = "set a new source port number in the outermost"
3211                         " TCP/UDP header",
3212                 .priv = PRIV_ACTION(SET_TP_SRC,
3213                         sizeof(struct rte_flow_action_set_tp)),
3214                 .next = NEXT(action_set_tp_src),
3215                 .call = parse_vc,
3216         },
3217         [ACTION_SET_TP_SRC_TP_SRC] = {
3218                 .name = "port",
3219                 .help = "new source port number to set",
3220                 .next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
3221                 .args = ARGS(ARGS_ENTRY_HTON
3222                              (struct rte_flow_action_set_tp, port)),
3223                 .call = parse_vc_conf,
3224         },
3225         [ACTION_SET_TP_DST] = {
3226                 .name = "set_tp_dst",
3227                 .help = "set a new destination port number in the outermost"
3228                         " TCP/UDP header",
3229                 .priv = PRIV_ACTION(SET_TP_DST,
3230                         sizeof(struct rte_flow_action_set_tp)),
3231                 .next = NEXT(action_set_tp_dst),
3232                 .call = parse_vc,
3233         },
3234         [ACTION_SET_TP_DST_TP_DST] = {
3235                 .name = "port",
3236                 .help = "new destination port number to set",
3237                 .next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
3238                 .args = ARGS(ARGS_ENTRY_HTON
3239                              (struct rte_flow_action_set_tp, port)),
3240                 .call = parse_vc_conf,
3241         },
3242         [ACTION_MAC_SWAP] = {
3243                 .name = "mac_swap",
3244                 .help = "Swap the source and destination MAC addresses"
3245                         " in the outermost Ethernet header",
3246                 .priv = PRIV_ACTION(MAC_SWAP, 0),
3247                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3248                 .call = parse_vc,
3249         },
3250         [ACTION_DEC_TTL] = {
3251                 .name = "dec_ttl",
3252                 .help = "decrease network TTL if available",
3253                 .priv = PRIV_ACTION(DEC_TTL, 0),
3254                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3255                 .call = parse_vc,
3256         },
3257         [ACTION_SET_TTL] = {
3258                 .name = "set_ttl",
3259                 .help = "set ttl value",
3260                 .priv = PRIV_ACTION(SET_TTL,
3261                         sizeof(struct rte_flow_action_set_ttl)),
3262                 .next = NEXT(action_set_ttl),
3263                 .call = parse_vc,
3264         },
3265         [ACTION_SET_TTL_TTL] = {
3266                 .name = "ttl_value",
3267                 .help = "new ttl value to set",
3268                 .next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
3269                 .args = ARGS(ARGS_ENTRY_HTON
3270                              (struct rte_flow_action_set_ttl, ttl_value)),
3271                 .call = parse_vc_conf,
3272         },
3273         [ACTION_SET_MAC_SRC] = {
3274                 .name = "set_mac_src",
3275                 .help = "set source mac address",
3276                 .priv = PRIV_ACTION(SET_MAC_SRC,
3277                         sizeof(struct rte_flow_action_set_mac)),
3278                 .next = NEXT(action_set_mac_src),
3279                 .call = parse_vc,
3280         },
3281         [ACTION_SET_MAC_SRC_MAC_SRC] = {
3282                 .name = "mac_addr",
3283                 .help = "new source mac address",
3284                 .next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
3285                 .args = ARGS(ARGS_ENTRY_HTON
3286                              (struct rte_flow_action_set_mac, mac_addr)),
3287                 .call = parse_vc_conf,
3288         },
3289         [ACTION_SET_MAC_DST] = {
3290                 .name = "set_mac_dst",
3291                 .help = "set destination mac address",
3292                 .priv = PRIV_ACTION(SET_MAC_DST,
3293                         sizeof(struct rte_flow_action_set_mac)),
3294                 .next = NEXT(action_set_mac_dst),
3295                 .call = parse_vc,
3296         },
3297         [ACTION_SET_MAC_DST_MAC_DST] = {
3298                 .name = "mac_addr",
3299                 .help = "new destination mac address to set",
3300                 .next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
3301                 .args = ARGS(ARGS_ENTRY_HTON
3302                              (struct rte_flow_action_set_mac, mac_addr)),
3303                 .call = parse_vc_conf,
3304         },
3305         [ACTION_INC_TCP_SEQ] = {
3306                 .name = "inc_tcp_seq",
3307                 .help = "increase TCP sequence number",
3308                 .priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
3309                 .next = NEXT(action_inc_tcp_seq),
3310                 .call = parse_vc,
3311         },
3312         [ACTION_INC_TCP_SEQ_VALUE] = {
3313                 .name = "value",
3314                 .help = "the value to increase TCP sequence number by",
3315                 .next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3316                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3317                 .call = parse_vc_conf,
3318         },
3319         [ACTION_DEC_TCP_SEQ] = {
3320                 .name = "dec_tcp_seq",
3321                 .help = "decrease TCP sequence number",
3322                 .priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
3323                 .next = NEXT(action_dec_tcp_seq),
3324                 .call = parse_vc,
3325         },
3326         [ACTION_DEC_TCP_SEQ_VALUE] = {
3327                 .name = "value",
3328                 .help = "the value to decrease TCP sequence number by",
3329                 .next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3330                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3331                 .call = parse_vc_conf,
3332         },
3333         [ACTION_INC_TCP_ACK] = {
3334                 .name = "inc_tcp_ack",
3335                 .help = "increase TCP acknowledgment number",
3336                 .priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
3337                 .next = NEXT(action_inc_tcp_ack),
3338                 .call = parse_vc,
3339         },
3340         [ACTION_INC_TCP_ACK_VALUE] = {
3341                 .name = "value",
3342                 .help = "the value to increase TCP acknowledgment number by",
3343                 .next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3344                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3345                 .call = parse_vc_conf,
3346         },
3347         [ACTION_DEC_TCP_ACK] = {
3348                 .name = "dec_tcp_ack",
3349                 .help = "decrease TCP acknowledgment number",
3350                 .priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
3351                 .next = NEXT(action_dec_tcp_ack),
3352                 .call = parse_vc,
3353         },
3354         [ACTION_DEC_TCP_ACK_VALUE] = {
3355                 .name = "value",
3356                 .help = "the value to decrease TCP acknowledgment number by",
3357                 .next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3358                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3359                 .call = parse_vc_conf,
3360         },
3361         [ACTION_RAW_ENCAP] = {
3362                 .name = "raw_encap",
3363                 .help = "encapsulation data, defined by set raw_encap",
3364                 .priv = PRIV_ACTION(RAW_ENCAP,
3365                         sizeof(struct action_raw_encap_data)),
3366                 .next = NEXT(action_raw_encap),
3367                 .call = parse_vc_action_raw_encap,
3368         },
3369         [ACTION_RAW_ENCAP_INDEX] = {
3370                 .name = "index",
3371                 .help = "the index of raw_encap_confs",
3372                 .next = NEXT(NEXT_ENTRY(ACTION_RAW_ENCAP_INDEX_VALUE)),
3373         },
3374         [ACTION_RAW_ENCAP_INDEX_VALUE] = {
3375                 .name = "{index}",
3376                 .type = "UNSIGNED",
3377                 .help = "unsigned integer value",
3378                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3379                 .call = parse_vc_action_raw_encap_index,
3380                 .comp = comp_set_raw_index,
3381         },
3382         [ACTION_RAW_DECAP] = {
3383                 .name = "raw_decap",
3384                 .help = "decapsulation data, defined by set raw_encap",
3385                 .priv = PRIV_ACTION(RAW_DECAP,
3386                         sizeof(struct action_raw_decap_data)),
3387                 .next = NEXT(action_raw_decap),
3388                 .call = parse_vc_action_raw_decap,
3389         },
3390         [ACTION_RAW_DECAP_INDEX] = {
3391                 .name = "index",
3392                 .help = "the index of raw_encap_confs",
3393                 .next = NEXT(NEXT_ENTRY(ACTION_RAW_DECAP_INDEX_VALUE)),
3394         },
3395         [ACTION_RAW_DECAP_INDEX_VALUE] = {
3396                 .name = "{index}",
3397                 .type = "UNSIGNED",
3398                 .help = "unsigned integer value",
3399                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3400                 .call = parse_vc_action_raw_decap_index,
3401                 .comp = comp_set_raw_index,
3402         },
3403         /* Top level command. */
3404         [SET] = {
3405                 .name = "set",
3406                 .help = "set raw encap/decap data",
3407                 .type = "set raw_encap|raw_decap <index> <pattern>",
3408                 .next = NEXT(NEXT_ENTRY
3409                              (SET_RAW_ENCAP,
3410                               SET_RAW_DECAP)),
3411                 .call = parse_set_init,
3412         },
3413         /* Sub-level commands. */
3414         [SET_RAW_ENCAP] = {
3415                 .name = "raw_encap",
3416                 .help = "set raw encap data",
3417                 .next = NEXT(next_set_raw),
3418                 .args = ARGS(ARGS_ENTRY_ARB_BOUNDED
3419                                 (offsetof(struct buffer, port),
3420                                  sizeof(((struct buffer *)0)->port),
3421                                  0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
3422                 .call = parse_set_raw_encap_decap,
3423         },
3424         [SET_RAW_DECAP] = {
3425                 .name = "raw_decap",
3426                 .help = "set raw decap data",
3427                 .next = NEXT(next_set_raw),
3428                 .args = ARGS(ARGS_ENTRY_ARB_BOUNDED
3429                                 (offsetof(struct buffer, port),
3430                                  sizeof(((struct buffer *)0)->port),
3431                                  0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
3432                 .call = parse_set_raw_encap_decap,
3433         },
3434         [SET_RAW_INDEX] = {
3435                 .name = "{index}",
3436                 .type = "UNSIGNED",
3437                 .help = "index of raw_encap/raw_decap data",
3438                 .next = NEXT(next_item),
3439                 .call = parse_port,
3440         },
3441         [ACTION_SET_TAG] = {
3442                 .name = "set_tag",
3443                 .help = "set tag",
3444                 .priv = PRIV_ACTION(SET_TAG,
3445                         sizeof(struct rte_flow_action_set_tag)),
3446                 .next = NEXT(action_set_tag),
3447                 .call = parse_vc,
3448         },
3449         [ACTION_SET_TAG_INDEX] = {
3450                 .name = "index",
3451                 .help = "index of tag array",
3452                 .next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
3453                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_set_tag, index)),
3454                 .call = parse_vc_conf,
3455         },
3456         [ACTION_SET_TAG_DATA] = {
3457                 .name = "data",
3458                 .help = "tag value",
3459                 .next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
3460                 .args = ARGS(ARGS_ENTRY
3461                              (struct rte_flow_action_set_tag, data)),
3462                 .call = parse_vc_conf,
3463         },
3464         [ACTION_SET_TAG_MASK] = {
3465                 .name = "mask",
3466                 .help = "mask for tag value",
3467                 .next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
3468                 .args = ARGS(ARGS_ENTRY
3469                              (struct rte_flow_action_set_tag, mask)),
3470                 .call = parse_vc_conf,
3471         },
3472         [ACTION_SET_META] = {
3473                 .name = "set_meta",
3474                 .help = "set metadata",
3475                 .priv = PRIV_ACTION(SET_META,
3476                         sizeof(struct rte_flow_action_set_meta)),
3477                 .next = NEXT(action_set_meta),
3478                 .call = parse_vc_action_set_meta,
3479         },
3480         [ACTION_SET_META_DATA] = {
3481                 .name = "data",
3482                 .help = "metadata value",
3483                 .next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
3484                 .args = ARGS(ARGS_ENTRY
3485                              (struct rte_flow_action_set_meta, data)),
3486                 .call = parse_vc_conf,
3487         },
3488         [ACTION_SET_META_MASK] = {
3489                 .name = "mask",
3490                 .help = "mask for metadata value",
3491                 .next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
3492                 .args = ARGS(ARGS_ENTRY
3493                              (struct rte_flow_action_set_meta, mask)),
3494                 .call = parse_vc_conf,
3495         },
3496 };
3497
3498 /** Remove and return last entry from argument stack. */
3499 static const struct arg *
3500 pop_args(struct context *ctx)
3501 {
3502         return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
3503 }
3504
3505 /** Add entry on top of the argument stack. */
3506 static int
3507 push_args(struct context *ctx, const struct arg *arg)
3508 {
3509         if (ctx->args_num == CTX_STACK_SIZE)
3510                 return -1;
3511         ctx->args[ctx->args_num++] = arg;
3512         return 0;
3513 }
3514
3515 /** Spread value into buffer according to bit-mask. */
3516 static size_t
3517 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
3518 {
3519         uint32_t i = arg->size;
3520         uint32_t end = 0;
3521         int sub = 1;
3522         int add = 0;
3523         size_t len = 0;
3524
3525         if (!arg->mask)
3526                 return 0;
3527 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3528         if (!arg->hton) {
3529                 i = 0;
3530                 end = arg->size;
3531                 sub = 0;
3532                 add = 1;
3533         }
3534 #endif
3535         while (i != end) {
3536                 unsigned int shift = 0;
3537                 uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
3538
3539                 for (shift = 0; arg->mask[i] >> shift; ++shift) {
3540                         if (!(arg->mask[i] & (1 << shift)))
3541                                 continue;
3542                         ++len;
3543                         if (!dst)
3544                                 continue;
3545                         *buf &= ~(1 << shift);
3546                         *buf |= (val & 1) << shift;
3547                         val >>= 1;
3548                 }
3549                 i += add;
3550         }
3551         return len;
3552 }
3553
3554 /** Compare a string with a partial one of a given length. */
3555 static int
3556 strcmp_partial(const char *full, const char *partial, size_t partial_len)
3557 {
3558         int r = strncmp(full, partial, partial_len);
3559
3560         if (r)
3561                 return r;
3562         if (strlen(full) <= partial_len)
3563                 return 0;
3564         return full[partial_len];
3565 }
3566
3567 /**
3568  * Parse a prefix length and generate a bit-mask.
3569  *
3570  * Last argument (ctx->args) is retrieved to determine mask size, storage
3571  * location and whether the result must use network byte ordering.
3572  */
3573 static int
3574 parse_prefix(struct context *ctx, const struct token *token,
3575              const char *str, unsigned int len,
3576              void *buf, unsigned int size)
3577 {
3578         const struct arg *arg = pop_args(ctx);
3579         static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
3580         char *end;
3581         uintmax_t u;
3582         unsigned int bytes;
3583         unsigned int extra;
3584
3585         (void)token;
3586         /* Argument is expected. */
3587         if (!arg)
3588                 return -1;
3589         errno = 0;
3590         u = strtoumax(str, &end, 0);
3591         if (errno || (size_t)(end - str) != len)
3592                 goto error;
3593         if (arg->mask) {
3594                 uintmax_t v = 0;
3595
3596                 extra = arg_entry_bf_fill(NULL, 0, arg);
3597                 if (u > extra)
3598                         goto error;
3599                 if (!ctx->object)
3600                         return len;
3601                 extra -= u;
3602                 while (u--)
3603                         (v <<= 1, v |= 1);
3604                 v <<= extra;
3605                 if (!arg_entry_bf_fill(ctx->object, v, arg) ||
3606                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
3607                         goto error;
3608                 return len;
3609         }
3610         bytes = u / 8;
3611         extra = u % 8;
3612         size = arg->size;
3613         if (bytes > size || bytes + !!extra > size)
3614                 goto error;
3615         if (!ctx->object)
3616                 return len;
3617         buf = (uint8_t *)ctx->object + arg->offset;
3618 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3619         if (!arg->hton) {
3620                 memset((uint8_t *)buf + size - bytes, 0xff, bytes);
3621                 memset(buf, 0x00, size - bytes);
3622                 if (extra)
3623                         ((uint8_t *)buf)[size - bytes - 1] = conv[extra];
3624         } else
3625 #endif
3626         {
3627                 memset(buf, 0xff, bytes);
3628                 memset((uint8_t *)buf + bytes, 0x00, size - bytes);
3629                 if (extra)
3630                         ((uint8_t *)buf)[bytes] = conv[extra];
3631         }
3632         if (ctx->objmask)
3633                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3634         return len;
3635 error:
3636         push_args(ctx, arg);
3637         return -1;
3638 }
3639
3640 /** Default parsing function for token name matching. */
3641 static int
3642 parse_default(struct context *ctx, const struct token *token,
3643               const char *str, unsigned int len,
3644               void *buf, unsigned int size)
3645 {
3646         (void)ctx;
3647         (void)buf;
3648         (void)size;
3649         if (strcmp_partial(token->name, str, len))
3650                 return -1;
3651         return len;
3652 }
3653
3654 /** Parse flow command, initialize output buffer for subsequent tokens. */
3655 static int
3656 parse_init(struct context *ctx, const struct token *token,
3657            const char *str, unsigned int len,
3658            void *buf, unsigned int size)
3659 {
3660         struct buffer *out = buf;
3661
3662         /* Token name must match. */
3663         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3664                 return -1;
3665         /* Nothing else to do if there is no buffer. */
3666         if (!out)
3667                 return len;
3668         /* Make sure buffer is large enough. */
3669         if (size < sizeof(*out))
3670                 return -1;
3671         /* Initialize buffer. */
3672         memset(out, 0x00, sizeof(*out));
3673         memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3674         ctx->objdata = 0;
3675         ctx->object = out;
3676         ctx->objmask = NULL;
3677         return len;
3678 }
3679
3680 /** Parse tokens for validate/create commands. */
3681 static int
3682 parse_vc(struct context *ctx, const struct token *token,
3683          const char *str, unsigned int len,
3684          void *buf, unsigned int size)
3685 {
3686         struct buffer *out = buf;
3687         uint8_t *data;
3688         uint32_t data_size;
3689
3690         /* Token name must match. */
3691         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3692                 return -1;
3693         /* Nothing else to do if there is no buffer. */
3694         if (!out)
3695                 return len;
3696         if (!out->command) {
3697                 if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3698                         return -1;
3699                 if (sizeof(*out) > size)
3700                         return -1;
3701                 out->command = ctx->curr;
3702                 ctx->objdata = 0;
3703                 ctx->object = out;
3704                 ctx->objmask = NULL;
3705                 out->args.vc.data = (uint8_t *)out + size;
3706                 return len;
3707         }
3708         ctx->objdata = 0;
3709         ctx->object = &out->args.vc.attr;
3710         ctx->objmask = NULL;
3711         switch (ctx->curr) {
3712         case GROUP:
3713         case PRIORITY:
3714                 return len;
3715         case INGRESS:
3716                 out->args.vc.attr.ingress = 1;
3717                 return len;
3718         case EGRESS:
3719                 out->args.vc.attr.egress = 1;
3720                 return len;
3721         case TRANSFER:
3722                 out->args.vc.attr.transfer = 1;
3723                 return len;
3724         case PATTERN:
3725                 out->args.vc.pattern =
3726                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3727                                                sizeof(double));
3728                 ctx->object = out->args.vc.pattern;
3729                 ctx->objmask = NULL;
3730                 return len;
3731         case ACTIONS:
3732                 out->args.vc.actions =
3733                         (void *)RTE_ALIGN_CEIL((uintptr_t)
3734                                                (out->args.vc.pattern +
3735                                                 out->args.vc.pattern_n),
3736                                                sizeof(double));
3737                 ctx->object = out->args.vc.actions;
3738                 ctx->objmask = NULL;
3739                 return len;
3740         default:
3741                 if (!token->priv)
3742                         return -1;
3743                 break;
3744         }
3745         if (!out->args.vc.actions) {
3746                 const struct parse_item_priv *priv = token->priv;
3747                 struct rte_flow_item *item =
3748                         out->args.vc.pattern + out->args.vc.pattern_n;
3749
3750                 data_size = priv->size * 3; /* spec, last, mask */
3751                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3752                                                (out->args.vc.data - data_size),
3753                                                sizeof(double));
3754                 if ((uint8_t *)item + sizeof(*item) > data)
3755                         return -1;
3756                 *item = (struct rte_flow_item){
3757                         .type = priv->type,
3758                 };
3759                 ++out->args.vc.pattern_n;
3760                 ctx->object = item;
3761                 ctx->objmask = NULL;
3762         } else {
3763                 const struct parse_action_priv *priv = token->priv;
3764                 struct rte_flow_action *action =
3765                         out->args.vc.actions + out->args.vc.actions_n;
3766
3767                 data_size = priv->size; /* configuration */
3768                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3769                                                (out->args.vc.data - data_size),
3770                                                sizeof(double));
3771                 if ((uint8_t *)action + sizeof(*action) > data)
3772                         return -1;
3773                 *action = (struct rte_flow_action){
3774                         .type = priv->type,
3775                         .conf = data_size ? data : NULL,
3776                 };
3777                 ++out->args.vc.actions_n;
3778                 ctx->object = action;
3779                 ctx->objmask = NULL;
3780         }
3781         memset(data, 0, data_size);
3782         out->args.vc.data = data;
3783         ctx->objdata = data_size;
3784         return len;
3785 }
3786
3787 /** Parse pattern item parameter type. */
3788 static int
3789 parse_vc_spec(struct context *ctx, const struct token *token,
3790               const char *str, unsigned int len,
3791               void *buf, unsigned int size)
3792 {
3793         struct buffer *out = buf;
3794         struct rte_flow_item *item;
3795         uint32_t data_size;
3796         int index;
3797         int objmask = 0;
3798
3799         (void)size;
3800         /* Token name must match. */
3801         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3802                 return -1;
3803         /* Parse parameter types. */
3804         switch (ctx->curr) {
3805                 static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3806
3807         case ITEM_PARAM_IS:
3808                 index = 0;
3809                 objmask = 1;
3810                 break;
3811         case ITEM_PARAM_SPEC:
3812                 index = 0;
3813                 break;
3814         case ITEM_PARAM_LAST:
3815                 index = 1;
3816                 break;
3817         case ITEM_PARAM_PREFIX:
3818                 /* Modify next token to expect a prefix. */
3819                 if (ctx->next_num < 2)
3820                         return -1;
3821                 ctx->next[ctx->next_num - 2] = prefix;
3822                 /* Fall through. */
3823         case ITEM_PARAM_MASK:
3824                 index = 2;
3825                 break;
3826         default:
3827                 return -1;
3828         }
3829         /* Nothing else to do if there is no buffer. */
3830         if (!out)
3831                 return len;
3832         if (!out->args.vc.pattern_n)
3833                 return -1;
3834         item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3835         data_size = ctx->objdata / 3; /* spec, last, mask */
3836         /* Point to selected object. */
3837         ctx->object = out->args.vc.data + (data_size * index);
3838         if (objmask) {
3839                 ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3840                 item->mask = ctx->objmask;
3841         } else
3842                 ctx->objmask = NULL;
3843         /* Update relevant item pointer. */
3844         *((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3845                 ctx->object;
3846         return len;
3847 }
3848
3849 /** Parse action configuration field. */
3850 static int
3851 parse_vc_conf(struct context *ctx, const struct token *token,
3852               const char *str, unsigned int len,
3853               void *buf, unsigned int size)
3854 {
3855         struct buffer *out = buf;
3856
3857         (void)size;
3858         /* Token name must match. */
3859         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3860                 return -1;
3861         /* Nothing else to do if there is no buffer. */
3862         if (!out)
3863                 return len;
3864         /* Point to selected object. */
3865         ctx->object = out->args.vc.data;
3866         ctx->objmask = NULL;
3867         return len;
3868 }
3869
3870 /** Parse RSS action. */
3871 static int
3872 parse_vc_action_rss(struct context *ctx, const struct token *token,
3873                     const char *str, unsigned int len,
3874                     void *buf, unsigned int size)
3875 {
3876         struct buffer *out = buf;
3877         struct rte_flow_action *action;
3878         struct action_rss_data *action_rss_data;
3879         unsigned int i;
3880         int ret;
3881
3882         ret = parse_vc(ctx, token, str, len, buf, size);
3883         if (ret < 0)
3884                 return ret;
3885         /* Nothing else to do if there is no buffer. */
3886         if (!out)
3887                 return ret;
3888         if (!out->args.vc.actions_n)
3889                 return -1;
3890         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3891         /* Point to selected object. */
3892         ctx->object = out->args.vc.data;
3893         ctx->objmask = NULL;
3894         /* Set up default configuration. */
3895         action_rss_data = ctx->object;
3896         *action_rss_data = (struct action_rss_data){
3897                 .conf = (struct rte_flow_action_rss){
3898                         .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3899                         .level = 0,
3900                         .types = rss_hf,
3901                         .key_len = sizeof(action_rss_data->key),
3902                         .queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3903                         .key = action_rss_data->key,
3904                         .queue = action_rss_data->queue,
3905                 },
3906                 .key = "testpmd's default RSS hash key, "
3907                         "override it for better balancing",
3908                 .queue = { 0 },
3909         };
3910         for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3911                 action_rss_data->queue[i] = i;
3912         if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3913             ctx->port != (portid_t)RTE_PORT_ALL) {
3914                 struct rte_eth_dev_info info;
3915                 int ret2;
3916
3917                 ret2 = rte_eth_dev_info_get(ctx->port, &info);
3918                 if (ret2 != 0)
3919                         return ret2;
3920
3921                 action_rss_data->conf.key_len =
3922                         RTE_MIN(sizeof(action_rss_data->key),
3923                                 info.hash_key_size);
3924         }
3925         action->conf = &action_rss_data->conf;
3926         return ret;
3927 }
3928
3929 /**
3930  * Parse func field for RSS action.
3931  *
3932  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3933  * ACTION_RSS_FUNC_* index that called this function.
3934  */
3935 static int
3936 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3937                          const char *str, unsigned int len,
3938                          void *buf, unsigned int size)
3939 {
3940         struct action_rss_data *action_rss_data;
3941         enum rte_eth_hash_function func;
3942
3943         (void)buf;
3944         (void)size;
3945         /* Token name must match. */
3946         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3947                 return -1;
3948         switch (ctx->curr) {
3949         case ACTION_RSS_FUNC_DEFAULT:
3950                 func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3951                 break;
3952         case ACTION_RSS_FUNC_TOEPLITZ:
3953                 func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3954                 break;
3955         case ACTION_RSS_FUNC_SIMPLE_XOR:
3956                 func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3957                 break;
3958         case ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ:
3959                 func = RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ;
3960                 break;
3961         default:
3962                 return -1;
3963         }
3964         if (!ctx->object)
3965                 return len;
3966         action_rss_data = ctx->object;
3967         action_rss_data->conf.func = func;
3968         return len;
3969 }
3970
3971 /**
3972  * Parse type field for RSS action.
3973  *
3974  * Valid tokens are type field names and the "end" token.
3975  */
3976 static int
3977 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3978                           const char *str, unsigned int len,
3979                           void *buf, unsigned int size)
3980 {
3981         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3982         struct action_rss_data *action_rss_data;
3983         unsigned int i;
3984
3985         (void)token;
3986         (void)buf;
3987         (void)size;
3988         if (ctx->curr != ACTION_RSS_TYPE)
3989                 return -1;
3990         if (!(ctx->objdata >> 16) && ctx->object) {
3991                 action_rss_data = ctx->object;
3992                 action_rss_data->conf.types = 0;
3993         }
3994         if (!strcmp_partial("end", str, len)) {
3995                 ctx->objdata &= 0xffff;
3996                 return len;
3997         }
3998         for (i = 0; rss_type_table[i].str; ++i)
3999                 if (!strcmp_partial(rss_type_table[i].str, str, len))
4000                         break;
4001         if (!rss_type_table[i].str)
4002                 return -1;
4003         ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
4004         /* Repeat token. */
4005         if (ctx->next_num == RTE_DIM(ctx->next))
4006                 return -1;
4007         ctx->next[ctx->next_num++] = next;
4008         if (!ctx->object)
4009                 return len;
4010         action_rss_data = ctx->object;
4011         action_rss_data->conf.types |= rss_type_table[i].rss_type;
4012         return len;
4013 }
4014
4015 /**
4016  * Parse queue field for RSS action.
4017  *
4018  * Valid tokens are queue indices and the "end" token.
4019  */
4020 static int
4021 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
4022                           const char *str, unsigned int len,
4023                           void *buf, unsigned int size)
4024 {
4025         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
4026         struct action_rss_data *action_rss_data;
4027         const struct arg *arg;
4028         int ret;
4029         int i;
4030
4031         (void)token;
4032         (void)buf;
4033         (void)size;
4034         if (ctx->curr != ACTION_RSS_QUEUE)
4035                 return -1;
4036         i = ctx->objdata >> 16;
4037         if (!strcmp_partial("end", str, len)) {
4038                 ctx->objdata &= 0xffff;
4039                 goto end;
4040         }
4041         if (i >= ACTION_RSS_QUEUE_NUM)
4042                 return -1;
4043         arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
4044                              i * sizeof(action_rss_data->queue[i]),
4045                              sizeof(action_rss_data->queue[i]));
4046         if (push_args(ctx, arg))
4047                 return -1;
4048         ret = parse_int(ctx, token, str, len, NULL, 0);
4049         if (ret < 0) {
4050                 pop_args(ctx);
4051                 return -1;
4052         }
4053         ++i;
4054         ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
4055         /* Repeat token. */
4056         if (ctx->next_num == RTE_DIM(ctx->next))
4057                 return -1;
4058         ctx->next[ctx->next_num++] = next;
4059 end:
4060         if (!ctx->object)
4061                 return len;
4062         action_rss_data = ctx->object;
4063         action_rss_data->conf.queue_num = i;
4064         action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
4065         return len;
4066 }
4067
4068 /** Parse VXLAN encap action. */
4069 static int
4070 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
4071                             const char *str, unsigned int len,
4072                             void *buf, unsigned int size)
4073 {
4074         struct buffer *out = buf;
4075         struct rte_flow_action *action;
4076         struct action_vxlan_encap_data *action_vxlan_encap_data;
4077         int ret;
4078
4079         ret = parse_vc(ctx, token, str, len, buf, size);
4080         if (ret < 0)
4081                 return ret;
4082         /* Nothing else to do if there is no buffer. */
4083         if (!out)
4084                 return ret;
4085         if (!out->args.vc.actions_n)
4086                 return -1;
4087         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4088         /* Point to selected object. */
4089         ctx->object = out->args.vc.data;
4090         ctx->objmask = NULL;
4091         /* Set up default configuration. */
4092         action_vxlan_encap_data = ctx->object;
4093         *action_vxlan_encap_data = (struct action_vxlan_encap_data){
4094                 .conf = (struct rte_flow_action_vxlan_encap){
4095                         .definition = action_vxlan_encap_data->items,
4096                 },
4097                 .items = {
4098                         {
4099                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
4100                                 .spec = &action_vxlan_encap_data->item_eth,
4101                                 .mask = &rte_flow_item_eth_mask,
4102                         },
4103                         {
4104                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
4105                                 .spec = &action_vxlan_encap_data->item_vlan,
4106                                 .mask = &rte_flow_item_vlan_mask,
4107                         },
4108                         {
4109                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
4110                                 .spec = &action_vxlan_encap_data->item_ipv4,
4111                                 .mask = &rte_flow_item_ipv4_mask,
4112                         },
4113                         {
4114                                 .type = RTE_FLOW_ITEM_TYPE_UDP,
4115                                 .spec = &action_vxlan_encap_data->item_udp,
4116                                 .mask = &rte_flow_item_udp_mask,
4117                         },
4118                         {
4119                                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
4120                                 .spec = &action_vxlan_encap_data->item_vxlan,
4121                                 .mask = &rte_flow_item_vxlan_mask,
4122                         },
4123                         {
4124                                 .type = RTE_FLOW_ITEM_TYPE_END,
4125                         },
4126                 },
4127                 .item_eth.type = 0,
4128                 .item_vlan = {
4129                         .tci = vxlan_encap_conf.vlan_tci,
4130                         .inner_type = 0,
4131                 },
4132                 .item_ipv4.hdr = {
4133                         .src_addr = vxlan_encap_conf.ipv4_src,
4134                         .dst_addr = vxlan_encap_conf.ipv4_dst,
4135                 },
4136                 .item_udp.hdr = {
4137                         .src_port = vxlan_encap_conf.udp_src,
4138                         .dst_port = vxlan_encap_conf.udp_dst,
4139                 },
4140                 .item_vxlan.flags = 0,
4141         };
4142         memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
4143                vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4144         memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
4145                vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4146         if (!vxlan_encap_conf.select_ipv4) {
4147                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
4148                        &vxlan_encap_conf.ipv6_src,
4149                        sizeof(vxlan_encap_conf.ipv6_src));
4150                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
4151                        &vxlan_encap_conf.ipv6_dst,
4152                        sizeof(vxlan_encap_conf.ipv6_dst));
4153                 action_vxlan_encap_data->items[2] = (struct rte_flow_item){
4154                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
4155                         .spec = &action_vxlan_encap_data->item_ipv6,
4156                         .mask = &rte_flow_item_ipv6_mask,
4157                 };
4158         }
4159         if (!vxlan_encap_conf.select_vlan)
4160                 action_vxlan_encap_data->items[1].type =
4161                         RTE_FLOW_ITEM_TYPE_VOID;
4162         if (vxlan_encap_conf.select_tos_ttl) {
4163                 if (vxlan_encap_conf.select_ipv4) {
4164                         static struct rte_flow_item_ipv4 ipv4_mask_tos;
4165
4166                         memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
4167                                sizeof(ipv4_mask_tos));
4168                         ipv4_mask_tos.hdr.type_of_service = 0xff;
4169                         ipv4_mask_tos.hdr.time_to_live = 0xff;
4170                         action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
4171                                         vxlan_encap_conf.ip_tos;
4172                         action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
4173                                         vxlan_encap_conf.ip_ttl;
4174                         action_vxlan_encap_data->items[2].mask =
4175                                                         &ipv4_mask_tos;
4176                 } else {
4177                         static struct rte_flow_item_ipv6 ipv6_mask_tos;
4178
4179                         memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
4180                                sizeof(ipv6_mask_tos));
4181                         ipv6_mask_tos.hdr.vtc_flow |=
4182                                 RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
4183                         ipv6_mask_tos.hdr.hop_limits = 0xff;
4184                         action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
4185                                 rte_cpu_to_be_32
4186                                         ((uint32_t)vxlan_encap_conf.ip_tos <<
4187                                          RTE_IPV6_HDR_TC_SHIFT);
4188                         action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
4189                                         vxlan_encap_conf.ip_ttl;
4190                         action_vxlan_encap_data->items[2].mask =
4191                                                         &ipv6_mask_tos;
4192                 }
4193         }
4194         memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
4195                RTE_DIM(vxlan_encap_conf.vni));
4196         action->conf = &action_vxlan_encap_data->conf;
4197         return ret;
4198 }
4199
4200 /** Parse NVGRE encap action. */
4201 static int
4202 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
4203                             const char *str, unsigned int len,
4204                             void *buf, unsigned int size)
4205 {
4206         struct buffer *out = buf;
4207         struct rte_flow_action *action;
4208         struct action_nvgre_encap_data *action_nvgre_encap_data;
4209         int ret;
4210
4211         ret = parse_vc(ctx, token, str, len, buf, size);
4212         if (ret < 0)
4213                 return ret;
4214         /* Nothing else to do if there is no buffer. */
4215         if (!out)
4216                 return ret;
4217         if (!out->args.vc.actions_n)
4218                 return -1;
4219         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4220         /* Point to selected object. */
4221         ctx->object = out->args.vc.data;
4222         ctx->objmask = NULL;
4223         /* Set up default configuration. */
4224         action_nvgre_encap_data = ctx->object;
4225         *action_nvgre_encap_data = (struct action_nvgre_encap_data){
4226                 .conf = (struct rte_flow_action_nvgre_encap){
4227                         .definition = action_nvgre_encap_data->items,
4228                 },
4229                 .items = {
4230                         {
4231                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
4232                                 .spec = &action_nvgre_encap_data->item_eth,
4233                                 .mask = &rte_flow_item_eth_mask,
4234                         },
4235                         {
4236                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
4237                                 .spec = &action_nvgre_encap_data->item_vlan,
4238                                 .mask = &rte_flow_item_vlan_mask,
4239                         },
4240                         {
4241                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
4242                                 .spec = &action_nvgre_encap_data->item_ipv4,
4243                                 .mask = &rte_flow_item_ipv4_mask,
4244                         },
4245                         {
4246                                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
4247                                 .spec = &action_nvgre_encap_data->item_nvgre,
4248                                 .mask = &rte_flow_item_nvgre_mask,
4249                         },
4250                         {
4251                                 .type = RTE_FLOW_ITEM_TYPE_END,
4252                         },
4253                 },
4254                 .item_eth.type = 0,
4255                 .item_vlan = {
4256                         .tci = nvgre_encap_conf.vlan_tci,
4257                         .inner_type = 0,
4258                 },
4259                 .item_ipv4.hdr = {
4260                        .src_addr = nvgre_encap_conf.ipv4_src,
4261                        .dst_addr = nvgre_encap_conf.ipv4_dst,
4262                 },
4263                 .item_nvgre.flow_id = 0,
4264         };
4265         memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
4266                nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4267         memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
4268                nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4269         if (!nvgre_encap_conf.select_ipv4) {
4270                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
4271                        &nvgre_encap_conf.ipv6_src,
4272                        sizeof(nvgre_encap_conf.ipv6_src));
4273                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
4274                        &nvgre_encap_conf.ipv6_dst,
4275                        sizeof(nvgre_encap_conf.ipv6_dst));
4276                 action_nvgre_encap_data->items[2] = (struct rte_flow_item){
4277                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
4278                         .spec = &action_nvgre_encap_data->item_ipv6,
4279                         .mask = &rte_flow_item_ipv6_mask,
4280                 };
4281         }
4282         if (!nvgre_encap_conf.select_vlan)
4283                 action_nvgre_encap_data->items[1].type =
4284                         RTE_FLOW_ITEM_TYPE_VOID;
4285         memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
4286                RTE_DIM(nvgre_encap_conf.tni));
4287         action->conf = &action_nvgre_encap_data->conf;
4288         return ret;
4289 }
4290
4291 /** Parse l2 encap action. */
4292 static int
4293 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
4294                          const char *str, unsigned int len,
4295                          void *buf, unsigned int size)
4296 {
4297         struct buffer *out = buf;
4298         struct rte_flow_action *action;
4299         struct action_raw_encap_data *action_encap_data;
4300         struct rte_flow_item_eth eth = { .type = 0, };
4301         struct rte_flow_item_vlan vlan = {
4302                 .tci = mplsoudp_encap_conf.vlan_tci,
4303                 .inner_type = 0,
4304         };
4305         uint8_t *header;
4306         int ret;
4307
4308         ret = parse_vc(ctx, token, str, len, buf, size);
4309         if (ret < 0)
4310                 return ret;
4311         /* Nothing else to do if there is no buffer. */
4312         if (!out)
4313                 return ret;
4314         if (!out->args.vc.actions_n)
4315                 return -1;
4316         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4317         /* Point to selected object. */
4318         ctx->object = out->args.vc.data;
4319         ctx->objmask = NULL;
4320         /* Copy the headers to the buffer. */
4321         action_encap_data = ctx->object;
4322         *action_encap_data = (struct action_raw_encap_data) {
4323                 .conf = (struct rte_flow_action_raw_encap){
4324                         .data = action_encap_data->data,
4325                 },
4326                 .data = {},
4327         };
4328         header = action_encap_data->data;
4329         if (l2_encap_conf.select_vlan)
4330                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4331         else if (l2_encap_conf.select_ipv4)
4332                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4333         else
4334                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4335         memcpy(eth.dst.addr_bytes,
4336                l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4337         memcpy(eth.src.addr_bytes,
4338                l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4339         memcpy(header, &eth, sizeof(eth));
4340         header += sizeof(eth);
4341         if (l2_encap_conf.select_vlan) {
4342                 if (l2_encap_conf.select_ipv4)
4343                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4344                 else
4345                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4346                 memcpy(header, &vlan, sizeof(vlan));
4347                 header += sizeof(vlan);
4348         }
4349         action_encap_data->conf.size = header -
4350                 action_encap_data->data;
4351         action->conf = &action_encap_data->conf;
4352         return ret;
4353 }
4354
4355 /** Parse l2 decap action. */
4356 static int
4357 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
4358                          const char *str, unsigned int len,
4359                          void *buf, unsigned int size)
4360 {
4361         struct buffer *out = buf;
4362         struct rte_flow_action *action;
4363         struct action_raw_decap_data *action_decap_data;
4364         struct rte_flow_item_eth eth = { .type = 0, };
4365         struct rte_flow_item_vlan vlan = {
4366                 .tci = mplsoudp_encap_conf.vlan_tci,
4367                 .inner_type = 0,
4368         };
4369         uint8_t *header;
4370         int ret;
4371
4372         ret = parse_vc(ctx, token, str, len, buf, size);
4373         if (ret < 0)
4374                 return ret;
4375         /* Nothing else to do if there is no buffer. */
4376         if (!out)
4377                 return ret;
4378         if (!out->args.vc.actions_n)
4379                 return -1;
4380         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4381         /* Point to selected object. */
4382         ctx->object = out->args.vc.data;
4383         ctx->objmask = NULL;
4384         /* Copy the headers to the buffer. */
4385         action_decap_data = ctx->object;
4386         *action_decap_data = (struct action_raw_decap_data) {
4387                 .conf = (struct rte_flow_action_raw_decap){
4388                         .data = action_decap_data->data,
4389                 },
4390                 .data = {},
4391         };
4392         header = action_decap_data->data;
4393         if (l2_decap_conf.select_vlan)
4394                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4395         memcpy(header, &eth, sizeof(eth));
4396         header += sizeof(eth);
4397         if (l2_decap_conf.select_vlan) {
4398                 memcpy(header, &vlan, sizeof(vlan));
4399                 header += sizeof(vlan);
4400         }
4401         action_decap_data->conf.size = header -
4402                 action_decap_data->data;
4403         action->conf = &action_decap_data->conf;
4404         return ret;
4405 }
4406
4407 #define ETHER_TYPE_MPLS_UNICAST 0x8847
4408
4409 /** Parse MPLSOGRE encap action. */
4410 static int
4411 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
4412                                const char *str, unsigned int len,
4413                                void *buf, unsigned int size)
4414 {
4415         struct buffer *out = buf;
4416         struct rte_flow_action *action;
4417         struct action_raw_encap_data *action_encap_data;
4418         struct rte_flow_item_eth eth = { .type = 0, };
4419         struct rte_flow_item_vlan vlan = {
4420                 .tci = mplsogre_encap_conf.vlan_tci,
4421                 .inner_type = 0,
4422         };
4423         struct rte_flow_item_ipv4 ipv4 = {
4424                 .hdr =  {
4425                         .src_addr = mplsogre_encap_conf.ipv4_src,
4426                         .dst_addr = mplsogre_encap_conf.ipv4_dst,
4427                         .next_proto_id = IPPROTO_GRE,
4428                         .version_ihl = RTE_IPV4_VHL_DEF,
4429                         .time_to_live = IPDEFTTL,
4430                 },
4431         };
4432         struct rte_flow_item_ipv6 ipv6 = {
4433                 .hdr =  {
4434                         .proto = IPPROTO_GRE,
4435                         .hop_limits = IPDEFTTL,
4436                 },
4437         };
4438         struct rte_flow_item_gre gre = {
4439                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4440         };
4441         struct rte_flow_item_mpls mpls;
4442         uint8_t *header;
4443         int ret;
4444
4445         ret = parse_vc(ctx, token, str, len, buf, size);
4446         if (ret < 0)
4447                 return ret;
4448         /* Nothing else to do if there is no buffer. */
4449         if (!out)
4450                 return ret;
4451         if (!out->args.vc.actions_n)
4452                 return -1;
4453         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4454         /* Point to selected object. */
4455         ctx->object = out->args.vc.data;
4456         ctx->objmask = NULL;
4457         /* Copy the headers to the buffer. */
4458         action_encap_data = ctx->object;
4459         *action_encap_data = (struct action_raw_encap_data) {
4460                 .conf = (struct rte_flow_action_raw_encap){
4461                         .data = action_encap_data->data,
4462                 },
4463                 .data = {},
4464                 .preserve = {},
4465         };
4466         header = action_encap_data->data;
4467         if (mplsogre_encap_conf.select_vlan)
4468                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4469         else if (mplsogre_encap_conf.select_ipv4)
4470                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4471         else
4472                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4473         memcpy(eth.dst.addr_bytes,
4474                mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4475         memcpy(eth.src.addr_bytes,
4476                mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4477         memcpy(header, &eth, sizeof(eth));
4478         header += sizeof(eth);
4479         if (mplsogre_encap_conf.select_vlan) {
4480                 if (mplsogre_encap_conf.select_ipv4)
4481                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4482                 else
4483                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4484                 memcpy(header, &vlan, sizeof(vlan));
4485                 header += sizeof(vlan);
4486         }
4487         if (mplsogre_encap_conf.select_ipv4) {
4488                 memcpy(header, &ipv4, sizeof(ipv4));
4489                 header += sizeof(ipv4);
4490         } else {
4491                 memcpy(&ipv6.hdr.src_addr,
4492                        &mplsogre_encap_conf.ipv6_src,
4493                        sizeof(mplsogre_encap_conf.ipv6_src));
4494                 memcpy(&ipv6.hdr.dst_addr,
4495                        &mplsogre_encap_conf.ipv6_dst,
4496                        sizeof(mplsogre_encap_conf.ipv6_dst));
4497                 memcpy(header, &ipv6, sizeof(ipv6));
4498                 header += sizeof(ipv6);
4499         }
4500         memcpy(header, &gre, sizeof(gre));
4501         header += sizeof(gre);
4502         memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
4503                RTE_DIM(mplsogre_encap_conf.label));
4504         mpls.label_tc_s[2] |= 0x1;
4505         memcpy(header, &mpls, sizeof(mpls));
4506         header += sizeof(mpls);
4507         action_encap_data->conf.size = header -
4508                 action_encap_data->data;
4509         action->conf = &action_encap_data->conf;
4510         return ret;
4511 }
4512
4513 /** Parse MPLSOGRE decap action. */
4514 static int
4515 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
4516                                const char *str, unsigned int len,
4517                                void *buf, unsigned int size)
4518 {
4519         struct buffer *out = buf;
4520         struct rte_flow_action *action;
4521         struct action_raw_decap_data *action_decap_data;
4522         struct rte_flow_item_eth eth = { .type = 0, };
4523         struct rte_flow_item_vlan vlan = {.tci = 0};
4524         struct rte_flow_item_ipv4 ipv4 = {
4525                 .hdr =  {
4526                         .next_proto_id = IPPROTO_GRE,
4527                 },
4528         };
4529         struct rte_flow_item_ipv6 ipv6 = {
4530                 .hdr =  {
4531                         .proto = IPPROTO_GRE,
4532                 },
4533         };
4534         struct rte_flow_item_gre gre = {
4535                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4536         };
4537         struct rte_flow_item_mpls mpls;
4538         uint8_t *header;
4539         int ret;
4540
4541         ret = parse_vc(ctx, token, str, len, buf, size);
4542         if (ret < 0)
4543                 return ret;
4544         /* Nothing else to do if there is no buffer. */
4545         if (!out)
4546                 return ret;
4547         if (!out->args.vc.actions_n)
4548                 return -1;
4549         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4550         /* Point to selected object. */
4551         ctx->object = out->args.vc.data;
4552         ctx->objmask = NULL;
4553         /* Copy the headers to the buffer. */
4554         action_decap_data = ctx->object;
4555         *action_decap_data = (struct action_raw_decap_data) {
4556                 .conf = (struct rte_flow_action_raw_decap){
4557                         .data = action_decap_data->data,
4558                 },
4559                 .data = {},
4560         };
4561         header = action_decap_data->data;
4562         if (mplsogre_decap_conf.select_vlan)
4563                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4564         else if (mplsogre_encap_conf.select_ipv4)
4565                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4566         else
4567                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4568         memcpy(eth.dst.addr_bytes,
4569                mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4570         memcpy(eth.src.addr_bytes,
4571                mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4572         memcpy(header, &eth, sizeof(eth));
4573         header += sizeof(eth);
4574         if (mplsogre_encap_conf.select_vlan) {
4575                 if (mplsogre_encap_conf.select_ipv4)
4576                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4577                 else
4578                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4579                 memcpy(header, &vlan, sizeof(vlan));
4580                 header += sizeof(vlan);
4581         }
4582         if (mplsogre_encap_conf.select_ipv4) {
4583                 memcpy(header, &ipv4, sizeof(ipv4));
4584                 header += sizeof(ipv4);
4585         } else {
4586                 memcpy(header, &ipv6, sizeof(ipv6));
4587                 header += sizeof(ipv6);
4588         }
4589         memcpy(header, &gre, sizeof(gre));
4590         header += sizeof(gre);
4591         memset(&mpls, 0, sizeof(mpls));
4592         memcpy(header, &mpls, sizeof(mpls));
4593         header += sizeof(mpls);
4594         action_decap_data->conf.size = header -
4595                 action_decap_data->data;
4596         action->conf = &action_decap_data->conf;
4597         return ret;
4598 }
4599
4600 /** Parse MPLSOUDP encap action. */
4601 static int
4602 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
4603                                const char *str, unsigned int len,
4604                                void *buf, unsigned int size)
4605 {
4606         struct buffer *out = buf;
4607         struct rte_flow_action *action;
4608         struct action_raw_encap_data *action_encap_data;
4609         struct rte_flow_item_eth eth = { .type = 0, };
4610         struct rte_flow_item_vlan vlan = {
4611                 .tci = mplsoudp_encap_conf.vlan_tci,
4612                 .inner_type = 0,
4613         };
4614         struct rte_flow_item_ipv4 ipv4 = {
4615                 .hdr =  {
4616                         .src_addr = mplsoudp_encap_conf.ipv4_src,
4617                         .dst_addr = mplsoudp_encap_conf.ipv4_dst,
4618                         .next_proto_id = IPPROTO_UDP,
4619                         .version_ihl = RTE_IPV4_VHL_DEF,
4620                         .time_to_live = IPDEFTTL,
4621                 },
4622         };
4623         struct rte_flow_item_ipv6 ipv6 = {
4624                 .hdr =  {
4625                         .proto = IPPROTO_UDP,
4626                         .hop_limits = IPDEFTTL,
4627                 },
4628         };
4629         struct rte_flow_item_udp udp = {
4630                 .hdr = {
4631                         .src_port = mplsoudp_encap_conf.udp_src,
4632                         .dst_port = mplsoudp_encap_conf.udp_dst,
4633                 },
4634         };
4635         struct rte_flow_item_mpls mpls;
4636         uint8_t *header;
4637         int ret;
4638
4639         ret = parse_vc(ctx, token, str, len, buf, size);
4640         if (ret < 0)
4641                 return ret;
4642         /* Nothing else to do if there is no buffer. */
4643         if (!out)
4644                 return ret;
4645         if (!out->args.vc.actions_n)
4646                 return -1;
4647         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4648         /* Point to selected object. */
4649         ctx->object = out->args.vc.data;
4650         ctx->objmask = NULL;
4651         /* Copy the headers to the buffer. */
4652         action_encap_data = ctx->object;
4653         *action_encap_data = (struct action_raw_encap_data) {
4654                 .conf = (struct rte_flow_action_raw_encap){
4655                         .data = action_encap_data->data,
4656                 },
4657                 .data = {},
4658                 .preserve = {},
4659         };
4660         header = action_encap_data->data;
4661         if (mplsoudp_encap_conf.select_vlan)
4662                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4663         else if (mplsoudp_encap_conf.select_ipv4)
4664                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4665         else
4666                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4667         memcpy(eth.dst.addr_bytes,
4668                mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4669         memcpy(eth.src.addr_bytes,
4670                mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4671         memcpy(header, &eth, sizeof(eth));
4672         header += sizeof(eth);
4673         if (mplsoudp_encap_conf.select_vlan) {
4674                 if (mplsoudp_encap_conf.select_ipv4)
4675                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4676                 else
4677                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4678                 memcpy(header, &vlan, sizeof(vlan));
4679                 header += sizeof(vlan);
4680         }
4681         if (mplsoudp_encap_conf.select_ipv4) {
4682                 memcpy(header, &ipv4, sizeof(ipv4));
4683                 header += sizeof(ipv4);
4684         } else {
4685                 memcpy(&ipv6.hdr.src_addr,
4686                        &mplsoudp_encap_conf.ipv6_src,
4687                        sizeof(mplsoudp_encap_conf.ipv6_src));
4688                 memcpy(&ipv6.hdr.dst_addr,
4689                        &mplsoudp_encap_conf.ipv6_dst,
4690                        sizeof(mplsoudp_encap_conf.ipv6_dst));
4691                 memcpy(header, &ipv6, sizeof(ipv6));
4692                 header += sizeof(ipv6);
4693         }
4694         memcpy(header, &udp, sizeof(udp));
4695         header += sizeof(udp);
4696         memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4697                RTE_DIM(mplsoudp_encap_conf.label));
4698         mpls.label_tc_s[2] |= 0x1;
4699         memcpy(header, &mpls, sizeof(mpls));
4700         header += sizeof(mpls);
4701         action_encap_data->conf.size = header -
4702                 action_encap_data->data;
4703         action->conf = &action_encap_data->conf;
4704         return ret;
4705 }
4706
4707 /** Parse MPLSOUDP decap action. */
4708 static int
4709 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4710                                const char *str, unsigned int len,
4711                                void *buf, unsigned int size)
4712 {
4713         struct buffer *out = buf;
4714         struct rte_flow_action *action;
4715         struct action_raw_decap_data *action_decap_data;
4716         struct rte_flow_item_eth eth = { .type = 0, };
4717         struct rte_flow_item_vlan vlan = {.tci = 0};
4718         struct rte_flow_item_ipv4 ipv4 = {
4719                 .hdr =  {
4720                         .next_proto_id = IPPROTO_UDP,
4721                 },
4722         };
4723         struct rte_flow_item_ipv6 ipv6 = {
4724                 .hdr =  {
4725                         .proto = IPPROTO_UDP,
4726                 },
4727         };
4728         struct rte_flow_item_udp udp = {
4729                 .hdr = {
4730                         .dst_port = rte_cpu_to_be_16(6635),
4731                 },
4732         };
4733         struct rte_flow_item_mpls mpls;
4734         uint8_t *header;
4735         int ret;
4736
4737         ret = parse_vc(ctx, token, str, len, buf, size);
4738         if (ret < 0)
4739                 return ret;
4740         /* Nothing else to do if there is no buffer. */
4741         if (!out)
4742                 return ret;
4743         if (!out->args.vc.actions_n)
4744                 return -1;
4745         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4746         /* Point to selected object. */
4747         ctx->object = out->args.vc.data;
4748         ctx->objmask = NULL;
4749         /* Copy the headers to the buffer. */
4750         action_decap_data = ctx->object;
4751         *action_decap_data = (struct action_raw_decap_data) {
4752                 .conf = (struct rte_flow_action_raw_decap){
4753                         .data = action_decap_data->data,
4754                 },
4755                 .data = {},
4756         };
4757         header = action_decap_data->data;
4758         if (mplsoudp_decap_conf.select_vlan)
4759                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4760         else if (mplsoudp_encap_conf.select_ipv4)
4761                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4762         else
4763                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4764         memcpy(eth.dst.addr_bytes,
4765                mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4766         memcpy(eth.src.addr_bytes,
4767                mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4768         memcpy(header, &eth, sizeof(eth));
4769         header += sizeof(eth);
4770         if (mplsoudp_encap_conf.select_vlan) {
4771                 if (mplsoudp_encap_conf.select_ipv4)
4772                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4773                 else
4774                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4775                 memcpy(header, &vlan, sizeof(vlan));
4776                 header += sizeof(vlan);
4777         }
4778         if (mplsoudp_encap_conf.select_ipv4) {
4779                 memcpy(header, &ipv4, sizeof(ipv4));
4780                 header += sizeof(ipv4);
4781         } else {
4782                 memcpy(header, &ipv6, sizeof(ipv6));
4783                 header += sizeof(ipv6);
4784         }
4785         memcpy(header, &udp, sizeof(udp));
4786         header += sizeof(udp);
4787         memset(&mpls, 0, sizeof(mpls));
4788         memcpy(header, &mpls, sizeof(mpls));
4789         header += sizeof(mpls);
4790         action_decap_data->conf.size = header -
4791                 action_decap_data->data;
4792         action->conf = &action_decap_data->conf;
4793         return ret;
4794 }
4795
4796 static int
4797 parse_vc_action_raw_decap_index(struct context *ctx, const struct token *token,
4798                                 const char *str, unsigned int len, void *buf,
4799                                 unsigned int size)
4800 {
4801         struct action_raw_decap_data *action_raw_decap_data;
4802         struct rte_flow_action *action;
4803         const struct arg *arg;
4804         struct buffer *out = buf;
4805         int ret;
4806         uint16_t idx;
4807
4808         RTE_SET_USED(token);
4809         RTE_SET_USED(buf);
4810         RTE_SET_USED(size);
4811         arg = ARGS_ENTRY_ARB_BOUNDED
4812                 (offsetof(struct action_raw_decap_data, idx),
4813                  sizeof(((struct action_raw_decap_data *)0)->idx),
4814                  0, RAW_ENCAP_CONFS_MAX_NUM - 1);
4815         if (push_args(ctx, arg))
4816                 return -1;
4817         ret = parse_int(ctx, token, str, len, NULL, 0);
4818         if (ret < 0) {
4819                 pop_args(ctx);
4820                 return -1;
4821         }
4822         if (!ctx->object)
4823                 return len;
4824         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4825         action_raw_decap_data = ctx->object;
4826         idx = action_raw_decap_data->idx;
4827         action_raw_decap_data->conf.data = raw_decap_confs[idx].data;
4828         action_raw_decap_data->conf.size = raw_decap_confs[idx].size;
4829         action->conf = &action_raw_decap_data->conf;
4830         return len;
4831 }
4832
4833
4834 static int
4835 parse_vc_action_raw_encap_index(struct context *ctx, const struct token *token,
4836                                 const char *str, unsigned int len, void *buf,
4837                                 unsigned int size)
4838 {
4839         struct action_raw_encap_data *action_raw_encap_data;
4840         struct rte_flow_action *action;
4841         const struct arg *arg;
4842         struct buffer *out = buf;
4843         int ret;
4844         uint16_t idx;
4845
4846         RTE_SET_USED(token);
4847         RTE_SET_USED(buf);
4848         RTE_SET_USED(size);
4849         if (ctx->curr != ACTION_RAW_ENCAP_INDEX_VALUE)
4850                 return -1;
4851         arg = ARGS_ENTRY_ARB_BOUNDED
4852                 (offsetof(struct action_raw_encap_data, idx),
4853                  sizeof(((struct action_raw_encap_data *)0)->idx),
4854                  0, RAW_ENCAP_CONFS_MAX_NUM - 1);
4855         if (push_args(ctx, arg))
4856                 return -1;
4857         ret = parse_int(ctx, token, str, len, NULL, 0);
4858         if (ret < 0) {
4859                 pop_args(ctx);
4860                 return -1;
4861         }
4862         if (!ctx->object)
4863                 return len;
4864         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4865         action_raw_encap_data = ctx->object;
4866         idx = action_raw_encap_data->idx;
4867         action_raw_encap_data->conf.data = raw_encap_confs[idx].data;
4868         action_raw_encap_data->conf.size = raw_encap_confs[idx].size;
4869         action_raw_encap_data->conf.preserve = NULL;
4870         action->conf = &action_raw_encap_data->conf;
4871         return len;
4872 }
4873
4874 static int
4875 parse_vc_action_raw_encap(struct context *ctx, const struct token *token,
4876                           const char *str, unsigned int len, void *buf,
4877                           unsigned int size)
4878 {
4879         struct buffer *out = buf;
4880         struct rte_flow_action *action;
4881         struct action_raw_encap_data *action_raw_encap_data = NULL;
4882         int ret;
4883
4884         ret = parse_vc(ctx, token, str, len, buf, size);
4885         if (ret < 0)
4886                 return ret;
4887         /* Nothing else to do if there is no buffer. */
4888         if (!out)
4889                 return ret;
4890         if (!out->args.vc.actions_n)
4891                 return -1;
4892         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4893         /* Point to selected object. */
4894         ctx->object = out->args.vc.data;
4895         ctx->objmask = NULL;
4896         /* Copy the headers to the buffer. */
4897         action_raw_encap_data = ctx->object;
4898         action_raw_encap_data->conf.data = raw_encap_confs[0].data;
4899         action_raw_encap_data->conf.preserve = NULL;
4900         action_raw_encap_data->conf.size = raw_encap_confs[0].size;
4901         action->conf = &action_raw_encap_data->conf;
4902         return ret;
4903 }
4904
4905 static int
4906 parse_vc_action_raw_decap(struct context *ctx, const struct token *token,
4907                           const char *str, unsigned int len, void *buf,
4908                           unsigned int size)
4909 {
4910         struct buffer *out = buf;
4911         struct rte_flow_action *action;
4912         struct action_raw_decap_data *action_raw_decap_data = NULL;
4913         int ret;
4914
4915         ret = parse_vc(ctx, token, str, len, buf, size);
4916         if (ret < 0)
4917                 return ret;
4918         /* Nothing else to do if there is no buffer. */
4919         if (!out)
4920                 return ret;
4921         if (!out->args.vc.actions_n)
4922                 return -1;
4923         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4924         /* Point to selected object. */
4925         ctx->object = out->args.vc.data;
4926         ctx->objmask = NULL;
4927         /* Copy the headers to the buffer. */
4928         action_raw_decap_data = ctx->object;
4929         action_raw_decap_data->conf.data = raw_decap_confs[0].data;
4930         action_raw_decap_data->conf.size = raw_decap_confs[0].size;
4931         action->conf = &action_raw_decap_data->conf;
4932         return ret;
4933 }
4934
4935 static int
4936 parse_vc_action_set_meta(struct context *ctx, const struct token *token,
4937                          const char *str, unsigned int len, void *buf,
4938                          unsigned int size)
4939 {
4940         int ret;
4941
4942         ret = parse_vc(ctx, token, str, len, buf, size);
4943         if (ret < 0)
4944                 return ret;
4945         ret = rte_flow_dynf_metadata_register();
4946         if (ret < 0)
4947                 return -1;
4948         return len;
4949 }
4950
4951 /** Parse tokens for destroy command. */
4952 static int
4953 parse_destroy(struct context *ctx, const struct token *token,
4954               const char *str, unsigned int len,
4955               void *buf, unsigned int size)
4956 {
4957         struct buffer *out = buf;
4958
4959         /* Token name must match. */
4960         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4961                 return -1;
4962         /* Nothing else to do if there is no buffer. */
4963         if (!out)
4964                 return len;
4965         if (!out->command) {
4966                 if (ctx->curr != DESTROY)
4967                         return -1;
4968                 if (sizeof(*out) > size)
4969                         return -1;
4970                 out->command = ctx->curr;
4971                 ctx->objdata = 0;
4972                 ctx->object = out;
4973                 ctx->objmask = NULL;
4974                 out->args.destroy.rule =
4975                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4976                                                sizeof(double));
4977                 return len;
4978         }
4979         if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4980              sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4981                 return -1;
4982         ctx->objdata = 0;
4983         ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4984         ctx->objmask = NULL;
4985         return len;
4986 }
4987
4988 /** Parse tokens for flush command. */
4989 static int
4990 parse_flush(struct context *ctx, const struct token *token,
4991             const char *str, unsigned int len,
4992             void *buf, unsigned int size)
4993 {
4994         struct buffer *out = buf;
4995
4996         /* Token name must match. */
4997         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4998                 return -1;
4999         /* Nothing else to do if there is no buffer. */
5000         if (!out)
5001                 return len;
5002         if (!out->command) {
5003                 if (ctx->curr != FLUSH)
5004                         return -1;
5005                 if (sizeof(*out) > size)
5006                         return -1;
5007                 out->command = ctx->curr;
5008                 ctx->objdata = 0;
5009                 ctx->object = out;
5010                 ctx->objmask = NULL;
5011         }
5012         return len;
5013 }
5014
5015 /** Parse tokens for query command. */
5016 static int
5017 parse_query(struct context *ctx, const struct token *token,
5018             const char *str, unsigned int len,
5019             void *buf, unsigned int size)
5020 {
5021         struct buffer *out = buf;
5022
5023         /* Token name must match. */
5024         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5025                 return -1;
5026         /* Nothing else to do if there is no buffer. */
5027         if (!out)
5028                 return len;
5029         if (!out->command) {
5030                 if (ctx->curr != QUERY)
5031                         return -1;
5032                 if (sizeof(*out) > size)
5033                         return -1;
5034                 out->command = ctx->curr;
5035                 ctx->objdata = 0;
5036                 ctx->object = out;
5037                 ctx->objmask = NULL;
5038         }
5039         return len;
5040 }
5041
5042 /** Parse action names. */
5043 static int
5044 parse_action(struct context *ctx, const struct token *token,
5045              const char *str, unsigned int len,
5046              void *buf, unsigned int size)
5047 {
5048         struct buffer *out = buf;
5049         const struct arg *arg = pop_args(ctx);
5050         unsigned int i;
5051
5052         (void)size;
5053         /* Argument is expected. */
5054         if (!arg)
5055                 return -1;
5056         /* Parse action name. */
5057         for (i = 0; next_action[i]; ++i) {
5058                 const struct parse_action_priv *priv;
5059
5060                 token = &token_list[next_action[i]];
5061                 if (strcmp_partial(token->name, str, len))
5062                         continue;
5063                 priv = token->priv;
5064                 if (!priv)
5065                         goto error;
5066                 if (out)
5067                         memcpy((uint8_t *)ctx->object + arg->offset,
5068                                &priv->type,
5069                                arg->size);
5070                 return len;
5071         }
5072 error:
5073         push_args(ctx, arg);
5074         return -1;
5075 }
5076
5077 /** Parse tokens for list command. */
5078 static int
5079 parse_list(struct context *ctx, const struct token *token,
5080            const char *str, unsigned int len,
5081            void *buf, unsigned int size)
5082 {
5083         struct buffer *out = buf;
5084
5085         /* Token name must match. */
5086         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5087                 return -1;
5088         /* Nothing else to do if there is no buffer. */
5089         if (!out)
5090                 return len;
5091         if (!out->command) {
5092                 if (ctx->curr != LIST)
5093                         return -1;
5094                 if (sizeof(*out) > size)
5095                         return -1;
5096                 out->command = ctx->curr;
5097                 ctx->objdata = 0;
5098                 ctx->object = out;
5099                 ctx->objmask = NULL;
5100                 out->args.list.group =
5101                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5102                                                sizeof(double));
5103                 return len;
5104         }
5105         if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
5106              sizeof(*out->args.list.group)) > (uint8_t *)out + size)
5107                 return -1;
5108         ctx->objdata = 0;
5109         ctx->object = out->args.list.group + out->args.list.group_n++;
5110         ctx->objmask = NULL;
5111         return len;
5112 }
5113
5114 /** Parse tokens for isolate command. */
5115 static int
5116 parse_isolate(struct context *ctx, const struct token *token,
5117               const char *str, unsigned int len,
5118               void *buf, unsigned int size)
5119 {
5120         struct buffer *out = buf;
5121
5122         /* Token name must match. */
5123         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5124                 return -1;
5125         /* Nothing else to do if there is no buffer. */
5126         if (!out)
5127                 return len;
5128         if (!out->command) {
5129                 if (ctx->curr != ISOLATE)
5130                         return -1;
5131                 if (sizeof(*out) > size)
5132                         return -1;
5133                 out->command = ctx->curr;
5134                 ctx->objdata = 0;
5135                 ctx->object = out;
5136                 ctx->objmask = NULL;
5137         }
5138         return len;
5139 }
5140
5141 /**
5142  * Parse signed/unsigned integers 8 to 64-bit long.
5143  *
5144  * Last argument (ctx->args) is retrieved to determine integer type and
5145  * storage location.
5146  */
5147 static int
5148 parse_int(struct context *ctx, const struct token *token,
5149           const char *str, unsigned int len,
5150           void *buf, unsigned int size)
5151 {
5152         const struct arg *arg = pop_args(ctx);
5153         uintmax_t u;
5154         char *end;
5155
5156         (void)token;
5157         /* Argument is expected. */
5158         if (!arg)
5159                 return -1;
5160         errno = 0;
5161         u = arg->sign ?
5162                 (uintmax_t)strtoimax(str, &end, 0) :
5163                 strtoumax(str, &end, 0);
5164         if (errno || (size_t)(end - str) != len)
5165                 goto error;
5166         if (arg->bounded &&
5167             ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
5168                             (intmax_t)u > (intmax_t)arg->max)) ||
5169              (!arg->sign && (u < arg->min || u > arg->max))))
5170                 goto error;
5171         if (!ctx->object)
5172                 return len;
5173         if (arg->mask) {
5174                 if (!arg_entry_bf_fill(ctx->object, u, arg) ||
5175                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
5176                         goto error;
5177                 return len;
5178         }
5179         buf = (uint8_t *)ctx->object + arg->offset;
5180         size = arg->size;
5181         if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
5182                 return -1;
5183 objmask:
5184         switch (size) {
5185         case sizeof(uint8_t):
5186                 *(uint8_t *)buf = u;
5187                 break;
5188         case sizeof(uint16_t):
5189                 *(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
5190                 break;
5191         case sizeof(uint8_t [3]):
5192 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
5193                 if (!arg->hton) {
5194                         ((uint8_t *)buf)[0] = u;
5195                         ((uint8_t *)buf)[1] = u >> 8;
5196                         ((uint8_t *)buf)[2] = u >> 16;
5197                         break;
5198                 }
5199 #endif
5200                 ((uint8_t *)buf)[0] = u >> 16;
5201                 ((uint8_t *)buf)[1] = u >> 8;
5202                 ((uint8_t *)buf)[2] = u;
5203                 break;
5204         case sizeof(uint32_t):
5205                 *(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
5206                 break;
5207         case sizeof(uint64_t):
5208                 *(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
5209                 break;
5210         default:
5211                 goto error;
5212         }
5213         if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
5214                 u = -1;
5215                 buf = (uint8_t *)ctx->objmask + arg->offset;
5216                 goto objmask;
5217         }
5218         return len;
5219 error:
5220         push_args(ctx, arg);
5221         return -1;
5222 }
5223
5224 /**
5225  * Parse a string.
5226  *
5227  * Three arguments (ctx->args) are retrieved from the stack to store data,
5228  * its actual length and address (in that order).
5229  */
5230 static int
5231 parse_string(struct context *ctx, const struct token *token,
5232              const char *str, unsigned int len,
5233              void *buf, unsigned int size)
5234 {
5235         const struct arg *arg_data = pop_args(ctx);
5236         const struct arg *arg_len = pop_args(ctx);
5237         const struct arg *arg_addr = pop_args(ctx);
5238         char tmp[16]; /* Ought to be enough. */
5239         int ret;
5240
5241         /* Arguments are expected. */
5242         if (!arg_data)
5243                 return -1;
5244         if (!arg_len) {
5245                 push_args(ctx, arg_data);
5246                 return -1;
5247         }
5248         if (!arg_addr) {
5249                 push_args(ctx, arg_len);
5250                 push_args(ctx, arg_data);
5251                 return -1;
5252         }
5253         size = arg_data->size;
5254         /* Bit-mask fill is not supported. */
5255         if (arg_data->mask || size < len)
5256                 goto error;
5257         if (!ctx->object)
5258                 return len;
5259         /* Let parse_int() fill length information first. */
5260         ret = snprintf(tmp, sizeof(tmp), "%u", len);
5261         if (ret < 0)
5262                 goto error;
5263         push_args(ctx, arg_len);
5264         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
5265         if (ret < 0) {
5266                 pop_args(ctx);
5267                 goto error;
5268         }
5269         buf = (uint8_t *)ctx->object + arg_data->offset;
5270         /* Output buffer is not necessarily NUL-terminated. */
5271         memcpy(buf, str, len);
5272         memset((uint8_t *)buf + len, 0x00, size - len);
5273         if (ctx->objmask)
5274                 memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
5275         /* Save address if requested. */
5276         if (arg_addr->size) {
5277                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
5278                        (void *[]){
5279                         (uint8_t *)ctx->object + arg_data->offset
5280                        },
5281                        arg_addr->size);
5282                 if (ctx->objmask)
5283                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
5284                                (void *[]){
5285                                 (uint8_t *)ctx->objmask + arg_data->offset
5286                                },
5287                                arg_addr->size);
5288         }
5289         return len;
5290 error:
5291         push_args(ctx, arg_addr);
5292         push_args(ctx, arg_len);
5293         push_args(ctx, arg_data);
5294         return -1;
5295 }
5296
5297 static int
5298 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
5299 {
5300         char *c = NULL;
5301         uint32_t i, len;
5302         char tmp[3];
5303
5304         /* Check input parameters */
5305         if ((src == NULL) ||
5306                 (dst == NULL) ||
5307                 (size == NULL) ||
5308                 (*size == 0))
5309                 return -1;
5310
5311         /* Convert chars to bytes */
5312         for (i = 0, len = 0; i < *size; i += 2) {
5313                 snprintf(tmp, 3, "%s", src + i);
5314                 dst[len++] = strtoul(tmp, &c, 16);
5315                 if (*c != 0) {
5316                         len--;
5317                         dst[len] = 0;
5318                         *size = len;
5319                         return -1;
5320                 }
5321         }
5322         dst[len] = 0;
5323         *size = len;
5324
5325         return 0;
5326 }
5327
5328 static int
5329 parse_hex(struct context *ctx, const struct token *token,
5330                 const char *str, unsigned int len,
5331                 void *buf, unsigned int size)
5332 {
5333         const struct arg *arg_data = pop_args(ctx);
5334         const struct arg *arg_len = pop_args(ctx);
5335         const struct arg *arg_addr = pop_args(ctx);
5336         char tmp[16]; /* Ought to be enough. */
5337         int ret;
5338         unsigned int hexlen = len;
5339         unsigned int length = 256;
5340         uint8_t hex_tmp[length];
5341
5342         /* Arguments are expected. */
5343         if (!arg_data)
5344                 return -1;
5345         if (!arg_len) {
5346                 push_args(ctx, arg_data);
5347                 return -1;
5348         }
5349         if (!arg_addr) {
5350                 push_args(ctx, arg_len);
5351                 push_args(ctx, arg_data);
5352                 return -1;
5353         }
5354         size = arg_data->size;
5355         /* Bit-mask fill is not supported. */
5356         if (arg_data->mask)
5357                 goto error;
5358         if (!ctx->object)
5359                 return len;
5360
5361         /* translate bytes string to array. */
5362         if (str[0] == '0' && ((str[1] == 'x') ||
5363                         (str[1] == 'X'))) {
5364                 str += 2;
5365                 hexlen -= 2;
5366         }
5367         if (hexlen > length)
5368                 return -1;
5369         ret = parse_hex_string(str, hex_tmp, &hexlen);
5370         if (ret < 0)
5371                 goto error;
5372         /* Let parse_int() fill length information first. */
5373         ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
5374         if (ret < 0)
5375                 goto error;
5376         push_args(ctx, arg_len);
5377         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
5378         if (ret < 0) {
5379                 pop_args(ctx);
5380                 goto error;
5381         }
5382         buf = (uint8_t *)ctx->object + arg_data->offset;
5383         /* Output buffer is not necessarily NUL-terminated. */
5384         memcpy(buf, hex_tmp, hexlen);
5385         memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
5386         if (ctx->objmask)
5387                 memset((uint8_t *)ctx->objmask + arg_data->offset,
5388                                         0xff, hexlen);
5389         /* Save address if requested. */
5390         if (arg_addr->size) {
5391                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
5392                        (void *[]){
5393                         (uint8_t *)ctx->object + arg_data->offset
5394                        },
5395                        arg_addr->size);
5396                 if (ctx->objmask)
5397                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
5398                                (void *[]){
5399                                 (uint8_t *)ctx->objmask + arg_data->offset
5400                                },
5401                                arg_addr->size);
5402         }
5403         return len;
5404 error:
5405         push_args(ctx, arg_addr);
5406         push_args(ctx, arg_len);
5407         push_args(ctx, arg_data);
5408         return -1;
5409
5410 }
5411
5412 /**
5413  * Parse a MAC address.
5414  *
5415  * Last argument (ctx->args) is retrieved to determine storage size and
5416  * location.
5417  */
5418 static int
5419 parse_mac_addr(struct context *ctx, const struct token *token,
5420                const char *str, unsigned int len,
5421                void *buf, unsigned int size)
5422 {
5423         const struct arg *arg = pop_args(ctx);
5424         struct rte_ether_addr tmp;
5425         int ret;
5426
5427         (void)token;
5428         /* Argument is expected. */
5429         if (!arg)
5430                 return -1;
5431         size = arg->size;
5432         /* Bit-mask fill is not supported. */
5433         if (arg->mask || size != sizeof(tmp))
5434                 goto error;
5435         /* Only network endian is supported. */
5436         if (!arg->hton)
5437                 goto error;
5438         ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
5439         if (ret < 0 || (unsigned int)ret != len)
5440                 goto error;
5441         if (!ctx->object)
5442                 return len;
5443         buf = (uint8_t *)ctx->object + arg->offset;
5444         memcpy(buf, &tmp, size);
5445         if (ctx->objmask)
5446                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5447         return len;
5448 error:
5449         push_args(ctx, arg);
5450         return -1;
5451 }
5452
5453 /**
5454  * Parse an IPv4 address.
5455  *
5456  * Last argument (ctx->args) is retrieved to determine storage size and
5457  * location.
5458  */
5459 static int
5460 parse_ipv4_addr(struct context *ctx, const struct token *token,
5461                 const char *str, unsigned int len,
5462                 void *buf, unsigned int size)
5463 {
5464         const struct arg *arg = pop_args(ctx);
5465         char str2[len + 1];
5466         struct in_addr tmp;
5467         int ret;
5468
5469         /* Argument is expected. */
5470         if (!arg)
5471                 return -1;
5472         size = arg->size;
5473         /* Bit-mask fill is not supported. */
5474         if (arg->mask || size != sizeof(tmp))
5475                 goto error;
5476         /* Only network endian is supported. */
5477         if (!arg->hton)
5478                 goto error;
5479         memcpy(str2, str, len);
5480         str2[len] = '\0';
5481         ret = inet_pton(AF_INET, str2, &tmp);
5482         if (ret != 1) {
5483                 /* Attempt integer parsing. */
5484                 push_args(ctx, arg);
5485                 return parse_int(ctx, token, str, len, buf, size);
5486         }
5487         if (!ctx->object)
5488                 return len;
5489         buf = (uint8_t *)ctx->object + arg->offset;
5490         memcpy(buf, &tmp, size);
5491         if (ctx->objmask)
5492                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5493         return len;
5494 error:
5495         push_args(ctx, arg);
5496         return -1;
5497 }
5498
5499 /**
5500  * Parse an IPv6 address.
5501  *
5502  * Last argument (ctx->args) is retrieved to determine storage size and
5503  * location.
5504  */
5505 static int
5506 parse_ipv6_addr(struct context *ctx, const struct token *token,
5507                 const char *str, unsigned int len,
5508                 void *buf, unsigned int size)
5509 {
5510         const struct arg *arg = pop_args(ctx);
5511         char str2[len + 1];
5512         struct in6_addr tmp;
5513         int ret;
5514
5515         (void)token;
5516         /* Argument is expected. */
5517         if (!arg)
5518                 return -1;
5519         size = arg->size;
5520         /* Bit-mask fill is not supported. */
5521         if (arg->mask || size != sizeof(tmp))
5522                 goto error;
5523         /* Only network endian is supported. */
5524         if (!arg->hton)
5525                 goto error;
5526         memcpy(str2, str, len);
5527         str2[len] = '\0';
5528         ret = inet_pton(AF_INET6, str2, &tmp);
5529         if (ret != 1)
5530                 goto error;
5531         if (!ctx->object)
5532                 return len;
5533         buf = (uint8_t *)ctx->object + arg->offset;
5534         memcpy(buf, &tmp, size);
5535         if (ctx->objmask)
5536                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5537         return len;
5538 error:
5539         push_args(ctx, arg);
5540         return -1;
5541 }
5542
5543 /** Boolean values (even indices stand for false). */
5544 static const char *const boolean_name[] = {
5545         "0", "1",
5546         "false", "true",
5547         "no", "yes",
5548         "N", "Y",
5549         "off", "on",
5550         NULL,
5551 };
5552
5553 /**
5554  * Parse a boolean value.
5555  *
5556  * Last argument (ctx->args) is retrieved to determine storage size and
5557  * location.
5558  */
5559 static int
5560 parse_boolean(struct context *ctx, const struct token *token,
5561               const char *str, unsigned int len,
5562               void *buf, unsigned int size)
5563 {
5564         const struct arg *arg = pop_args(ctx);
5565         unsigned int i;
5566         int ret;
5567
5568         /* Argument is expected. */
5569         if (!arg)
5570                 return -1;
5571         for (i = 0; boolean_name[i]; ++i)
5572                 if (!strcmp_partial(boolean_name[i], str, len))
5573                         break;
5574         /* Process token as integer. */
5575         if (boolean_name[i])
5576                 str = i & 1 ? "1" : "0";
5577         push_args(ctx, arg);
5578         ret = parse_int(ctx, token, str, strlen(str), buf, size);
5579         return ret > 0 ? (int)len : ret;
5580 }
5581
5582 /** Parse port and update context. */
5583 static int
5584 parse_port(struct context *ctx, const struct token *token,
5585            const char *str, unsigned int len,
5586            void *buf, unsigned int size)
5587 {
5588         struct buffer *out = &(struct buffer){ .port = 0 };
5589         int ret;
5590
5591         if (buf)
5592                 out = buf;
5593         else {
5594                 ctx->objdata = 0;
5595                 ctx->object = out;
5596                 ctx->objmask = NULL;
5597                 size = sizeof(*out);
5598         }
5599         ret = parse_int(ctx, token, str, len, out, size);
5600         if (ret >= 0)
5601                 ctx->port = out->port;
5602         if (!buf)
5603                 ctx->object = NULL;
5604         return ret;
5605 }
5606
5607 /** Parse set command, initialize output buffer for subsequent tokens. */
5608 static int
5609 parse_set_raw_encap_decap(struct context *ctx, const struct token *token,
5610                           const char *str, unsigned int len,
5611                           void *buf, unsigned int size)
5612 {
5613         struct buffer *out = buf;
5614
5615         /* Token name must match. */
5616         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5617                 return -1;
5618         /* Nothing else to do if there is no buffer. */
5619         if (!out)
5620                 return len;
5621         /* Make sure buffer is large enough. */
5622         if (size < sizeof(*out))
5623                 return -1;
5624         ctx->objdata = 0;
5625         ctx->objmask = NULL;
5626         ctx->object = out;
5627         if (!out->command)
5628                 return -1;
5629         out->command = ctx->curr;
5630         return len;
5631 }
5632
5633 /**
5634  * Parse set raw_encap/raw_decap command,
5635  * initialize output buffer for subsequent tokens.
5636  */
5637 static int
5638 parse_set_init(struct context *ctx, const struct token *token,
5639                const char *str, unsigned int len,
5640                void *buf, unsigned int size)
5641 {
5642         struct buffer *out = buf;
5643
5644         /* Token name must match. */
5645         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5646                 return -1;
5647         /* Nothing else to do if there is no buffer. */
5648         if (!out)
5649                 return len;
5650         /* Make sure buffer is large enough. */
5651         if (size < sizeof(*out))
5652                 return -1;
5653         /* Initialize buffer. */
5654         memset(out, 0x00, sizeof(*out));
5655         memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
5656         ctx->objdata = 0;
5657         ctx->object = out;
5658         ctx->objmask = NULL;
5659         if (!out->command) {
5660                 if (ctx->curr != SET)
5661                         return -1;
5662                 if (sizeof(*out) > size)
5663                         return -1;
5664                 out->command = ctx->curr;
5665                 out->args.vc.data = (uint8_t *)out + size;
5666                 /* All we need is pattern */
5667                 out->args.vc.pattern =
5668                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5669                                                sizeof(double));
5670                 ctx->object = out->args.vc.pattern;
5671         }
5672         return len;
5673 }
5674
5675 /** No completion. */
5676 static int
5677 comp_none(struct context *ctx, const struct token *token,
5678           unsigned int ent, char *buf, unsigned int size)
5679 {
5680         (void)ctx;
5681         (void)token;
5682         (void)ent;
5683         (void)buf;
5684         (void)size;
5685         return 0;
5686 }
5687
5688 /** Complete boolean values. */
5689 static int
5690 comp_boolean(struct context *ctx, const struct token *token,
5691              unsigned int ent, char *buf, unsigned int size)
5692 {
5693         unsigned int i;
5694
5695         (void)ctx;
5696         (void)token;
5697         for (i = 0; boolean_name[i]; ++i)
5698                 if (buf && i == ent)
5699                         return strlcpy(buf, boolean_name[i], size);
5700         if (buf)
5701                 return -1;
5702         return i;
5703 }
5704
5705 /** Complete action names. */
5706 static int
5707 comp_action(struct context *ctx, const struct token *token,
5708             unsigned int ent, char *buf, unsigned int size)
5709 {
5710         unsigned int i;
5711
5712         (void)ctx;
5713         (void)token;
5714         for (i = 0; next_action[i]; ++i)
5715                 if (buf && i == ent)
5716                         return strlcpy(buf, token_list[next_action[i]].name,
5717                                        size);
5718         if (buf)
5719                 return -1;
5720         return i;
5721 }
5722
5723 /** Complete available ports. */
5724 static int
5725 comp_port(struct context *ctx, const struct token *token,
5726           unsigned int ent, char *buf, unsigned int size)
5727 {
5728         unsigned int i = 0;
5729         portid_t p;
5730
5731         (void)ctx;
5732         (void)token;
5733         RTE_ETH_FOREACH_DEV(p) {
5734                 if (buf && i == ent)
5735                         return snprintf(buf, size, "%u", p);
5736                 ++i;
5737         }
5738         if (buf)
5739                 return -1;
5740         return i;
5741 }
5742
5743 /** Complete available rule IDs. */
5744 static int
5745 comp_rule_id(struct context *ctx, const struct token *token,
5746              unsigned int ent, char *buf, unsigned int size)
5747 {
5748         unsigned int i = 0;
5749         struct rte_port *port;
5750         struct port_flow *pf;
5751
5752         (void)token;
5753         if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
5754             ctx->port == (portid_t)RTE_PORT_ALL)
5755                 return -1;
5756         port = &ports[ctx->port];
5757         for (pf = port->flow_list; pf != NULL; pf = pf->next) {
5758                 if (buf && i == ent)
5759                         return snprintf(buf, size, "%u", pf->id);
5760                 ++i;
5761         }
5762         if (buf)
5763                 return -1;
5764         return i;
5765 }
5766
5767 /** Complete type field for RSS action. */
5768 static int
5769 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
5770                         unsigned int ent, char *buf, unsigned int size)
5771 {
5772         unsigned int i;
5773
5774         (void)ctx;
5775         (void)token;
5776         for (i = 0; rss_type_table[i].str; ++i)
5777                 ;
5778         if (!buf)
5779                 return i + 1;
5780         if (ent < i)
5781                 return strlcpy(buf, rss_type_table[ent].str, size);
5782         if (ent == i)
5783                 return snprintf(buf, size, "end");
5784         return -1;
5785 }
5786
5787 /** Complete queue field for RSS action. */
5788 static int
5789 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
5790                          unsigned int ent, char *buf, unsigned int size)
5791 {
5792         (void)ctx;
5793         (void)token;
5794         if (!buf)
5795                 return nb_rxq + 1;
5796         if (ent < nb_rxq)
5797                 return snprintf(buf, size, "%u", ent);
5798         if (ent == nb_rxq)
5799                 return snprintf(buf, size, "end");
5800         return -1;
5801 }
5802
5803 /** Complete index number for set raw_encap/raw_decap commands. */
5804 static int
5805 comp_set_raw_index(struct context *ctx, const struct token *token,
5806                    unsigned int ent, char *buf, unsigned int size)
5807 {
5808         uint16_t idx = 0;
5809         uint16_t nb = 0;
5810
5811         RTE_SET_USED(ctx);
5812         RTE_SET_USED(token);
5813         for (idx = 0; idx < RAW_ENCAP_CONFS_MAX_NUM; ++idx) {
5814                 if (buf && idx == ent)
5815                         return snprintf(buf, size, "%u", idx);
5816                 ++nb;
5817         }
5818         return nb;
5819 }
5820
5821 /** Internal context. */
5822 static struct context cmd_flow_context;
5823
5824 /** Global parser instance (cmdline API). */
5825 cmdline_parse_inst_t cmd_flow;
5826 cmdline_parse_inst_t cmd_set_raw;
5827
5828 /** Initialize context. */
5829 static void
5830 cmd_flow_context_init(struct context *ctx)
5831 {
5832         /* A full memset() is not necessary. */
5833         ctx->curr = ZERO;
5834         ctx->prev = ZERO;
5835         ctx->next_num = 0;
5836         ctx->args_num = 0;
5837         ctx->eol = 0;
5838         ctx->last = 0;
5839         ctx->port = 0;
5840         ctx->objdata = 0;
5841         ctx->object = NULL;
5842         ctx->objmask = NULL;
5843 }
5844
5845 /** Parse a token (cmdline API). */
5846 static int
5847 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
5848                unsigned int size)
5849 {
5850         struct context *ctx = &cmd_flow_context;
5851         const struct token *token;
5852         const enum index *list;
5853         int len;
5854         int i;
5855
5856         (void)hdr;
5857         token = &token_list[ctx->curr];
5858         /* Check argument length. */
5859         ctx->eol = 0;
5860         ctx->last = 1;
5861         for (len = 0; src[len]; ++len)
5862                 if (src[len] == '#' || isspace(src[len]))
5863                         break;
5864         if (!len)
5865                 return -1;
5866         /* Last argument and EOL detection. */
5867         for (i = len; src[i]; ++i)
5868                 if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
5869                         break;
5870                 else if (!isspace(src[i])) {
5871                         ctx->last = 0;
5872                         break;
5873                 }
5874         for (; src[i]; ++i)
5875                 if (src[i] == '\r' || src[i] == '\n') {
5876                         ctx->eol = 1;
5877                         break;
5878                 }
5879         /* Initialize context if necessary. */
5880         if (!ctx->next_num) {
5881                 if (!token->next)
5882                         return 0;
5883                 ctx->next[ctx->next_num++] = token->next[0];
5884         }
5885         /* Process argument through candidates. */
5886         ctx->prev = ctx->curr;
5887         list = ctx->next[ctx->next_num - 1];
5888         for (i = 0; list[i]; ++i) {
5889                 const struct token *next = &token_list[list[i]];
5890                 int tmp;
5891
5892                 ctx->curr = list[i];
5893                 if (next->call)
5894                         tmp = next->call(ctx, next, src, len, result, size);
5895                 else
5896                         tmp = parse_default(ctx, next, src, len, result, size);
5897                 if (tmp == -1 || tmp != len)
5898                         continue;
5899                 token = next;
5900                 break;
5901         }
5902         if (!list[i])
5903                 return -1;
5904         --ctx->next_num;
5905         /* Push subsequent tokens if any. */
5906         if (token->next)
5907                 for (i = 0; token->next[i]; ++i) {
5908                         if (ctx->next_num == RTE_DIM(ctx->next))
5909                                 return -1;
5910                         ctx->next[ctx->next_num++] = token->next[i];
5911                 }
5912         /* Push arguments if any. */
5913         if (token->args)
5914                 for (i = 0; token->args[i]; ++i) {
5915                         if (ctx->args_num == RTE_DIM(ctx->args))
5916                                 return -1;
5917                         ctx->args[ctx->args_num++] = token->args[i];
5918                 }
5919         return len;
5920 }
5921
5922 /** Return number of completion entries (cmdline API). */
5923 static int
5924 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5925 {
5926         struct context *ctx = &cmd_flow_context;
5927         const struct token *token = &token_list[ctx->curr];
5928         const enum index *list;
5929         int i;
5930
5931         (void)hdr;
5932         /* Count number of tokens in current list. */
5933         if (ctx->next_num)
5934                 list = ctx->next[ctx->next_num - 1];
5935         else
5936                 list = token->next[0];
5937         for (i = 0; list[i]; ++i)
5938                 ;
5939         if (!i)
5940                 return 0;
5941         /*
5942          * If there is a single token, use its completion callback, otherwise
5943          * return the number of entries.
5944          */
5945         token = &token_list[list[0]];
5946         if (i == 1 && token->comp) {
5947                 /* Save index for cmd_flow_get_help(). */
5948                 ctx->prev = list[0];
5949                 return token->comp(ctx, token, 0, NULL, 0);
5950         }
5951         return i;
5952 }
5953
5954 /** Return a completion entry (cmdline API). */
5955 static int
5956 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5957                           char *dst, unsigned int size)
5958 {
5959         struct context *ctx = &cmd_flow_context;
5960         const struct token *token = &token_list[ctx->curr];
5961         const enum index *list;
5962         int i;
5963
5964         (void)hdr;
5965         /* Count number of tokens in current list. */
5966         if (ctx->next_num)
5967                 list = ctx->next[ctx->next_num - 1];
5968         else
5969                 list = token->next[0];
5970         for (i = 0; list[i]; ++i)
5971                 ;
5972         if (!i)
5973                 return -1;
5974         /* If there is a single token, use its completion callback. */
5975         token = &token_list[list[0]];
5976         if (i == 1 && token->comp) {
5977                 /* Save index for cmd_flow_get_help(). */
5978                 ctx->prev = list[0];
5979                 return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5980         }
5981         /* Otherwise make sure the index is valid and use defaults. */
5982         if (index >= i)
5983                 return -1;
5984         token = &token_list[list[index]];
5985         strlcpy(dst, token->name, size);
5986         /* Save index for cmd_flow_get_help(). */
5987         ctx->prev = list[index];
5988         return 0;
5989 }
5990
5991 /** Populate help strings for current token (cmdline API). */
5992 static int
5993 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5994 {
5995         struct context *ctx = &cmd_flow_context;
5996         const struct token *token = &token_list[ctx->prev];
5997
5998         (void)hdr;
5999         if (!size)
6000                 return -1;
6001         /* Set token type and update global help with details. */
6002         strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
6003         if (token->help)
6004                 cmd_flow.help_str = token->help;
6005         else
6006                 cmd_flow.help_str = token->name;
6007         return 0;
6008 }
6009
6010 /** Token definition template (cmdline API). */
6011 static struct cmdline_token_hdr cmd_flow_token_hdr = {
6012         .ops = &(struct cmdline_token_ops){
6013                 .parse = cmd_flow_parse,
6014                 .complete_get_nb = cmd_flow_complete_get_nb,
6015                 .complete_get_elt = cmd_flow_complete_get_elt,
6016                 .get_help = cmd_flow_get_help,
6017         },
6018         .offset = 0,
6019 };
6020
6021 /** Populate the next dynamic token. */
6022 static void
6023 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
6024              cmdline_parse_token_hdr_t **hdr_inst)
6025 {
6026         struct context *ctx = &cmd_flow_context;
6027
6028         /* Always reinitialize context before requesting the first token. */
6029         if (!(hdr_inst - cmd_flow.tokens))
6030                 cmd_flow_context_init(ctx);
6031         /* Return NULL when no more tokens are expected. */
6032         if (!ctx->next_num && ctx->curr) {
6033                 *hdr = NULL;
6034                 return;
6035         }
6036         /* Determine if command should end here. */
6037         if (ctx->eol && ctx->last && ctx->next_num) {
6038                 const enum index *list = ctx->next[ctx->next_num - 1];
6039                 int i;
6040
6041                 for (i = 0; list[i]; ++i) {
6042                         if (list[i] != END)
6043                                 continue;
6044                         *hdr = NULL;
6045                         return;
6046                 }
6047         }
6048         *hdr = &cmd_flow_token_hdr;
6049 }
6050
6051 /** Dispatch parsed buffer to function calls. */
6052 static void
6053 cmd_flow_parsed(const struct buffer *in)
6054 {
6055         switch (in->command) {
6056         case VALIDATE:
6057                 port_flow_validate(in->port, &in->args.vc.attr,
6058                                    in->args.vc.pattern, in->args.vc.actions);
6059                 break;
6060         case CREATE:
6061                 port_flow_create(in->port, &in->args.vc.attr,
6062                                  in->args.vc.pattern, in->args.vc.actions);
6063                 break;
6064         case DESTROY:
6065                 port_flow_destroy(in->port, in->args.destroy.rule_n,
6066                                   in->args.destroy.rule);
6067                 break;
6068         case FLUSH:
6069                 port_flow_flush(in->port);
6070                 break;
6071         case QUERY:
6072                 port_flow_query(in->port, in->args.query.rule,
6073                                 &in->args.query.action);
6074                 break;
6075         case LIST:
6076                 port_flow_list(in->port, in->args.list.group_n,
6077                                in->args.list.group);
6078                 break;
6079         case ISOLATE:
6080                 port_flow_isolate(in->port, in->args.isolate.set);
6081                 break;
6082         default:
6083                 break;
6084         }
6085 }
6086
6087 /** Token generator and output processing callback (cmdline API). */
6088 static void
6089 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
6090 {
6091         if (cl == NULL)
6092                 cmd_flow_tok(arg0, arg2);
6093         else
6094                 cmd_flow_parsed(arg0);
6095 }
6096
6097 /** Global parser instance (cmdline API). */
6098 cmdline_parse_inst_t cmd_flow = {
6099         .f = cmd_flow_cb,
6100         .data = NULL, /**< Unused. */
6101         .help_str = NULL, /**< Updated by cmd_flow_get_help(). */
6102         .tokens = {
6103                 NULL,
6104         }, /**< Tokens are returned by cmd_flow_tok(). */
6105 };
6106
6107 /** set cmd facility. Reuse cmd flow's infrastructure as much as possible. */
6108
6109 static void
6110 update_fields(uint8_t *buf, struct rte_flow_item *item, uint16_t next_proto)
6111 {
6112         struct rte_flow_item_ipv4 *ipv4;
6113         struct rte_flow_item_eth *eth;
6114         struct rte_flow_item_ipv6 *ipv6;
6115         struct rte_flow_item_vxlan *vxlan;
6116         struct rte_flow_item_vxlan_gpe *gpe;
6117         struct rte_flow_item_nvgre *nvgre;
6118         uint32_t ipv6_vtc_flow;
6119
6120         switch (item->type) {
6121         case RTE_FLOW_ITEM_TYPE_ETH:
6122                 eth = (struct rte_flow_item_eth *)buf;
6123                 if (next_proto)
6124                         eth->type = rte_cpu_to_be_16(next_proto);
6125                 break;
6126         case RTE_FLOW_ITEM_TYPE_IPV4:
6127                 ipv4 = (struct rte_flow_item_ipv4 *)buf;
6128                 ipv4->hdr.version_ihl = 0x45;
6129                 ipv4->hdr.next_proto_id = (uint8_t)next_proto;
6130                 break;
6131         case RTE_FLOW_ITEM_TYPE_IPV6:
6132                 ipv6 = (struct rte_flow_item_ipv6 *)buf;
6133                 ipv6->hdr.proto = (uint8_t)next_proto;
6134                 ipv6_vtc_flow = rte_be_to_cpu_32(ipv6->hdr.vtc_flow);
6135                 ipv6_vtc_flow &= 0x0FFFFFFF; /*< reset version bits. */
6136                 ipv6_vtc_flow |= 0x60000000; /*< set ipv6 version. */
6137                 ipv6->hdr.vtc_flow = rte_cpu_to_be_32(ipv6_vtc_flow);
6138                 break;
6139         case RTE_FLOW_ITEM_TYPE_VXLAN:
6140                 vxlan = (struct rte_flow_item_vxlan *)buf;
6141                 vxlan->flags = 0x08;
6142                 break;
6143         case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
6144                 gpe = (struct rte_flow_item_vxlan_gpe *)buf;
6145                 gpe->flags = 0x0C;
6146                 break;
6147         case RTE_FLOW_ITEM_TYPE_NVGRE:
6148                 nvgre = (struct rte_flow_item_nvgre *)buf;
6149                 nvgre->protocol = rte_cpu_to_be_16(0x6558);
6150                 nvgre->c_k_s_rsvd0_ver = rte_cpu_to_be_16(0x2000);
6151                 break;
6152         default:
6153                 break;
6154         }
6155 }
6156
6157 /** Helper of get item's default mask. */
6158 static const void *
6159 flow_item_default_mask(const struct rte_flow_item *item)
6160 {
6161         const void *mask = NULL;
6162         static rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
6163
6164         switch (item->type) {
6165         case RTE_FLOW_ITEM_TYPE_ANY:
6166                 mask = &rte_flow_item_any_mask;
6167                 break;
6168         case RTE_FLOW_ITEM_TYPE_VF:
6169                 mask = &rte_flow_item_vf_mask;
6170                 break;
6171         case RTE_FLOW_ITEM_TYPE_PORT_ID:
6172                 mask = &rte_flow_item_port_id_mask;
6173                 break;
6174         case RTE_FLOW_ITEM_TYPE_RAW:
6175                 mask = &rte_flow_item_raw_mask;
6176                 break;
6177         case RTE_FLOW_ITEM_TYPE_ETH:
6178                 mask = &rte_flow_item_eth_mask;
6179                 break;
6180         case RTE_FLOW_ITEM_TYPE_VLAN:
6181                 mask = &rte_flow_item_vlan_mask;
6182                 break;
6183         case RTE_FLOW_ITEM_TYPE_IPV4:
6184                 mask = &rte_flow_item_ipv4_mask;
6185                 break;
6186         case RTE_FLOW_ITEM_TYPE_IPV6:
6187                 mask = &rte_flow_item_ipv6_mask;
6188                 break;
6189         case RTE_FLOW_ITEM_TYPE_ICMP:
6190                 mask = &rte_flow_item_icmp_mask;
6191                 break;
6192         case RTE_FLOW_ITEM_TYPE_UDP:
6193                 mask = &rte_flow_item_udp_mask;
6194                 break;
6195         case RTE_FLOW_ITEM_TYPE_TCP:
6196                 mask = &rte_flow_item_tcp_mask;
6197                 break;
6198         case RTE_FLOW_ITEM_TYPE_SCTP:
6199                 mask = &rte_flow_item_sctp_mask;
6200                 break;
6201         case RTE_FLOW_ITEM_TYPE_VXLAN:
6202                 mask = &rte_flow_item_vxlan_mask;
6203                 break;
6204         case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
6205                 mask = &rte_flow_item_vxlan_gpe_mask;
6206                 break;
6207         case RTE_FLOW_ITEM_TYPE_E_TAG:
6208                 mask = &rte_flow_item_e_tag_mask;
6209                 break;
6210         case RTE_FLOW_ITEM_TYPE_NVGRE:
6211                 mask = &rte_flow_item_nvgre_mask;
6212                 break;
6213         case RTE_FLOW_ITEM_TYPE_MPLS:
6214                 mask = &rte_flow_item_mpls_mask;
6215                 break;
6216         case RTE_FLOW_ITEM_TYPE_GRE:
6217                 mask = &rte_flow_item_gre_mask;
6218                 break;
6219         case RTE_FLOW_ITEM_TYPE_GRE_KEY:
6220                 mask = &gre_key_default_mask;
6221                 break;
6222         case RTE_FLOW_ITEM_TYPE_META:
6223                 mask = &rte_flow_item_meta_mask;
6224                 break;
6225         case RTE_FLOW_ITEM_TYPE_FUZZY:
6226                 mask = &rte_flow_item_fuzzy_mask;
6227                 break;
6228         case RTE_FLOW_ITEM_TYPE_GTP:
6229                 mask = &rte_flow_item_gtp_mask;
6230                 break;
6231         case RTE_FLOW_ITEM_TYPE_ESP:
6232                 mask = &rte_flow_item_esp_mask;
6233                 break;
6234         case RTE_FLOW_ITEM_TYPE_GTP_PSC:
6235                 mask = &rte_flow_item_gtp_psc_mask;
6236                 break;
6237         case RTE_FLOW_ITEM_TYPE_PPPOE_PROTO_ID:
6238                 mask = &rte_flow_item_pppoe_proto_id_mask;
6239         default:
6240                 break;
6241         }
6242         return mask;
6243 }
6244
6245
6246
6247 /** Dispatch parsed buffer to function calls. */
6248 static void
6249 cmd_set_raw_parsed(const struct buffer *in)
6250 {
6251         uint32_t n = in->args.vc.pattern_n;
6252         int i = 0;
6253         struct rte_flow_item *item = NULL;
6254         size_t size = 0;
6255         uint8_t *data = NULL;
6256         uint8_t *data_tail = NULL;
6257         size_t *total_size = NULL;
6258         uint16_t upper_layer = 0;
6259         uint16_t proto = 0;
6260         uint16_t idx = in->port; /* We borrow port field as index */
6261
6262         RTE_ASSERT(in->command == SET_RAW_ENCAP ||
6263                    in->command == SET_RAW_DECAP);
6264         if (in->command == SET_RAW_ENCAP) {
6265                 total_size = &raw_encap_confs[idx].size;
6266                 data = (uint8_t *)&raw_encap_confs[idx].data;
6267         } else {
6268                 total_size = &raw_decap_confs[idx].size;
6269                 data = (uint8_t *)&raw_decap_confs[idx].data;
6270         }
6271         *total_size = 0;
6272         memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
6273         /* process hdr from upper layer to low layer (L3/L4 -> L2). */
6274         data_tail = data + ACTION_RAW_ENCAP_MAX_DATA;
6275         for (i = n - 1 ; i >= 0; --i) {
6276                 item = in->args.vc.pattern + i;
6277                 if (item->spec == NULL)
6278                         item->spec = flow_item_default_mask(item);
6279                 switch (item->type) {
6280                 case RTE_FLOW_ITEM_TYPE_ETH:
6281                         size = sizeof(struct rte_flow_item_eth);
6282                         break;
6283                 case RTE_FLOW_ITEM_TYPE_VLAN:
6284                         size = sizeof(struct rte_flow_item_vlan);
6285                         proto = RTE_ETHER_TYPE_VLAN;
6286                         break;
6287                 case RTE_FLOW_ITEM_TYPE_IPV4:
6288                         size = sizeof(struct rte_flow_item_ipv4);
6289                         proto = RTE_ETHER_TYPE_IPV4;
6290                         break;
6291                 case RTE_FLOW_ITEM_TYPE_IPV6:
6292                         size = sizeof(struct rte_flow_item_ipv6);
6293                         proto = RTE_ETHER_TYPE_IPV6;
6294                         break;
6295                 case RTE_FLOW_ITEM_TYPE_UDP:
6296                         size = sizeof(struct rte_flow_item_udp);
6297                         proto = 0x11;
6298                         break;
6299                 case RTE_FLOW_ITEM_TYPE_TCP:
6300                         size = sizeof(struct rte_flow_item_tcp);
6301                         proto = 0x06;
6302                         break;
6303                 case RTE_FLOW_ITEM_TYPE_VXLAN:
6304                         size = sizeof(struct rte_flow_item_vxlan);
6305                         break;
6306                 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
6307                         size = sizeof(struct rte_flow_item_vxlan_gpe);
6308                         break;
6309                 case RTE_FLOW_ITEM_TYPE_GRE:
6310                         size = sizeof(struct rte_flow_item_gre);
6311                         proto = 0x2F;
6312                         break;
6313                 case RTE_FLOW_ITEM_TYPE_GRE_KEY:
6314                         size = sizeof(rte_be32_t);
6315                         break;
6316                 case RTE_FLOW_ITEM_TYPE_MPLS:
6317                         size = sizeof(struct rte_flow_item_mpls);
6318                         break;
6319                 case RTE_FLOW_ITEM_TYPE_NVGRE:
6320                         size = sizeof(struct rte_flow_item_nvgre);
6321                         proto = 0x2F;
6322                         break;
6323                 case RTE_FLOW_ITEM_TYPE_GENEVE:
6324                         size = sizeof(struct rte_flow_item_geneve);
6325                         break;
6326                 default:
6327                         printf("Error - Not supported item\n");
6328                         *total_size = 0;
6329                         memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
6330                         return;
6331                 }
6332                 *total_size += size;
6333                 rte_memcpy(data_tail - (*total_size), item->spec, size);
6334                 /* update some fields which cannot be set by cmdline */
6335                 update_fields((data_tail - (*total_size)), item,
6336                               upper_layer);
6337                 upper_layer = proto;
6338         }
6339         if (verbose_level & 0x1)
6340                 printf("total data size is %zu\n", (*total_size));
6341         RTE_ASSERT((*total_size) <= ACTION_RAW_ENCAP_MAX_DATA);
6342         memmove(data, (data_tail - (*total_size)), *total_size);
6343 }
6344
6345 /** Populate help strings for current token (cmdline API). */
6346 static int
6347 cmd_set_raw_get_help(cmdline_parse_token_hdr_t *hdr, char *dst,
6348                      unsigned int size)
6349 {
6350         struct context *ctx = &cmd_flow_context;
6351         const struct token *token = &token_list[ctx->prev];
6352
6353         (void)hdr;
6354         if (!size)
6355                 return -1;
6356         /* Set token type and update global help with details. */
6357         snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
6358         if (token->help)
6359                 cmd_set_raw.help_str = token->help;
6360         else
6361                 cmd_set_raw.help_str = token->name;
6362         return 0;
6363 }
6364
6365 /** Token definition template (cmdline API). */
6366 static struct cmdline_token_hdr cmd_set_raw_token_hdr = {
6367         .ops = &(struct cmdline_token_ops){
6368                 .parse = cmd_flow_parse,
6369                 .complete_get_nb = cmd_flow_complete_get_nb,
6370                 .complete_get_elt = cmd_flow_complete_get_elt,
6371                 .get_help = cmd_set_raw_get_help,
6372         },
6373         .offset = 0,
6374 };
6375
6376 /** Populate the next dynamic token. */
6377 static void
6378 cmd_set_raw_tok(cmdline_parse_token_hdr_t **hdr,
6379              cmdline_parse_token_hdr_t **hdr_inst)
6380 {
6381         struct context *ctx = &cmd_flow_context;
6382
6383         /* Always reinitialize context before requesting the first token. */
6384         if (!(hdr_inst - cmd_set_raw.tokens)) {
6385                 cmd_flow_context_init(ctx);
6386                 ctx->curr = START_SET;
6387         }
6388         /* Return NULL when no more tokens are expected. */
6389         if (!ctx->next_num && (ctx->curr != START_SET)) {
6390                 *hdr = NULL;
6391                 return;
6392         }
6393         /* Determine if command should end here. */
6394         if (ctx->eol && ctx->last && ctx->next_num) {
6395                 const enum index *list = ctx->next[ctx->next_num - 1];
6396                 int i;
6397
6398                 for (i = 0; list[i]; ++i) {
6399                         if (list[i] != END)
6400                                 continue;
6401                         *hdr = NULL;
6402                         return;
6403                 }
6404         }
6405         *hdr = &cmd_set_raw_token_hdr;
6406 }
6407
6408 /** Token generator and output processing callback (cmdline API). */
6409 static void
6410 cmd_set_raw_cb(void *arg0, struct cmdline *cl, void *arg2)
6411 {
6412         if (cl == NULL)
6413                 cmd_set_raw_tok(arg0, arg2);
6414         else
6415                 cmd_set_raw_parsed(arg0);
6416 }
6417
6418 /** Global parser instance (cmdline API). */
6419 cmdline_parse_inst_t cmd_set_raw = {
6420         .f = cmd_set_raw_cb,
6421         .data = NULL, /**< Unused. */
6422         .help_str = NULL, /**< Updated by cmd_flow_get_help(). */
6423         .tokens = {
6424                 NULL,
6425         }, /**< Tokens are returned by cmd_flow_tok(). */
6426 };
6427
6428 /* *** display raw_encap/raw_decap buf */
6429 struct cmd_show_set_raw_result {
6430         cmdline_fixed_string_t cmd_show;
6431         cmdline_fixed_string_t cmd_what;
6432         cmdline_fixed_string_t cmd_all;
6433         uint16_t cmd_index;
6434 };
6435
6436 static void
6437 cmd_show_set_raw_parsed(void *parsed_result, struct cmdline *cl, void *data)
6438 {
6439         struct cmd_show_set_raw_result *res = parsed_result;
6440         uint16_t index = res->cmd_index;
6441         uint8_t all = 0;
6442         uint8_t *raw_data = NULL;
6443         size_t raw_size = 0;
6444         char title[16] = {0};
6445
6446         RTE_SET_USED(cl);
6447         RTE_SET_USED(data);
6448         if (!strcmp(res->cmd_all, "all")) {
6449                 all = 1;
6450                 index = 0;
6451         } else if (index >= RAW_ENCAP_CONFS_MAX_NUM) {
6452                 printf("index should be 0-%u\n", RAW_ENCAP_CONFS_MAX_NUM - 1);
6453                 return;
6454         }
6455         do {
6456                 if (!strcmp(res->cmd_what, "raw_encap")) {
6457                         raw_data = (uint8_t *)&raw_encap_confs[index].data;
6458                         raw_size = raw_encap_confs[index].size;
6459                         snprintf(title, 16, "\nindex: %u", index);
6460                         rte_hexdump(stdout, title, raw_data, raw_size);
6461                 } else {
6462                         raw_data = (uint8_t *)&raw_decap_confs[index].data;
6463                         raw_size = raw_decap_confs[index].size;
6464                         snprintf(title, 16, "\nindex: %u", index);
6465                         rte_hexdump(stdout, title, raw_data, raw_size);
6466                 }
6467         } while (all && ++index < RAW_ENCAP_CONFS_MAX_NUM);
6468 }
6469
6470 cmdline_parse_token_string_t cmd_show_set_raw_cmd_show =
6471         TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
6472                         cmd_show, "show");
6473 cmdline_parse_token_string_t cmd_show_set_raw_cmd_what =
6474         TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
6475                         cmd_what, "raw_encap#raw_decap");
6476 cmdline_parse_token_num_t cmd_show_set_raw_cmd_index =
6477         TOKEN_NUM_INITIALIZER(struct cmd_show_set_raw_result,
6478                         cmd_index, UINT16);
6479 cmdline_parse_token_string_t cmd_show_set_raw_cmd_all =
6480         TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
6481                         cmd_all, "all");
6482 cmdline_parse_inst_t cmd_show_set_raw = {
6483         .f = cmd_show_set_raw_parsed,
6484         .data = NULL,
6485         .help_str = "show <raw_encap|raw_decap> <index>",
6486         .tokens = {
6487                 (void *)&cmd_show_set_raw_cmd_show,
6488                 (void *)&cmd_show_set_raw_cmd_what,
6489                 (void *)&cmd_show_set_raw_cmd_index,
6490                 NULL,
6491         },
6492 };
6493 cmdline_parse_inst_t cmd_show_set_raw_all = {
6494         .f = cmd_show_set_raw_parsed,
6495         .data = NULL,
6496         .help_str = "show <raw_encap|raw_decap> all",
6497         .tokens = {
6498                 (void *)&cmd_show_set_raw_cmd_show,
6499                 (void *)&cmd_show_set_raw_cmd_what,
6500                 (void *)&cmd_show_set_raw_cmd_all,
6501                 NULL,
6502         },
6503 };