app/testpmd: fix parsing RSS queue rule
[dpdk.git] / app / test-pmd / cmdline_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23
24 #include "testpmd.h"
25
26 /** Parser token indices. */
27 enum index {
28         /* Special tokens. */
29         ZERO = 0,
30         END,
31
32         /* Common tokens. */
33         INTEGER,
34         UNSIGNED,
35         PREFIX,
36         BOOLEAN,
37         STRING,
38         HEX,
39         MAC_ADDR,
40         IPV4_ADDR,
41         IPV6_ADDR,
42         RULE_ID,
43         PORT_ID,
44         GROUP_ID,
45         PRIORITY_LEVEL,
46
47         /* Top-level command. */
48         FLOW,
49
50         /* Sub-level commands. */
51         VALIDATE,
52         CREATE,
53         DESTROY,
54         FLUSH,
55         QUERY,
56         LIST,
57         ISOLATE,
58
59         /* Destroy arguments. */
60         DESTROY_RULE,
61
62         /* Query arguments. */
63         QUERY_ACTION,
64
65         /* List arguments. */
66         LIST_GROUP,
67
68         /* Validate/create arguments. */
69         GROUP,
70         PRIORITY,
71         INGRESS,
72         EGRESS,
73         TRANSFER,
74
75         /* Validate/create pattern. */
76         PATTERN,
77         ITEM_PARAM_IS,
78         ITEM_PARAM_SPEC,
79         ITEM_PARAM_LAST,
80         ITEM_PARAM_MASK,
81         ITEM_PARAM_PREFIX,
82         ITEM_NEXT,
83         ITEM_END,
84         ITEM_VOID,
85         ITEM_INVERT,
86         ITEM_ANY,
87         ITEM_ANY_NUM,
88         ITEM_PF,
89         ITEM_VF,
90         ITEM_VF_ID,
91         ITEM_PHY_PORT,
92         ITEM_PHY_PORT_INDEX,
93         ITEM_PORT_ID,
94         ITEM_PORT_ID_ID,
95         ITEM_MARK,
96         ITEM_MARK_ID,
97         ITEM_RAW,
98         ITEM_RAW_RELATIVE,
99         ITEM_RAW_SEARCH,
100         ITEM_RAW_OFFSET,
101         ITEM_RAW_LIMIT,
102         ITEM_RAW_PATTERN,
103         ITEM_ETH,
104         ITEM_ETH_DST,
105         ITEM_ETH_SRC,
106         ITEM_ETH_TYPE,
107         ITEM_VLAN,
108         ITEM_VLAN_TCI,
109         ITEM_VLAN_PCP,
110         ITEM_VLAN_DEI,
111         ITEM_VLAN_VID,
112         ITEM_VLAN_INNER_TYPE,
113         ITEM_IPV4,
114         ITEM_IPV4_TOS,
115         ITEM_IPV4_TTL,
116         ITEM_IPV4_PROTO,
117         ITEM_IPV4_SRC,
118         ITEM_IPV4_DST,
119         ITEM_IPV6,
120         ITEM_IPV6_TC,
121         ITEM_IPV6_FLOW,
122         ITEM_IPV6_PROTO,
123         ITEM_IPV6_HOP,
124         ITEM_IPV6_SRC,
125         ITEM_IPV6_DST,
126         ITEM_ICMP,
127         ITEM_ICMP_TYPE,
128         ITEM_ICMP_CODE,
129         ITEM_UDP,
130         ITEM_UDP_SRC,
131         ITEM_UDP_DST,
132         ITEM_TCP,
133         ITEM_TCP_SRC,
134         ITEM_TCP_DST,
135         ITEM_TCP_FLAGS,
136         ITEM_SCTP,
137         ITEM_SCTP_SRC,
138         ITEM_SCTP_DST,
139         ITEM_SCTP_TAG,
140         ITEM_SCTP_CKSUM,
141         ITEM_VXLAN,
142         ITEM_VXLAN_VNI,
143         ITEM_E_TAG,
144         ITEM_E_TAG_GRP_ECID_B,
145         ITEM_NVGRE,
146         ITEM_NVGRE_TNI,
147         ITEM_MPLS,
148         ITEM_MPLS_LABEL,
149         ITEM_GRE,
150         ITEM_GRE_PROTO,
151         ITEM_FUZZY,
152         ITEM_FUZZY_THRESH,
153         ITEM_GTP,
154         ITEM_GTP_TEID,
155         ITEM_GTPC,
156         ITEM_GTPU,
157         ITEM_GENEVE,
158         ITEM_GENEVE_VNI,
159         ITEM_GENEVE_PROTO,
160         ITEM_VXLAN_GPE,
161         ITEM_VXLAN_GPE_VNI,
162         ITEM_ARP_ETH_IPV4,
163         ITEM_ARP_ETH_IPV4_SHA,
164         ITEM_ARP_ETH_IPV4_SPA,
165         ITEM_ARP_ETH_IPV4_THA,
166         ITEM_ARP_ETH_IPV4_TPA,
167         ITEM_IPV6_EXT,
168         ITEM_IPV6_EXT_NEXT_HDR,
169         ITEM_ICMP6,
170         ITEM_ICMP6_TYPE,
171         ITEM_ICMP6_CODE,
172         ITEM_ICMP6_ND_NS,
173         ITEM_ICMP6_ND_NS_TARGET_ADDR,
174         ITEM_ICMP6_ND_NA,
175         ITEM_ICMP6_ND_NA_TARGET_ADDR,
176         ITEM_ICMP6_ND_OPT,
177         ITEM_ICMP6_ND_OPT_TYPE,
178         ITEM_ICMP6_ND_OPT_SLA_ETH,
179         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
180         ITEM_ICMP6_ND_OPT_TLA_ETH,
181         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
182         ITEM_META,
183         ITEM_META_DATA,
184
185         /* Validate/create actions. */
186         ACTIONS,
187         ACTION_NEXT,
188         ACTION_END,
189         ACTION_VOID,
190         ACTION_PASSTHRU,
191         ACTION_JUMP,
192         ACTION_JUMP_GROUP,
193         ACTION_MARK,
194         ACTION_MARK_ID,
195         ACTION_FLAG,
196         ACTION_QUEUE,
197         ACTION_QUEUE_INDEX,
198         ACTION_DROP,
199         ACTION_COUNT,
200         ACTION_COUNT_SHARED,
201         ACTION_COUNT_ID,
202         ACTION_RSS,
203         ACTION_RSS_FUNC,
204         ACTION_RSS_LEVEL,
205         ACTION_RSS_FUNC_DEFAULT,
206         ACTION_RSS_FUNC_TOEPLITZ,
207         ACTION_RSS_FUNC_SIMPLE_XOR,
208         ACTION_RSS_TYPES,
209         ACTION_RSS_TYPE,
210         ACTION_RSS_KEY,
211         ACTION_RSS_KEY_LEN,
212         ACTION_RSS_QUEUES,
213         ACTION_RSS_QUEUE,
214         ACTION_PF,
215         ACTION_VF,
216         ACTION_VF_ORIGINAL,
217         ACTION_VF_ID,
218         ACTION_PHY_PORT,
219         ACTION_PHY_PORT_ORIGINAL,
220         ACTION_PHY_PORT_INDEX,
221         ACTION_PORT_ID,
222         ACTION_PORT_ID_ORIGINAL,
223         ACTION_PORT_ID_ID,
224         ACTION_METER,
225         ACTION_METER_ID,
226         ACTION_OF_SET_MPLS_TTL,
227         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
228         ACTION_OF_DEC_MPLS_TTL,
229         ACTION_OF_SET_NW_TTL,
230         ACTION_OF_SET_NW_TTL_NW_TTL,
231         ACTION_OF_DEC_NW_TTL,
232         ACTION_OF_COPY_TTL_OUT,
233         ACTION_OF_COPY_TTL_IN,
234         ACTION_OF_POP_VLAN,
235         ACTION_OF_PUSH_VLAN,
236         ACTION_OF_PUSH_VLAN_ETHERTYPE,
237         ACTION_OF_SET_VLAN_VID,
238         ACTION_OF_SET_VLAN_VID_VLAN_VID,
239         ACTION_OF_SET_VLAN_PCP,
240         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
241         ACTION_OF_POP_MPLS,
242         ACTION_OF_POP_MPLS_ETHERTYPE,
243         ACTION_OF_PUSH_MPLS,
244         ACTION_OF_PUSH_MPLS_ETHERTYPE,
245         ACTION_VXLAN_ENCAP,
246         ACTION_VXLAN_DECAP,
247         ACTION_NVGRE_ENCAP,
248         ACTION_NVGRE_DECAP,
249         ACTION_L2_ENCAP,
250         ACTION_L2_DECAP,
251         ACTION_MPLSOGRE_ENCAP,
252         ACTION_MPLSOGRE_DECAP,
253         ACTION_MPLSOUDP_ENCAP,
254         ACTION_MPLSOUDP_DECAP,
255         ACTION_SET_IPV4_SRC,
256         ACTION_SET_IPV4_SRC_IPV4_SRC,
257         ACTION_SET_IPV4_DST,
258         ACTION_SET_IPV4_DST_IPV4_DST,
259         ACTION_SET_IPV6_SRC,
260         ACTION_SET_IPV6_SRC_IPV6_SRC,
261         ACTION_SET_IPV6_DST,
262         ACTION_SET_IPV6_DST_IPV6_DST,
263         ACTION_SET_TP_SRC,
264         ACTION_SET_TP_SRC_TP_SRC,
265         ACTION_SET_TP_DST,
266         ACTION_SET_TP_DST_TP_DST,
267         ACTION_MAC_SWAP,
268         ACTION_DEC_TTL,
269         ACTION_SET_TTL,
270         ACTION_SET_TTL_TTL,
271         ACTION_SET_MAC_SRC,
272         ACTION_SET_MAC_SRC_MAC_SRC,
273         ACTION_SET_MAC_DST,
274         ACTION_SET_MAC_DST_MAC_DST,
275         ACTION_INC_TCP_SEQ,
276         ACTION_INC_TCP_SEQ_VALUE,
277         ACTION_DEC_TCP_SEQ,
278         ACTION_DEC_TCP_SEQ_VALUE,
279         ACTION_INC_TCP_ACK,
280         ACTION_INC_TCP_ACK_VALUE,
281         ACTION_DEC_TCP_ACK,
282         ACTION_DEC_TCP_ACK_VALUE,
283 };
284
285 /** Maximum size for pattern in struct rte_flow_item_raw. */
286 #define ITEM_RAW_PATTERN_SIZE 40
287
288 /** Storage size for struct rte_flow_item_raw including pattern. */
289 #define ITEM_RAW_SIZE \
290         (sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
291
292 /** Maximum number of queue indices in struct rte_flow_action_rss. */
293 #define ACTION_RSS_QUEUE_NUM 32
294
295 /** Storage for struct rte_flow_action_rss including external data. */
296 struct action_rss_data {
297         struct rte_flow_action_rss conf;
298         uint8_t key[RSS_HASH_KEY_LENGTH];
299         uint16_t queue[ACTION_RSS_QUEUE_NUM];
300 };
301
302 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
303 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
304
305 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
306 struct action_vxlan_encap_data {
307         struct rte_flow_action_vxlan_encap conf;
308         struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
309         struct rte_flow_item_eth item_eth;
310         struct rte_flow_item_vlan item_vlan;
311         union {
312                 struct rte_flow_item_ipv4 item_ipv4;
313                 struct rte_flow_item_ipv6 item_ipv6;
314         };
315         struct rte_flow_item_udp item_udp;
316         struct rte_flow_item_vxlan item_vxlan;
317 };
318
319 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
320 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
321
322 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
323 struct action_nvgre_encap_data {
324         struct rte_flow_action_nvgre_encap conf;
325         struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
326         struct rte_flow_item_eth item_eth;
327         struct rte_flow_item_vlan item_vlan;
328         union {
329                 struct rte_flow_item_ipv4 item_ipv4;
330                 struct rte_flow_item_ipv6 item_ipv6;
331         };
332         struct rte_flow_item_nvgre item_nvgre;
333 };
334
335 /** Maximum data size in struct rte_flow_action_raw_encap. */
336 #define ACTION_RAW_ENCAP_MAX_DATA 128
337
338 /** Storage for struct rte_flow_action_raw_encap including external data. */
339 struct action_raw_encap_data {
340         struct rte_flow_action_raw_encap conf;
341         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
342         uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
343 };
344
345 /** Storage for struct rte_flow_action_raw_decap including external data. */
346 struct action_raw_decap_data {
347         struct rte_flow_action_raw_decap conf;
348         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
349 };
350
351 /** Maximum number of subsequent tokens and arguments on the stack. */
352 #define CTX_STACK_SIZE 16
353
354 /** Parser context. */
355 struct context {
356         /** Stack of subsequent token lists to process. */
357         const enum index *next[CTX_STACK_SIZE];
358         /** Arguments for stacked tokens. */
359         const void *args[CTX_STACK_SIZE];
360         enum index curr; /**< Current token index. */
361         enum index prev; /**< Index of the last token seen. */
362         int next_num; /**< Number of entries in next[]. */
363         int args_num; /**< Number of entries in args[]. */
364         uint32_t eol:1; /**< EOL has been detected. */
365         uint32_t last:1; /**< No more arguments. */
366         portid_t port; /**< Current port ID (for completions). */
367         uint32_t objdata; /**< Object-specific data. */
368         void *object; /**< Address of current object for relative offsets. */
369         void *objmask; /**< Object a full mask must be written to. */
370 };
371
372 /** Token argument. */
373 struct arg {
374         uint32_t hton:1; /**< Use network byte ordering. */
375         uint32_t sign:1; /**< Value is signed. */
376         uint32_t bounded:1; /**< Value is bounded. */
377         uintmax_t min; /**< Minimum value if bounded. */
378         uintmax_t max; /**< Maximum value if bounded. */
379         uint32_t offset; /**< Relative offset from ctx->object. */
380         uint32_t size; /**< Field size. */
381         const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
382 };
383
384 /** Parser token definition. */
385 struct token {
386         /** Type displayed during completion (defaults to "TOKEN"). */
387         const char *type;
388         /** Help displayed during completion (defaults to token name). */
389         const char *help;
390         /** Private data used by parser functions. */
391         const void *priv;
392         /**
393          * Lists of subsequent tokens to push on the stack. Each call to the
394          * parser consumes the last entry of that stack.
395          */
396         const enum index *const *next;
397         /** Arguments stack for subsequent tokens that need them. */
398         const struct arg *const *args;
399         /**
400          * Token-processing callback, returns -1 in case of error, the
401          * length of the matched string otherwise. If NULL, attempts to
402          * match the token name.
403          *
404          * If buf is not NULL, the result should be stored in it according
405          * to context. An error is returned if not large enough.
406          */
407         int (*call)(struct context *ctx, const struct token *token,
408                     const char *str, unsigned int len,
409                     void *buf, unsigned int size);
410         /**
411          * Callback that provides possible values for this token, used for
412          * completion. Returns -1 in case of error, the number of possible
413          * values otherwise. If NULL, the token name is used.
414          *
415          * If buf is not NULL, entry index ent is written to buf and the
416          * full length of the entry is returned (same behavior as
417          * snprintf()).
418          */
419         int (*comp)(struct context *ctx, const struct token *token,
420                     unsigned int ent, char *buf, unsigned int size);
421         /** Mandatory token name, no default value. */
422         const char *name;
423 };
424
425 /** Static initializer for the next field. */
426 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
427
428 /** Static initializer for a NEXT() entry. */
429 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
430
431 /** Static initializer for the args field. */
432 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
433
434 /** Static initializer for ARGS() to target a field. */
435 #define ARGS_ENTRY(s, f) \
436         (&(const struct arg){ \
437                 .offset = offsetof(s, f), \
438                 .size = sizeof(((s *)0)->f), \
439         })
440
441 /** Static initializer for ARGS() to target a bit-field. */
442 #define ARGS_ENTRY_BF(s, f, b) \
443         (&(const struct arg){ \
444                 .size = sizeof(s), \
445                 .mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
446         })
447
448 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
449 #define ARGS_ENTRY_MASK(s, f, m) \
450         (&(const struct arg){ \
451                 .offset = offsetof(s, f), \
452                 .size = sizeof(((s *)0)->f), \
453                 .mask = (const void *)(m), \
454         })
455
456 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
457 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
458         (&(const struct arg){ \
459                 .hton = 1, \
460                 .offset = offsetof(s, f), \
461                 .size = sizeof(((s *)0)->f), \
462                 .mask = (const void *)(m), \
463         })
464
465 /** Static initializer for ARGS() to target a pointer. */
466 #define ARGS_ENTRY_PTR(s, f) \
467         (&(const struct arg){ \
468                 .size = sizeof(*((s *)0)->f), \
469         })
470
471 /** Static initializer for ARGS() with arbitrary offset and size. */
472 #define ARGS_ENTRY_ARB(o, s) \
473         (&(const struct arg){ \
474                 .offset = (o), \
475                 .size = (s), \
476         })
477
478 /** Same as ARGS_ENTRY_ARB() with bounded values. */
479 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
480         (&(const struct arg){ \
481                 .bounded = 1, \
482                 .min = (i), \
483                 .max = (a), \
484                 .offset = (o), \
485                 .size = (s), \
486         })
487
488 /** Same as ARGS_ENTRY() using network byte ordering. */
489 #define ARGS_ENTRY_HTON(s, f) \
490         (&(const struct arg){ \
491                 .hton = 1, \
492                 .offset = offsetof(s, f), \
493                 .size = sizeof(((s *)0)->f), \
494         })
495
496 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
497 #define ARG_ENTRY_HTON(s) \
498         (&(const struct arg){ \
499                 .hton = 1, \
500                 .offset = 0, \
501                 .size = sizeof(s), \
502         })
503
504 /** Parser output buffer layout expected by cmd_flow_parsed(). */
505 struct buffer {
506         enum index command; /**< Flow command. */
507         portid_t port; /**< Affected port ID. */
508         union {
509                 struct {
510                         struct rte_flow_attr attr;
511                         struct rte_flow_item *pattern;
512                         struct rte_flow_action *actions;
513                         uint32_t pattern_n;
514                         uint32_t actions_n;
515                         uint8_t *data;
516                 } vc; /**< Validate/create arguments. */
517                 struct {
518                         uint32_t *rule;
519                         uint32_t rule_n;
520                 } destroy; /**< Destroy arguments. */
521                 struct {
522                         uint32_t rule;
523                         struct rte_flow_action action;
524                 } query; /**< Query arguments. */
525                 struct {
526                         uint32_t *group;
527                         uint32_t group_n;
528                 } list; /**< List arguments. */
529                 struct {
530                         int set;
531                 } isolate; /**< Isolated mode arguments. */
532         } args; /**< Command arguments. */
533 };
534
535 /** Private data for pattern items. */
536 struct parse_item_priv {
537         enum rte_flow_item_type type; /**< Item type. */
538         uint32_t size; /**< Size of item specification structure. */
539 };
540
541 #define PRIV_ITEM(t, s) \
542         (&(const struct parse_item_priv){ \
543                 .type = RTE_FLOW_ITEM_TYPE_ ## t, \
544                 .size = s, \
545         })
546
547 /** Private data for actions. */
548 struct parse_action_priv {
549         enum rte_flow_action_type type; /**< Action type. */
550         uint32_t size; /**< Size of action configuration structure. */
551 };
552
553 #define PRIV_ACTION(t, s) \
554         (&(const struct parse_action_priv){ \
555                 .type = RTE_FLOW_ACTION_TYPE_ ## t, \
556                 .size = s, \
557         })
558
559 static const enum index next_vc_attr[] = {
560         GROUP,
561         PRIORITY,
562         INGRESS,
563         EGRESS,
564         TRANSFER,
565         PATTERN,
566         ZERO,
567 };
568
569 static const enum index next_destroy_attr[] = {
570         DESTROY_RULE,
571         END,
572         ZERO,
573 };
574
575 static const enum index next_list_attr[] = {
576         LIST_GROUP,
577         END,
578         ZERO,
579 };
580
581 static const enum index item_param[] = {
582         ITEM_PARAM_IS,
583         ITEM_PARAM_SPEC,
584         ITEM_PARAM_LAST,
585         ITEM_PARAM_MASK,
586         ITEM_PARAM_PREFIX,
587         ZERO,
588 };
589
590 static const enum index next_item[] = {
591         ITEM_END,
592         ITEM_VOID,
593         ITEM_INVERT,
594         ITEM_ANY,
595         ITEM_PF,
596         ITEM_VF,
597         ITEM_PHY_PORT,
598         ITEM_PORT_ID,
599         ITEM_MARK,
600         ITEM_RAW,
601         ITEM_ETH,
602         ITEM_VLAN,
603         ITEM_IPV4,
604         ITEM_IPV6,
605         ITEM_ICMP,
606         ITEM_UDP,
607         ITEM_TCP,
608         ITEM_SCTP,
609         ITEM_VXLAN,
610         ITEM_E_TAG,
611         ITEM_NVGRE,
612         ITEM_MPLS,
613         ITEM_GRE,
614         ITEM_FUZZY,
615         ITEM_GTP,
616         ITEM_GTPC,
617         ITEM_GTPU,
618         ITEM_GENEVE,
619         ITEM_VXLAN_GPE,
620         ITEM_ARP_ETH_IPV4,
621         ITEM_IPV6_EXT,
622         ITEM_ICMP6,
623         ITEM_ICMP6_ND_NS,
624         ITEM_ICMP6_ND_NA,
625         ITEM_ICMP6_ND_OPT,
626         ITEM_ICMP6_ND_OPT_SLA_ETH,
627         ITEM_ICMP6_ND_OPT_TLA_ETH,
628         ITEM_META,
629         ZERO,
630 };
631
632 static const enum index item_fuzzy[] = {
633         ITEM_FUZZY_THRESH,
634         ITEM_NEXT,
635         ZERO,
636 };
637
638 static const enum index item_any[] = {
639         ITEM_ANY_NUM,
640         ITEM_NEXT,
641         ZERO,
642 };
643
644 static const enum index item_vf[] = {
645         ITEM_VF_ID,
646         ITEM_NEXT,
647         ZERO,
648 };
649
650 static const enum index item_phy_port[] = {
651         ITEM_PHY_PORT_INDEX,
652         ITEM_NEXT,
653         ZERO,
654 };
655
656 static const enum index item_port_id[] = {
657         ITEM_PORT_ID_ID,
658         ITEM_NEXT,
659         ZERO,
660 };
661
662 static const enum index item_mark[] = {
663         ITEM_MARK_ID,
664         ITEM_NEXT,
665         ZERO,
666 };
667
668 static const enum index item_raw[] = {
669         ITEM_RAW_RELATIVE,
670         ITEM_RAW_SEARCH,
671         ITEM_RAW_OFFSET,
672         ITEM_RAW_LIMIT,
673         ITEM_RAW_PATTERN,
674         ITEM_NEXT,
675         ZERO,
676 };
677
678 static const enum index item_eth[] = {
679         ITEM_ETH_DST,
680         ITEM_ETH_SRC,
681         ITEM_ETH_TYPE,
682         ITEM_NEXT,
683         ZERO,
684 };
685
686 static const enum index item_vlan[] = {
687         ITEM_VLAN_TCI,
688         ITEM_VLAN_PCP,
689         ITEM_VLAN_DEI,
690         ITEM_VLAN_VID,
691         ITEM_VLAN_INNER_TYPE,
692         ITEM_NEXT,
693         ZERO,
694 };
695
696 static const enum index item_ipv4[] = {
697         ITEM_IPV4_TOS,
698         ITEM_IPV4_TTL,
699         ITEM_IPV4_PROTO,
700         ITEM_IPV4_SRC,
701         ITEM_IPV4_DST,
702         ITEM_NEXT,
703         ZERO,
704 };
705
706 static const enum index item_ipv6[] = {
707         ITEM_IPV6_TC,
708         ITEM_IPV6_FLOW,
709         ITEM_IPV6_PROTO,
710         ITEM_IPV6_HOP,
711         ITEM_IPV6_SRC,
712         ITEM_IPV6_DST,
713         ITEM_NEXT,
714         ZERO,
715 };
716
717 static const enum index item_icmp[] = {
718         ITEM_ICMP_TYPE,
719         ITEM_ICMP_CODE,
720         ITEM_NEXT,
721         ZERO,
722 };
723
724 static const enum index item_udp[] = {
725         ITEM_UDP_SRC,
726         ITEM_UDP_DST,
727         ITEM_NEXT,
728         ZERO,
729 };
730
731 static const enum index item_tcp[] = {
732         ITEM_TCP_SRC,
733         ITEM_TCP_DST,
734         ITEM_TCP_FLAGS,
735         ITEM_NEXT,
736         ZERO,
737 };
738
739 static const enum index item_sctp[] = {
740         ITEM_SCTP_SRC,
741         ITEM_SCTP_DST,
742         ITEM_SCTP_TAG,
743         ITEM_SCTP_CKSUM,
744         ITEM_NEXT,
745         ZERO,
746 };
747
748 static const enum index item_vxlan[] = {
749         ITEM_VXLAN_VNI,
750         ITEM_NEXT,
751         ZERO,
752 };
753
754 static const enum index item_e_tag[] = {
755         ITEM_E_TAG_GRP_ECID_B,
756         ITEM_NEXT,
757         ZERO,
758 };
759
760 static const enum index item_nvgre[] = {
761         ITEM_NVGRE_TNI,
762         ITEM_NEXT,
763         ZERO,
764 };
765
766 static const enum index item_mpls[] = {
767         ITEM_MPLS_LABEL,
768         ITEM_NEXT,
769         ZERO,
770 };
771
772 static const enum index item_gre[] = {
773         ITEM_GRE_PROTO,
774         ITEM_NEXT,
775         ZERO,
776 };
777
778 static const enum index item_gtp[] = {
779         ITEM_GTP_TEID,
780         ITEM_NEXT,
781         ZERO,
782 };
783
784 static const enum index item_geneve[] = {
785         ITEM_GENEVE_VNI,
786         ITEM_GENEVE_PROTO,
787         ITEM_NEXT,
788         ZERO,
789 };
790
791 static const enum index item_vxlan_gpe[] = {
792         ITEM_VXLAN_GPE_VNI,
793         ITEM_NEXT,
794         ZERO,
795 };
796
797 static const enum index item_arp_eth_ipv4[] = {
798         ITEM_ARP_ETH_IPV4_SHA,
799         ITEM_ARP_ETH_IPV4_SPA,
800         ITEM_ARP_ETH_IPV4_THA,
801         ITEM_ARP_ETH_IPV4_TPA,
802         ITEM_NEXT,
803         ZERO,
804 };
805
806 static const enum index item_ipv6_ext[] = {
807         ITEM_IPV6_EXT_NEXT_HDR,
808         ITEM_NEXT,
809         ZERO,
810 };
811
812 static const enum index item_icmp6[] = {
813         ITEM_ICMP6_TYPE,
814         ITEM_ICMP6_CODE,
815         ITEM_NEXT,
816         ZERO,
817 };
818
819 static const enum index item_icmp6_nd_ns[] = {
820         ITEM_ICMP6_ND_NS_TARGET_ADDR,
821         ITEM_NEXT,
822         ZERO,
823 };
824
825 static const enum index item_icmp6_nd_na[] = {
826         ITEM_ICMP6_ND_NA_TARGET_ADDR,
827         ITEM_NEXT,
828         ZERO,
829 };
830
831 static const enum index item_icmp6_nd_opt[] = {
832         ITEM_ICMP6_ND_OPT_TYPE,
833         ITEM_NEXT,
834         ZERO,
835 };
836
837 static const enum index item_icmp6_nd_opt_sla_eth[] = {
838         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
839         ITEM_NEXT,
840         ZERO,
841 };
842
843 static const enum index item_icmp6_nd_opt_tla_eth[] = {
844         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
845         ITEM_NEXT,
846         ZERO,
847 };
848
849 static const enum index item_meta[] = {
850         ITEM_META_DATA,
851         ITEM_NEXT,
852         ZERO,
853 };
854
855 static const enum index next_action[] = {
856         ACTION_END,
857         ACTION_VOID,
858         ACTION_PASSTHRU,
859         ACTION_JUMP,
860         ACTION_MARK,
861         ACTION_FLAG,
862         ACTION_QUEUE,
863         ACTION_DROP,
864         ACTION_COUNT,
865         ACTION_RSS,
866         ACTION_PF,
867         ACTION_VF,
868         ACTION_PHY_PORT,
869         ACTION_PORT_ID,
870         ACTION_METER,
871         ACTION_OF_SET_MPLS_TTL,
872         ACTION_OF_DEC_MPLS_TTL,
873         ACTION_OF_SET_NW_TTL,
874         ACTION_OF_DEC_NW_TTL,
875         ACTION_OF_COPY_TTL_OUT,
876         ACTION_OF_COPY_TTL_IN,
877         ACTION_OF_POP_VLAN,
878         ACTION_OF_PUSH_VLAN,
879         ACTION_OF_SET_VLAN_VID,
880         ACTION_OF_SET_VLAN_PCP,
881         ACTION_OF_POP_MPLS,
882         ACTION_OF_PUSH_MPLS,
883         ACTION_VXLAN_ENCAP,
884         ACTION_VXLAN_DECAP,
885         ACTION_NVGRE_ENCAP,
886         ACTION_NVGRE_DECAP,
887         ACTION_L2_ENCAP,
888         ACTION_L2_DECAP,
889         ACTION_MPLSOGRE_ENCAP,
890         ACTION_MPLSOGRE_DECAP,
891         ACTION_MPLSOUDP_ENCAP,
892         ACTION_MPLSOUDP_DECAP,
893         ACTION_SET_IPV4_SRC,
894         ACTION_SET_IPV4_DST,
895         ACTION_SET_IPV6_SRC,
896         ACTION_SET_IPV6_DST,
897         ACTION_SET_TP_SRC,
898         ACTION_SET_TP_DST,
899         ACTION_MAC_SWAP,
900         ACTION_DEC_TTL,
901         ACTION_SET_TTL,
902         ACTION_SET_MAC_SRC,
903         ACTION_SET_MAC_DST,
904         ACTION_INC_TCP_SEQ,
905         ACTION_DEC_TCP_SEQ,
906         ACTION_INC_TCP_ACK,
907         ACTION_DEC_TCP_ACK,
908         ZERO,
909 };
910
911 static const enum index action_mark[] = {
912         ACTION_MARK_ID,
913         ACTION_NEXT,
914         ZERO,
915 };
916
917 static const enum index action_queue[] = {
918         ACTION_QUEUE_INDEX,
919         ACTION_NEXT,
920         ZERO,
921 };
922
923 static const enum index action_count[] = {
924         ACTION_COUNT_ID,
925         ACTION_COUNT_SHARED,
926         ACTION_NEXT,
927         ZERO,
928 };
929
930 static const enum index action_rss[] = {
931         ACTION_RSS_FUNC,
932         ACTION_RSS_LEVEL,
933         ACTION_RSS_TYPES,
934         ACTION_RSS_KEY,
935         ACTION_RSS_KEY_LEN,
936         ACTION_RSS_QUEUES,
937         ACTION_NEXT,
938         ZERO,
939 };
940
941 static const enum index action_vf[] = {
942         ACTION_VF_ORIGINAL,
943         ACTION_VF_ID,
944         ACTION_NEXT,
945         ZERO,
946 };
947
948 static const enum index action_phy_port[] = {
949         ACTION_PHY_PORT_ORIGINAL,
950         ACTION_PHY_PORT_INDEX,
951         ACTION_NEXT,
952         ZERO,
953 };
954
955 static const enum index action_port_id[] = {
956         ACTION_PORT_ID_ORIGINAL,
957         ACTION_PORT_ID_ID,
958         ACTION_NEXT,
959         ZERO,
960 };
961
962 static const enum index action_meter[] = {
963         ACTION_METER_ID,
964         ACTION_NEXT,
965         ZERO,
966 };
967
968 static const enum index action_of_set_mpls_ttl[] = {
969         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
970         ACTION_NEXT,
971         ZERO,
972 };
973
974 static const enum index action_of_set_nw_ttl[] = {
975         ACTION_OF_SET_NW_TTL_NW_TTL,
976         ACTION_NEXT,
977         ZERO,
978 };
979
980 static const enum index action_of_push_vlan[] = {
981         ACTION_OF_PUSH_VLAN_ETHERTYPE,
982         ACTION_NEXT,
983         ZERO,
984 };
985
986 static const enum index action_of_set_vlan_vid[] = {
987         ACTION_OF_SET_VLAN_VID_VLAN_VID,
988         ACTION_NEXT,
989         ZERO,
990 };
991
992 static const enum index action_of_set_vlan_pcp[] = {
993         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
994         ACTION_NEXT,
995         ZERO,
996 };
997
998 static const enum index action_of_pop_mpls[] = {
999         ACTION_OF_POP_MPLS_ETHERTYPE,
1000         ACTION_NEXT,
1001         ZERO,
1002 };
1003
1004 static const enum index action_of_push_mpls[] = {
1005         ACTION_OF_PUSH_MPLS_ETHERTYPE,
1006         ACTION_NEXT,
1007         ZERO,
1008 };
1009
1010 static const enum index action_set_ipv4_src[] = {
1011         ACTION_SET_IPV4_SRC_IPV4_SRC,
1012         ACTION_NEXT,
1013         ZERO,
1014 };
1015
1016 static const enum index action_set_mac_src[] = {
1017         ACTION_SET_MAC_SRC_MAC_SRC,
1018         ACTION_NEXT,
1019         ZERO,
1020 };
1021
1022 static const enum index action_set_ipv4_dst[] = {
1023         ACTION_SET_IPV4_DST_IPV4_DST,
1024         ACTION_NEXT,
1025         ZERO,
1026 };
1027
1028 static const enum index action_set_ipv6_src[] = {
1029         ACTION_SET_IPV6_SRC_IPV6_SRC,
1030         ACTION_NEXT,
1031         ZERO,
1032 };
1033
1034 static const enum index action_set_ipv6_dst[] = {
1035         ACTION_SET_IPV6_DST_IPV6_DST,
1036         ACTION_NEXT,
1037         ZERO,
1038 };
1039
1040 static const enum index action_set_tp_src[] = {
1041         ACTION_SET_TP_SRC_TP_SRC,
1042         ACTION_NEXT,
1043         ZERO,
1044 };
1045
1046 static const enum index action_set_tp_dst[] = {
1047         ACTION_SET_TP_DST_TP_DST,
1048         ACTION_NEXT,
1049         ZERO,
1050 };
1051
1052 static const enum index action_set_ttl[] = {
1053         ACTION_SET_TTL_TTL,
1054         ACTION_NEXT,
1055         ZERO,
1056 };
1057
1058 static const enum index action_jump[] = {
1059         ACTION_JUMP_GROUP,
1060         ACTION_NEXT,
1061         ZERO,
1062 };
1063
1064 static const enum index action_set_mac_dst[] = {
1065         ACTION_SET_MAC_DST_MAC_DST,
1066         ACTION_NEXT,
1067         ZERO,
1068 };
1069
1070 static const enum index action_inc_tcp_seq[] = {
1071         ACTION_INC_TCP_SEQ_VALUE,
1072         ACTION_NEXT,
1073         ZERO,
1074 };
1075
1076 static const enum index action_dec_tcp_seq[] = {
1077         ACTION_DEC_TCP_SEQ_VALUE,
1078         ACTION_NEXT,
1079         ZERO,
1080 };
1081
1082 static const enum index action_inc_tcp_ack[] = {
1083         ACTION_INC_TCP_ACK_VALUE,
1084         ACTION_NEXT,
1085         ZERO,
1086 };
1087
1088 static const enum index action_dec_tcp_ack[] = {
1089         ACTION_DEC_TCP_ACK_VALUE,
1090         ACTION_NEXT,
1091         ZERO,
1092 };
1093
1094 static int parse_init(struct context *, const struct token *,
1095                       const char *, unsigned int,
1096                       void *, unsigned int);
1097 static int parse_vc(struct context *, const struct token *,
1098                     const char *, unsigned int,
1099                     void *, unsigned int);
1100 static int parse_vc_spec(struct context *, const struct token *,
1101                          const char *, unsigned int, void *, unsigned int);
1102 static int parse_vc_conf(struct context *, const struct token *,
1103                          const char *, unsigned int, void *, unsigned int);
1104 static int parse_vc_action_rss(struct context *, const struct token *,
1105                                const char *, unsigned int, void *,
1106                                unsigned int);
1107 static int parse_vc_action_rss_func(struct context *, const struct token *,
1108                                     const char *, unsigned int, void *,
1109                                     unsigned int);
1110 static int parse_vc_action_rss_type(struct context *, const struct token *,
1111                                     const char *, unsigned int, void *,
1112                                     unsigned int);
1113 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1114                                      const char *, unsigned int, void *,
1115                                      unsigned int);
1116 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1117                                        const char *, unsigned int, void *,
1118                                        unsigned int);
1119 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1120                                        const char *, unsigned int, void *,
1121                                        unsigned int);
1122 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1123                                     const char *, unsigned int, void *,
1124                                     unsigned int);
1125 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1126                                     const char *, unsigned int, void *,
1127                                     unsigned int);
1128 static int parse_vc_action_mplsogre_encap(struct context *,
1129                                           const struct token *, const char *,
1130                                           unsigned int, void *, unsigned int);
1131 static int parse_vc_action_mplsogre_decap(struct context *,
1132                                           const struct token *, const char *,
1133                                           unsigned int, void *, unsigned int);
1134 static int parse_vc_action_mplsoudp_encap(struct context *,
1135                                           const struct token *, const char *,
1136                                           unsigned int, void *, unsigned int);
1137 static int parse_vc_action_mplsoudp_decap(struct context *,
1138                                           const struct token *, const char *,
1139                                           unsigned int, void *, unsigned int);
1140 static int parse_destroy(struct context *, const struct token *,
1141                          const char *, unsigned int,
1142                          void *, unsigned int);
1143 static int parse_flush(struct context *, const struct token *,
1144                        const char *, unsigned int,
1145                        void *, unsigned int);
1146 static int parse_query(struct context *, const struct token *,
1147                        const char *, unsigned int,
1148                        void *, unsigned int);
1149 static int parse_action(struct context *, const struct token *,
1150                         const char *, unsigned int,
1151                         void *, unsigned int);
1152 static int parse_list(struct context *, const struct token *,
1153                       const char *, unsigned int,
1154                       void *, unsigned int);
1155 static int parse_isolate(struct context *, const struct token *,
1156                          const char *, unsigned int,
1157                          void *, unsigned int);
1158 static int parse_int(struct context *, const struct token *,
1159                      const char *, unsigned int,
1160                      void *, unsigned int);
1161 static int parse_prefix(struct context *, const struct token *,
1162                         const char *, unsigned int,
1163                         void *, unsigned int);
1164 static int parse_boolean(struct context *, const struct token *,
1165                          const char *, unsigned int,
1166                          void *, unsigned int);
1167 static int parse_string(struct context *, const struct token *,
1168                         const char *, unsigned int,
1169                         void *, unsigned int);
1170 static int parse_hex(struct context *ctx, const struct token *token,
1171                         const char *str, unsigned int len,
1172                         void *buf, unsigned int size);
1173 static int parse_mac_addr(struct context *, const struct token *,
1174                           const char *, unsigned int,
1175                           void *, unsigned int);
1176 static int parse_ipv4_addr(struct context *, const struct token *,
1177                            const char *, unsigned int,
1178                            void *, unsigned int);
1179 static int parse_ipv6_addr(struct context *, const struct token *,
1180                            const char *, unsigned int,
1181                            void *, unsigned int);
1182 static int parse_port(struct context *, const struct token *,
1183                       const char *, unsigned int,
1184                       void *, unsigned int);
1185 static int comp_none(struct context *, const struct token *,
1186                      unsigned int, char *, unsigned int);
1187 static int comp_boolean(struct context *, const struct token *,
1188                         unsigned int, char *, unsigned int);
1189 static int comp_action(struct context *, const struct token *,
1190                        unsigned int, char *, unsigned int);
1191 static int comp_port(struct context *, const struct token *,
1192                      unsigned int, char *, unsigned int);
1193 static int comp_rule_id(struct context *, const struct token *,
1194                         unsigned int, char *, unsigned int);
1195 static int comp_vc_action_rss_type(struct context *, const struct token *,
1196                                    unsigned int, char *, unsigned int);
1197 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1198                                     unsigned int, char *, unsigned int);
1199
1200 /** Token definitions. */
1201 static const struct token token_list[] = {
1202         /* Special tokens. */
1203         [ZERO] = {
1204                 .name = "ZERO",
1205                 .help = "null entry, abused as the entry point",
1206                 .next = NEXT(NEXT_ENTRY(FLOW)),
1207         },
1208         [END] = {
1209                 .name = "",
1210                 .type = "RETURN",
1211                 .help = "command may end here",
1212         },
1213         /* Common tokens. */
1214         [INTEGER] = {
1215                 .name = "{int}",
1216                 .type = "INTEGER",
1217                 .help = "integer value",
1218                 .call = parse_int,
1219                 .comp = comp_none,
1220         },
1221         [UNSIGNED] = {
1222                 .name = "{unsigned}",
1223                 .type = "UNSIGNED",
1224                 .help = "unsigned integer value",
1225                 .call = parse_int,
1226                 .comp = comp_none,
1227         },
1228         [PREFIX] = {
1229                 .name = "{prefix}",
1230                 .type = "PREFIX",
1231                 .help = "prefix length for bit-mask",
1232                 .call = parse_prefix,
1233                 .comp = comp_none,
1234         },
1235         [BOOLEAN] = {
1236                 .name = "{boolean}",
1237                 .type = "BOOLEAN",
1238                 .help = "any boolean value",
1239                 .call = parse_boolean,
1240                 .comp = comp_boolean,
1241         },
1242         [STRING] = {
1243                 .name = "{string}",
1244                 .type = "STRING",
1245                 .help = "fixed string",
1246                 .call = parse_string,
1247                 .comp = comp_none,
1248         },
1249         [HEX] = {
1250                 .name = "{hex}",
1251                 .type = "HEX",
1252                 .help = "fixed string",
1253                 .call = parse_hex,
1254                 .comp = comp_none,
1255         },
1256         [MAC_ADDR] = {
1257                 .name = "{MAC address}",
1258                 .type = "MAC-48",
1259                 .help = "standard MAC address notation",
1260                 .call = parse_mac_addr,
1261                 .comp = comp_none,
1262         },
1263         [IPV4_ADDR] = {
1264                 .name = "{IPv4 address}",
1265                 .type = "IPV4 ADDRESS",
1266                 .help = "standard IPv4 address notation",
1267                 .call = parse_ipv4_addr,
1268                 .comp = comp_none,
1269         },
1270         [IPV6_ADDR] = {
1271                 .name = "{IPv6 address}",
1272                 .type = "IPV6 ADDRESS",
1273                 .help = "standard IPv6 address notation",
1274                 .call = parse_ipv6_addr,
1275                 .comp = comp_none,
1276         },
1277         [RULE_ID] = {
1278                 .name = "{rule id}",
1279                 .type = "RULE ID",
1280                 .help = "rule identifier",
1281                 .call = parse_int,
1282                 .comp = comp_rule_id,
1283         },
1284         [PORT_ID] = {
1285                 .name = "{port_id}",
1286                 .type = "PORT ID",
1287                 .help = "port identifier",
1288                 .call = parse_port,
1289                 .comp = comp_port,
1290         },
1291         [GROUP_ID] = {
1292                 .name = "{group_id}",
1293                 .type = "GROUP ID",
1294                 .help = "group identifier",
1295                 .call = parse_int,
1296                 .comp = comp_none,
1297         },
1298         [PRIORITY_LEVEL] = {
1299                 .name = "{level}",
1300                 .type = "PRIORITY",
1301                 .help = "priority level",
1302                 .call = parse_int,
1303                 .comp = comp_none,
1304         },
1305         /* Top-level command. */
1306         [FLOW] = {
1307                 .name = "flow",
1308                 .type = "{command} {port_id} [{arg} [...]]",
1309                 .help = "manage ingress/egress flow rules",
1310                 .next = NEXT(NEXT_ENTRY
1311                              (VALIDATE,
1312                               CREATE,
1313                               DESTROY,
1314                               FLUSH,
1315                               LIST,
1316                               QUERY,
1317                               ISOLATE)),
1318                 .call = parse_init,
1319         },
1320         /* Sub-level commands. */
1321         [VALIDATE] = {
1322                 .name = "validate",
1323                 .help = "check whether a flow rule can be created",
1324                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1325                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1326                 .call = parse_vc,
1327         },
1328         [CREATE] = {
1329                 .name = "create",
1330                 .help = "create a flow rule",
1331                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1332                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1333                 .call = parse_vc,
1334         },
1335         [DESTROY] = {
1336                 .name = "destroy",
1337                 .help = "destroy specific flow rules",
1338                 .next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1339                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1340                 .call = parse_destroy,
1341         },
1342         [FLUSH] = {
1343                 .name = "flush",
1344                 .help = "destroy all flow rules",
1345                 .next = NEXT(NEXT_ENTRY(PORT_ID)),
1346                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1347                 .call = parse_flush,
1348         },
1349         [QUERY] = {
1350                 .name = "query",
1351                 .help = "query an existing flow rule",
1352                 .next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1353                              NEXT_ENTRY(RULE_ID),
1354                              NEXT_ENTRY(PORT_ID)),
1355                 .args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1356                              ARGS_ENTRY(struct buffer, args.query.rule),
1357                              ARGS_ENTRY(struct buffer, port)),
1358                 .call = parse_query,
1359         },
1360         [LIST] = {
1361                 .name = "list",
1362                 .help = "list existing flow rules",
1363                 .next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1364                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1365                 .call = parse_list,
1366         },
1367         [ISOLATE] = {
1368                 .name = "isolate",
1369                 .help = "restrict ingress traffic to the defined flow rules",
1370                 .next = NEXT(NEXT_ENTRY(BOOLEAN),
1371                              NEXT_ENTRY(PORT_ID)),
1372                 .args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1373                              ARGS_ENTRY(struct buffer, port)),
1374                 .call = parse_isolate,
1375         },
1376         /* Destroy arguments. */
1377         [DESTROY_RULE] = {
1378                 .name = "rule",
1379                 .help = "specify a rule identifier",
1380                 .next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1381                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1382                 .call = parse_destroy,
1383         },
1384         /* Query arguments. */
1385         [QUERY_ACTION] = {
1386                 .name = "{action}",
1387                 .type = "ACTION",
1388                 .help = "action to query, must be part of the rule",
1389                 .call = parse_action,
1390                 .comp = comp_action,
1391         },
1392         /* List arguments. */
1393         [LIST_GROUP] = {
1394                 .name = "group",
1395                 .help = "specify a group",
1396                 .next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1397                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1398                 .call = parse_list,
1399         },
1400         /* Validate/create attributes. */
1401         [GROUP] = {
1402                 .name = "group",
1403                 .help = "specify a group",
1404                 .next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1405                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1406                 .call = parse_vc,
1407         },
1408         [PRIORITY] = {
1409                 .name = "priority",
1410                 .help = "specify a priority level",
1411                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1412                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1413                 .call = parse_vc,
1414         },
1415         [INGRESS] = {
1416                 .name = "ingress",
1417                 .help = "affect rule to ingress",
1418                 .next = NEXT(next_vc_attr),
1419                 .call = parse_vc,
1420         },
1421         [EGRESS] = {
1422                 .name = "egress",
1423                 .help = "affect rule to egress",
1424                 .next = NEXT(next_vc_attr),
1425                 .call = parse_vc,
1426         },
1427         [TRANSFER] = {
1428                 .name = "transfer",
1429                 .help = "apply rule directly to endpoints found in pattern",
1430                 .next = NEXT(next_vc_attr),
1431                 .call = parse_vc,
1432         },
1433         /* Validate/create pattern. */
1434         [PATTERN] = {
1435                 .name = "pattern",
1436                 .help = "submit a list of pattern items",
1437                 .next = NEXT(next_item),
1438                 .call = parse_vc,
1439         },
1440         [ITEM_PARAM_IS] = {
1441                 .name = "is",
1442                 .help = "match value perfectly (with full bit-mask)",
1443                 .call = parse_vc_spec,
1444         },
1445         [ITEM_PARAM_SPEC] = {
1446                 .name = "spec",
1447                 .help = "match value according to configured bit-mask",
1448                 .call = parse_vc_spec,
1449         },
1450         [ITEM_PARAM_LAST] = {
1451                 .name = "last",
1452                 .help = "specify upper bound to establish a range",
1453                 .call = parse_vc_spec,
1454         },
1455         [ITEM_PARAM_MASK] = {
1456                 .name = "mask",
1457                 .help = "specify bit-mask with relevant bits set to one",
1458                 .call = parse_vc_spec,
1459         },
1460         [ITEM_PARAM_PREFIX] = {
1461                 .name = "prefix",
1462                 .help = "generate bit-mask from a prefix length",
1463                 .call = parse_vc_spec,
1464         },
1465         [ITEM_NEXT] = {
1466                 .name = "/",
1467                 .help = "specify next pattern item",
1468                 .next = NEXT(next_item),
1469         },
1470         [ITEM_END] = {
1471                 .name = "end",
1472                 .help = "end list of pattern items",
1473                 .priv = PRIV_ITEM(END, 0),
1474                 .next = NEXT(NEXT_ENTRY(ACTIONS)),
1475                 .call = parse_vc,
1476         },
1477         [ITEM_VOID] = {
1478                 .name = "void",
1479                 .help = "no-op pattern item",
1480                 .priv = PRIV_ITEM(VOID, 0),
1481                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1482                 .call = parse_vc,
1483         },
1484         [ITEM_INVERT] = {
1485                 .name = "invert",
1486                 .help = "perform actions when pattern does not match",
1487                 .priv = PRIV_ITEM(INVERT, 0),
1488                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1489                 .call = parse_vc,
1490         },
1491         [ITEM_ANY] = {
1492                 .name = "any",
1493                 .help = "match any protocol for the current layer",
1494                 .priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1495                 .next = NEXT(item_any),
1496                 .call = parse_vc,
1497         },
1498         [ITEM_ANY_NUM] = {
1499                 .name = "num",
1500                 .help = "number of layers covered",
1501                 .next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1502                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1503         },
1504         [ITEM_PF] = {
1505                 .name = "pf",
1506                 .help = "match traffic from/to the physical function",
1507                 .priv = PRIV_ITEM(PF, 0),
1508                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1509                 .call = parse_vc,
1510         },
1511         [ITEM_VF] = {
1512                 .name = "vf",
1513                 .help = "match traffic from/to a virtual function ID",
1514                 .priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1515                 .next = NEXT(item_vf),
1516                 .call = parse_vc,
1517         },
1518         [ITEM_VF_ID] = {
1519                 .name = "id",
1520                 .help = "VF ID",
1521                 .next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1522                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1523         },
1524         [ITEM_PHY_PORT] = {
1525                 .name = "phy_port",
1526                 .help = "match traffic from/to a specific physical port",
1527                 .priv = PRIV_ITEM(PHY_PORT,
1528                                   sizeof(struct rte_flow_item_phy_port)),
1529                 .next = NEXT(item_phy_port),
1530                 .call = parse_vc,
1531         },
1532         [ITEM_PHY_PORT_INDEX] = {
1533                 .name = "index",
1534                 .help = "physical port index",
1535                 .next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1536                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1537         },
1538         [ITEM_PORT_ID] = {
1539                 .name = "port_id",
1540                 .help = "match traffic from/to a given DPDK port ID",
1541                 .priv = PRIV_ITEM(PORT_ID,
1542                                   sizeof(struct rte_flow_item_port_id)),
1543                 .next = NEXT(item_port_id),
1544                 .call = parse_vc,
1545         },
1546         [ITEM_PORT_ID_ID] = {
1547                 .name = "id",
1548                 .help = "DPDK port ID",
1549                 .next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1550                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1551         },
1552         [ITEM_MARK] = {
1553                 .name = "mark",
1554                 .help = "match traffic against value set in previously matched rule",
1555                 .priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1556                 .next = NEXT(item_mark),
1557                 .call = parse_vc,
1558         },
1559         [ITEM_MARK_ID] = {
1560                 .name = "id",
1561                 .help = "Integer value to match against",
1562                 .next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1563                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1564         },
1565         [ITEM_RAW] = {
1566                 .name = "raw",
1567                 .help = "match an arbitrary byte string",
1568                 .priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1569                 .next = NEXT(item_raw),
1570                 .call = parse_vc,
1571         },
1572         [ITEM_RAW_RELATIVE] = {
1573                 .name = "relative",
1574                 .help = "look for pattern after the previous item",
1575                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1576                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1577                                            relative, 1)),
1578         },
1579         [ITEM_RAW_SEARCH] = {
1580                 .name = "search",
1581                 .help = "search pattern from offset (see also limit)",
1582                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1583                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1584                                            search, 1)),
1585         },
1586         [ITEM_RAW_OFFSET] = {
1587                 .name = "offset",
1588                 .help = "absolute or relative offset for pattern",
1589                 .next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1590                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1591         },
1592         [ITEM_RAW_LIMIT] = {
1593                 .name = "limit",
1594                 .help = "search area limit for start of pattern",
1595                 .next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1596                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1597         },
1598         [ITEM_RAW_PATTERN] = {
1599                 .name = "pattern",
1600                 .help = "byte string to look for",
1601                 .next = NEXT(item_raw,
1602                              NEXT_ENTRY(STRING),
1603                              NEXT_ENTRY(ITEM_PARAM_IS,
1604                                         ITEM_PARAM_SPEC,
1605                                         ITEM_PARAM_MASK)),
1606                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1607                              ARGS_ENTRY(struct rte_flow_item_raw, length),
1608                              ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1609                                             ITEM_RAW_PATTERN_SIZE)),
1610         },
1611         [ITEM_ETH] = {
1612                 .name = "eth",
1613                 .help = "match Ethernet header",
1614                 .priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1615                 .next = NEXT(item_eth),
1616                 .call = parse_vc,
1617         },
1618         [ITEM_ETH_DST] = {
1619                 .name = "dst",
1620                 .help = "destination MAC",
1621                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1622                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1623         },
1624         [ITEM_ETH_SRC] = {
1625                 .name = "src",
1626                 .help = "source MAC",
1627                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1628                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1629         },
1630         [ITEM_ETH_TYPE] = {
1631                 .name = "type",
1632                 .help = "EtherType",
1633                 .next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1634                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1635         },
1636         [ITEM_VLAN] = {
1637                 .name = "vlan",
1638                 .help = "match 802.1Q/ad VLAN tag",
1639                 .priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1640                 .next = NEXT(item_vlan),
1641                 .call = parse_vc,
1642         },
1643         [ITEM_VLAN_TCI] = {
1644                 .name = "tci",
1645                 .help = "tag control information",
1646                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1647                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1648         },
1649         [ITEM_VLAN_PCP] = {
1650                 .name = "pcp",
1651                 .help = "priority code point",
1652                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1653                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1654                                                   tci, "\xe0\x00")),
1655         },
1656         [ITEM_VLAN_DEI] = {
1657                 .name = "dei",
1658                 .help = "drop eligible indicator",
1659                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1660                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1661                                                   tci, "\x10\x00")),
1662         },
1663         [ITEM_VLAN_VID] = {
1664                 .name = "vid",
1665                 .help = "VLAN identifier",
1666                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1667                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1668                                                   tci, "\x0f\xff")),
1669         },
1670         [ITEM_VLAN_INNER_TYPE] = {
1671                 .name = "inner_type",
1672                 .help = "inner EtherType",
1673                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1674                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1675                                              inner_type)),
1676         },
1677         [ITEM_IPV4] = {
1678                 .name = "ipv4",
1679                 .help = "match IPv4 header",
1680                 .priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1681                 .next = NEXT(item_ipv4),
1682                 .call = parse_vc,
1683         },
1684         [ITEM_IPV4_TOS] = {
1685                 .name = "tos",
1686                 .help = "type of service",
1687                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1688                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1689                                              hdr.type_of_service)),
1690         },
1691         [ITEM_IPV4_TTL] = {
1692                 .name = "ttl",
1693                 .help = "time to live",
1694                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1695                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1696                                              hdr.time_to_live)),
1697         },
1698         [ITEM_IPV4_PROTO] = {
1699                 .name = "proto",
1700                 .help = "next protocol ID",
1701                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1702                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1703                                              hdr.next_proto_id)),
1704         },
1705         [ITEM_IPV4_SRC] = {
1706                 .name = "src",
1707                 .help = "source address",
1708                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1709                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1710                                              hdr.src_addr)),
1711         },
1712         [ITEM_IPV4_DST] = {
1713                 .name = "dst",
1714                 .help = "destination address",
1715                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1716                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1717                                              hdr.dst_addr)),
1718         },
1719         [ITEM_IPV6] = {
1720                 .name = "ipv6",
1721                 .help = "match IPv6 header",
1722                 .priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1723                 .next = NEXT(item_ipv6),
1724                 .call = parse_vc,
1725         },
1726         [ITEM_IPV6_TC] = {
1727                 .name = "tc",
1728                 .help = "traffic class",
1729                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1730                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1731                                                   hdr.vtc_flow,
1732                                                   "\x0f\xf0\x00\x00")),
1733         },
1734         [ITEM_IPV6_FLOW] = {
1735                 .name = "flow",
1736                 .help = "flow label",
1737                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1738                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1739                                                   hdr.vtc_flow,
1740                                                   "\x00\x0f\xff\xff")),
1741         },
1742         [ITEM_IPV6_PROTO] = {
1743                 .name = "proto",
1744                 .help = "protocol (next header)",
1745                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1746                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1747                                              hdr.proto)),
1748         },
1749         [ITEM_IPV6_HOP] = {
1750                 .name = "hop",
1751                 .help = "hop limit",
1752                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1753                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1754                                              hdr.hop_limits)),
1755         },
1756         [ITEM_IPV6_SRC] = {
1757                 .name = "src",
1758                 .help = "source address",
1759                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1760                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1761                                              hdr.src_addr)),
1762         },
1763         [ITEM_IPV6_DST] = {
1764                 .name = "dst",
1765                 .help = "destination address",
1766                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1767                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1768                                              hdr.dst_addr)),
1769         },
1770         [ITEM_ICMP] = {
1771                 .name = "icmp",
1772                 .help = "match ICMP header",
1773                 .priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1774                 .next = NEXT(item_icmp),
1775                 .call = parse_vc,
1776         },
1777         [ITEM_ICMP_TYPE] = {
1778                 .name = "type",
1779                 .help = "ICMP packet type",
1780                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1781                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1782                                              hdr.icmp_type)),
1783         },
1784         [ITEM_ICMP_CODE] = {
1785                 .name = "code",
1786                 .help = "ICMP packet code",
1787                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1788                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1789                                              hdr.icmp_code)),
1790         },
1791         [ITEM_UDP] = {
1792                 .name = "udp",
1793                 .help = "match UDP header",
1794                 .priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1795                 .next = NEXT(item_udp),
1796                 .call = parse_vc,
1797         },
1798         [ITEM_UDP_SRC] = {
1799                 .name = "src",
1800                 .help = "UDP source port",
1801                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1802                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1803                                              hdr.src_port)),
1804         },
1805         [ITEM_UDP_DST] = {
1806                 .name = "dst",
1807                 .help = "UDP destination port",
1808                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1809                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1810                                              hdr.dst_port)),
1811         },
1812         [ITEM_TCP] = {
1813                 .name = "tcp",
1814                 .help = "match TCP header",
1815                 .priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1816                 .next = NEXT(item_tcp),
1817                 .call = parse_vc,
1818         },
1819         [ITEM_TCP_SRC] = {
1820                 .name = "src",
1821                 .help = "TCP source port",
1822                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1823                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1824                                              hdr.src_port)),
1825         },
1826         [ITEM_TCP_DST] = {
1827                 .name = "dst",
1828                 .help = "TCP destination port",
1829                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1830                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1831                                              hdr.dst_port)),
1832         },
1833         [ITEM_TCP_FLAGS] = {
1834                 .name = "flags",
1835                 .help = "TCP flags",
1836                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1837                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1838                                              hdr.tcp_flags)),
1839         },
1840         [ITEM_SCTP] = {
1841                 .name = "sctp",
1842                 .help = "match SCTP header",
1843                 .priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1844                 .next = NEXT(item_sctp),
1845                 .call = parse_vc,
1846         },
1847         [ITEM_SCTP_SRC] = {
1848                 .name = "src",
1849                 .help = "SCTP source port",
1850                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1851                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1852                                              hdr.src_port)),
1853         },
1854         [ITEM_SCTP_DST] = {
1855                 .name = "dst",
1856                 .help = "SCTP destination port",
1857                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1858                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1859                                              hdr.dst_port)),
1860         },
1861         [ITEM_SCTP_TAG] = {
1862                 .name = "tag",
1863                 .help = "validation tag",
1864                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1865                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1866                                              hdr.tag)),
1867         },
1868         [ITEM_SCTP_CKSUM] = {
1869                 .name = "cksum",
1870                 .help = "checksum",
1871                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1872                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1873                                              hdr.cksum)),
1874         },
1875         [ITEM_VXLAN] = {
1876                 .name = "vxlan",
1877                 .help = "match VXLAN header",
1878                 .priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1879                 .next = NEXT(item_vxlan),
1880                 .call = parse_vc,
1881         },
1882         [ITEM_VXLAN_VNI] = {
1883                 .name = "vni",
1884                 .help = "VXLAN identifier",
1885                 .next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1886                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1887         },
1888         [ITEM_E_TAG] = {
1889                 .name = "e_tag",
1890                 .help = "match E-Tag header",
1891                 .priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1892                 .next = NEXT(item_e_tag),
1893                 .call = parse_vc,
1894         },
1895         [ITEM_E_TAG_GRP_ECID_B] = {
1896                 .name = "grp_ecid_b",
1897                 .help = "GRP and E-CID base",
1898                 .next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1899                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1900                                                   rsvd_grp_ecid_b,
1901                                                   "\x3f\xff")),
1902         },
1903         [ITEM_NVGRE] = {
1904                 .name = "nvgre",
1905                 .help = "match NVGRE header",
1906                 .priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1907                 .next = NEXT(item_nvgre),
1908                 .call = parse_vc,
1909         },
1910         [ITEM_NVGRE_TNI] = {
1911                 .name = "tni",
1912                 .help = "virtual subnet ID",
1913                 .next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1914                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1915         },
1916         [ITEM_MPLS] = {
1917                 .name = "mpls",
1918                 .help = "match MPLS header",
1919                 .priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1920                 .next = NEXT(item_mpls),
1921                 .call = parse_vc,
1922         },
1923         [ITEM_MPLS_LABEL] = {
1924                 .name = "label",
1925                 .help = "MPLS label",
1926                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1927                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1928                                                   label_tc_s,
1929                                                   "\xff\xff\xf0")),
1930         },
1931         [ITEM_GRE] = {
1932                 .name = "gre",
1933                 .help = "match GRE header",
1934                 .priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1935                 .next = NEXT(item_gre),
1936                 .call = parse_vc,
1937         },
1938         [ITEM_GRE_PROTO] = {
1939                 .name = "protocol",
1940                 .help = "GRE protocol type",
1941                 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1942                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1943                                              protocol)),
1944         },
1945         [ITEM_FUZZY] = {
1946                 .name = "fuzzy",
1947                 .help = "fuzzy pattern match, expect faster than default",
1948                 .priv = PRIV_ITEM(FUZZY,
1949                                 sizeof(struct rte_flow_item_fuzzy)),
1950                 .next = NEXT(item_fuzzy),
1951                 .call = parse_vc,
1952         },
1953         [ITEM_FUZZY_THRESH] = {
1954                 .name = "thresh",
1955                 .help = "match accuracy threshold",
1956                 .next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1957                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1958                                         thresh)),
1959         },
1960         [ITEM_GTP] = {
1961                 .name = "gtp",
1962                 .help = "match GTP header",
1963                 .priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1964                 .next = NEXT(item_gtp),
1965                 .call = parse_vc,
1966         },
1967         [ITEM_GTP_TEID] = {
1968                 .name = "teid",
1969                 .help = "tunnel endpoint identifier",
1970                 .next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1971                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1972         },
1973         [ITEM_GTPC] = {
1974                 .name = "gtpc",
1975                 .help = "match GTP header",
1976                 .priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1977                 .next = NEXT(item_gtp),
1978                 .call = parse_vc,
1979         },
1980         [ITEM_GTPU] = {
1981                 .name = "gtpu",
1982                 .help = "match GTP header",
1983                 .priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1984                 .next = NEXT(item_gtp),
1985                 .call = parse_vc,
1986         },
1987         [ITEM_GENEVE] = {
1988                 .name = "geneve",
1989                 .help = "match GENEVE header",
1990                 .priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1991                 .next = NEXT(item_geneve),
1992                 .call = parse_vc,
1993         },
1994         [ITEM_GENEVE_VNI] = {
1995                 .name = "vni",
1996                 .help = "virtual network identifier",
1997                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1998                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1999         },
2000         [ITEM_GENEVE_PROTO] = {
2001                 .name = "protocol",
2002                 .help = "GENEVE protocol type",
2003                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2004                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2005                                              protocol)),
2006         },
2007         [ITEM_VXLAN_GPE] = {
2008                 .name = "vxlan-gpe",
2009                 .help = "match VXLAN-GPE header",
2010                 .priv = PRIV_ITEM(VXLAN_GPE,
2011                                   sizeof(struct rte_flow_item_vxlan_gpe)),
2012                 .next = NEXT(item_vxlan_gpe),
2013                 .call = parse_vc,
2014         },
2015         [ITEM_VXLAN_GPE_VNI] = {
2016                 .name = "vni",
2017                 .help = "VXLAN-GPE identifier",
2018                 .next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2019                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2020                                              vni)),
2021         },
2022         [ITEM_ARP_ETH_IPV4] = {
2023                 .name = "arp_eth_ipv4",
2024                 .help = "match ARP header for Ethernet/IPv4",
2025                 .priv = PRIV_ITEM(ARP_ETH_IPV4,
2026                                   sizeof(struct rte_flow_item_arp_eth_ipv4)),
2027                 .next = NEXT(item_arp_eth_ipv4),
2028                 .call = parse_vc,
2029         },
2030         [ITEM_ARP_ETH_IPV4_SHA] = {
2031                 .name = "sha",
2032                 .help = "sender hardware address",
2033                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2034                              item_param),
2035                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2036                                              sha)),
2037         },
2038         [ITEM_ARP_ETH_IPV4_SPA] = {
2039                 .name = "spa",
2040                 .help = "sender IPv4 address",
2041                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2042                              item_param),
2043                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2044                                              spa)),
2045         },
2046         [ITEM_ARP_ETH_IPV4_THA] = {
2047                 .name = "tha",
2048                 .help = "target hardware address",
2049                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2050                              item_param),
2051                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2052                                              tha)),
2053         },
2054         [ITEM_ARP_ETH_IPV4_TPA] = {
2055                 .name = "tpa",
2056                 .help = "target IPv4 address",
2057                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2058                              item_param),
2059                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2060                                              tpa)),
2061         },
2062         [ITEM_IPV6_EXT] = {
2063                 .name = "ipv6_ext",
2064                 .help = "match presence of any IPv6 extension header",
2065                 .priv = PRIV_ITEM(IPV6_EXT,
2066                                   sizeof(struct rte_flow_item_ipv6_ext)),
2067                 .next = NEXT(item_ipv6_ext),
2068                 .call = parse_vc,
2069         },
2070         [ITEM_IPV6_EXT_NEXT_HDR] = {
2071                 .name = "next_hdr",
2072                 .help = "next header",
2073                 .next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2074                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2075                                              next_hdr)),
2076         },
2077         [ITEM_ICMP6] = {
2078                 .name = "icmp6",
2079                 .help = "match any ICMPv6 header",
2080                 .priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2081                 .next = NEXT(item_icmp6),
2082                 .call = parse_vc,
2083         },
2084         [ITEM_ICMP6_TYPE] = {
2085                 .name = "type",
2086                 .help = "ICMPv6 type",
2087                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2088                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2089                                              type)),
2090         },
2091         [ITEM_ICMP6_CODE] = {
2092                 .name = "code",
2093                 .help = "ICMPv6 code",
2094                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2095                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2096                                              code)),
2097         },
2098         [ITEM_ICMP6_ND_NS] = {
2099                 .name = "icmp6_nd_ns",
2100                 .help = "match ICMPv6 neighbor discovery solicitation",
2101                 .priv = PRIV_ITEM(ICMP6_ND_NS,
2102                                   sizeof(struct rte_flow_item_icmp6_nd_ns)),
2103                 .next = NEXT(item_icmp6_nd_ns),
2104                 .call = parse_vc,
2105         },
2106         [ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2107                 .name = "target_addr",
2108                 .help = "target address",
2109                 .next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2110                              item_param),
2111                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2112                                              target_addr)),
2113         },
2114         [ITEM_ICMP6_ND_NA] = {
2115                 .name = "icmp6_nd_na",
2116                 .help = "match ICMPv6 neighbor discovery advertisement",
2117                 .priv = PRIV_ITEM(ICMP6_ND_NA,
2118                                   sizeof(struct rte_flow_item_icmp6_nd_na)),
2119                 .next = NEXT(item_icmp6_nd_na),
2120                 .call = parse_vc,
2121         },
2122         [ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2123                 .name = "target_addr",
2124                 .help = "target address",
2125                 .next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2126                              item_param),
2127                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2128                                              target_addr)),
2129         },
2130         [ITEM_ICMP6_ND_OPT] = {
2131                 .name = "icmp6_nd_opt",
2132                 .help = "match presence of any ICMPv6 neighbor discovery"
2133                         " option",
2134                 .priv = PRIV_ITEM(ICMP6_ND_OPT,
2135                                   sizeof(struct rte_flow_item_icmp6_nd_opt)),
2136                 .next = NEXT(item_icmp6_nd_opt),
2137                 .call = parse_vc,
2138         },
2139         [ITEM_ICMP6_ND_OPT_TYPE] = {
2140                 .name = "type",
2141                 .help = "ND option type",
2142                 .next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2143                              item_param),
2144                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2145                                              type)),
2146         },
2147         [ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2148                 .name = "icmp6_nd_opt_sla_eth",
2149                 .help = "match ICMPv6 neighbor discovery source Ethernet"
2150                         " link-layer address option",
2151                 .priv = PRIV_ITEM
2152                         (ICMP6_ND_OPT_SLA_ETH,
2153                          sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2154                 .next = NEXT(item_icmp6_nd_opt_sla_eth),
2155                 .call = parse_vc,
2156         },
2157         [ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2158                 .name = "sla",
2159                 .help = "source Ethernet LLA",
2160                 .next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2161                              item_param),
2162                 .args = ARGS(ARGS_ENTRY_HTON
2163                              (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2164         },
2165         [ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2166                 .name = "icmp6_nd_opt_tla_eth",
2167                 .help = "match ICMPv6 neighbor discovery target Ethernet"
2168                         " link-layer address option",
2169                 .priv = PRIV_ITEM
2170                         (ICMP6_ND_OPT_TLA_ETH,
2171                          sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2172                 .next = NEXT(item_icmp6_nd_opt_tla_eth),
2173                 .call = parse_vc,
2174         },
2175         [ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2176                 .name = "tla",
2177                 .help = "target Ethernet LLA",
2178                 .next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2179                              item_param),
2180                 .args = ARGS(ARGS_ENTRY_HTON
2181                              (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2182         },
2183         [ITEM_META] = {
2184                 .name = "meta",
2185                 .help = "match metadata header",
2186                 .priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2187                 .next = NEXT(item_meta),
2188                 .call = parse_vc,
2189         },
2190         [ITEM_META_DATA] = {
2191                 .name = "data",
2192                 .help = "metadata value",
2193                 .next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2194                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2195                                                   data, "\xff\xff\xff\xff")),
2196         },
2197
2198         /* Validate/create actions. */
2199         [ACTIONS] = {
2200                 .name = "actions",
2201                 .help = "submit a list of associated actions",
2202                 .next = NEXT(next_action),
2203                 .call = parse_vc,
2204         },
2205         [ACTION_NEXT] = {
2206                 .name = "/",
2207                 .help = "specify next action",
2208                 .next = NEXT(next_action),
2209         },
2210         [ACTION_END] = {
2211                 .name = "end",
2212                 .help = "end list of actions",
2213                 .priv = PRIV_ACTION(END, 0),
2214                 .call = parse_vc,
2215         },
2216         [ACTION_VOID] = {
2217                 .name = "void",
2218                 .help = "no-op action",
2219                 .priv = PRIV_ACTION(VOID, 0),
2220                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2221                 .call = parse_vc,
2222         },
2223         [ACTION_PASSTHRU] = {
2224                 .name = "passthru",
2225                 .help = "let subsequent rule process matched packets",
2226                 .priv = PRIV_ACTION(PASSTHRU, 0),
2227                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2228                 .call = parse_vc,
2229         },
2230         [ACTION_JUMP] = {
2231                 .name = "jump",
2232                 .help = "redirect traffic to a given group",
2233                 .priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2234                 .next = NEXT(action_jump),
2235                 .call = parse_vc,
2236         },
2237         [ACTION_JUMP_GROUP] = {
2238                 .name = "group",
2239                 .help = "group to redirect traffic to",
2240                 .next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2241                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2242                 .call = parse_vc_conf,
2243         },
2244         [ACTION_MARK] = {
2245                 .name = "mark",
2246                 .help = "attach 32 bit value to packets",
2247                 .priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2248                 .next = NEXT(action_mark),
2249                 .call = parse_vc,
2250         },
2251         [ACTION_MARK_ID] = {
2252                 .name = "id",
2253                 .help = "32 bit value to return with packets",
2254                 .next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2255                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2256                 .call = parse_vc_conf,
2257         },
2258         [ACTION_FLAG] = {
2259                 .name = "flag",
2260                 .help = "flag packets",
2261                 .priv = PRIV_ACTION(FLAG, 0),
2262                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2263                 .call = parse_vc,
2264         },
2265         [ACTION_QUEUE] = {
2266                 .name = "queue",
2267                 .help = "assign packets to a given queue index",
2268                 .priv = PRIV_ACTION(QUEUE,
2269                                     sizeof(struct rte_flow_action_queue)),
2270                 .next = NEXT(action_queue),
2271                 .call = parse_vc,
2272         },
2273         [ACTION_QUEUE_INDEX] = {
2274                 .name = "index",
2275                 .help = "queue index to use",
2276                 .next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2277                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2278                 .call = parse_vc_conf,
2279         },
2280         [ACTION_DROP] = {
2281                 .name = "drop",
2282                 .help = "drop packets (note: passthru has priority)",
2283                 .priv = PRIV_ACTION(DROP, 0),
2284                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2285                 .call = parse_vc,
2286         },
2287         [ACTION_COUNT] = {
2288                 .name = "count",
2289                 .help = "enable counters for this rule",
2290                 .priv = PRIV_ACTION(COUNT,
2291                                     sizeof(struct rte_flow_action_count)),
2292                 .next = NEXT(action_count),
2293                 .call = parse_vc,
2294         },
2295         [ACTION_COUNT_ID] = {
2296                 .name = "identifier",
2297                 .help = "counter identifier to use",
2298                 .next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2299                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2300                 .call = parse_vc_conf,
2301         },
2302         [ACTION_COUNT_SHARED] = {
2303                 .name = "shared",
2304                 .help = "shared counter",
2305                 .next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2306                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2307                                            shared, 1)),
2308                 .call = parse_vc_conf,
2309         },
2310         [ACTION_RSS] = {
2311                 .name = "rss",
2312                 .help = "spread packets among several queues",
2313                 .priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2314                 .next = NEXT(action_rss),
2315                 .call = parse_vc_action_rss,
2316         },
2317         [ACTION_RSS_FUNC] = {
2318                 .name = "func",
2319                 .help = "RSS hash function to apply",
2320                 .next = NEXT(action_rss,
2321                              NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2322                                         ACTION_RSS_FUNC_TOEPLITZ,
2323                                         ACTION_RSS_FUNC_SIMPLE_XOR)),
2324         },
2325         [ACTION_RSS_FUNC_DEFAULT] = {
2326                 .name = "default",
2327                 .help = "default hash function",
2328                 .call = parse_vc_action_rss_func,
2329         },
2330         [ACTION_RSS_FUNC_TOEPLITZ] = {
2331                 .name = "toeplitz",
2332                 .help = "Toeplitz hash function",
2333                 .call = parse_vc_action_rss_func,
2334         },
2335         [ACTION_RSS_FUNC_SIMPLE_XOR] = {
2336                 .name = "simple_xor",
2337                 .help = "simple XOR hash function",
2338                 .call = parse_vc_action_rss_func,
2339         },
2340         [ACTION_RSS_LEVEL] = {
2341                 .name = "level",
2342                 .help = "encapsulation level for \"types\"",
2343                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2344                 .args = ARGS(ARGS_ENTRY_ARB
2345                              (offsetof(struct action_rss_data, conf) +
2346                               offsetof(struct rte_flow_action_rss, level),
2347                               sizeof(((struct rte_flow_action_rss *)0)->
2348                                      level))),
2349         },
2350         [ACTION_RSS_TYPES] = {
2351                 .name = "types",
2352                 .help = "specific RSS hash types",
2353                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2354         },
2355         [ACTION_RSS_TYPE] = {
2356                 .name = "{type}",
2357                 .help = "RSS hash type",
2358                 .call = parse_vc_action_rss_type,
2359                 .comp = comp_vc_action_rss_type,
2360         },
2361         [ACTION_RSS_KEY] = {
2362                 .name = "key",
2363                 .help = "RSS hash key",
2364                 .next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2365                 .args = ARGS(ARGS_ENTRY_ARB(0, 0),
2366                              ARGS_ENTRY_ARB
2367                              (offsetof(struct action_rss_data, conf) +
2368                               offsetof(struct rte_flow_action_rss, key_len),
2369                               sizeof(((struct rte_flow_action_rss *)0)->
2370                                      key_len)),
2371                              ARGS_ENTRY(struct action_rss_data, key)),
2372         },
2373         [ACTION_RSS_KEY_LEN] = {
2374                 .name = "key_len",
2375                 .help = "RSS hash key length in bytes",
2376                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2377                 .args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2378                              (offsetof(struct action_rss_data, conf) +
2379                               offsetof(struct rte_flow_action_rss, key_len),
2380                               sizeof(((struct rte_flow_action_rss *)0)->
2381                                      key_len),
2382                               0,
2383                               RSS_HASH_KEY_LENGTH)),
2384         },
2385         [ACTION_RSS_QUEUES] = {
2386                 .name = "queues",
2387                 .help = "queue indices to use",
2388                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2389                 .call = parse_vc_conf,
2390         },
2391         [ACTION_RSS_QUEUE] = {
2392                 .name = "{queue}",
2393                 .help = "queue index",
2394                 .call = parse_vc_action_rss_queue,
2395                 .comp = comp_vc_action_rss_queue,
2396         },
2397         [ACTION_PF] = {
2398                 .name = "pf",
2399                 .help = "direct traffic to physical function",
2400                 .priv = PRIV_ACTION(PF, 0),
2401                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2402                 .call = parse_vc,
2403         },
2404         [ACTION_VF] = {
2405                 .name = "vf",
2406                 .help = "direct traffic to a virtual function ID",
2407                 .priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2408                 .next = NEXT(action_vf),
2409                 .call = parse_vc,
2410         },
2411         [ACTION_VF_ORIGINAL] = {
2412                 .name = "original",
2413                 .help = "use original VF ID if possible",
2414                 .next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2415                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2416                                            original, 1)),
2417                 .call = parse_vc_conf,
2418         },
2419         [ACTION_VF_ID] = {
2420                 .name = "id",
2421                 .help = "VF ID",
2422                 .next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2423                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2424                 .call = parse_vc_conf,
2425         },
2426         [ACTION_PHY_PORT] = {
2427                 .name = "phy_port",
2428                 .help = "direct packets to physical port index",
2429                 .priv = PRIV_ACTION(PHY_PORT,
2430                                     sizeof(struct rte_flow_action_phy_port)),
2431                 .next = NEXT(action_phy_port),
2432                 .call = parse_vc,
2433         },
2434         [ACTION_PHY_PORT_ORIGINAL] = {
2435                 .name = "original",
2436                 .help = "use original port index if possible",
2437                 .next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2438                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2439                                            original, 1)),
2440                 .call = parse_vc_conf,
2441         },
2442         [ACTION_PHY_PORT_INDEX] = {
2443                 .name = "index",
2444                 .help = "physical port index",
2445                 .next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2446                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2447                                         index)),
2448                 .call = parse_vc_conf,
2449         },
2450         [ACTION_PORT_ID] = {
2451                 .name = "port_id",
2452                 .help = "direct matching traffic to a given DPDK port ID",
2453                 .priv = PRIV_ACTION(PORT_ID,
2454                                     sizeof(struct rte_flow_action_port_id)),
2455                 .next = NEXT(action_port_id),
2456                 .call = parse_vc,
2457         },
2458         [ACTION_PORT_ID_ORIGINAL] = {
2459                 .name = "original",
2460                 .help = "use original DPDK port ID if possible",
2461                 .next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2462                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2463                                            original, 1)),
2464                 .call = parse_vc_conf,
2465         },
2466         [ACTION_PORT_ID_ID] = {
2467                 .name = "id",
2468                 .help = "DPDK port ID",
2469                 .next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2470                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2471                 .call = parse_vc_conf,
2472         },
2473         [ACTION_METER] = {
2474                 .name = "meter",
2475                 .help = "meter the directed packets at given id",
2476                 .priv = PRIV_ACTION(METER,
2477                                     sizeof(struct rte_flow_action_meter)),
2478                 .next = NEXT(action_meter),
2479                 .call = parse_vc,
2480         },
2481         [ACTION_METER_ID] = {
2482                 .name = "mtr_id",
2483                 .help = "meter id to use",
2484                 .next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2485                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2486                 .call = parse_vc_conf,
2487         },
2488         [ACTION_OF_SET_MPLS_TTL] = {
2489                 .name = "of_set_mpls_ttl",
2490                 .help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2491                 .priv = PRIV_ACTION
2492                         (OF_SET_MPLS_TTL,
2493                          sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2494                 .next = NEXT(action_of_set_mpls_ttl),
2495                 .call = parse_vc,
2496         },
2497         [ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2498                 .name = "mpls_ttl",
2499                 .help = "MPLS TTL",
2500                 .next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2501                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2502                                         mpls_ttl)),
2503                 .call = parse_vc_conf,
2504         },
2505         [ACTION_OF_DEC_MPLS_TTL] = {
2506                 .name = "of_dec_mpls_ttl",
2507                 .help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2508                 .priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2509                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2510                 .call = parse_vc,
2511         },
2512         [ACTION_OF_SET_NW_TTL] = {
2513                 .name = "of_set_nw_ttl",
2514                 .help = "OpenFlow's OFPAT_SET_NW_TTL",
2515                 .priv = PRIV_ACTION
2516                         (OF_SET_NW_TTL,
2517                          sizeof(struct rte_flow_action_of_set_nw_ttl)),
2518                 .next = NEXT(action_of_set_nw_ttl),
2519                 .call = parse_vc,
2520         },
2521         [ACTION_OF_SET_NW_TTL_NW_TTL] = {
2522                 .name = "nw_ttl",
2523                 .help = "IP TTL",
2524                 .next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2525                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2526                                         nw_ttl)),
2527                 .call = parse_vc_conf,
2528         },
2529         [ACTION_OF_DEC_NW_TTL] = {
2530                 .name = "of_dec_nw_ttl",
2531                 .help = "OpenFlow's OFPAT_DEC_NW_TTL",
2532                 .priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2533                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2534                 .call = parse_vc,
2535         },
2536         [ACTION_OF_COPY_TTL_OUT] = {
2537                 .name = "of_copy_ttl_out",
2538                 .help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2539                 .priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2540                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2541                 .call = parse_vc,
2542         },
2543         [ACTION_OF_COPY_TTL_IN] = {
2544                 .name = "of_copy_ttl_in",
2545                 .help = "OpenFlow's OFPAT_COPY_TTL_IN",
2546                 .priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2547                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2548                 .call = parse_vc,
2549         },
2550         [ACTION_OF_POP_VLAN] = {
2551                 .name = "of_pop_vlan",
2552                 .help = "OpenFlow's OFPAT_POP_VLAN",
2553                 .priv = PRIV_ACTION(OF_POP_VLAN, 0),
2554                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2555                 .call = parse_vc,
2556         },
2557         [ACTION_OF_PUSH_VLAN] = {
2558                 .name = "of_push_vlan",
2559                 .help = "OpenFlow's OFPAT_PUSH_VLAN",
2560                 .priv = PRIV_ACTION
2561                         (OF_PUSH_VLAN,
2562                          sizeof(struct rte_flow_action_of_push_vlan)),
2563                 .next = NEXT(action_of_push_vlan),
2564                 .call = parse_vc,
2565         },
2566         [ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2567                 .name = "ethertype",
2568                 .help = "EtherType",
2569                 .next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2570                 .args = ARGS(ARGS_ENTRY_HTON
2571                              (struct rte_flow_action_of_push_vlan,
2572                               ethertype)),
2573                 .call = parse_vc_conf,
2574         },
2575         [ACTION_OF_SET_VLAN_VID] = {
2576                 .name = "of_set_vlan_vid",
2577                 .help = "OpenFlow's OFPAT_SET_VLAN_VID",
2578                 .priv = PRIV_ACTION
2579                         (OF_SET_VLAN_VID,
2580                          sizeof(struct rte_flow_action_of_set_vlan_vid)),
2581                 .next = NEXT(action_of_set_vlan_vid),
2582                 .call = parse_vc,
2583         },
2584         [ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2585                 .name = "vlan_vid",
2586                 .help = "VLAN id",
2587                 .next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2588                 .args = ARGS(ARGS_ENTRY_HTON
2589                              (struct rte_flow_action_of_set_vlan_vid,
2590                               vlan_vid)),
2591                 .call = parse_vc_conf,
2592         },
2593         [ACTION_OF_SET_VLAN_PCP] = {
2594                 .name = "of_set_vlan_pcp",
2595                 .help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2596                 .priv = PRIV_ACTION
2597                         (OF_SET_VLAN_PCP,
2598                          sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2599                 .next = NEXT(action_of_set_vlan_pcp),
2600                 .call = parse_vc,
2601         },
2602         [ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2603                 .name = "vlan_pcp",
2604                 .help = "VLAN priority",
2605                 .next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2606                 .args = ARGS(ARGS_ENTRY_HTON
2607                              (struct rte_flow_action_of_set_vlan_pcp,
2608                               vlan_pcp)),
2609                 .call = parse_vc_conf,
2610         },
2611         [ACTION_OF_POP_MPLS] = {
2612                 .name = "of_pop_mpls",
2613                 .help = "OpenFlow's OFPAT_POP_MPLS",
2614                 .priv = PRIV_ACTION(OF_POP_MPLS,
2615                                     sizeof(struct rte_flow_action_of_pop_mpls)),
2616                 .next = NEXT(action_of_pop_mpls),
2617                 .call = parse_vc,
2618         },
2619         [ACTION_OF_POP_MPLS_ETHERTYPE] = {
2620                 .name = "ethertype",
2621                 .help = "EtherType",
2622                 .next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2623                 .args = ARGS(ARGS_ENTRY_HTON
2624                              (struct rte_flow_action_of_pop_mpls,
2625                               ethertype)),
2626                 .call = parse_vc_conf,
2627         },
2628         [ACTION_OF_PUSH_MPLS] = {
2629                 .name = "of_push_mpls",
2630                 .help = "OpenFlow's OFPAT_PUSH_MPLS",
2631                 .priv = PRIV_ACTION
2632                         (OF_PUSH_MPLS,
2633                          sizeof(struct rte_flow_action_of_push_mpls)),
2634                 .next = NEXT(action_of_push_mpls),
2635                 .call = parse_vc,
2636         },
2637         [ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2638                 .name = "ethertype",
2639                 .help = "EtherType",
2640                 .next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2641                 .args = ARGS(ARGS_ENTRY_HTON
2642                              (struct rte_flow_action_of_push_mpls,
2643                               ethertype)),
2644                 .call = parse_vc_conf,
2645         },
2646         [ACTION_VXLAN_ENCAP] = {
2647                 .name = "vxlan_encap",
2648                 .help = "VXLAN encapsulation, uses configuration set by \"set"
2649                         " vxlan\"",
2650                 .priv = PRIV_ACTION(VXLAN_ENCAP,
2651                                     sizeof(struct action_vxlan_encap_data)),
2652                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2653                 .call = parse_vc_action_vxlan_encap,
2654         },
2655         [ACTION_VXLAN_DECAP] = {
2656                 .name = "vxlan_decap",
2657                 .help = "Performs a decapsulation action by stripping all"
2658                         " headers of the VXLAN tunnel network overlay from the"
2659                         " matched flow.",
2660                 .priv = PRIV_ACTION(VXLAN_DECAP, 0),
2661                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2662                 .call = parse_vc,
2663         },
2664         [ACTION_NVGRE_ENCAP] = {
2665                 .name = "nvgre_encap",
2666                 .help = "NVGRE encapsulation, uses configuration set by \"set"
2667                         " nvgre\"",
2668                 .priv = PRIV_ACTION(NVGRE_ENCAP,
2669                                     sizeof(struct action_nvgre_encap_data)),
2670                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2671                 .call = parse_vc_action_nvgre_encap,
2672         },
2673         [ACTION_NVGRE_DECAP] = {
2674                 .name = "nvgre_decap",
2675                 .help = "Performs a decapsulation action by stripping all"
2676                         " headers of the NVGRE tunnel network overlay from the"
2677                         " matched flow.",
2678                 .priv = PRIV_ACTION(NVGRE_DECAP, 0),
2679                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2680                 .call = parse_vc,
2681         },
2682         [ACTION_L2_ENCAP] = {
2683                 .name = "l2_encap",
2684                 .help = "l2 encap, uses configuration set by"
2685                         " \"set l2_encap\"",
2686                 .priv = PRIV_ACTION(RAW_ENCAP,
2687                                     sizeof(struct action_raw_encap_data)),
2688                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2689                 .call = parse_vc_action_l2_encap,
2690         },
2691         [ACTION_L2_DECAP] = {
2692                 .name = "l2_decap",
2693                 .help = "l2 decap, uses configuration set by"
2694                         " \"set l2_decap\"",
2695                 .priv = PRIV_ACTION(RAW_DECAP,
2696                                     sizeof(struct action_raw_decap_data)),
2697                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2698                 .call = parse_vc_action_l2_decap,
2699         },
2700         [ACTION_MPLSOGRE_ENCAP] = {
2701                 .name = "mplsogre_encap",
2702                 .help = "mplsogre encapsulation, uses configuration set by"
2703                         " \"set mplsogre_encap\"",
2704                 .priv = PRIV_ACTION(RAW_ENCAP,
2705                                     sizeof(struct action_raw_encap_data)),
2706                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2707                 .call = parse_vc_action_mplsogre_encap,
2708         },
2709         [ACTION_MPLSOGRE_DECAP] = {
2710                 .name = "mplsogre_decap",
2711                 .help = "mplsogre decapsulation, uses configuration set by"
2712                         " \"set mplsogre_decap\"",
2713                 .priv = PRIV_ACTION(RAW_DECAP,
2714                                     sizeof(struct action_raw_decap_data)),
2715                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2716                 .call = parse_vc_action_mplsogre_decap,
2717         },
2718         [ACTION_MPLSOUDP_ENCAP] = {
2719                 .name = "mplsoudp_encap",
2720                 .help = "mplsoudp encapsulation, uses configuration set by"
2721                         " \"set mplsoudp_encap\"",
2722                 .priv = PRIV_ACTION(RAW_ENCAP,
2723                                     sizeof(struct action_raw_encap_data)),
2724                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2725                 .call = parse_vc_action_mplsoudp_encap,
2726         },
2727         [ACTION_MPLSOUDP_DECAP] = {
2728                 .name = "mplsoudp_decap",
2729                 .help = "mplsoudp decapsulation, uses configuration set by"
2730                         " \"set mplsoudp_decap\"",
2731                 .priv = PRIV_ACTION(RAW_DECAP,
2732                                     sizeof(struct action_raw_decap_data)),
2733                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2734                 .call = parse_vc_action_mplsoudp_decap,
2735         },
2736         [ACTION_SET_IPV4_SRC] = {
2737                 .name = "set_ipv4_src",
2738                 .help = "Set a new IPv4 source address in the outermost"
2739                         " IPv4 header",
2740                 .priv = PRIV_ACTION(SET_IPV4_SRC,
2741                         sizeof(struct rte_flow_action_set_ipv4)),
2742                 .next = NEXT(action_set_ipv4_src),
2743                 .call = parse_vc,
2744         },
2745         [ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2746                 .name = "ipv4_addr",
2747                 .help = "new IPv4 source address to set",
2748                 .next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2749                 .args = ARGS(ARGS_ENTRY_HTON
2750                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
2751                 .call = parse_vc_conf,
2752         },
2753         [ACTION_SET_IPV4_DST] = {
2754                 .name = "set_ipv4_dst",
2755                 .help = "Set a new IPv4 destination address in the outermost"
2756                         " IPv4 header",
2757                 .priv = PRIV_ACTION(SET_IPV4_DST,
2758                         sizeof(struct rte_flow_action_set_ipv4)),
2759                 .next = NEXT(action_set_ipv4_dst),
2760                 .call = parse_vc,
2761         },
2762         [ACTION_SET_IPV4_DST_IPV4_DST] = {
2763                 .name = "ipv4_addr",
2764                 .help = "new IPv4 destination address to set",
2765                 .next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2766                 .args = ARGS(ARGS_ENTRY_HTON
2767                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
2768                 .call = parse_vc_conf,
2769         },
2770         [ACTION_SET_IPV6_SRC] = {
2771                 .name = "set_ipv6_src",
2772                 .help = "Set a new IPv6 source address in the outermost"
2773                         " IPv6 header",
2774                 .priv = PRIV_ACTION(SET_IPV6_SRC,
2775                         sizeof(struct rte_flow_action_set_ipv6)),
2776                 .next = NEXT(action_set_ipv6_src),
2777                 .call = parse_vc,
2778         },
2779         [ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2780                 .name = "ipv6_addr",
2781                 .help = "new IPv6 source address to set",
2782                 .next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2783                 .args = ARGS(ARGS_ENTRY_HTON
2784                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
2785                 .call = parse_vc_conf,
2786         },
2787         [ACTION_SET_IPV6_DST] = {
2788                 .name = "set_ipv6_dst",
2789                 .help = "Set a new IPv6 destination address in the outermost"
2790                         " IPv6 header",
2791                 .priv = PRIV_ACTION(SET_IPV6_DST,
2792                         sizeof(struct rte_flow_action_set_ipv6)),
2793                 .next = NEXT(action_set_ipv6_dst),
2794                 .call = parse_vc,
2795         },
2796         [ACTION_SET_IPV6_DST_IPV6_DST] = {
2797                 .name = "ipv6_addr",
2798                 .help = "new IPv6 destination address to set",
2799                 .next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2800                 .args = ARGS(ARGS_ENTRY_HTON
2801                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
2802                 .call = parse_vc_conf,
2803         },
2804         [ACTION_SET_TP_SRC] = {
2805                 .name = "set_tp_src",
2806                 .help = "set a new source port number in the outermost"
2807                         " TCP/UDP header",
2808                 .priv = PRIV_ACTION(SET_TP_SRC,
2809                         sizeof(struct rte_flow_action_set_tp)),
2810                 .next = NEXT(action_set_tp_src),
2811                 .call = parse_vc,
2812         },
2813         [ACTION_SET_TP_SRC_TP_SRC] = {
2814                 .name = "port",
2815                 .help = "new source port number to set",
2816                 .next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2817                 .args = ARGS(ARGS_ENTRY_HTON
2818                              (struct rte_flow_action_set_tp, port)),
2819                 .call = parse_vc_conf,
2820         },
2821         [ACTION_SET_TP_DST] = {
2822                 .name = "set_tp_dst",
2823                 .help = "set a new destination port number in the outermost"
2824                         " TCP/UDP header",
2825                 .priv = PRIV_ACTION(SET_TP_DST,
2826                         sizeof(struct rte_flow_action_set_tp)),
2827                 .next = NEXT(action_set_tp_dst),
2828                 .call = parse_vc,
2829         },
2830         [ACTION_SET_TP_DST_TP_DST] = {
2831                 .name = "port",
2832                 .help = "new destination port number to set",
2833                 .next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2834                 .args = ARGS(ARGS_ENTRY_HTON
2835                              (struct rte_flow_action_set_tp, port)),
2836                 .call = parse_vc_conf,
2837         },
2838         [ACTION_MAC_SWAP] = {
2839                 .name = "mac_swap",
2840                 .help = "Swap the source and destination MAC addresses"
2841                         " in the outermost Ethernet header",
2842                 .priv = PRIV_ACTION(MAC_SWAP, 0),
2843                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2844                 .call = parse_vc,
2845         },
2846         [ACTION_DEC_TTL] = {
2847                 .name = "dec_ttl",
2848                 .help = "decrease network TTL if available",
2849                 .priv = PRIV_ACTION(DEC_TTL, 0),
2850                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2851                 .call = parse_vc,
2852         },
2853         [ACTION_SET_TTL] = {
2854                 .name = "set_ttl",
2855                 .help = "set ttl value",
2856                 .priv = PRIV_ACTION(SET_TTL,
2857                         sizeof(struct rte_flow_action_set_ttl)),
2858                 .next = NEXT(action_set_ttl),
2859                 .call = parse_vc,
2860         },
2861         [ACTION_SET_TTL_TTL] = {
2862                 .name = "ttl_value",
2863                 .help = "new ttl value to set",
2864                 .next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
2865                 .args = ARGS(ARGS_ENTRY_HTON
2866                              (struct rte_flow_action_set_ttl, ttl_value)),
2867                 .call = parse_vc_conf,
2868         },
2869         [ACTION_SET_MAC_SRC] = {
2870                 .name = "set_mac_src",
2871                 .help = "set source mac address",
2872                 .priv = PRIV_ACTION(SET_MAC_SRC,
2873                         sizeof(struct rte_flow_action_set_mac)),
2874                 .next = NEXT(action_set_mac_src),
2875                 .call = parse_vc,
2876         },
2877         [ACTION_SET_MAC_SRC_MAC_SRC] = {
2878                 .name = "mac_addr",
2879                 .help = "new source mac address",
2880                 .next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
2881                 .args = ARGS(ARGS_ENTRY_HTON
2882                              (struct rte_flow_action_set_mac, mac_addr)),
2883                 .call = parse_vc_conf,
2884         },
2885         [ACTION_SET_MAC_DST] = {
2886                 .name = "set_mac_dst",
2887                 .help = "set destination mac address",
2888                 .priv = PRIV_ACTION(SET_MAC_DST,
2889                         sizeof(struct rte_flow_action_set_mac)),
2890                 .next = NEXT(action_set_mac_dst),
2891                 .call = parse_vc,
2892         },
2893         [ACTION_SET_MAC_DST_MAC_DST] = {
2894                 .name = "mac_addr",
2895                 .help = "new destination mac address to set",
2896                 .next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
2897                 .args = ARGS(ARGS_ENTRY_HTON
2898                              (struct rte_flow_action_set_mac, mac_addr)),
2899                 .call = parse_vc_conf,
2900         },
2901         [ACTION_INC_TCP_SEQ] = {
2902                 .name = "inc_tcp_seq",
2903                 .help = "increase TCP sequence number",
2904                 .priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
2905                 .next = NEXT(action_inc_tcp_seq),
2906                 .call = parse_vc,
2907         },
2908         [ACTION_INC_TCP_SEQ_VALUE] = {
2909                 .name = "value",
2910                 .help = "the value to increase TCP sequence number by",
2911                 .next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
2912                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2913                 .call = parse_vc_conf,
2914         },
2915         [ACTION_DEC_TCP_SEQ] = {
2916                 .name = "dec_tcp_seq",
2917                 .help = "decrease TCP sequence number",
2918                 .priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
2919                 .next = NEXT(action_dec_tcp_seq),
2920                 .call = parse_vc,
2921         },
2922         [ACTION_DEC_TCP_SEQ_VALUE] = {
2923                 .name = "value",
2924                 .help = "the value to decrease TCP sequence number by",
2925                 .next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
2926                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2927                 .call = parse_vc_conf,
2928         },
2929         [ACTION_INC_TCP_ACK] = {
2930                 .name = "inc_tcp_ack",
2931                 .help = "increase TCP acknowledgment number",
2932                 .priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
2933                 .next = NEXT(action_inc_tcp_ack),
2934                 .call = parse_vc,
2935         },
2936         [ACTION_INC_TCP_ACK_VALUE] = {
2937                 .name = "value",
2938                 .help = "the value to increase TCP acknowledgment number by",
2939                 .next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
2940                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2941                 .call = parse_vc_conf,
2942         },
2943         [ACTION_DEC_TCP_ACK] = {
2944                 .name = "dec_tcp_ack",
2945                 .help = "decrease TCP acknowledgment number",
2946                 .priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
2947                 .next = NEXT(action_dec_tcp_ack),
2948                 .call = parse_vc,
2949         },
2950         [ACTION_DEC_TCP_ACK_VALUE] = {
2951                 .name = "value",
2952                 .help = "the value to decrease TCP acknowledgment number by",
2953                 .next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
2954                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2955                 .call = parse_vc_conf,
2956         },
2957 };
2958
2959 /** Remove and return last entry from argument stack. */
2960 static const struct arg *
2961 pop_args(struct context *ctx)
2962 {
2963         return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2964 }
2965
2966 /** Add entry on top of the argument stack. */
2967 static int
2968 push_args(struct context *ctx, const struct arg *arg)
2969 {
2970         if (ctx->args_num == CTX_STACK_SIZE)
2971                 return -1;
2972         ctx->args[ctx->args_num++] = arg;
2973         return 0;
2974 }
2975
2976 /** Spread value into buffer according to bit-mask. */
2977 static size_t
2978 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2979 {
2980         uint32_t i = arg->size;
2981         uint32_t end = 0;
2982         int sub = 1;
2983         int add = 0;
2984         size_t len = 0;
2985
2986         if (!arg->mask)
2987                 return 0;
2988 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2989         if (!arg->hton) {
2990                 i = 0;
2991                 end = arg->size;
2992                 sub = 0;
2993                 add = 1;
2994         }
2995 #endif
2996         while (i != end) {
2997                 unsigned int shift = 0;
2998                 uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2999
3000                 for (shift = 0; arg->mask[i] >> shift; ++shift) {
3001                         if (!(arg->mask[i] & (1 << shift)))
3002                                 continue;
3003                         ++len;
3004                         if (!dst)
3005                                 continue;
3006                         *buf &= ~(1 << shift);
3007                         *buf |= (val & 1) << shift;
3008                         val >>= 1;
3009                 }
3010                 i += add;
3011         }
3012         return len;
3013 }
3014
3015 /** Compare a string with a partial one of a given length. */
3016 static int
3017 strcmp_partial(const char *full, const char *partial, size_t partial_len)
3018 {
3019         int r = strncmp(full, partial, partial_len);
3020
3021         if (r)
3022                 return r;
3023         if (strlen(full) <= partial_len)
3024                 return 0;
3025         return full[partial_len];
3026 }
3027
3028 /**
3029  * Parse a prefix length and generate a bit-mask.
3030  *
3031  * Last argument (ctx->args) is retrieved to determine mask size, storage
3032  * location and whether the result must use network byte ordering.
3033  */
3034 static int
3035 parse_prefix(struct context *ctx, const struct token *token,
3036              const char *str, unsigned int len,
3037              void *buf, unsigned int size)
3038 {
3039         const struct arg *arg = pop_args(ctx);
3040         static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
3041         char *end;
3042         uintmax_t u;
3043         unsigned int bytes;
3044         unsigned int extra;
3045
3046         (void)token;
3047         /* Argument is expected. */
3048         if (!arg)
3049                 return -1;
3050         errno = 0;
3051         u = strtoumax(str, &end, 0);
3052         if (errno || (size_t)(end - str) != len)
3053                 goto error;
3054         if (arg->mask) {
3055                 uintmax_t v = 0;
3056
3057                 extra = arg_entry_bf_fill(NULL, 0, arg);
3058                 if (u > extra)
3059                         goto error;
3060                 if (!ctx->object)
3061                         return len;
3062                 extra -= u;
3063                 while (u--)
3064                         (v <<= 1, v |= 1);
3065                 v <<= extra;
3066                 if (!arg_entry_bf_fill(ctx->object, v, arg) ||
3067                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
3068                         goto error;
3069                 return len;
3070         }
3071         bytes = u / 8;
3072         extra = u % 8;
3073         size = arg->size;
3074         if (bytes > size || bytes + !!extra > size)
3075                 goto error;
3076         if (!ctx->object)
3077                 return len;
3078         buf = (uint8_t *)ctx->object + arg->offset;
3079 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3080         if (!arg->hton) {
3081                 memset((uint8_t *)buf + size - bytes, 0xff, bytes);
3082                 memset(buf, 0x00, size - bytes);
3083                 if (extra)
3084                         ((uint8_t *)buf)[size - bytes - 1] = conv[extra];
3085         } else
3086 #endif
3087         {
3088                 memset(buf, 0xff, bytes);
3089                 memset((uint8_t *)buf + bytes, 0x00, size - bytes);
3090                 if (extra)
3091                         ((uint8_t *)buf)[bytes] = conv[extra];
3092         }
3093         if (ctx->objmask)
3094                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3095         return len;
3096 error:
3097         push_args(ctx, arg);
3098         return -1;
3099 }
3100
3101 /** Default parsing function for token name matching. */
3102 static int
3103 parse_default(struct context *ctx, const struct token *token,
3104               const char *str, unsigned int len,
3105               void *buf, unsigned int size)
3106 {
3107         (void)ctx;
3108         (void)buf;
3109         (void)size;
3110         if (strcmp_partial(token->name, str, len))
3111                 return -1;
3112         return len;
3113 }
3114
3115 /** Parse flow command, initialize output buffer for subsequent tokens. */
3116 static int
3117 parse_init(struct context *ctx, const struct token *token,
3118            const char *str, unsigned int len,
3119            void *buf, unsigned int size)
3120 {
3121         struct buffer *out = buf;
3122
3123         /* Token name must match. */
3124         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3125                 return -1;
3126         /* Nothing else to do if there is no buffer. */
3127         if (!out)
3128                 return len;
3129         /* Make sure buffer is large enough. */
3130         if (size < sizeof(*out))
3131                 return -1;
3132         /* Initialize buffer. */
3133         memset(out, 0x00, sizeof(*out));
3134         memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3135         ctx->objdata = 0;
3136         ctx->object = out;
3137         ctx->objmask = NULL;
3138         return len;
3139 }
3140
3141 /** Parse tokens for validate/create commands. */
3142 static int
3143 parse_vc(struct context *ctx, const struct token *token,
3144          const char *str, unsigned int len,
3145          void *buf, unsigned int size)
3146 {
3147         struct buffer *out = buf;
3148         uint8_t *data;
3149         uint32_t data_size;
3150
3151         /* Token name must match. */
3152         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3153                 return -1;
3154         /* Nothing else to do if there is no buffer. */
3155         if (!out)
3156                 return len;
3157         if (!out->command) {
3158                 if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3159                         return -1;
3160                 if (sizeof(*out) > size)
3161                         return -1;
3162                 out->command = ctx->curr;
3163                 ctx->objdata = 0;
3164                 ctx->object = out;
3165                 ctx->objmask = NULL;
3166                 out->args.vc.data = (uint8_t *)out + size;
3167                 return len;
3168         }
3169         ctx->objdata = 0;
3170         ctx->object = &out->args.vc.attr;
3171         ctx->objmask = NULL;
3172         switch (ctx->curr) {
3173         case GROUP:
3174         case PRIORITY:
3175                 return len;
3176         case INGRESS:
3177                 out->args.vc.attr.ingress = 1;
3178                 return len;
3179         case EGRESS:
3180                 out->args.vc.attr.egress = 1;
3181                 return len;
3182         case TRANSFER:
3183                 out->args.vc.attr.transfer = 1;
3184                 return len;
3185         case PATTERN:
3186                 out->args.vc.pattern =
3187                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3188                                                sizeof(double));
3189                 ctx->object = out->args.vc.pattern;
3190                 ctx->objmask = NULL;
3191                 return len;
3192         case ACTIONS:
3193                 out->args.vc.actions =
3194                         (void *)RTE_ALIGN_CEIL((uintptr_t)
3195                                                (out->args.vc.pattern +
3196                                                 out->args.vc.pattern_n),
3197                                                sizeof(double));
3198                 ctx->object = out->args.vc.actions;
3199                 ctx->objmask = NULL;
3200                 return len;
3201         default:
3202                 if (!token->priv)
3203                         return -1;
3204                 break;
3205         }
3206         if (!out->args.vc.actions) {
3207                 const struct parse_item_priv *priv = token->priv;
3208                 struct rte_flow_item *item =
3209                         out->args.vc.pattern + out->args.vc.pattern_n;
3210
3211                 data_size = priv->size * 3; /* spec, last, mask */
3212                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3213                                                (out->args.vc.data - data_size),
3214                                                sizeof(double));
3215                 if ((uint8_t *)item + sizeof(*item) > data)
3216                         return -1;
3217                 *item = (struct rte_flow_item){
3218                         .type = priv->type,
3219                 };
3220                 ++out->args.vc.pattern_n;
3221                 ctx->object = item;
3222                 ctx->objmask = NULL;
3223         } else {
3224                 const struct parse_action_priv *priv = token->priv;
3225                 struct rte_flow_action *action =
3226                         out->args.vc.actions + out->args.vc.actions_n;
3227
3228                 data_size = priv->size; /* configuration */
3229                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3230                                                (out->args.vc.data - data_size),
3231                                                sizeof(double));
3232                 if ((uint8_t *)action + sizeof(*action) > data)
3233                         return -1;
3234                 *action = (struct rte_flow_action){
3235                         .type = priv->type,
3236                         .conf = data_size ? data : NULL,
3237                 };
3238                 ++out->args.vc.actions_n;
3239                 ctx->object = action;
3240                 ctx->objmask = NULL;
3241         }
3242         memset(data, 0, data_size);
3243         out->args.vc.data = data;
3244         ctx->objdata = data_size;
3245         return len;
3246 }
3247
3248 /** Parse pattern item parameter type. */
3249 static int
3250 parse_vc_spec(struct context *ctx, const struct token *token,
3251               const char *str, unsigned int len,
3252               void *buf, unsigned int size)
3253 {
3254         struct buffer *out = buf;
3255         struct rte_flow_item *item;
3256         uint32_t data_size;
3257         int index;
3258         int objmask = 0;
3259
3260         (void)size;
3261         /* Token name must match. */
3262         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3263                 return -1;
3264         /* Parse parameter types. */
3265         switch (ctx->curr) {
3266                 static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3267
3268         case ITEM_PARAM_IS:
3269                 index = 0;
3270                 objmask = 1;
3271                 break;
3272         case ITEM_PARAM_SPEC:
3273                 index = 0;
3274                 break;
3275         case ITEM_PARAM_LAST:
3276                 index = 1;
3277                 break;
3278         case ITEM_PARAM_PREFIX:
3279                 /* Modify next token to expect a prefix. */
3280                 if (ctx->next_num < 2)
3281                         return -1;
3282                 ctx->next[ctx->next_num - 2] = prefix;
3283                 /* Fall through. */
3284         case ITEM_PARAM_MASK:
3285                 index = 2;
3286                 break;
3287         default:
3288                 return -1;
3289         }
3290         /* Nothing else to do if there is no buffer. */
3291         if (!out)
3292                 return len;
3293         if (!out->args.vc.pattern_n)
3294                 return -1;
3295         item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3296         data_size = ctx->objdata / 3; /* spec, last, mask */
3297         /* Point to selected object. */
3298         ctx->object = out->args.vc.data + (data_size * index);
3299         if (objmask) {
3300                 ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3301                 item->mask = ctx->objmask;
3302         } else
3303                 ctx->objmask = NULL;
3304         /* Update relevant item pointer. */
3305         *((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3306                 ctx->object;
3307         return len;
3308 }
3309
3310 /** Parse action configuration field. */
3311 static int
3312 parse_vc_conf(struct context *ctx, const struct token *token,
3313               const char *str, unsigned int len,
3314               void *buf, unsigned int size)
3315 {
3316         struct buffer *out = buf;
3317
3318         (void)size;
3319         /* Token name must match. */
3320         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3321                 return -1;
3322         /* Nothing else to do if there is no buffer. */
3323         if (!out)
3324                 return len;
3325         /* Point to selected object. */
3326         ctx->object = out->args.vc.data;
3327         ctx->objmask = NULL;
3328         return len;
3329 }
3330
3331 /** Parse RSS action. */
3332 static int
3333 parse_vc_action_rss(struct context *ctx, const struct token *token,
3334                     const char *str, unsigned int len,
3335                     void *buf, unsigned int size)
3336 {
3337         struct buffer *out = buf;
3338         struct rte_flow_action *action;
3339         struct action_rss_data *action_rss_data;
3340         unsigned int i;
3341         int ret;
3342
3343         ret = parse_vc(ctx, token, str, len, buf, size);
3344         if (ret < 0)
3345                 return ret;
3346         /* Nothing else to do if there is no buffer. */
3347         if (!out)
3348                 return ret;
3349         if (!out->args.vc.actions_n)
3350                 return -1;
3351         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3352         /* Point to selected object. */
3353         ctx->object = out->args.vc.data;
3354         ctx->objmask = NULL;
3355         /* Set up default configuration. */
3356         action_rss_data = ctx->object;
3357         *action_rss_data = (struct action_rss_data){
3358                 .conf = (struct rte_flow_action_rss){
3359                         .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3360                         .level = 0,
3361                         .types = rss_hf,
3362                         .key_len = sizeof(action_rss_data->key),
3363                         .queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3364                         .key = action_rss_data->key,
3365                         .queue = action_rss_data->queue,
3366                 },
3367                 .key = "testpmd's default RSS hash key, "
3368                         "override it for better balancing",
3369                 .queue = { 0 },
3370         };
3371         for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3372                 action_rss_data->queue[i] = i;
3373         if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3374             ctx->port != (portid_t)RTE_PORT_ALL) {
3375                 struct rte_eth_dev_info info;
3376
3377                 rte_eth_dev_info_get(ctx->port, &info);
3378                 action_rss_data->conf.key_len =
3379                         RTE_MIN(sizeof(action_rss_data->key),
3380                                 info.hash_key_size);
3381         }
3382         action->conf = &action_rss_data->conf;
3383         return ret;
3384 }
3385
3386 /**
3387  * Parse func field for RSS action.
3388  *
3389  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3390  * ACTION_RSS_FUNC_* index that called this function.
3391  */
3392 static int
3393 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3394                          const char *str, unsigned int len,
3395                          void *buf, unsigned int size)
3396 {
3397         struct action_rss_data *action_rss_data;
3398         enum rte_eth_hash_function func;
3399
3400         (void)buf;
3401         (void)size;
3402         /* Token name must match. */
3403         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3404                 return -1;
3405         switch (ctx->curr) {
3406         case ACTION_RSS_FUNC_DEFAULT:
3407                 func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3408                 break;
3409         case ACTION_RSS_FUNC_TOEPLITZ:
3410                 func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3411                 break;
3412         case ACTION_RSS_FUNC_SIMPLE_XOR:
3413                 func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3414                 break;
3415         default:
3416                 return -1;
3417         }
3418         if (!ctx->object)
3419                 return len;
3420         action_rss_data = ctx->object;
3421         action_rss_data->conf.func = func;
3422         return len;
3423 }
3424
3425 /**
3426  * Parse type field for RSS action.
3427  *
3428  * Valid tokens are type field names and the "end" token.
3429  */
3430 static int
3431 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3432                           const char *str, unsigned int len,
3433                           void *buf, unsigned int size)
3434 {
3435         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3436         struct action_rss_data *action_rss_data;
3437         unsigned int i;
3438
3439         (void)token;
3440         (void)buf;
3441         (void)size;
3442         if (ctx->curr != ACTION_RSS_TYPE)
3443                 return -1;
3444         if (!(ctx->objdata >> 16) && ctx->object) {
3445                 action_rss_data = ctx->object;
3446                 action_rss_data->conf.types = 0;
3447         }
3448         if (!strcmp_partial("end", str, len)) {
3449                 ctx->objdata &= 0xffff;
3450                 return len;
3451         }
3452         for (i = 0; rss_type_table[i].str; ++i)
3453                 if (!strcmp_partial(rss_type_table[i].str, str, len))
3454                         break;
3455         if (!rss_type_table[i].str)
3456                 return -1;
3457         ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3458         /* Repeat token. */
3459         if (ctx->next_num == RTE_DIM(ctx->next))
3460                 return -1;
3461         ctx->next[ctx->next_num++] = next;
3462         if (!ctx->object)
3463                 return len;
3464         action_rss_data = ctx->object;
3465         action_rss_data->conf.types |= rss_type_table[i].rss_type;
3466         return len;
3467 }
3468
3469 /**
3470  * Parse queue field for RSS action.
3471  *
3472  * Valid tokens are queue indices and the "end" token.
3473  */
3474 static int
3475 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3476                           const char *str, unsigned int len,
3477                           void *buf, unsigned int size)
3478 {
3479         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3480         struct action_rss_data *action_rss_data;
3481         const struct arg *arg;
3482         int ret;
3483         int i;
3484
3485         (void)token;
3486         (void)buf;
3487         (void)size;
3488         if (ctx->curr != ACTION_RSS_QUEUE)
3489                 return -1;
3490         i = ctx->objdata >> 16;
3491         if (!strcmp_partial("end", str, len)) {
3492                 ctx->objdata &= 0xffff;
3493                 goto end;
3494         }
3495         if (i >= ACTION_RSS_QUEUE_NUM)
3496                 return -1;
3497         arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3498                              i * sizeof(action_rss_data->queue[i]),
3499                              sizeof(action_rss_data->queue[i]));
3500         if (push_args(ctx, arg))
3501                 return -1;
3502         ret = parse_int(ctx, token, str, len, NULL, 0);
3503         if (ret < 0) {
3504                 pop_args(ctx);
3505                 return -1;
3506         }
3507         ++i;
3508         ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3509         /* Repeat token. */
3510         if (ctx->next_num == RTE_DIM(ctx->next))
3511                 return -1;
3512         ctx->next[ctx->next_num++] = next;
3513 end:
3514         if (!ctx->object)
3515                 return len;
3516         action_rss_data = ctx->object;
3517         action_rss_data->conf.queue_num = i;
3518         action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3519         return len;
3520 }
3521
3522 /** Parse VXLAN encap action. */
3523 static int
3524 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3525                             const char *str, unsigned int len,
3526                             void *buf, unsigned int size)
3527 {
3528         struct buffer *out = buf;
3529         struct rte_flow_action *action;
3530         struct action_vxlan_encap_data *action_vxlan_encap_data;
3531         int ret;
3532
3533         ret = parse_vc(ctx, token, str, len, buf, size);
3534         if (ret < 0)
3535                 return ret;
3536         /* Nothing else to do if there is no buffer. */
3537         if (!out)
3538                 return ret;
3539         if (!out->args.vc.actions_n)
3540                 return -1;
3541         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3542         /* Point to selected object. */
3543         ctx->object = out->args.vc.data;
3544         ctx->objmask = NULL;
3545         /* Set up default configuration. */
3546         action_vxlan_encap_data = ctx->object;
3547         *action_vxlan_encap_data = (struct action_vxlan_encap_data){
3548                 .conf = (struct rte_flow_action_vxlan_encap){
3549                         .definition = action_vxlan_encap_data->items,
3550                 },
3551                 .items = {
3552                         {
3553                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3554                                 .spec = &action_vxlan_encap_data->item_eth,
3555                                 .mask = &rte_flow_item_eth_mask,
3556                         },
3557                         {
3558                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
3559                                 .spec = &action_vxlan_encap_data->item_vlan,
3560                                 .mask = &rte_flow_item_vlan_mask,
3561                         },
3562                         {
3563                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
3564                                 .spec = &action_vxlan_encap_data->item_ipv4,
3565                                 .mask = &rte_flow_item_ipv4_mask,
3566                         },
3567                         {
3568                                 .type = RTE_FLOW_ITEM_TYPE_UDP,
3569                                 .spec = &action_vxlan_encap_data->item_udp,
3570                                 .mask = &rte_flow_item_udp_mask,
3571                         },
3572                         {
3573                                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
3574                                 .spec = &action_vxlan_encap_data->item_vxlan,
3575                                 .mask = &rte_flow_item_vxlan_mask,
3576                         },
3577                         {
3578                                 .type = RTE_FLOW_ITEM_TYPE_END,
3579                         },
3580                 },
3581                 .item_eth.type = 0,
3582                 .item_vlan = {
3583                         .tci = vxlan_encap_conf.vlan_tci,
3584                         .inner_type = 0,
3585                 },
3586                 .item_ipv4.hdr = {
3587                         .src_addr = vxlan_encap_conf.ipv4_src,
3588                         .dst_addr = vxlan_encap_conf.ipv4_dst,
3589                 },
3590                 .item_udp.hdr = {
3591                         .src_port = vxlan_encap_conf.udp_src,
3592                         .dst_port = vxlan_encap_conf.udp_dst,
3593                 },
3594                 .item_vxlan.flags = 0,
3595         };
3596         memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3597                vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3598         memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3599                vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3600         if (!vxlan_encap_conf.select_ipv4) {
3601                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3602                        &vxlan_encap_conf.ipv6_src,
3603                        sizeof(vxlan_encap_conf.ipv6_src));
3604                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3605                        &vxlan_encap_conf.ipv6_dst,
3606                        sizeof(vxlan_encap_conf.ipv6_dst));
3607                 action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3608                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3609                         .spec = &action_vxlan_encap_data->item_ipv6,
3610                         .mask = &rte_flow_item_ipv6_mask,
3611                 };
3612         }
3613         if (!vxlan_encap_conf.select_vlan)
3614                 action_vxlan_encap_data->items[1].type =
3615                         RTE_FLOW_ITEM_TYPE_VOID;
3616         if (vxlan_encap_conf.select_tos_ttl) {
3617                 if (vxlan_encap_conf.select_ipv4) {
3618                         static struct rte_flow_item_ipv4 ipv4_mask_tos;
3619
3620                         memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3621                                sizeof(ipv4_mask_tos));
3622                         ipv4_mask_tos.hdr.type_of_service = 0xff;
3623                         ipv4_mask_tos.hdr.time_to_live = 0xff;
3624                         action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3625                                         vxlan_encap_conf.ip_tos;
3626                         action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3627                                         vxlan_encap_conf.ip_ttl;
3628                         action_vxlan_encap_data->items[2].mask =
3629                                                         &ipv4_mask_tos;
3630                 } else {
3631                         static struct rte_flow_item_ipv6 ipv6_mask_tos;
3632
3633                         memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3634                                sizeof(ipv6_mask_tos));
3635                         ipv6_mask_tos.hdr.vtc_flow |=
3636                                 RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
3637                         ipv6_mask_tos.hdr.hop_limits = 0xff;
3638                         action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3639                                 rte_cpu_to_be_32
3640                                         ((uint32_t)vxlan_encap_conf.ip_tos <<
3641                                          RTE_IPV6_HDR_TC_SHIFT);
3642                         action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3643                                         vxlan_encap_conf.ip_ttl;
3644                         action_vxlan_encap_data->items[2].mask =
3645                                                         &ipv6_mask_tos;
3646                 }
3647         }
3648         memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3649                RTE_DIM(vxlan_encap_conf.vni));
3650         action->conf = &action_vxlan_encap_data->conf;
3651         return ret;
3652 }
3653
3654 /** Parse NVGRE encap action. */
3655 static int
3656 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3657                             const char *str, unsigned int len,
3658                             void *buf, unsigned int size)
3659 {
3660         struct buffer *out = buf;
3661         struct rte_flow_action *action;
3662         struct action_nvgre_encap_data *action_nvgre_encap_data;
3663         int ret;
3664
3665         ret = parse_vc(ctx, token, str, len, buf, size);
3666         if (ret < 0)
3667                 return ret;
3668         /* Nothing else to do if there is no buffer. */
3669         if (!out)
3670                 return ret;
3671         if (!out->args.vc.actions_n)
3672                 return -1;
3673         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3674         /* Point to selected object. */
3675         ctx->object = out->args.vc.data;
3676         ctx->objmask = NULL;
3677         /* Set up default configuration. */
3678         action_nvgre_encap_data = ctx->object;
3679         *action_nvgre_encap_data = (struct action_nvgre_encap_data){
3680                 .conf = (struct rte_flow_action_nvgre_encap){
3681                         .definition = action_nvgre_encap_data->items,
3682                 },
3683                 .items = {
3684                         {
3685                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3686                                 .spec = &action_nvgre_encap_data->item_eth,
3687                                 .mask = &rte_flow_item_eth_mask,
3688                         },
3689                         {
3690                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
3691                                 .spec = &action_nvgre_encap_data->item_vlan,
3692                                 .mask = &rte_flow_item_vlan_mask,
3693                         },
3694                         {
3695                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
3696                                 .spec = &action_nvgre_encap_data->item_ipv4,
3697                                 .mask = &rte_flow_item_ipv4_mask,
3698                         },
3699                         {
3700                                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
3701                                 .spec = &action_nvgre_encap_data->item_nvgre,
3702                                 .mask = &rte_flow_item_nvgre_mask,
3703                         },
3704                         {
3705                                 .type = RTE_FLOW_ITEM_TYPE_END,
3706                         },
3707                 },
3708                 .item_eth.type = 0,
3709                 .item_vlan = {
3710                         .tci = nvgre_encap_conf.vlan_tci,
3711                         .inner_type = 0,
3712                 },
3713                 .item_ipv4.hdr = {
3714                        .src_addr = nvgre_encap_conf.ipv4_src,
3715                        .dst_addr = nvgre_encap_conf.ipv4_dst,
3716                 },
3717                 .item_nvgre.flow_id = 0,
3718         };
3719         memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3720                nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3721         memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3722                nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3723         if (!nvgre_encap_conf.select_ipv4) {
3724                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3725                        &nvgre_encap_conf.ipv6_src,
3726                        sizeof(nvgre_encap_conf.ipv6_src));
3727                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3728                        &nvgre_encap_conf.ipv6_dst,
3729                        sizeof(nvgre_encap_conf.ipv6_dst));
3730                 action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3731                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3732                         .spec = &action_nvgre_encap_data->item_ipv6,
3733                         .mask = &rte_flow_item_ipv6_mask,
3734                 };
3735         }
3736         if (!nvgre_encap_conf.select_vlan)
3737                 action_nvgre_encap_data->items[1].type =
3738                         RTE_FLOW_ITEM_TYPE_VOID;
3739         memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3740                RTE_DIM(nvgre_encap_conf.tni));
3741         action->conf = &action_nvgre_encap_data->conf;
3742         return ret;
3743 }
3744
3745 /** Parse l2 encap action. */
3746 static int
3747 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
3748                          const char *str, unsigned int len,
3749                          void *buf, unsigned int size)
3750 {
3751         struct buffer *out = buf;
3752         struct rte_flow_action *action;
3753         struct action_raw_encap_data *action_encap_data;
3754         struct rte_flow_item_eth eth = { .type = 0, };
3755         struct rte_flow_item_vlan vlan = {
3756                 .tci = mplsoudp_encap_conf.vlan_tci,
3757                 .inner_type = 0,
3758         };
3759         uint8_t *header;
3760         int ret;
3761
3762         ret = parse_vc(ctx, token, str, len, buf, size);
3763         if (ret < 0)
3764                 return ret;
3765         /* Nothing else to do if there is no buffer. */
3766         if (!out)
3767                 return ret;
3768         if (!out->args.vc.actions_n)
3769                 return -1;
3770         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3771         /* Point to selected object. */
3772         ctx->object = out->args.vc.data;
3773         ctx->objmask = NULL;
3774         /* Copy the headers to the buffer. */
3775         action_encap_data = ctx->object;
3776         *action_encap_data = (struct action_raw_encap_data) {
3777                 .conf = (struct rte_flow_action_raw_encap){
3778                         .data = action_encap_data->data,
3779                 },
3780                 .data = {},
3781         };
3782         header = action_encap_data->data;
3783         if (l2_encap_conf.select_vlan)
3784                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
3785         else if (l2_encap_conf.select_ipv4)
3786                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3787         else
3788                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3789         memcpy(eth.dst.addr_bytes,
3790                l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3791         memcpy(eth.src.addr_bytes,
3792                l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3793         memcpy(header, &eth, sizeof(eth));
3794         header += sizeof(eth);
3795         if (l2_encap_conf.select_vlan) {
3796                 if (l2_encap_conf.select_ipv4)
3797                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3798                 else
3799                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3800                 memcpy(header, &vlan, sizeof(vlan));
3801                 header += sizeof(vlan);
3802         }
3803         action_encap_data->conf.size = header -
3804                 action_encap_data->data;
3805         action->conf = &action_encap_data->conf;
3806         return ret;
3807 }
3808
3809 /** Parse l2 decap action. */
3810 static int
3811 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
3812                          const char *str, unsigned int len,
3813                          void *buf, unsigned int size)
3814 {
3815         struct buffer *out = buf;
3816         struct rte_flow_action *action;
3817         struct action_raw_decap_data *action_decap_data;
3818         struct rte_flow_item_eth eth = { .type = 0, };
3819         struct rte_flow_item_vlan vlan = {
3820                 .tci = mplsoudp_encap_conf.vlan_tci,
3821                 .inner_type = 0,
3822         };
3823         uint8_t *header;
3824         int ret;
3825
3826         ret = parse_vc(ctx, token, str, len, buf, size);
3827         if (ret < 0)
3828                 return ret;
3829         /* Nothing else to do if there is no buffer. */
3830         if (!out)
3831                 return ret;
3832         if (!out->args.vc.actions_n)
3833                 return -1;
3834         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3835         /* Point to selected object. */
3836         ctx->object = out->args.vc.data;
3837         ctx->objmask = NULL;
3838         /* Copy the headers to the buffer. */
3839         action_decap_data = ctx->object;
3840         *action_decap_data = (struct action_raw_decap_data) {
3841                 .conf = (struct rte_flow_action_raw_decap){
3842                         .data = action_decap_data->data,
3843                 },
3844                 .data = {},
3845         };
3846         header = action_decap_data->data;
3847         if (l2_decap_conf.select_vlan)
3848                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
3849         memcpy(header, &eth, sizeof(eth));
3850         header += sizeof(eth);
3851         if (l2_decap_conf.select_vlan) {
3852                 memcpy(header, &vlan, sizeof(vlan));
3853                 header += sizeof(vlan);
3854         }
3855         action_decap_data->conf.size = header -
3856                 action_decap_data->data;
3857         action->conf = &action_decap_data->conf;
3858         return ret;
3859 }
3860
3861 #define ETHER_TYPE_MPLS_UNICAST 0x8847
3862
3863 /** Parse MPLSOGRE encap action. */
3864 static int
3865 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
3866                                const char *str, unsigned int len,
3867                                void *buf, unsigned int size)
3868 {
3869         struct buffer *out = buf;
3870         struct rte_flow_action *action;
3871         struct action_raw_encap_data *action_encap_data;
3872         struct rte_flow_item_eth eth = { .type = 0, };
3873         struct rte_flow_item_vlan vlan = {
3874                 .tci = mplsogre_encap_conf.vlan_tci,
3875                 .inner_type = 0,
3876         };
3877         struct rte_flow_item_ipv4 ipv4 = {
3878                 .hdr =  {
3879                         .src_addr = mplsogre_encap_conf.ipv4_src,
3880                         .dst_addr = mplsogre_encap_conf.ipv4_dst,
3881                         .next_proto_id = IPPROTO_GRE,
3882                         .version_ihl = RTE_IPV4_VHL_DEF,
3883                         .time_to_live = IPDEFTTL,
3884                 },
3885         };
3886         struct rte_flow_item_ipv6 ipv6 = {
3887                 .hdr =  {
3888                         .proto = IPPROTO_GRE,
3889                         .hop_limits = IPDEFTTL,
3890                 },
3891         };
3892         struct rte_flow_item_gre gre = {
3893                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3894         };
3895         struct rte_flow_item_mpls mpls;
3896         uint8_t *header;
3897         int ret;
3898
3899         ret = parse_vc(ctx, token, str, len, buf, size);
3900         if (ret < 0)
3901                 return ret;
3902         /* Nothing else to do if there is no buffer. */
3903         if (!out)
3904                 return ret;
3905         if (!out->args.vc.actions_n)
3906                 return -1;
3907         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3908         /* Point to selected object. */
3909         ctx->object = out->args.vc.data;
3910         ctx->objmask = NULL;
3911         /* Copy the headers to the buffer. */
3912         action_encap_data = ctx->object;
3913         *action_encap_data = (struct action_raw_encap_data) {
3914                 .conf = (struct rte_flow_action_raw_encap){
3915                         .data = action_encap_data->data,
3916                 },
3917                 .data = {},
3918                 .preserve = {},
3919         };
3920         header = action_encap_data->data;
3921         if (mplsogre_encap_conf.select_vlan)
3922                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
3923         else if (mplsogre_encap_conf.select_ipv4)
3924                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3925         else
3926                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3927         memcpy(eth.dst.addr_bytes,
3928                mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3929         memcpy(eth.src.addr_bytes,
3930                mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3931         memcpy(header, &eth, sizeof(eth));
3932         header += sizeof(eth);
3933         if (mplsogre_encap_conf.select_vlan) {
3934                 if (mplsogre_encap_conf.select_ipv4)
3935                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3936                 else
3937                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3938                 memcpy(header, &vlan, sizeof(vlan));
3939                 header += sizeof(vlan);
3940         }
3941         if (mplsogre_encap_conf.select_ipv4) {
3942                 memcpy(header, &ipv4, sizeof(ipv4));
3943                 header += sizeof(ipv4);
3944         } else {
3945                 memcpy(&ipv6.hdr.src_addr,
3946                        &mplsogre_encap_conf.ipv6_src,
3947                        sizeof(mplsogre_encap_conf.ipv6_src));
3948                 memcpy(&ipv6.hdr.dst_addr,
3949                        &mplsogre_encap_conf.ipv6_dst,
3950                        sizeof(mplsogre_encap_conf.ipv6_dst));
3951                 memcpy(header, &ipv6, sizeof(ipv6));
3952                 header += sizeof(ipv6);
3953         }
3954         memcpy(header, &gre, sizeof(gre));
3955         header += sizeof(gre);
3956         memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
3957                RTE_DIM(mplsogre_encap_conf.label));
3958         mpls.label_tc_s[2] |= 0x1;
3959         memcpy(header, &mpls, sizeof(mpls));
3960         header += sizeof(mpls);
3961         action_encap_data->conf.size = header -
3962                 action_encap_data->data;
3963         action->conf = &action_encap_data->conf;
3964         return ret;
3965 }
3966
3967 /** Parse MPLSOGRE decap action. */
3968 static int
3969 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
3970                                const char *str, unsigned int len,
3971                                void *buf, unsigned int size)
3972 {
3973         struct buffer *out = buf;
3974         struct rte_flow_action *action;
3975         struct action_raw_decap_data *action_decap_data;
3976         struct rte_flow_item_eth eth = { .type = 0, };
3977         struct rte_flow_item_vlan vlan = {.tci = 0};
3978         struct rte_flow_item_ipv4 ipv4 = {
3979                 .hdr =  {
3980                         .next_proto_id = IPPROTO_GRE,
3981                 },
3982         };
3983         struct rte_flow_item_ipv6 ipv6 = {
3984                 .hdr =  {
3985                         .proto = IPPROTO_GRE,
3986                 },
3987         };
3988         struct rte_flow_item_gre gre = {
3989                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3990         };
3991         struct rte_flow_item_mpls mpls;
3992         uint8_t *header;
3993         int ret;
3994
3995         ret = parse_vc(ctx, token, str, len, buf, size);
3996         if (ret < 0)
3997                 return ret;
3998         /* Nothing else to do if there is no buffer. */
3999         if (!out)
4000                 return ret;
4001         if (!out->args.vc.actions_n)
4002                 return -1;
4003         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4004         /* Point to selected object. */
4005         ctx->object = out->args.vc.data;
4006         ctx->objmask = NULL;
4007         /* Copy the headers to the buffer. */
4008         action_decap_data = ctx->object;
4009         *action_decap_data = (struct action_raw_decap_data) {
4010                 .conf = (struct rte_flow_action_raw_decap){
4011                         .data = action_decap_data->data,
4012                 },
4013                 .data = {},
4014         };
4015         header = action_decap_data->data;
4016         if (mplsogre_decap_conf.select_vlan)
4017                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4018         else if (mplsogre_encap_conf.select_ipv4)
4019                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4020         else
4021                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4022         memcpy(eth.dst.addr_bytes,
4023                mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4024         memcpy(eth.src.addr_bytes,
4025                mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4026         memcpy(header, &eth, sizeof(eth));
4027         header += sizeof(eth);
4028         if (mplsogre_encap_conf.select_vlan) {
4029                 if (mplsogre_encap_conf.select_ipv4)
4030                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4031                 else
4032                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4033                 memcpy(header, &vlan, sizeof(vlan));
4034                 header += sizeof(vlan);
4035         }
4036         if (mplsogre_encap_conf.select_ipv4) {
4037                 memcpy(header, &ipv4, sizeof(ipv4));
4038                 header += sizeof(ipv4);
4039         } else {
4040                 memcpy(header, &ipv6, sizeof(ipv6));
4041                 header += sizeof(ipv6);
4042         }
4043         memcpy(header, &gre, sizeof(gre));
4044         header += sizeof(gre);
4045         memset(&mpls, 0, sizeof(mpls));
4046         memcpy(header, &mpls, sizeof(mpls));
4047         header += sizeof(mpls);
4048         action_decap_data->conf.size = header -
4049                 action_decap_data->data;
4050         action->conf = &action_decap_data->conf;
4051         return ret;
4052 }
4053
4054 /** Parse MPLSOUDP encap action. */
4055 static int
4056 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
4057                                const char *str, unsigned int len,
4058                                void *buf, unsigned int size)
4059 {
4060         struct buffer *out = buf;
4061         struct rte_flow_action *action;
4062         struct action_raw_encap_data *action_encap_data;
4063         struct rte_flow_item_eth eth = { .type = 0, };
4064         struct rte_flow_item_vlan vlan = {
4065                 .tci = mplsoudp_encap_conf.vlan_tci,
4066                 .inner_type = 0,
4067         };
4068         struct rte_flow_item_ipv4 ipv4 = {
4069                 .hdr =  {
4070                         .src_addr = mplsoudp_encap_conf.ipv4_src,
4071                         .dst_addr = mplsoudp_encap_conf.ipv4_dst,
4072                         .next_proto_id = IPPROTO_UDP,
4073                         .version_ihl = RTE_IPV4_VHL_DEF,
4074                         .time_to_live = IPDEFTTL,
4075                 },
4076         };
4077         struct rte_flow_item_ipv6 ipv6 = {
4078                 .hdr =  {
4079                         .proto = IPPROTO_UDP,
4080                         .hop_limits = IPDEFTTL,
4081                 },
4082         };
4083         struct rte_flow_item_udp udp = {
4084                 .hdr = {
4085                         .src_port = mplsoudp_encap_conf.udp_src,
4086                         .dst_port = mplsoudp_encap_conf.udp_dst,
4087                 },
4088         };
4089         struct rte_flow_item_mpls mpls;
4090         uint8_t *header;
4091         int ret;
4092
4093         ret = parse_vc(ctx, token, str, len, buf, size);
4094         if (ret < 0)
4095                 return ret;
4096         /* Nothing else to do if there is no buffer. */
4097         if (!out)
4098                 return ret;
4099         if (!out->args.vc.actions_n)
4100                 return -1;
4101         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4102         /* Point to selected object. */
4103         ctx->object = out->args.vc.data;
4104         ctx->objmask = NULL;
4105         /* Copy the headers to the buffer. */
4106         action_encap_data = ctx->object;
4107         *action_encap_data = (struct action_raw_encap_data) {
4108                 .conf = (struct rte_flow_action_raw_encap){
4109                         .data = action_encap_data->data,
4110                 },
4111                 .data = {},
4112                 .preserve = {},
4113         };
4114         header = action_encap_data->data;
4115         if (mplsoudp_encap_conf.select_vlan)
4116                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4117         else if (mplsoudp_encap_conf.select_ipv4)
4118                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4119         else
4120                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4121         memcpy(eth.dst.addr_bytes,
4122                mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4123         memcpy(eth.src.addr_bytes,
4124                mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4125         memcpy(header, &eth, sizeof(eth));
4126         header += sizeof(eth);
4127         if (mplsoudp_encap_conf.select_vlan) {
4128                 if (mplsoudp_encap_conf.select_ipv4)
4129                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4130                 else
4131                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4132                 memcpy(header, &vlan, sizeof(vlan));
4133                 header += sizeof(vlan);
4134         }
4135         if (mplsoudp_encap_conf.select_ipv4) {
4136                 memcpy(header, &ipv4, sizeof(ipv4));
4137                 header += sizeof(ipv4);
4138         } else {
4139                 memcpy(&ipv6.hdr.src_addr,
4140                        &mplsoudp_encap_conf.ipv6_src,
4141                        sizeof(mplsoudp_encap_conf.ipv6_src));
4142                 memcpy(&ipv6.hdr.dst_addr,
4143                        &mplsoudp_encap_conf.ipv6_dst,
4144                        sizeof(mplsoudp_encap_conf.ipv6_dst));
4145                 memcpy(header, &ipv6, sizeof(ipv6));
4146                 header += sizeof(ipv6);
4147         }
4148         memcpy(header, &udp, sizeof(udp));
4149         header += sizeof(udp);
4150         memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4151                RTE_DIM(mplsoudp_encap_conf.label));
4152         mpls.label_tc_s[2] |= 0x1;
4153         memcpy(header, &mpls, sizeof(mpls));
4154         header += sizeof(mpls);
4155         action_encap_data->conf.size = header -
4156                 action_encap_data->data;
4157         action->conf = &action_encap_data->conf;
4158         return ret;
4159 }
4160
4161 /** Parse MPLSOUDP decap action. */
4162 static int
4163 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4164                                const char *str, unsigned int len,
4165                                void *buf, unsigned int size)
4166 {
4167         struct buffer *out = buf;
4168         struct rte_flow_action *action;
4169         struct action_raw_decap_data *action_decap_data;
4170         struct rte_flow_item_eth eth = { .type = 0, };
4171         struct rte_flow_item_vlan vlan = {.tci = 0};
4172         struct rte_flow_item_ipv4 ipv4 = {
4173                 .hdr =  {
4174                         .next_proto_id = IPPROTO_UDP,
4175                 },
4176         };
4177         struct rte_flow_item_ipv6 ipv6 = {
4178                 .hdr =  {
4179                         .proto = IPPROTO_UDP,
4180                 },
4181         };
4182         struct rte_flow_item_udp udp = {
4183                 .hdr = {
4184                         .dst_port = rte_cpu_to_be_16(6635),
4185                 },
4186         };
4187         struct rte_flow_item_mpls mpls;
4188         uint8_t *header;
4189         int ret;
4190
4191         ret = parse_vc(ctx, token, str, len, buf, size);
4192         if (ret < 0)
4193                 return ret;
4194         /* Nothing else to do if there is no buffer. */
4195         if (!out)
4196                 return ret;
4197         if (!out->args.vc.actions_n)
4198                 return -1;
4199         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4200         /* Point to selected object. */
4201         ctx->object = out->args.vc.data;
4202         ctx->objmask = NULL;
4203         /* Copy the headers to the buffer. */
4204         action_decap_data = ctx->object;
4205         *action_decap_data = (struct action_raw_decap_data) {
4206                 .conf = (struct rte_flow_action_raw_decap){
4207                         .data = action_decap_data->data,
4208                 },
4209                 .data = {},
4210         };
4211         header = action_decap_data->data;
4212         if (mplsoudp_decap_conf.select_vlan)
4213                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4214         else if (mplsoudp_encap_conf.select_ipv4)
4215                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4216         else
4217                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4218         memcpy(eth.dst.addr_bytes,
4219                mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4220         memcpy(eth.src.addr_bytes,
4221                mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4222         memcpy(header, &eth, sizeof(eth));
4223         header += sizeof(eth);
4224         if (mplsoudp_encap_conf.select_vlan) {
4225                 if (mplsoudp_encap_conf.select_ipv4)
4226                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4227                 else
4228                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4229                 memcpy(header, &vlan, sizeof(vlan));
4230                 header += sizeof(vlan);
4231         }
4232         if (mplsoudp_encap_conf.select_ipv4) {
4233                 memcpy(header, &ipv4, sizeof(ipv4));
4234                 header += sizeof(ipv4);
4235         } else {
4236                 memcpy(header, &ipv6, sizeof(ipv6));
4237                 header += sizeof(ipv6);
4238         }
4239         memcpy(header, &udp, sizeof(udp));
4240         header += sizeof(udp);
4241         memset(&mpls, 0, sizeof(mpls));
4242         memcpy(header, &mpls, sizeof(mpls));
4243         header += sizeof(mpls);
4244         action_decap_data->conf.size = header -
4245                 action_decap_data->data;
4246         action->conf = &action_decap_data->conf;
4247         return ret;
4248 }
4249
4250 /** Parse tokens for destroy command. */
4251 static int
4252 parse_destroy(struct context *ctx, const struct token *token,
4253               const char *str, unsigned int len,
4254               void *buf, unsigned int size)
4255 {
4256         struct buffer *out = buf;
4257
4258         /* Token name must match. */
4259         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4260                 return -1;
4261         /* Nothing else to do if there is no buffer. */
4262         if (!out)
4263                 return len;
4264         if (!out->command) {
4265                 if (ctx->curr != DESTROY)
4266                         return -1;
4267                 if (sizeof(*out) > size)
4268                         return -1;
4269                 out->command = ctx->curr;
4270                 ctx->objdata = 0;
4271                 ctx->object = out;
4272                 ctx->objmask = NULL;
4273                 out->args.destroy.rule =
4274                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4275                                                sizeof(double));
4276                 return len;
4277         }
4278         if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4279              sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4280                 return -1;
4281         ctx->objdata = 0;
4282         ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4283         ctx->objmask = NULL;
4284         return len;
4285 }
4286
4287 /** Parse tokens for flush command. */
4288 static int
4289 parse_flush(struct context *ctx, const struct token *token,
4290             const char *str, unsigned int len,
4291             void *buf, unsigned int size)
4292 {
4293         struct buffer *out = buf;
4294
4295         /* Token name must match. */
4296         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4297                 return -1;
4298         /* Nothing else to do if there is no buffer. */
4299         if (!out)
4300                 return len;
4301         if (!out->command) {
4302                 if (ctx->curr != FLUSH)
4303                         return -1;
4304                 if (sizeof(*out) > size)
4305                         return -1;
4306                 out->command = ctx->curr;
4307                 ctx->objdata = 0;
4308                 ctx->object = out;
4309                 ctx->objmask = NULL;
4310         }
4311         return len;
4312 }
4313
4314 /** Parse tokens for query command. */
4315 static int
4316 parse_query(struct context *ctx, const struct token *token,
4317             const char *str, unsigned int len,
4318             void *buf, unsigned int size)
4319 {
4320         struct buffer *out = buf;
4321
4322         /* Token name must match. */
4323         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4324                 return -1;
4325         /* Nothing else to do if there is no buffer. */
4326         if (!out)
4327                 return len;
4328         if (!out->command) {
4329                 if (ctx->curr != QUERY)
4330                         return -1;
4331                 if (sizeof(*out) > size)
4332                         return -1;
4333                 out->command = ctx->curr;
4334                 ctx->objdata = 0;
4335                 ctx->object = out;
4336                 ctx->objmask = NULL;
4337         }
4338         return len;
4339 }
4340
4341 /** Parse action names. */
4342 static int
4343 parse_action(struct context *ctx, const struct token *token,
4344              const char *str, unsigned int len,
4345              void *buf, unsigned int size)
4346 {
4347         struct buffer *out = buf;
4348         const struct arg *arg = pop_args(ctx);
4349         unsigned int i;
4350
4351         (void)size;
4352         /* Argument is expected. */
4353         if (!arg)
4354                 return -1;
4355         /* Parse action name. */
4356         for (i = 0; next_action[i]; ++i) {
4357                 const struct parse_action_priv *priv;
4358
4359                 token = &token_list[next_action[i]];
4360                 if (strcmp_partial(token->name, str, len))
4361                         continue;
4362                 priv = token->priv;
4363                 if (!priv)
4364                         goto error;
4365                 if (out)
4366                         memcpy((uint8_t *)ctx->object + arg->offset,
4367                                &priv->type,
4368                                arg->size);
4369                 return len;
4370         }
4371 error:
4372         push_args(ctx, arg);
4373         return -1;
4374 }
4375
4376 /** Parse tokens for list command. */
4377 static int
4378 parse_list(struct context *ctx, const struct token *token,
4379            const char *str, unsigned int len,
4380            void *buf, unsigned int size)
4381 {
4382         struct buffer *out = buf;
4383
4384         /* Token name must match. */
4385         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4386                 return -1;
4387         /* Nothing else to do if there is no buffer. */
4388         if (!out)
4389                 return len;
4390         if (!out->command) {
4391                 if (ctx->curr != LIST)
4392                         return -1;
4393                 if (sizeof(*out) > size)
4394                         return -1;
4395                 out->command = ctx->curr;
4396                 ctx->objdata = 0;
4397                 ctx->object = out;
4398                 ctx->objmask = NULL;
4399                 out->args.list.group =
4400                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4401                                                sizeof(double));
4402                 return len;
4403         }
4404         if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4405              sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4406                 return -1;
4407         ctx->objdata = 0;
4408         ctx->object = out->args.list.group + out->args.list.group_n++;
4409         ctx->objmask = NULL;
4410         return len;
4411 }
4412
4413 /** Parse tokens for isolate command. */
4414 static int
4415 parse_isolate(struct context *ctx, const struct token *token,
4416               const char *str, unsigned int len,
4417               void *buf, unsigned int size)
4418 {
4419         struct buffer *out = buf;
4420
4421         /* Token name must match. */
4422         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4423                 return -1;
4424         /* Nothing else to do if there is no buffer. */
4425         if (!out)
4426                 return len;
4427         if (!out->command) {
4428                 if (ctx->curr != ISOLATE)
4429                         return -1;
4430                 if (sizeof(*out) > size)
4431                         return -1;
4432                 out->command = ctx->curr;
4433                 ctx->objdata = 0;
4434                 ctx->object = out;
4435                 ctx->objmask = NULL;
4436         }
4437         return len;
4438 }
4439
4440 /**
4441  * Parse signed/unsigned integers 8 to 64-bit long.
4442  *
4443  * Last argument (ctx->args) is retrieved to determine integer type and
4444  * storage location.
4445  */
4446 static int
4447 parse_int(struct context *ctx, const struct token *token,
4448           const char *str, unsigned int len,
4449           void *buf, unsigned int size)
4450 {
4451         const struct arg *arg = pop_args(ctx);
4452         uintmax_t u;
4453         char *end;
4454
4455         (void)token;
4456         /* Argument is expected. */
4457         if (!arg)
4458                 return -1;
4459         errno = 0;
4460         u = arg->sign ?
4461                 (uintmax_t)strtoimax(str, &end, 0) :
4462                 strtoumax(str, &end, 0);
4463         if (errno || (size_t)(end - str) != len)
4464                 goto error;
4465         if (arg->bounded &&
4466             ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4467                             (intmax_t)u > (intmax_t)arg->max)) ||
4468              (!arg->sign && (u < arg->min || u > arg->max))))
4469                 goto error;
4470         if (!ctx->object)
4471                 return len;
4472         if (arg->mask) {
4473                 if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4474                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
4475                         goto error;
4476                 return len;
4477         }
4478         buf = (uint8_t *)ctx->object + arg->offset;
4479         size = arg->size;
4480         if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4481                 return -1;
4482 objmask:
4483         switch (size) {
4484         case sizeof(uint8_t):
4485                 *(uint8_t *)buf = u;
4486                 break;
4487         case sizeof(uint16_t):
4488                 *(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4489                 break;
4490         case sizeof(uint8_t [3]):
4491 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4492                 if (!arg->hton) {
4493                         ((uint8_t *)buf)[0] = u;
4494                         ((uint8_t *)buf)[1] = u >> 8;
4495                         ((uint8_t *)buf)[2] = u >> 16;
4496                         break;
4497                 }
4498 #endif
4499                 ((uint8_t *)buf)[0] = u >> 16;
4500                 ((uint8_t *)buf)[1] = u >> 8;
4501                 ((uint8_t *)buf)[2] = u;
4502                 break;
4503         case sizeof(uint32_t):
4504                 *(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4505                 break;
4506         case sizeof(uint64_t):
4507                 *(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4508                 break;
4509         default:
4510                 goto error;
4511         }
4512         if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4513                 u = -1;
4514                 buf = (uint8_t *)ctx->objmask + arg->offset;
4515                 goto objmask;
4516         }
4517         return len;
4518 error:
4519         push_args(ctx, arg);
4520         return -1;
4521 }
4522
4523 /**
4524  * Parse a string.
4525  *
4526  * Three arguments (ctx->args) are retrieved from the stack to store data,
4527  * its actual length and address (in that order).
4528  */
4529 static int
4530 parse_string(struct context *ctx, const struct token *token,
4531              const char *str, unsigned int len,
4532              void *buf, unsigned int size)
4533 {
4534         const struct arg *arg_data = pop_args(ctx);
4535         const struct arg *arg_len = pop_args(ctx);
4536         const struct arg *arg_addr = pop_args(ctx);
4537         char tmp[16]; /* Ought to be enough. */
4538         int ret;
4539
4540         /* Arguments are expected. */
4541         if (!arg_data)
4542                 return -1;
4543         if (!arg_len) {
4544                 push_args(ctx, arg_data);
4545                 return -1;
4546         }
4547         if (!arg_addr) {
4548                 push_args(ctx, arg_len);
4549                 push_args(ctx, arg_data);
4550                 return -1;
4551         }
4552         size = arg_data->size;
4553         /* Bit-mask fill is not supported. */
4554         if (arg_data->mask || size < len)
4555                 goto error;
4556         if (!ctx->object)
4557                 return len;
4558         /* Let parse_int() fill length information first. */
4559         ret = snprintf(tmp, sizeof(tmp), "%u", len);
4560         if (ret < 0)
4561                 goto error;
4562         push_args(ctx, arg_len);
4563         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4564         if (ret < 0) {
4565                 pop_args(ctx);
4566                 goto error;
4567         }
4568         buf = (uint8_t *)ctx->object + arg_data->offset;
4569         /* Output buffer is not necessarily NUL-terminated. */
4570         memcpy(buf, str, len);
4571         memset((uint8_t *)buf + len, 0x00, size - len);
4572         if (ctx->objmask)
4573                 memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4574         /* Save address if requested. */
4575         if (arg_addr->size) {
4576                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
4577                        (void *[]){
4578                         (uint8_t *)ctx->object + arg_data->offset
4579                        },
4580                        arg_addr->size);
4581                 if (ctx->objmask)
4582                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4583                                (void *[]){
4584                                 (uint8_t *)ctx->objmask + arg_data->offset
4585                                },
4586                                arg_addr->size);
4587         }
4588         return len;
4589 error:
4590         push_args(ctx, arg_addr);
4591         push_args(ctx, arg_len);
4592         push_args(ctx, arg_data);
4593         return -1;
4594 }
4595
4596 static int
4597 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
4598 {
4599         char *c = NULL;
4600         uint32_t i, len;
4601         char tmp[3];
4602
4603         /* Check input parameters */
4604         if ((src == NULL) ||
4605                 (dst == NULL) ||
4606                 (size == NULL) ||
4607                 (*size == 0))
4608                 return -1;
4609
4610         /* Convert chars to bytes */
4611         for (i = 0, len = 0; i < *size; i += 2) {
4612                 snprintf(tmp, 3, "%s", src + i);
4613                 dst[len++] = strtoul(tmp, &c, 16);
4614                 if (*c != 0) {
4615                         len--;
4616                         dst[len] = 0;
4617                         *size = len;
4618                         return -1;
4619                 }
4620         }
4621         dst[len] = 0;
4622         *size = len;
4623
4624         return 0;
4625 }
4626
4627 static int
4628 parse_hex(struct context *ctx, const struct token *token,
4629                 const char *str, unsigned int len,
4630                 void *buf, unsigned int size)
4631 {
4632         const struct arg *arg_data = pop_args(ctx);
4633         const struct arg *arg_len = pop_args(ctx);
4634         const struct arg *arg_addr = pop_args(ctx);
4635         char tmp[16]; /* Ought to be enough. */
4636         int ret;
4637         unsigned int hexlen = len;
4638         unsigned int length = 256;
4639         uint8_t hex_tmp[length];
4640
4641         /* Arguments are expected. */
4642         if (!arg_data)
4643                 return -1;
4644         if (!arg_len) {
4645                 push_args(ctx, arg_data);
4646                 return -1;
4647         }
4648         if (!arg_addr) {
4649                 push_args(ctx, arg_len);
4650                 push_args(ctx, arg_data);
4651                 return -1;
4652         }
4653         size = arg_data->size;
4654         /* Bit-mask fill is not supported. */
4655         if (arg_data->mask)
4656                 goto error;
4657         if (!ctx->object)
4658                 return len;
4659
4660         /* translate bytes string to array. */
4661         if (str[0] == '0' && ((str[1] == 'x') ||
4662                         (str[1] == 'X'))) {
4663                 str += 2;
4664                 hexlen -= 2;
4665         }
4666         if (hexlen > length)
4667                 return -1;
4668         ret = parse_hex_string(str, hex_tmp, &hexlen);
4669         if (ret < 0)
4670                 goto error;
4671         /* Let parse_int() fill length information first. */
4672         ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
4673         if (ret < 0)
4674                 goto error;
4675         push_args(ctx, arg_len);
4676         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4677         if (ret < 0) {
4678                 pop_args(ctx);
4679                 goto error;
4680         }
4681         buf = (uint8_t *)ctx->object + arg_data->offset;
4682         /* Output buffer is not necessarily NUL-terminated. */
4683         memcpy(buf, hex_tmp, hexlen);
4684         memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
4685         if (ctx->objmask)
4686                 memset((uint8_t *)ctx->objmask + arg_data->offset,
4687                                         0xff, hexlen);
4688         /* Save address if requested. */
4689         if (arg_addr->size) {
4690                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
4691                        (void *[]){
4692                         (uint8_t *)ctx->object + arg_data->offset
4693                        },
4694                        arg_addr->size);
4695                 if (ctx->objmask)
4696                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4697                                (void *[]){
4698                                 (uint8_t *)ctx->objmask + arg_data->offset
4699                                },
4700                                arg_addr->size);
4701         }
4702         return len;
4703 error:
4704         push_args(ctx, arg_addr);
4705         push_args(ctx, arg_len);
4706         push_args(ctx, arg_data);
4707         return -1;
4708
4709 }
4710
4711 /**
4712  * Parse a MAC address.
4713  *
4714  * Last argument (ctx->args) is retrieved to determine storage size and
4715  * location.
4716  */
4717 static int
4718 parse_mac_addr(struct context *ctx, const struct token *token,
4719                const char *str, unsigned int len,
4720                void *buf, unsigned int size)
4721 {
4722         const struct arg *arg = pop_args(ctx);
4723         struct rte_ether_addr tmp;
4724         int ret;
4725
4726         (void)token;
4727         /* Argument is expected. */
4728         if (!arg)
4729                 return -1;
4730         size = arg->size;
4731         /* Bit-mask fill is not supported. */
4732         if (arg->mask || size != sizeof(tmp))
4733                 goto error;
4734         /* Only network endian is supported. */
4735         if (!arg->hton)
4736                 goto error;
4737         ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
4738         if (ret < 0 || (unsigned int)ret != len)
4739                 goto error;
4740         if (!ctx->object)
4741                 return len;
4742         buf = (uint8_t *)ctx->object + arg->offset;
4743         memcpy(buf, &tmp, size);
4744         if (ctx->objmask)
4745                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4746         return len;
4747 error:
4748         push_args(ctx, arg);
4749         return -1;
4750 }
4751
4752 /**
4753  * Parse an IPv4 address.
4754  *
4755  * Last argument (ctx->args) is retrieved to determine storage size and
4756  * location.
4757  */
4758 static int
4759 parse_ipv4_addr(struct context *ctx, const struct token *token,
4760                 const char *str, unsigned int len,
4761                 void *buf, unsigned int size)
4762 {
4763         const struct arg *arg = pop_args(ctx);
4764         char str2[len + 1];
4765         struct in_addr tmp;
4766         int ret;
4767
4768         /* Argument is expected. */
4769         if (!arg)
4770                 return -1;
4771         size = arg->size;
4772         /* Bit-mask fill is not supported. */
4773         if (arg->mask || size != sizeof(tmp))
4774                 goto error;
4775         /* Only network endian is supported. */
4776         if (!arg->hton)
4777                 goto error;
4778         memcpy(str2, str, len);
4779         str2[len] = '\0';
4780         ret = inet_pton(AF_INET, str2, &tmp);
4781         if (ret != 1) {
4782                 /* Attempt integer parsing. */
4783                 push_args(ctx, arg);
4784                 return parse_int(ctx, token, str, len, buf, size);
4785         }
4786         if (!ctx->object)
4787                 return len;
4788         buf = (uint8_t *)ctx->object + arg->offset;
4789         memcpy(buf, &tmp, size);
4790         if (ctx->objmask)
4791                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4792         return len;
4793 error:
4794         push_args(ctx, arg);
4795         return -1;
4796 }
4797
4798 /**
4799  * Parse an IPv6 address.
4800  *
4801  * Last argument (ctx->args) is retrieved to determine storage size and
4802  * location.
4803  */
4804 static int
4805 parse_ipv6_addr(struct context *ctx, const struct token *token,
4806                 const char *str, unsigned int len,
4807                 void *buf, unsigned int size)
4808 {
4809         const struct arg *arg = pop_args(ctx);
4810         char str2[len + 1];
4811         struct in6_addr tmp;
4812         int ret;
4813
4814         (void)token;
4815         /* Argument is expected. */
4816         if (!arg)
4817                 return -1;
4818         size = arg->size;
4819         /* Bit-mask fill is not supported. */
4820         if (arg->mask || size != sizeof(tmp))
4821                 goto error;
4822         /* Only network endian is supported. */
4823         if (!arg->hton)
4824                 goto error;
4825         memcpy(str2, str, len);
4826         str2[len] = '\0';
4827         ret = inet_pton(AF_INET6, str2, &tmp);
4828         if (ret != 1)
4829                 goto error;
4830         if (!ctx->object)
4831                 return len;
4832         buf = (uint8_t *)ctx->object + arg->offset;
4833         memcpy(buf, &tmp, size);
4834         if (ctx->objmask)
4835                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4836         return len;
4837 error:
4838         push_args(ctx, arg);
4839         return -1;
4840 }
4841
4842 /** Boolean values (even indices stand for false). */
4843 static const char *const boolean_name[] = {
4844         "0", "1",
4845         "false", "true",
4846         "no", "yes",
4847         "N", "Y",
4848         "off", "on",
4849         NULL,
4850 };
4851
4852 /**
4853  * Parse a boolean value.
4854  *
4855  * Last argument (ctx->args) is retrieved to determine storage size and
4856  * location.
4857  */
4858 static int
4859 parse_boolean(struct context *ctx, const struct token *token,
4860               const char *str, unsigned int len,
4861               void *buf, unsigned int size)
4862 {
4863         const struct arg *arg = pop_args(ctx);
4864         unsigned int i;
4865         int ret;
4866
4867         /* Argument is expected. */
4868         if (!arg)
4869                 return -1;
4870         for (i = 0; boolean_name[i]; ++i)
4871                 if (!strcmp_partial(boolean_name[i], str, len))
4872                         break;
4873         /* Process token as integer. */
4874         if (boolean_name[i])
4875                 str = i & 1 ? "1" : "0";
4876         push_args(ctx, arg);
4877         ret = parse_int(ctx, token, str, strlen(str), buf, size);
4878         return ret > 0 ? (int)len : ret;
4879 }
4880
4881 /** Parse port and update context. */
4882 static int
4883 parse_port(struct context *ctx, const struct token *token,
4884            const char *str, unsigned int len,
4885            void *buf, unsigned int size)
4886 {
4887         struct buffer *out = &(struct buffer){ .port = 0 };
4888         int ret;
4889
4890         if (buf)
4891                 out = buf;
4892         else {
4893                 ctx->objdata = 0;
4894                 ctx->object = out;
4895                 ctx->objmask = NULL;
4896                 size = sizeof(*out);
4897         }
4898         ret = parse_int(ctx, token, str, len, out, size);
4899         if (ret >= 0)
4900                 ctx->port = out->port;
4901         if (!buf)
4902                 ctx->object = NULL;
4903         return ret;
4904 }
4905
4906 /** No completion. */
4907 static int
4908 comp_none(struct context *ctx, const struct token *token,
4909           unsigned int ent, char *buf, unsigned int size)
4910 {
4911         (void)ctx;
4912         (void)token;
4913         (void)ent;
4914         (void)buf;
4915         (void)size;
4916         return 0;
4917 }
4918
4919 /** Complete boolean values. */
4920 static int
4921 comp_boolean(struct context *ctx, const struct token *token,
4922              unsigned int ent, char *buf, unsigned int size)
4923 {
4924         unsigned int i;
4925
4926         (void)ctx;
4927         (void)token;
4928         for (i = 0; boolean_name[i]; ++i)
4929                 if (buf && i == ent)
4930                         return strlcpy(buf, boolean_name[i], size);
4931         if (buf)
4932                 return -1;
4933         return i;
4934 }
4935
4936 /** Complete action names. */
4937 static int
4938 comp_action(struct context *ctx, const struct token *token,
4939             unsigned int ent, char *buf, unsigned int size)
4940 {
4941         unsigned int i;
4942
4943         (void)ctx;
4944         (void)token;
4945         for (i = 0; next_action[i]; ++i)
4946                 if (buf && i == ent)
4947                         return strlcpy(buf, token_list[next_action[i]].name,
4948                                        size);
4949         if (buf)
4950                 return -1;
4951         return i;
4952 }
4953
4954 /** Complete available ports. */
4955 static int
4956 comp_port(struct context *ctx, const struct token *token,
4957           unsigned int ent, char *buf, unsigned int size)
4958 {
4959         unsigned int i = 0;
4960         portid_t p;
4961
4962         (void)ctx;
4963         (void)token;
4964         RTE_ETH_FOREACH_DEV(p) {
4965                 if (buf && i == ent)
4966                         return snprintf(buf, size, "%u", p);
4967                 ++i;
4968         }
4969         if (buf)
4970                 return -1;
4971         return i;
4972 }
4973
4974 /** Complete available rule IDs. */
4975 static int
4976 comp_rule_id(struct context *ctx, const struct token *token,
4977              unsigned int ent, char *buf, unsigned int size)
4978 {
4979         unsigned int i = 0;
4980         struct rte_port *port;
4981         struct port_flow *pf;
4982
4983         (void)token;
4984         if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
4985             ctx->port == (portid_t)RTE_PORT_ALL)
4986                 return -1;
4987         port = &ports[ctx->port];
4988         for (pf = port->flow_list; pf != NULL; pf = pf->next) {
4989                 if (buf && i == ent)
4990                         return snprintf(buf, size, "%u", pf->id);
4991                 ++i;
4992         }
4993         if (buf)
4994                 return -1;
4995         return i;
4996 }
4997
4998 /** Complete type field for RSS action. */
4999 static int
5000 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
5001                         unsigned int ent, char *buf, unsigned int size)
5002 {
5003         unsigned int i;
5004
5005         (void)ctx;
5006         (void)token;
5007         for (i = 0; rss_type_table[i].str; ++i)
5008                 ;
5009         if (!buf)
5010                 return i + 1;
5011         if (ent < i)
5012                 return strlcpy(buf, rss_type_table[ent].str, size);
5013         if (ent == i)
5014                 return snprintf(buf, size, "end");
5015         return -1;
5016 }
5017
5018 /** Complete queue field for RSS action. */
5019 static int
5020 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
5021                          unsigned int ent, char *buf, unsigned int size)
5022 {
5023         (void)ctx;
5024         (void)token;
5025         if (!buf)
5026                 return nb_rxq + 1;
5027         if (ent < nb_rxq)
5028                 return snprintf(buf, size, "%u", ent);
5029         if (ent == nb_rxq)
5030                 return snprintf(buf, size, "end");
5031         return -1;
5032 }
5033
5034 /** Internal context. */
5035 static struct context cmd_flow_context;
5036
5037 /** Global parser instance (cmdline API). */
5038 cmdline_parse_inst_t cmd_flow;
5039
5040 /** Initialize context. */
5041 static void
5042 cmd_flow_context_init(struct context *ctx)
5043 {
5044         /* A full memset() is not necessary. */
5045         ctx->curr = ZERO;
5046         ctx->prev = ZERO;
5047         ctx->next_num = 0;
5048         ctx->args_num = 0;
5049         ctx->eol = 0;
5050         ctx->last = 0;
5051         ctx->port = 0;
5052         ctx->objdata = 0;
5053         ctx->object = NULL;
5054         ctx->objmask = NULL;
5055 }
5056
5057 /** Parse a token (cmdline API). */
5058 static int
5059 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
5060                unsigned int size)
5061 {
5062         struct context *ctx = &cmd_flow_context;
5063         const struct token *token;
5064         const enum index *list;
5065         int len;
5066         int i;
5067
5068         (void)hdr;
5069         token = &token_list[ctx->curr];
5070         /* Check argument length. */
5071         ctx->eol = 0;
5072         ctx->last = 1;
5073         for (len = 0; src[len]; ++len)
5074                 if (src[len] == '#' || isspace(src[len]))
5075                         break;
5076         if (!len)
5077                 return -1;
5078         /* Last argument and EOL detection. */
5079         for (i = len; src[i]; ++i)
5080                 if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
5081                         break;
5082                 else if (!isspace(src[i])) {
5083                         ctx->last = 0;
5084                         break;
5085                 }
5086         for (; src[i]; ++i)
5087                 if (src[i] == '\r' || src[i] == '\n') {
5088                         ctx->eol = 1;
5089                         break;
5090                 }
5091         /* Initialize context if necessary. */
5092         if (!ctx->next_num) {
5093                 if (!token->next)
5094                         return 0;
5095                 ctx->next[ctx->next_num++] = token->next[0];
5096         }
5097         /* Process argument through candidates. */
5098         ctx->prev = ctx->curr;
5099         list = ctx->next[ctx->next_num - 1];
5100         for (i = 0; list[i]; ++i) {
5101                 const struct token *next = &token_list[list[i]];
5102                 int tmp;
5103
5104                 ctx->curr = list[i];
5105                 if (next->call)
5106                         tmp = next->call(ctx, next, src, len, result, size);
5107                 else
5108                         tmp = parse_default(ctx, next, src, len, result, size);
5109                 if (tmp == -1 || tmp != len)
5110                         continue;
5111                 token = next;
5112                 break;
5113         }
5114         if (!list[i])
5115                 return -1;
5116         --ctx->next_num;
5117         /* Push subsequent tokens if any. */
5118         if (token->next)
5119                 for (i = 0; token->next[i]; ++i) {
5120                         if (ctx->next_num == RTE_DIM(ctx->next))
5121                                 return -1;
5122                         ctx->next[ctx->next_num++] = token->next[i];
5123                 }
5124         /* Push arguments if any. */
5125         if (token->args)
5126                 for (i = 0; token->args[i]; ++i) {
5127                         if (ctx->args_num == RTE_DIM(ctx->args))
5128                                 return -1;
5129                         ctx->args[ctx->args_num++] = token->args[i];
5130                 }
5131         return len;
5132 }
5133
5134 /** Return number of completion entries (cmdline API). */
5135 static int
5136 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5137 {
5138         struct context *ctx = &cmd_flow_context;
5139         const struct token *token = &token_list[ctx->curr];
5140         const enum index *list;
5141         int i;
5142
5143         (void)hdr;
5144         /* Count number of tokens in current list. */
5145         if (ctx->next_num)
5146                 list = ctx->next[ctx->next_num - 1];
5147         else
5148                 list = token->next[0];
5149         for (i = 0; list[i]; ++i)
5150                 ;
5151         if (!i)
5152                 return 0;
5153         /*
5154          * If there is a single token, use its completion callback, otherwise
5155          * return the number of entries.
5156          */
5157         token = &token_list[list[0]];
5158         if (i == 1 && token->comp) {
5159                 /* Save index for cmd_flow_get_help(). */
5160                 ctx->prev = list[0];
5161                 return token->comp(ctx, token, 0, NULL, 0);
5162         }
5163         return i;
5164 }
5165
5166 /** Return a completion entry (cmdline API). */
5167 static int
5168 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5169                           char *dst, unsigned int size)
5170 {
5171         struct context *ctx = &cmd_flow_context;
5172         const struct token *token = &token_list[ctx->curr];
5173         const enum index *list;
5174         int i;
5175
5176         (void)hdr;
5177         /* Count number of tokens in current list. */
5178         if (ctx->next_num)
5179                 list = ctx->next[ctx->next_num - 1];
5180         else
5181                 list = token->next[0];
5182         for (i = 0; list[i]; ++i)
5183                 ;
5184         if (!i)
5185                 return -1;
5186         /* If there is a single token, use its completion callback. */
5187         token = &token_list[list[0]];
5188         if (i == 1 && token->comp) {
5189                 /* Save index for cmd_flow_get_help(). */
5190                 ctx->prev = list[0];
5191                 return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5192         }
5193         /* Otherwise make sure the index is valid and use defaults. */
5194         if (index >= i)
5195                 return -1;
5196         token = &token_list[list[index]];
5197         strlcpy(dst, token->name, size);
5198         /* Save index for cmd_flow_get_help(). */
5199         ctx->prev = list[index];
5200         return 0;
5201 }
5202
5203 /** Populate help strings for current token (cmdline API). */
5204 static int
5205 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5206 {
5207         struct context *ctx = &cmd_flow_context;
5208         const struct token *token = &token_list[ctx->prev];
5209
5210         (void)hdr;
5211         if (!size)
5212                 return -1;
5213         /* Set token type and update global help with details. */
5214         strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
5215         if (token->help)
5216                 cmd_flow.help_str = token->help;
5217         else
5218                 cmd_flow.help_str = token->name;
5219         return 0;
5220 }
5221
5222 /** Token definition template (cmdline API). */
5223 static struct cmdline_token_hdr cmd_flow_token_hdr = {
5224         .ops = &(struct cmdline_token_ops){
5225                 .parse = cmd_flow_parse,
5226                 .complete_get_nb = cmd_flow_complete_get_nb,
5227                 .complete_get_elt = cmd_flow_complete_get_elt,
5228                 .get_help = cmd_flow_get_help,
5229         },
5230         .offset = 0,
5231 };
5232
5233 /** Populate the next dynamic token. */
5234 static void
5235 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5236              cmdline_parse_token_hdr_t **hdr_inst)
5237 {
5238         struct context *ctx = &cmd_flow_context;
5239
5240         /* Always reinitialize context before requesting the first token. */
5241         if (!(hdr_inst - cmd_flow.tokens))
5242                 cmd_flow_context_init(ctx);
5243         /* Return NULL when no more tokens are expected. */
5244         if (!ctx->next_num && ctx->curr) {
5245                 *hdr = NULL;
5246                 return;
5247         }
5248         /* Determine if command should end here. */
5249         if (ctx->eol && ctx->last && ctx->next_num) {
5250                 const enum index *list = ctx->next[ctx->next_num - 1];
5251                 int i;
5252
5253                 for (i = 0; list[i]; ++i) {
5254                         if (list[i] != END)
5255                                 continue;
5256                         *hdr = NULL;
5257                         return;
5258                 }
5259         }
5260         *hdr = &cmd_flow_token_hdr;
5261 }
5262
5263 /** Dispatch parsed buffer to function calls. */
5264 static void
5265 cmd_flow_parsed(const struct buffer *in)
5266 {
5267         switch (in->command) {
5268         case VALIDATE:
5269                 port_flow_validate(in->port, &in->args.vc.attr,
5270                                    in->args.vc.pattern, in->args.vc.actions);
5271                 break;
5272         case CREATE:
5273                 port_flow_create(in->port, &in->args.vc.attr,
5274                                  in->args.vc.pattern, in->args.vc.actions);
5275                 break;
5276         case DESTROY:
5277                 port_flow_destroy(in->port, in->args.destroy.rule_n,
5278                                   in->args.destroy.rule);
5279                 break;
5280         case FLUSH:
5281                 port_flow_flush(in->port);
5282                 break;
5283         case QUERY:
5284                 port_flow_query(in->port, in->args.query.rule,
5285                                 &in->args.query.action);
5286                 break;
5287         case LIST:
5288                 port_flow_list(in->port, in->args.list.group_n,
5289                                in->args.list.group);
5290                 break;
5291         case ISOLATE:
5292                 port_flow_isolate(in->port, in->args.isolate.set);
5293                 break;
5294         default:
5295                 break;
5296         }
5297 }
5298
5299 /** Token generator and output processing callback (cmdline API). */
5300 static void
5301 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5302 {
5303         if (cl == NULL)
5304                 cmd_flow_tok(arg0, arg2);
5305         else
5306                 cmd_flow_parsed(arg0);
5307 }
5308
5309 /** Global parser instance (cmdline API). */
5310 cmdline_parse_inst_t cmd_flow = {
5311         .f = cmd_flow_cb,
5312         .data = NULL, /**< Unused. */
5313         .help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5314         .tokens = {
5315                 NULL,
5316         }, /**< Tokens are returned by cmd_flow_tok(). */
5317 };