app/testpmd: fix hex string parser support for flow API
[dpdk.git] / app / test-pmd / cmdline_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_eth_ctrl.h>
19 #include <rte_ethdev.h>
20 #include <rte_byteorder.h>
21 #include <cmdline_parse.h>
22 #include <cmdline_parse_etheraddr.h>
23 #include <rte_flow.h>
24
25 #include "testpmd.h"
26
27 /** Parser token indices. */
28 enum index {
29         /* Special tokens. */
30         ZERO = 0,
31         END,
32
33         /* Common tokens. */
34         INTEGER,
35         UNSIGNED,
36         PREFIX,
37         BOOLEAN,
38         STRING,
39         HEX,
40         MAC_ADDR,
41         IPV4_ADDR,
42         IPV6_ADDR,
43         RULE_ID,
44         PORT_ID,
45         GROUP_ID,
46         PRIORITY_LEVEL,
47
48         /* Top-level command. */
49         FLOW,
50
51         /* Sub-level commands. */
52         VALIDATE,
53         CREATE,
54         DESTROY,
55         FLUSH,
56         QUERY,
57         LIST,
58         ISOLATE,
59
60         /* Destroy arguments. */
61         DESTROY_RULE,
62
63         /* Query arguments. */
64         QUERY_ACTION,
65
66         /* List arguments. */
67         LIST_GROUP,
68
69         /* Validate/create arguments. */
70         GROUP,
71         PRIORITY,
72         INGRESS,
73         EGRESS,
74         TRANSFER,
75
76         /* Validate/create pattern. */
77         PATTERN,
78         ITEM_PARAM_IS,
79         ITEM_PARAM_SPEC,
80         ITEM_PARAM_LAST,
81         ITEM_PARAM_MASK,
82         ITEM_PARAM_PREFIX,
83         ITEM_NEXT,
84         ITEM_END,
85         ITEM_VOID,
86         ITEM_INVERT,
87         ITEM_ANY,
88         ITEM_ANY_NUM,
89         ITEM_PF,
90         ITEM_VF,
91         ITEM_VF_ID,
92         ITEM_PHY_PORT,
93         ITEM_PHY_PORT_INDEX,
94         ITEM_PORT_ID,
95         ITEM_PORT_ID_ID,
96         ITEM_MARK,
97         ITEM_MARK_ID,
98         ITEM_RAW,
99         ITEM_RAW_RELATIVE,
100         ITEM_RAW_SEARCH,
101         ITEM_RAW_OFFSET,
102         ITEM_RAW_LIMIT,
103         ITEM_RAW_PATTERN,
104         ITEM_ETH,
105         ITEM_ETH_DST,
106         ITEM_ETH_SRC,
107         ITEM_ETH_TYPE,
108         ITEM_VLAN,
109         ITEM_VLAN_TCI,
110         ITEM_VLAN_PCP,
111         ITEM_VLAN_DEI,
112         ITEM_VLAN_VID,
113         ITEM_VLAN_INNER_TYPE,
114         ITEM_IPV4,
115         ITEM_IPV4_TOS,
116         ITEM_IPV4_TTL,
117         ITEM_IPV4_PROTO,
118         ITEM_IPV4_SRC,
119         ITEM_IPV4_DST,
120         ITEM_IPV6,
121         ITEM_IPV6_TC,
122         ITEM_IPV6_FLOW,
123         ITEM_IPV6_PROTO,
124         ITEM_IPV6_HOP,
125         ITEM_IPV6_SRC,
126         ITEM_IPV6_DST,
127         ITEM_ICMP,
128         ITEM_ICMP_TYPE,
129         ITEM_ICMP_CODE,
130         ITEM_UDP,
131         ITEM_UDP_SRC,
132         ITEM_UDP_DST,
133         ITEM_TCP,
134         ITEM_TCP_SRC,
135         ITEM_TCP_DST,
136         ITEM_TCP_FLAGS,
137         ITEM_SCTP,
138         ITEM_SCTP_SRC,
139         ITEM_SCTP_DST,
140         ITEM_SCTP_TAG,
141         ITEM_SCTP_CKSUM,
142         ITEM_VXLAN,
143         ITEM_VXLAN_VNI,
144         ITEM_E_TAG,
145         ITEM_E_TAG_GRP_ECID_B,
146         ITEM_NVGRE,
147         ITEM_NVGRE_TNI,
148         ITEM_MPLS,
149         ITEM_MPLS_LABEL,
150         ITEM_GRE,
151         ITEM_GRE_PROTO,
152         ITEM_FUZZY,
153         ITEM_FUZZY_THRESH,
154         ITEM_GTP,
155         ITEM_GTP_TEID,
156         ITEM_GTPC,
157         ITEM_GTPU,
158         ITEM_GENEVE,
159         ITEM_GENEVE_VNI,
160         ITEM_GENEVE_PROTO,
161         ITEM_VXLAN_GPE,
162         ITEM_VXLAN_GPE_VNI,
163         ITEM_ARP_ETH_IPV4,
164         ITEM_ARP_ETH_IPV4_SHA,
165         ITEM_ARP_ETH_IPV4_SPA,
166         ITEM_ARP_ETH_IPV4_THA,
167         ITEM_ARP_ETH_IPV4_TPA,
168         ITEM_IPV6_EXT,
169         ITEM_IPV6_EXT_NEXT_HDR,
170         ITEM_ICMP6,
171         ITEM_ICMP6_TYPE,
172         ITEM_ICMP6_CODE,
173         ITEM_ICMP6_ND_NS,
174         ITEM_ICMP6_ND_NS_TARGET_ADDR,
175         ITEM_ICMP6_ND_NA,
176         ITEM_ICMP6_ND_NA_TARGET_ADDR,
177         ITEM_ICMP6_ND_OPT,
178         ITEM_ICMP6_ND_OPT_TYPE,
179         ITEM_ICMP6_ND_OPT_SLA_ETH,
180         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
181         ITEM_ICMP6_ND_OPT_TLA_ETH,
182         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
183         ITEM_META,
184         ITEM_META_DATA,
185
186         /* Validate/create actions. */
187         ACTIONS,
188         ACTION_NEXT,
189         ACTION_END,
190         ACTION_VOID,
191         ACTION_PASSTHRU,
192         ACTION_JUMP,
193         ACTION_JUMP_GROUP,
194         ACTION_MARK,
195         ACTION_MARK_ID,
196         ACTION_FLAG,
197         ACTION_QUEUE,
198         ACTION_QUEUE_INDEX,
199         ACTION_DROP,
200         ACTION_COUNT,
201         ACTION_COUNT_SHARED,
202         ACTION_COUNT_ID,
203         ACTION_RSS,
204         ACTION_RSS_FUNC,
205         ACTION_RSS_LEVEL,
206         ACTION_RSS_FUNC_DEFAULT,
207         ACTION_RSS_FUNC_TOEPLITZ,
208         ACTION_RSS_FUNC_SIMPLE_XOR,
209         ACTION_RSS_TYPES,
210         ACTION_RSS_TYPE,
211         ACTION_RSS_KEY,
212         ACTION_RSS_KEY_LEN,
213         ACTION_RSS_QUEUES,
214         ACTION_RSS_QUEUE,
215         ACTION_PF,
216         ACTION_VF,
217         ACTION_VF_ORIGINAL,
218         ACTION_VF_ID,
219         ACTION_PHY_PORT,
220         ACTION_PHY_PORT_ORIGINAL,
221         ACTION_PHY_PORT_INDEX,
222         ACTION_PORT_ID,
223         ACTION_PORT_ID_ORIGINAL,
224         ACTION_PORT_ID_ID,
225         ACTION_METER,
226         ACTION_METER_ID,
227         ACTION_OF_SET_MPLS_TTL,
228         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
229         ACTION_OF_DEC_MPLS_TTL,
230         ACTION_OF_SET_NW_TTL,
231         ACTION_OF_SET_NW_TTL_NW_TTL,
232         ACTION_OF_DEC_NW_TTL,
233         ACTION_OF_COPY_TTL_OUT,
234         ACTION_OF_COPY_TTL_IN,
235         ACTION_OF_POP_VLAN,
236         ACTION_OF_PUSH_VLAN,
237         ACTION_OF_PUSH_VLAN_ETHERTYPE,
238         ACTION_OF_SET_VLAN_VID,
239         ACTION_OF_SET_VLAN_VID_VLAN_VID,
240         ACTION_OF_SET_VLAN_PCP,
241         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
242         ACTION_OF_POP_MPLS,
243         ACTION_OF_POP_MPLS_ETHERTYPE,
244         ACTION_OF_PUSH_MPLS,
245         ACTION_OF_PUSH_MPLS_ETHERTYPE,
246         ACTION_VXLAN_ENCAP,
247         ACTION_VXLAN_DECAP,
248         ACTION_NVGRE_ENCAP,
249         ACTION_NVGRE_DECAP,
250         ACTION_L2_ENCAP,
251         ACTION_L2_DECAP,
252         ACTION_MPLSOGRE_ENCAP,
253         ACTION_MPLSOGRE_DECAP,
254         ACTION_MPLSOUDP_ENCAP,
255         ACTION_MPLSOUDP_DECAP,
256         ACTION_SET_IPV4_SRC,
257         ACTION_SET_IPV4_SRC_IPV4_SRC,
258         ACTION_SET_IPV4_DST,
259         ACTION_SET_IPV4_DST_IPV4_DST,
260         ACTION_SET_IPV6_SRC,
261         ACTION_SET_IPV6_SRC_IPV6_SRC,
262         ACTION_SET_IPV6_DST,
263         ACTION_SET_IPV6_DST_IPV6_DST,
264         ACTION_SET_TP_SRC,
265         ACTION_SET_TP_SRC_TP_SRC,
266         ACTION_SET_TP_DST,
267         ACTION_SET_TP_DST_TP_DST,
268         ACTION_MAC_SWAP,
269         ACTION_DEC_TTL,
270         ACTION_SET_TTL,
271         ACTION_SET_TTL_TTL,
272         ACTION_SET_MAC_SRC,
273         ACTION_SET_MAC_SRC_MAC_SRC,
274         ACTION_SET_MAC_DST,
275         ACTION_SET_MAC_DST_MAC_DST,
276 };
277
278 /** Maximum size for pattern in struct rte_flow_item_raw. */
279 #define ITEM_RAW_PATTERN_SIZE 40
280
281 /** Storage size for struct rte_flow_item_raw including pattern. */
282 #define ITEM_RAW_SIZE \
283         (sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
284
285 /** Maximum number of queue indices in struct rte_flow_action_rss. */
286 #define ACTION_RSS_QUEUE_NUM 32
287
288 /** Storage for struct rte_flow_action_rss including external data. */
289 struct action_rss_data {
290         struct rte_flow_action_rss conf;
291         uint8_t key[RSS_HASH_KEY_LENGTH];
292         uint16_t queue[ACTION_RSS_QUEUE_NUM];
293 };
294
295 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
296 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
297
298 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
299 struct action_vxlan_encap_data {
300         struct rte_flow_action_vxlan_encap conf;
301         struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
302         struct rte_flow_item_eth item_eth;
303         struct rte_flow_item_vlan item_vlan;
304         union {
305                 struct rte_flow_item_ipv4 item_ipv4;
306                 struct rte_flow_item_ipv6 item_ipv6;
307         };
308         struct rte_flow_item_udp item_udp;
309         struct rte_flow_item_vxlan item_vxlan;
310 };
311
312 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
313 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
314
315 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
316 struct action_nvgre_encap_data {
317         struct rte_flow_action_nvgre_encap conf;
318         struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
319         struct rte_flow_item_eth item_eth;
320         struct rte_flow_item_vlan item_vlan;
321         union {
322                 struct rte_flow_item_ipv4 item_ipv4;
323                 struct rte_flow_item_ipv6 item_ipv6;
324         };
325         struct rte_flow_item_nvgre item_nvgre;
326 };
327
328 /** Maximum data size in struct rte_flow_action_raw_encap. */
329 #define ACTION_RAW_ENCAP_MAX_DATA 128
330
331 /** Storage for struct rte_flow_action_raw_encap including external data. */
332 struct action_raw_encap_data {
333         struct rte_flow_action_raw_encap conf;
334         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
335         uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
336 };
337
338 /** Storage for struct rte_flow_action_raw_decap including external data. */
339 struct action_raw_decap_data {
340         struct rte_flow_action_raw_decap conf;
341         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
342 };
343
344 /** Maximum number of subsequent tokens and arguments on the stack. */
345 #define CTX_STACK_SIZE 16
346
347 /** Parser context. */
348 struct context {
349         /** Stack of subsequent token lists to process. */
350         const enum index *next[CTX_STACK_SIZE];
351         /** Arguments for stacked tokens. */
352         const void *args[CTX_STACK_SIZE];
353         enum index curr; /**< Current token index. */
354         enum index prev; /**< Index of the last token seen. */
355         int next_num; /**< Number of entries in next[]. */
356         int args_num; /**< Number of entries in args[]. */
357         uint32_t eol:1; /**< EOL has been detected. */
358         uint32_t last:1; /**< No more arguments. */
359         portid_t port; /**< Current port ID (for completions). */
360         uint32_t objdata; /**< Object-specific data. */
361         void *object; /**< Address of current object for relative offsets. */
362         void *objmask; /**< Object a full mask must be written to. */
363 };
364
365 /** Token argument. */
366 struct arg {
367         uint32_t hton:1; /**< Use network byte ordering. */
368         uint32_t sign:1; /**< Value is signed. */
369         uint32_t bounded:1; /**< Value is bounded. */
370         uintmax_t min; /**< Minimum value if bounded. */
371         uintmax_t max; /**< Maximum value if bounded. */
372         uint32_t offset; /**< Relative offset from ctx->object. */
373         uint32_t size; /**< Field size. */
374         const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
375 };
376
377 /** Parser token definition. */
378 struct token {
379         /** Type displayed during completion (defaults to "TOKEN"). */
380         const char *type;
381         /** Help displayed during completion (defaults to token name). */
382         const char *help;
383         /** Private data used by parser functions. */
384         const void *priv;
385         /**
386          * Lists of subsequent tokens to push on the stack. Each call to the
387          * parser consumes the last entry of that stack.
388          */
389         const enum index *const *next;
390         /** Arguments stack for subsequent tokens that need them. */
391         const struct arg *const *args;
392         /**
393          * Token-processing callback, returns -1 in case of error, the
394          * length of the matched string otherwise. If NULL, attempts to
395          * match the token name.
396          *
397          * If buf is not NULL, the result should be stored in it according
398          * to context. An error is returned if not large enough.
399          */
400         int (*call)(struct context *ctx, const struct token *token,
401                     const char *str, unsigned int len,
402                     void *buf, unsigned int size);
403         /**
404          * Callback that provides possible values for this token, used for
405          * completion. Returns -1 in case of error, the number of possible
406          * values otherwise. If NULL, the token name is used.
407          *
408          * If buf is not NULL, entry index ent is written to buf and the
409          * full length of the entry is returned (same behavior as
410          * snprintf()).
411          */
412         int (*comp)(struct context *ctx, const struct token *token,
413                     unsigned int ent, char *buf, unsigned int size);
414         /** Mandatory token name, no default value. */
415         const char *name;
416 };
417
418 /** Static initializer for the next field. */
419 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
420
421 /** Static initializer for a NEXT() entry. */
422 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
423
424 /** Static initializer for the args field. */
425 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
426
427 /** Static initializer for ARGS() to target a field. */
428 #define ARGS_ENTRY(s, f) \
429         (&(const struct arg){ \
430                 .offset = offsetof(s, f), \
431                 .size = sizeof(((s *)0)->f), \
432         })
433
434 /** Static initializer for ARGS() to target a bit-field. */
435 #define ARGS_ENTRY_BF(s, f, b) \
436         (&(const struct arg){ \
437                 .size = sizeof(s), \
438                 .mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
439         })
440
441 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
442 #define ARGS_ENTRY_MASK(s, f, m) \
443         (&(const struct arg){ \
444                 .offset = offsetof(s, f), \
445                 .size = sizeof(((s *)0)->f), \
446                 .mask = (const void *)(m), \
447         })
448
449 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
450 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
451         (&(const struct arg){ \
452                 .hton = 1, \
453                 .offset = offsetof(s, f), \
454                 .size = sizeof(((s *)0)->f), \
455                 .mask = (const void *)(m), \
456         })
457
458 /** Static initializer for ARGS() to target a pointer. */
459 #define ARGS_ENTRY_PTR(s, f) \
460         (&(const struct arg){ \
461                 .size = sizeof(*((s *)0)->f), \
462         })
463
464 /** Static initializer for ARGS() with arbitrary offset and size. */
465 #define ARGS_ENTRY_ARB(o, s) \
466         (&(const struct arg){ \
467                 .offset = (o), \
468                 .size = (s), \
469         })
470
471 /** Same as ARGS_ENTRY_ARB() with bounded values. */
472 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
473         (&(const struct arg){ \
474                 .bounded = 1, \
475                 .min = (i), \
476                 .max = (a), \
477                 .offset = (o), \
478                 .size = (s), \
479         })
480
481 /** Same as ARGS_ENTRY() using network byte ordering. */
482 #define ARGS_ENTRY_HTON(s, f) \
483         (&(const struct arg){ \
484                 .hton = 1, \
485                 .offset = offsetof(s, f), \
486                 .size = sizeof(((s *)0)->f), \
487         })
488
489 /** Parser output buffer layout expected by cmd_flow_parsed(). */
490 struct buffer {
491         enum index command; /**< Flow command. */
492         portid_t port; /**< Affected port ID. */
493         union {
494                 struct {
495                         struct rte_flow_attr attr;
496                         struct rte_flow_item *pattern;
497                         struct rte_flow_action *actions;
498                         uint32_t pattern_n;
499                         uint32_t actions_n;
500                         uint8_t *data;
501                 } vc; /**< Validate/create arguments. */
502                 struct {
503                         uint32_t *rule;
504                         uint32_t rule_n;
505                 } destroy; /**< Destroy arguments. */
506                 struct {
507                         uint32_t rule;
508                         struct rte_flow_action action;
509                 } query; /**< Query arguments. */
510                 struct {
511                         uint32_t *group;
512                         uint32_t group_n;
513                 } list; /**< List arguments. */
514                 struct {
515                         int set;
516                 } isolate; /**< Isolated mode arguments. */
517         } args; /**< Command arguments. */
518 };
519
520 /** Private data for pattern items. */
521 struct parse_item_priv {
522         enum rte_flow_item_type type; /**< Item type. */
523         uint32_t size; /**< Size of item specification structure. */
524 };
525
526 #define PRIV_ITEM(t, s) \
527         (&(const struct parse_item_priv){ \
528                 .type = RTE_FLOW_ITEM_TYPE_ ## t, \
529                 .size = s, \
530         })
531
532 /** Private data for actions. */
533 struct parse_action_priv {
534         enum rte_flow_action_type type; /**< Action type. */
535         uint32_t size; /**< Size of action configuration structure. */
536 };
537
538 #define PRIV_ACTION(t, s) \
539         (&(const struct parse_action_priv){ \
540                 .type = RTE_FLOW_ACTION_TYPE_ ## t, \
541                 .size = s, \
542         })
543
544 static const enum index next_vc_attr[] = {
545         GROUP,
546         PRIORITY,
547         INGRESS,
548         EGRESS,
549         TRANSFER,
550         PATTERN,
551         ZERO,
552 };
553
554 static const enum index next_destroy_attr[] = {
555         DESTROY_RULE,
556         END,
557         ZERO,
558 };
559
560 static const enum index next_list_attr[] = {
561         LIST_GROUP,
562         END,
563         ZERO,
564 };
565
566 static const enum index item_param[] = {
567         ITEM_PARAM_IS,
568         ITEM_PARAM_SPEC,
569         ITEM_PARAM_LAST,
570         ITEM_PARAM_MASK,
571         ITEM_PARAM_PREFIX,
572         ZERO,
573 };
574
575 static const enum index next_item[] = {
576         ITEM_END,
577         ITEM_VOID,
578         ITEM_INVERT,
579         ITEM_ANY,
580         ITEM_PF,
581         ITEM_VF,
582         ITEM_PHY_PORT,
583         ITEM_PORT_ID,
584         ITEM_MARK,
585         ITEM_RAW,
586         ITEM_ETH,
587         ITEM_VLAN,
588         ITEM_IPV4,
589         ITEM_IPV6,
590         ITEM_ICMP,
591         ITEM_UDP,
592         ITEM_TCP,
593         ITEM_SCTP,
594         ITEM_VXLAN,
595         ITEM_E_TAG,
596         ITEM_NVGRE,
597         ITEM_MPLS,
598         ITEM_GRE,
599         ITEM_FUZZY,
600         ITEM_GTP,
601         ITEM_GTPC,
602         ITEM_GTPU,
603         ITEM_GENEVE,
604         ITEM_VXLAN_GPE,
605         ITEM_ARP_ETH_IPV4,
606         ITEM_IPV6_EXT,
607         ITEM_ICMP6,
608         ITEM_ICMP6_ND_NS,
609         ITEM_ICMP6_ND_NA,
610         ITEM_ICMP6_ND_OPT,
611         ITEM_ICMP6_ND_OPT_SLA_ETH,
612         ITEM_ICMP6_ND_OPT_TLA_ETH,
613         ITEM_META,
614         ZERO,
615 };
616
617 static const enum index item_fuzzy[] = {
618         ITEM_FUZZY_THRESH,
619         ITEM_NEXT,
620         ZERO,
621 };
622
623 static const enum index item_any[] = {
624         ITEM_ANY_NUM,
625         ITEM_NEXT,
626         ZERO,
627 };
628
629 static const enum index item_vf[] = {
630         ITEM_VF_ID,
631         ITEM_NEXT,
632         ZERO,
633 };
634
635 static const enum index item_phy_port[] = {
636         ITEM_PHY_PORT_INDEX,
637         ITEM_NEXT,
638         ZERO,
639 };
640
641 static const enum index item_port_id[] = {
642         ITEM_PORT_ID_ID,
643         ITEM_NEXT,
644         ZERO,
645 };
646
647 static const enum index item_mark[] = {
648         ITEM_MARK_ID,
649         ITEM_NEXT,
650         ZERO,
651 };
652
653 static const enum index item_raw[] = {
654         ITEM_RAW_RELATIVE,
655         ITEM_RAW_SEARCH,
656         ITEM_RAW_OFFSET,
657         ITEM_RAW_LIMIT,
658         ITEM_RAW_PATTERN,
659         ITEM_NEXT,
660         ZERO,
661 };
662
663 static const enum index item_eth[] = {
664         ITEM_ETH_DST,
665         ITEM_ETH_SRC,
666         ITEM_ETH_TYPE,
667         ITEM_NEXT,
668         ZERO,
669 };
670
671 static const enum index item_vlan[] = {
672         ITEM_VLAN_TCI,
673         ITEM_VLAN_PCP,
674         ITEM_VLAN_DEI,
675         ITEM_VLAN_VID,
676         ITEM_VLAN_INNER_TYPE,
677         ITEM_NEXT,
678         ZERO,
679 };
680
681 static const enum index item_ipv4[] = {
682         ITEM_IPV4_TOS,
683         ITEM_IPV4_TTL,
684         ITEM_IPV4_PROTO,
685         ITEM_IPV4_SRC,
686         ITEM_IPV4_DST,
687         ITEM_NEXT,
688         ZERO,
689 };
690
691 static const enum index item_ipv6[] = {
692         ITEM_IPV6_TC,
693         ITEM_IPV6_FLOW,
694         ITEM_IPV6_PROTO,
695         ITEM_IPV6_HOP,
696         ITEM_IPV6_SRC,
697         ITEM_IPV6_DST,
698         ITEM_NEXT,
699         ZERO,
700 };
701
702 static const enum index item_icmp[] = {
703         ITEM_ICMP_TYPE,
704         ITEM_ICMP_CODE,
705         ITEM_NEXT,
706         ZERO,
707 };
708
709 static const enum index item_udp[] = {
710         ITEM_UDP_SRC,
711         ITEM_UDP_DST,
712         ITEM_NEXT,
713         ZERO,
714 };
715
716 static const enum index item_tcp[] = {
717         ITEM_TCP_SRC,
718         ITEM_TCP_DST,
719         ITEM_TCP_FLAGS,
720         ITEM_NEXT,
721         ZERO,
722 };
723
724 static const enum index item_sctp[] = {
725         ITEM_SCTP_SRC,
726         ITEM_SCTP_DST,
727         ITEM_SCTP_TAG,
728         ITEM_SCTP_CKSUM,
729         ITEM_NEXT,
730         ZERO,
731 };
732
733 static const enum index item_vxlan[] = {
734         ITEM_VXLAN_VNI,
735         ITEM_NEXT,
736         ZERO,
737 };
738
739 static const enum index item_e_tag[] = {
740         ITEM_E_TAG_GRP_ECID_B,
741         ITEM_NEXT,
742         ZERO,
743 };
744
745 static const enum index item_nvgre[] = {
746         ITEM_NVGRE_TNI,
747         ITEM_NEXT,
748         ZERO,
749 };
750
751 static const enum index item_mpls[] = {
752         ITEM_MPLS_LABEL,
753         ITEM_NEXT,
754         ZERO,
755 };
756
757 static const enum index item_gre[] = {
758         ITEM_GRE_PROTO,
759         ITEM_NEXT,
760         ZERO,
761 };
762
763 static const enum index item_gtp[] = {
764         ITEM_GTP_TEID,
765         ITEM_NEXT,
766         ZERO,
767 };
768
769 static const enum index item_geneve[] = {
770         ITEM_GENEVE_VNI,
771         ITEM_GENEVE_PROTO,
772         ITEM_NEXT,
773         ZERO,
774 };
775
776 static const enum index item_vxlan_gpe[] = {
777         ITEM_VXLAN_GPE_VNI,
778         ITEM_NEXT,
779         ZERO,
780 };
781
782 static const enum index item_arp_eth_ipv4[] = {
783         ITEM_ARP_ETH_IPV4_SHA,
784         ITEM_ARP_ETH_IPV4_SPA,
785         ITEM_ARP_ETH_IPV4_THA,
786         ITEM_ARP_ETH_IPV4_TPA,
787         ITEM_NEXT,
788         ZERO,
789 };
790
791 static const enum index item_ipv6_ext[] = {
792         ITEM_IPV6_EXT_NEXT_HDR,
793         ITEM_NEXT,
794         ZERO,
795 };
796
797 static const enum index item_icmp6[] = {
798         ITEM_ICMP6_TYPE,
799         ITEM_ICMP6_CODE,
800         ITEM_NEXT,
801         ZERO,
802 };
803
804 static const enum index item_icmp6_nd_ns[] = {
805         ITEM_ICMP6_ND_NS_TARGET_ADDR,
806         ITEM_NEXT,
807         ZERO,
808 };
809
810 static const enum index item_icmp6_nd_na[] = {
811         ITEM_ICMP6_ND_NA_TARGET_ADDR,
812         ITEM_NEXT,
813         ZERO,
814 };
815
816 static const enum index item_icmp6_nd_opt[] = {
817         ITEM_ICMP6_ND_OPT_TYPE,
818         ITEM_NEXT,
819         ZERO,
820 };
821
822 static const enum index item_icmp6_nd_opt_sla_eth[] = {
823         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
824         ITEM_NEXT,
825         ZERO,
826 };
827
828 static const enum index item_icmp6_nd_opt_tla_eth[] = {
829         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
830         ITEM_NEXT,
831         ZERO,
832 };
833
834 static const enum index item_meta[] = {
835         ITEM_META_DATA,
836         ITEM_NEXT,
837         ZERO,
838 };
839
840 static const enum index next_action[] = {
841         ACTION_END,
842         ACTION_VOID,
843         ACTION_PASSTHRU,
844         ACTION_JUMP,
845         ACTION_MARK,
846         ACTION_FLAG,
847         ACTION_QUEUE,
848         ACTION_DROP,
849         ACTION_COUNT,
850         ACTION_RSS,
851         ACTION_PF,
852         ACTION_VF,
853         ACTION_PHY_PORT,
854         ACTION_PORT_ID,
855         ACTION_METER,
856         ACTION_OF_SET_MPLS_TTL,
857         ACTION_OF_DEC_MPLS_TTL,
858         ACTION_OF_SET_NW_TTL,
859         ACTION_OF_DEC_NW_TTL,
860         ACTION_OF_COPY_TTL_OUT,
861         ACTION_OF_COPY_TTL_IN,
862         ACTION_OF_POP_VLAN,
863         ACTION_OF_PUSH_VLAN,
864         ACTION_OF_SET_VLAN_VID,
865         ACTION_OF_SET_VLAN_PCP,
866         ACTION_OF_POP_MPLS,
867         ACTION_OF_PUSH_MPLS,
868         ACTION_VXLAN_ENCAP,
869         ACTION_VXLAN_DECAP,
870         ACTION_NVGRE_ENCAP,
871         ACTION_NVGRE_DECAP,
872         ACTION_L2_ENCAP,
873         ACTION_L2_DECAP,
874         ACTION_MPLSOGRE_ENCAP,
875         ACTION_MPLSOGRE_DECAP,
876         ACTION_MPLSOUDP_ENCAP,
877         ACTION_MPLSOUDP_DECAP,
878         ACTION_SET_IPV4_SRC,
879         ACTION_SET_IPV4_DST,
880         ACTION_SET_IPV6_SRC,
881         ACTION_SET_IPV6_DST,
882         ACTION_SET_TP_SRC,
883         ACTION_SET_TP_DST,
884         ACTION_MAC_SWAP,
885         ACTION_DEC_TTL,
886         ACTION_SET_TTL,
887         ACTION_SET_MAC_SRC,
888         ACTION_SET_MAC_DST,
889         ZERO,
890 };
891
892 static const enum index action_mark[] = {
893         ACTION_MARK_ID,
894         ACTION_NEXT,
895         ZERO,
896 };
897
898 static const enum index action_queue[] = {
899         ACTION_QUEUE_INDEX,
900         ACTION_NEXT,
901         ZERO,
902 };
903
904 static const enum index action_count[] = {
905         ACTION_COUNT_ID,
906         ACTION_COUNT_SHARED,
907         ACTION_NEXT,
908         ZERO,
909 };
910
911 static const enum index action_rss[] = {
912         ACTION_RSS_FUNC,
913         ACTION_RSS_LEVEL,
914         ACTION_RSS_TYPES,
915         ACTION_RSS_KEY,
916         ACTION_RSS_KEY_LEN,
917         ACTION_RSS_QUEUES,
918         ACTION_NEXT,
919         ZERO,
920 };
921
922 static const enum index action_vf[] = {
923         ACTION_VF_ORIGINAL,
924         ACTION_VF_ID,
925         ACTION_NEXT,
926         ZERO,
927 };
928
929 static const enum index action_phy_port[] = {
930         ACTION_PHY_PORT_ORIGINAL,
931         ACTION_PHY_PORT_INDEX,
932         ACTION_NEXT,
933         ZERO,
934 };
935
936 static const enum index action_port_id[] = {
937         ACTION_PORT_ID_ORIGINAL,
938         ACTION_PORT_ID_ID,
939         ACTION_NEXT,
940         ZERO,
941 };
942
943 static const enum index action_meter[] = {
944         ACTION_METER_ID,
945         ACTION_NEXT,
946         ZERO,
947 };
948
949 static const enum index action_of_set_mpls_ttl[] = {
950         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
951         ACTION_NEXT,
952         ZERO,
953 };
954
955 static const enum index action_of_set_nw_ttl[] = {
956         ACTION_OF_SET_NW_TTL_NW_TTL,
957         ACTION_NEXT,
958         ZERO,
959 };
960
961 static const enum index action_of_push_vlan[] = {
962         ACTION_OF_PUSH_VLAN_ETHERTYPE,
963         ACTION_NEXT,
964         ZERO,
965 };
966
967 static const enum index action_of_set_vlan_vid[] = {
968         ACTION_OF_SET_VLAN_VID_VLAN_VID,
969         ACTION_NEXT,
970         ZERO,
971 };
972
973 static const enum index action_of_set_vlan_pcp[] = {
974         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
975         ACTION_NEXT,
976         ZERO,
977 };
978
979 static const enum index action_of_pop_mpls[] = {
980         ACTION_OF_POP_MPLS_ETHERTYPE,
981         ACTION_NEXT,
982         ZERO,
983 };
984
985 static const enum index action_of_push_mpls[] = {
986         ACTION_OF_PUSH_MPLS_ETHERTYPE,
987         ACTION_NEXT,
988         ZERO,
989 };
990
991 static const enum index action_set_ipv4_src[] = {
992         ACTION_SET_IPV4_SRC_IPV4_SRC,
993         ACTION_NEXT,
994         ZERO,
995 };
996
997 static const enum index action_set_mac_src[] = {
998         ACTION_SET_MAC_SRC_MAC_SRC,
999         ACTION_NEXT,
1000         ZERO,
1001 };
1002
1003 static const enum index action_set_ipv4_dst[] = {
1004         ACTION_SET_IPV4_DST_IPV4_DST,
1005         ACTION_NEXT,
1006         ZERO,
1007 };
1008
1009 static const enum index action_set_ipv6_src[] = {
1010         ACTION_SET_IPV6_SRC_IPV6_SRC,
1011         ACTION_NEXT,
1012         ZERO,
1013 };
1014
1015 static const enum index action_set_ipv6_dst[] = {
1016         ACTION_SET_IPV6_DST_IPV6_DST,
1017         ACTION_NEXT,
1018         ZERO,
1019 };
1020
1021 static const enum index action_set_tp_src[] = {
1022         ACTION_SET_TP_SRC_TP_SRC,
1023         ACTION_NEXT,
1024         ZERO,
1025 };
1026
1027 static const enum index action_set_tp_dst[] = {
1028         ACTION_SET_TP_DST_TP_DST,
1029         ACTION_NEXT,
1030         ZERO,
1031 };
1032
1033 static const enum index action_set_ttl[] = {
1034         ACTION_SET_TTL_TTL,
1035         ACTION_NEXT,
1036         ZERO,
1037 };
1038
1039 static const enum index action_jump[] = {
1040         ACTION_JUMP_GROUP,
1041         ACTION_NEXT,
1042         ZERO,
1043 };
1044
1045 static const enum index action_set_mac_dst[] = {
1046         ACTION_SET_MAC_DST_MAC_DST,
1047         ACTION_NEXT,
1048         ZERO,
1049 };
1050
1051 static int parse_init(struct context *, const struct token *,
1052                       const char *, unsigned int,
1053                       void *, unsigned int);
1054 static int parse_vc(struct context *, const struct token *,
1055                     const char *, unsigned int,
1056                     void *, unsigned int);
1057 static int parse_vc_spec(struct context *, const struct token *,
1058                          const char *, unsigned int, void *, unsigned int);
1059 static int parse_vc_conf(struct context *, const struct token *,
1060                          const char *, unsigned int, void *, unsigned int);
1061 static int parse_vc_action_rss(struct context *, const struct token *,
1062                                const char *, unsigned int, void *,
1063                                unsigned int);
1064 static int parse_vc_action_rss_func(struct context *, const struct token *,
1065                                     const char *, unsigned int, void *,
1066                                     unsigned int);
1067 static int parse_vc_action_rss_type(struct context *, const struct token *,
1068                                     const char *, unsigned int, void *,
1069                                     unsigned int);
1070 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1071                                      const char *, unsigned int, void *,
1072                                      unsigned int);
1073 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1074                                        const char *, unsigned int, void *,
1075                                        unsigned int);
1076 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1077                                        const char *, unsigned int, void *,
1078                                        unsigned int);
1079 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1080                                     const char *, unsigned int, void *,
1081                                     unsigned int);
1082 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1083                                     const char *, unsigned int, void *,
1084                                     unsigned int);
1085 static int parse_vc_action_mplsogre_encap(struct context *,
1086                                           const struct token *, const char *,
1087                                           unsigned int, void *, unsigned int);
1088 static int parse_vc_action_mplsogre_decap(struct context *,
1089                                           const struct token *, const char *,
1090                                           unsigned int, void *, unsigned int);
1091 static int parse_vc_action_mplsoudp_encap(struct context *,
1092                                           const struct token *, const char *,
1093                                           unsigned int, void *, unsigned int);
1094 static int parse_vc_action_mplsoudp_decap(struct context *,
1095                                           const struct token *, const char *,
1096                                           unsigned int, void *, unsigned int);
1097 static int parse_destroy(struct context *, const struct token *,
1098                          const char *, unsigned int,
1099                          void *, unsigned int);
1100 static int parse_flush(struct context *, const struct token *,
1101                        const char *, unsigned int,
1102                        void *, unsigned int);
1103 static int parse_query(struct context *, const struct token *,
1104                        const char *, unsigned int,
1105                        void *, unsigned int);
1106 static int parse_action(struct context *, const struct token *,
1107                         const char *, unsigned int,
1108                         void *, unsigned int);
1109 static int parse_list(struct context *, const struct token *,
1110                       const char *, unsigned int,
1111                       void *, unsigned int);
1112 static int parse_isolate(struct context *, const struct token *,
1113                          const char *, unsigned int,
1114                          void *, unsigned int);
1115 static int parse_int(struct context *, const struct token *,
1116                      const char *, unsigned int,
1117                      void *, unsigned int);
1118 static int parse_prefix(struct context *, const struct token *,
1119                         const char *, unsigned int,
1120                         void *, unsigned int);
1121 static int parse_boolean(struct context *, const struct token *,
1122                          const char *, unsigned int,
1123                          void *, unsigned int);
1124 static int parse_string(struct context *, const struct token *,
1125                         const char *, unsigned int,
1126                         void *, unsigned int);
1127 static int parse_hex(struct context *ctx, const struct token *token,
1128                         const char *str, unsigned int len,
1129                         void *buf, unsigned int size);
1130 static int parse_mac_addr(struct context *, const struct token *,
1131                           const char *, unsigned int,
1132                           void *, unsigned int);
1133 static int parse_ipv4_addr(struct context *, const struct token *,
1134                            const char *, unsigned int,
1135                            void *, unsigned int);
1136 static int parse_ipv6_addr(struct context *, const struct token *,
1137                            const char *, unsigned int,
1138                            void *, unsigned int);
1139 static int parse_port(struct context *, const struct token *,
1140                       const char *, unsigned int,
1141                       void *, unsigned int);
1142 static int comp_none(struct context *, const struct token *,
1143                      unsigned int, char *, unsigned int);
1144 static int comp_boolean(struct context *, const struct token *,
1145                         unsigned int, char *, unsigned int);
1146 static int comp_action(struct context *, const struct token *,
1147                        unsigned int, char *, unsigned int);
1148 static int comp_port(struct context *, const struct token *,
1149                      unsigned int, char *, unsigned int);
1150 static int comp_rule_id(struct context *, const struct token *,
1151                         unsigned int, char *, unsigned int);
1152 static int comp_vc_action_rss_type(struct context *, const struct token *,
1153                                    unsigned int, char *, unsigned int);
1154 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1155                                     unsigned int, char *, unsigned int);
1156
1157 /** Token definitions. */
1158 static const struct token token_list[] = {
1159         /* Special tokens. */
1160         [ZERO] = {
1161                 .name = "ZERO",
1162                 .help = "null entry, abused as the entry point",
1163                 .next = NEXT(NEXT_ENTRY(FLOW)),
1164         },
1165         [END] = {
1166                 .name = "",
1167                 .type = "RETURN",
1168                 .help = "command may end here",
1169         },
1170         /* Common tokens. */
1171         [INTEGER] = {
1172                 .name = "{int}",
1173                 .type = "INTEGER",
1174                 .help = "integer value",
1175                 .call = parse_int,
1176                 .comp = comp_none,
1177         },
1178         [UNSIGNED] = {
1179                 .name = "{unsigned}",
1180                 .type = "UNSIGNED",
1181                 .help = "unsigned integer value",
1182                 .call = parse_int,
1183                 .comp = comp_none,
1184         },
1185         [PREFIX] = {
1186                 .name = "{prefix}",
1187                 .type = "PREFIX",
1188                 .help = "prefix length for bit-mask",
1189                 .call = parse_prefix,
1190                 .comp = comp_none,
1191         },
1192         [BOOLEAN] = {
1193                 .name = "{boolean}",
1194                 .type = "BOOLEAN",
1195                 .help = "any boolean value",
1196                 .call = parse_boolean,
1197                 .comp = comp_boolean,
1198         },
1199         [STRING] = {
1200                 .name = "{string}",
1201                 .type = "STRING",
1202                 .help = "fixed string",
1203                 .call = parse_string,
1204                 .comp = comp_none,
1205         },
1206         [HEX] = {
1207                 .name = "{hex}",
1208                 .type = "HEX",
1209                 .help = "fixed string",
1210                 .call = parse_hex,
1211                 .comp = comp_none,
1212         },
1213         [MAC_ADDR] = {
1214                 .name = "{MAC address}",
1215                 .type = "MAC-48",
1216                 .help = "standard MAC address notation",
1217                 .call = parse_mac_addr,
1218                 .comp = comp_none,
1219         },
1220         [IPV4_ADDR] = {
1221                 .name = "{IPv4 address}",
1222                 .type = "IPV4 ADDRESS",
1223                 .help = "standard IPv4 address notation",
1224                 .call = parse_ipv4_addr,
1225                 .comp = comp_none,
1226         },
1227         [IPV6_ADDR] = {
1228                 .name = "{IPv6 address}",
1229                 .type = "IPV6 ADDRESS",
1230                 .help = "standard IPv6 address notation",
1231                 .call = parse_ipv6_addr,
1232                 .comp = comp_none,
1233         },
1234         [RULE_ID] = {
1235                 .name = "{rule id}",
1236                 .type = "RULE ID",
1237                 .help = "rule identifier",
1238                 .call = parse_int,
1239                 .comp = comp_rule_id,
1240         },
1241         [PORT_ID] = {
1242                 .name = "{port_id}",
1243                 .type = "PORT ID",
1244                 .help = "port identifier",
1245                 .call = parse_port,
1246                 .comp = comp_port,
1247         },
1248         [GROUP_ID] = {
1249                 .name = "{group_id}",
1250                 .type = "GROUP ID",
1251                 .help = "group identifier",
1252                 .call = parse_int,
1253                 .comp = comp_none,
1254         },
1255         [PRIORITY_LEVEL] = {
1256                 .name = "{level}",
1257                 .type = "PRIORITY",
1258                 .help = "priority level",
1259                 .call = parse_int,
1260                 .comp = comp_none,
1261         },
1262         /* Top-level command. */
1263         [FLOW] = {
1264                 .name = "flow",
1265                 .type = "{command} {port_id} [{arg} [...]]",
1266                 .help = "manage ingress/egress flow rules",
1267                 .next = NEXT(NEXT_ENTRY
1268                              (VALIDATE,
1269                               CREATE,
1270                               DESTROY,
1271                               FLUSH,
1272                               LIST,
1273                               QUERY,
1274                               ISOLATE)),
1275                 .call = parse_init,
1276         },
1277         /* Sub-level commands. */
1278         [VALIDATE] = {
1279                 .name = "validate",
1280                 .help = "check whether a flow rule can be created",
1281                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1282                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1283                 .call = parse_vc,
1284         },
1285         [CREATE] = {
1286                 .name = "create",
1287                 .help = "create a flow rule",
1288                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1289                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1290                 .call = parse_vc,
1291         },
1292         [DESTROY] = {
1293                 .name = "destroy",
1294                 .help = "destroy specific flow rules",
1295                 .next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1296                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1297                 .call = parse_destroy,
1298         },
1299         [FLUSH] = {
1300                 .name = "flush",
1301                 .help = "destroy all flow rules",
1302                 .next = NEXT(NEXT_ENTRY(PORT_ID)),
1303                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1304                 .call = parse_flush,
1305         },
1306         [QUERY] = {
1307                 .name = "query",
1308                 .help = "query an existing flow rule",
1309                 .next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1310                              NEXT_ENTRY(RULE_ID),
1311                              NEXT_ENTRY(PORT_ID)),
1312                 .args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1313                              ARGS_ENTRY(struct buffer, args.query.rule),
1314                              ARGS_ENTRY(struct buffer, port)),
1315                 .call = parse_query,
1316         },
1317         [LIST] = {
1318                 .name = "list",
1319                 .help = "list existing flow rules",
1320                 .next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1321                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1322                 .call = parse_list,
1323         },
1324         [ISOLATE] = {
1325                 .name = "isolate",
1326                 .help = "restrict ingress traffic to the defined flow rules",
1327                 .next = NEXT(NEXT_ENTRY(BOOLEAN),
1328                              NEXT_ENTRY(PORT_ID)),
1329                 .args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1330                              ARGS_ENTRY(struct buffer, port)),
1331                 .call = parse_isolate,
1332         },
1333         /* Destroy arguments. */
1334         [DESTROY_RULE] = {
1335                 .name = "rule",
1336                 .help = "specify a rule identifier",
1337                 .next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1338                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1339                 .call = parse_destroy,
1340         },
1341         /* Query arguments. */
1342         [QUERY_ACTION] = {
1343                 .name = "{action}",
1344                 .type = "ACTION",
1345                 .help = "action to query, must be part of the rule",
1346                 .call = parse_action,
1347                 .comp = comp_action,
1348         },
1349         /* List arguments. */
1350         [LIST_GROUP] = {
1351                 .name = "group",
1352                 .help = "specify a group",
1353                 .next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1354                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1355                 .call = parse_list,
1356         },
1357         /* Validate/create attributes. */
1358         [GROUP] = {
1359                 .name = "group",
1360                 .help = "specify a group",
1361                 .next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1362                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1363                 .call = parse_vc,
1364         },
1365         [PRIORITY] = {
1366                 .name = "priority",
1367                 .help = "specify a priority level",
1368                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1369                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1370                 .call = parse_vc,
1371         },
1372         [INGRESS] = {
1373                 .name = "ingress",
1374                 .help = "affect rule to ingress",
1375                 .next = NEXT(next_vc_attr),
1376                 .call = parse_vc,
1377         },
1378         [EGRESS] = {
1379                 .name = "egress",
1380                 .help = "affect rule to egress",
1381                 .next = NEXT(next_vc_attr),
1382                 .call = parse_vc,
1383         },
1384         [TRANSFER] = {
1385                 .name = "transfer",
1386                 .help = "apply rule directly to endpoints found in pattern",
1387                 .next = NEXT(next_vc_attr),
1388                 .call = parse_vc,
1389         },
1390         /* Validate/create pattern. */
1391         [PATTERN] = {
1392                 .name = "pattern",
1393                 .help = "submit a list of pattern items",
1394                 .next = NEXT(next_item),
1395                 .call = parse_vc,
1396         },
1397         [ITEM_PARAM_IS] = {
1398                 .name = "is",
1399                 .help = "match value perfectly (with full bit-mask)",
1400                 .call = parse_vc_spec,
1401         },
1402         [ITEM_PARAM_SPEC] = {
1403                 .name = "spec",
1404                 .help = "match value according to configured bit-mask",
1405                 .call = parse_vc_spec,
1406         },
1407         [ITEM_PARAM_LAST] = {
1408                 .name = "last",
1409                 .help = "specify upper bound to establish a range",
1410                 .call = parse_vc_spec,
1411         },
1412         [ITEM_PARAM_MASK] = {
1413                 .name = "mask",
1414                 .help = "specify bit-mask with relevant bits set to one",
1415                 .call = parse_vc_spec,
1416         },
1417         [ITEM_PARAM_PREFIX] = {
1418                 .name = "prefix",
1419                 .help = "generate bit-mask from a prefix length",
1420                 .call = parse_vc_spec,
1421         },
1422         [ITEM_NEXT] = {
1423                 .name = "/",
1424                 .help = "specify next pattern item",
1425                 .next = NEXT(next_item),
1426         },
1427         [ITEM_END] = {
1428                 .name = "end",
1429                 .help = "end list of pattern items",
1430                 .priv = PRIV_ITEM(END, 0),
1431                 .next = NEXT(NEXT_ENTRY(ACTIONS)),
1432                 .call = parse_vc,
1433         },
1434         [ITEM_VOID] = {
1435                 .name = "void",
1436                 .help = "no-op pattern item",
1437                 .priv = PRIV_ITEM(VOID, 0),
1438                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1439                 .call = parse_vc,
1440         },
1441         [ITEM_INVERT] = {
1442                 .name = "invert",
1443                 .help = "perform actions when pattern does not match",
1444                 .priv = PRIV_ITEM(INVERT, 0),
1445                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1446                 .call = parse_vc,
1447         },
1448         [ITEM_ANY] = {
1449                 .name = "any",
1450                 .help = "match any protocol for the current layer",
1451                 .priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1452                 .next = NEXT(item_any),
1453                 .call = parse_vc,
1454         },
1455         [ITEM_ANY_NUM] = {
1456                 .name = "num",
1457                 .help = "number of layers covered",
1458                 .next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1459                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1460         },
1461         [ITEM_PF] = {
1462                 .name = "pf",
1463                 .help = "match traffic from/to the physical function",
1464                 .priv = PRIV_ITEM(PF, 0),
1465                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1466                 .call = parse_vc,
1467         },
1468         [ITEM_VF] = {
1469                 .name = "vf",
1470                 .help = "match traffic from/to a virtual function ID",
1471                 .priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1472                 .next = NEXT(item_vf),
1473                 .call = parse_vc,
1474         },
1475         [ITEM_VF_ID] = {
1476                 .name = "id",
1477                 .help = "VF ID",
1478                 .next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1479                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1480         },
1481         [ITEM_PHY_PORT] = {
1482                 .name = "phy_port",
1483                 .help = "match traffic from/to a specific physical port",
1484                 .priv = PRIV_ITEM(PHY_PORT,
1485                                   sizeof(struct rte_flow_item_phy_port)),
1486                 .next = NEXT(item_phy_port),
1487                 .call = parse_vc,
1488         },
1489         [ITEM_PHY_PORT_INDEX] = {
1490                 .name = "index",
1491                 .help = "physical port index",
1492                 .next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1493                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1494         },
1495         [ITEM_PORT_ID] = {
1496                 .name = "port_id",
1497                 .help = "match traffic from/to a given DPDK port ID",
1498                 .priv = PRIV_ITEM(PORT_ID,
1499                                   sizeof(struct rte_flow_item_port_id)),
1500                 .next = NEXT(item_port_id),
1501                 .call = parse_vc,
1502         },
1503         [ITEM_PORT_ID_ID] = {
1504                 .name = "id",
1505                 .help = "DPDK port ID",
1506                 .next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1507                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1508         },
1509         [ITEM_MARK] = {
1510                 .name = "mark",
1511                 .help = "match traffic against value set in previously matched rule",
1512                 .priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1513                 .next = NEXT(item_mark),
1514                 .call = parse_vc,
1515         },
1516         [ITEM_MARK_ID] = {
1517                 .name = "id",
1518                 .help = "Integer value to match against",
1519                 .next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1520                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1521         },
1522         [ITEM_RAW] = {
1523                 .name = "raw",
1524                 .help = "match an arbitrary byte string",
1525                 .priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1526                 .next = NEXT(item_raw),
1527                 .call = parse_vc,
1528         },
1529         [ITEM_RAW_RELATIVE] = {
1530                 .name = "relative",
1531                 .help = "look for pattern after the previous item",
1532                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1533                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1534                                            relative, 1)),
1535         },
1536         [ITEM_RAW_SEARCH] = {
1537                 .name = "search",
1538                 .help = "search pattern from offset (see also limit)",
1539                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1540                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1541                                            search, 1)),
1542         },
1543         [ITEM_RAW_OFFSET] = {
1544                 .name = "offset",
1545                 .help = "absolute or relative offset for pattern",
1546                 .next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1547                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1548         },
1549         [ITEM_RAW_LIMIT] = {
1550                 .name = "limit",
1551                 .help = "search area limit for start of pattern",
1552                 .next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1553                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1554         },
1555         [ITEM_RAW_PATTERN] = {
1556                 .name = "pattern",
1557                 .help = "byte string to look for",
1558                 .next = NEXT(item_raw,
1559                              NEXT_ENTRY(STRING),
1560                              NEXT_ENTRY(ITEM_PARAM_IS,
1561                                         ITEM_PARAM_SPEC,
1562                                         ITEM_PARAM_MASK)),
1563                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1564                              ARGS_ENTRY(struct rte_flow_item_raw, length),
1565                              ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1566                                             ITEM_RAW_PATTERN_SIZE)),
1567         },
1568         [ITEM_ETH] = {
1569                 .name = "eth",
1570                 .help = "match Ethernet header",
1571                 .priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1572                 .next = NEXT(item_eth),
1573                 .call = parse_vc,
1574         },
1575         [ITEM_ETH_DST] = {
1576                 .name = "dst",
1577                 .help = "destination MAC",
1578                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1579                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1580         },
1581         [ITEM_ETH_SRC] = {
1582                 .name = "src",
1583                 .help = "source MAC",
1584                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1585                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1586         },
1587         [ITEM_ETH_TYPE] = {
1588                 .name = "type",
1589                 .help = "EtherType",
1590                 .next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1591                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1592         },
1593         [ITEM_VLAN] = {
1594                 .name = "vlan",
1595                 .help = "match 802.1Q/ad VLAN tag",
1596                 .priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1597                 .next = NEXT(item_vlan),
1598                 .call = parse_vc,
1599         },
1600         [ITEM_VLAN_TCI] = {
1601                 .name = "tci",
1602                 .help = "tag control information",
1603                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1604                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1605         },
1606         [ITEM_VLAN_PCP] = {
1607                 .name = "pcp",
1608                 .help = "priority code point",
1609                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1610                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1611                                                   tci, "\xe0\x00")),
1612         },
1613         [ITEM_VLAN_DEI] = {
1614                 .name = "dei",
1615                 .help = "drop eligible indicator",
1616                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1617                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1618                                                   tci, "\x10\x00")),
1619         },
1620         [ITEM_VLAN_VID] = {
1621                 .name = "vid",
1622                 .help = "VLAN identifier",
1623                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1624                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1625                                                   tci, "\x0f\xff")),
1626         },
1627         [ITEM_VLAN_INNER_TYPE] = {
1628                 .name = "inner_type",
1629                 .help = "inner EtherType",
1630                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1631                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1632                                              inner_type)),
1633         },
1634         [ITEM_IPV4] = {
1635                 .name = "ipv4",
1636                 .help = "match IPv4 header",
1637                 .priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1638                 .next = NEXT(item_ipv4),
1639                 .call = parse_vc,
1640         },
1641         [ITEM_IPV4_TOS] = {
1642                 .name = "tos",
1643                 .help = "type of service",
1644                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1645                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1646                                              hdr.type_of_service)),
1647         },
1648         [ITEM_IPV4_TTL] = {
1649                 .name = "ttl",
1650                 .help = "time to live",
1651                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1652                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1653                                              hdr.time_to_live)),
1654         },
1655         [ITEM_IPV4_PROTO] = {
1656                 .name = "proto",
1657                 .help = "next protocol ID",
1658                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1659                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1660                                              hdr.next_proto_id)),
1661         },
1662         [ITEM_IPV4_SRC] = {
1663                 .name = "src",
1664                 .help = "source address",
1665                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1666                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1667                                              hdr.src_addr)),
1668         },
1669         [ITEM_IPV4_DST] = {
1670                 .name = "dst",
1671                 .help = "destination address",
1672                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1673                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1674                                              hdr.dst_addr)),
1675         },
1676         [ITEM_IPV6] = {
1677                 .name = "ipv6",
1678                 .help = "match IPv6 header",
1679                 .priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1680                 .next = NEXT(item_ipv6),
1681                 .call = parse_vc,
1682         },
1683         [ITEM_IPV6_TC] = {
1684                 .name = "tc",
1685                 .help = "traffic class",
1686                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1687                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1688                                                   hdr.vtc_flow,
1689                                                   "\x0f\xf0\x00\x00")),
1690         },
1691         [ITEM_IPV6_FLOW] = {
1692                 .name = "flow",
1693                 .help = "flow label",
1694                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1695                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1696                                                   hdr.vtc_flow,
1697                                                   "\x00\x0f\xff\xff")),
1698         },
1699         [ITEM_IPV6_PROTO] = {
1700                 .name = "proto",
1701                 .help = "protocol (next header)",
1702                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1703                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1704                                              hdr.proto)),
1705         },
1706         [ITEM_IPV6_HOP] = {
1707                 .name = "hop",
1708                 .help = "hop limit",
1709                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1710                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1711                                              hdr.hop_limits)),
1712         },
1713         [ITEM_IPV6_SRC] = {
1714                 .name = "src",
1715                 .help = "source address",
1716                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1717                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1718                                              hdr.src_addr)),
1719         },
1720         [ITEM_IPV6_DST] = {
1721                 .name = "dst",
1722                 .help = "destination address",
1723                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1724                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1725                                              hdr.dst_addr)),
1726         },
1727         [ITEM_ICMP] = {
1728                 .name = "icmp",
1729                 .help = "match ICMP header",
1730                 .priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1731                 .next = NEXT(item_icmp),
1732                 .call = parse_vc,
1733         },
1734         [ITEM_ICMP_TYPE] = {
1735                 .name = "type",
1736                 .help = "ICMP packet type",
1737                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1738                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1739                                              hdr.icmp_type)),
1740         },
1741         [ITEM_ICMP_CODE] = {
1742                 .name = "code",
1743                 .help = "ICMP packet code",
1744                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1745                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1746                                              hdr.icmp_code)),
1747         },
1748         [ITEM_UDP] = {
1749                 .name = "udp",
1750                 .help = "match UDP header",
1751                 .priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1752                 .next = NEXT(item_udp),
1753                 .call = parse_vc,
1754         },
1755         [ITEM_UDP_SRC] = {
1756                 .name = "src",
1757                 .help = "UDP source port",
1758                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1759                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1760                                              hdr.src_port)),
1761         },
1762         [ITEM_UDP_DST] = {
1763                 .name = "dst",
1764                 .help = "UDP destination port",
1765                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1766                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1767                                              hdr.dst_port)),
1768         },
1769         [ITEM_TCP] = {
1770                 .name = "tcp",
1771                 .help = "match TCP header",
1772                 .priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1773                 .next = NEXT(item_tcp),
1774                 .call = parse_vc,
1775         },
1776         [ITEM_TCP_SRC] = {
1777                 .name = "src",
1778                 .help = "TCP source port",
1779                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1780                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1781                                              hdr.src_port)),
1782         },
1783         [ITEM_TCP_DST] = {
1784                 .name = "dst",
1785                 .help = "TCP destination port",
1786                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1787                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1788                                              hdr.dst_port)),
1789         },
1790         [ITEM_TCP_FLAGS] = {
1791                 .name = "flags",
1792                 .help = "TCP flags",
1793                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1794                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1795                                              hdr.tcp_flags)),
1796         },
1797         [ITEM_SCTP] = {
1798                 .name = "sctp",
1799                 .help = "match SCTP header",
1800                 .priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1801                 .next = NEXT(item_sctp),
1802                 .call = parse_vc,
1803         },
1804         [ITEM_SCTP_SRC] = {
1805                 .name = "src",
1806                 .help = "SCTP source port",
1807                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1808                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1809                                              hdr.src_port)),
1810         },
1811         [ITEM_SCTP_DST] = {
1812                 .name = "dst",
1813                 .help = "SCTP destination port",
1814                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1815                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1816                                              hdr.dst_port)),
1817         },
1818         [ITEM_SCTP_TAG] = {
1819                 .name = "tag",
1820                 .help = "validation tag",
1821                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1822                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1823                                              hdr.tag)),
1824         },
1825         [ITEM_SCTP_CKSUM] = {
1826                 .name = "cksum",
1827                 .help = "checksum",
1828                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1829                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1830                                              hdr.cksum)),
1831         },
1832         [ITEM_VXLAN] = {
1833                 .name = "vxlan",
1834                 .help = "match VXLAN header",
1835                 .priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1836                 .next = NEXT(item_vxlan),
1837                 .call = parse_vc,
1838         },
1839         [ITEM_VXLAN_VNI] = {
1840                 .name = "vni",
1841                 .help = "VXLAN identifier",
1842                 .next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1843                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1844         },
1845         [ITEM_E_TAG] = {
1846                 .name = "e_tag",
1847                 .help = "match E-Tag header",
1848                 .priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1849                 .next = NEXT(item_e_tag),
1850                 .call = parse_vc,
1851         },
1852         [ITEM_E_TAG_GRP_ECID_B] = {
1853                 .name = "grp_ecid_b",
1854                 .help = "GRP and E-CID base",
1855                 .next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1856                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1857                                                   rsvd_grp_ecid_b,
1858                                                   "\x3f\xff")),
1859         },
1860         [ITEM_NVGRE] = {
1861                 .name = "nvgre",
1862                 .help = "match NVGRE header",
1863                 .priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1864                 .next = NEXT(item_nvgre),
1865                 .call = parse_vc,
1866         },
1867         [ITEM_NVGRE_TNI] = {
1868                 .name = "tni",
1869                 .help = "virtual subnet ID",
1870                 .next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1871                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1872         },
1873         [ITEM_MPLS] = {
1874                 .name = "mpls",
1875                 .help = "match MPLS header",
1876                 .priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1877                 .next = NEXT(item_mpls),
1878                 .call = parse_vc,
1879         },
1880         [ITEM_MPLS_LABEL] = {
1881                 .name = "label",
1882                 .help = "MPLS label",
1883                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1884                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1885                                                   label_tc_s,
1886                                                   "\xff\xff\xf0")),
1887         },
1888         [ITEM_GRE] = {
1889                 .name = "gre",
1890                 .help = "match GRE header",
1891                 .priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1892                 .next = NEXT(item_gre),
1893                 .call = parse_vc,
1894         },
1895         [ITEM_GRE_PROTO] = {
1896                 .name = "protocol",
1897                 .help = "GRE protocol type",
1898                 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1899                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1900                                              protocol)),
1901         },
1902         [ITEM_FUZZY] = {
1903                 .name = "fuzzy",
1904                 .help = "fuzzy pattern match, expect faster than default",
1905                 .priv = PRIV_ITEM(FUZZY,
1906                                 sizeof(struct rte_flow_item_fuzzy)),
1907                 .next = NEXT(item_fuzzy),
1908                 .call = parse_vc,
1909         },
1910         [ITEM_FUZZY_THRESH] = {
1911                 .name = "thresh",
1912                 .help = "match accuracy threshold",
1913                 .next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1914                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1915                                         thresh)),
1916         },
1917         [ITEM_GTP] = {
1918                 .name = "gtp",
1919                 .help = "match GTP header",
1920                 .priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1921                 .next = NEXT(item_gtp),
1922                 .call = parse_vc,
1923         },
1924         [ITEM_GTP_TEID] = {
1925                 .name = "teid",
1926                 .help = "tunnel endpoint identifier",
1927                 .next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1928                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1929         },
1930         [ITEM_GTPC] = {
1931                 .name = "gtpc",
1932                 .help = "match GTP header",
1933                 .priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1934                 .next = NEXT(item_gtp),
1935                 .call = parse_vc,
1936         },
1937         [ITEM_GTPU] = {
1938                 .name = "gtpu",
1939                 .help = "match GTP header",
1940                 .priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1941                 .next = NEXT(item_gtp),
1942                 .call = parse_vc,
1943         },
1944         [ITEM_GENEVE] = {
1945                 .name = "geneve",
1946                 .help = "match GENEVE header",
1947                 .priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1948                 .next = NEXT(item_geneve),
1949                 .call = parse_vc,
1950         },
1951         [ITEM_GENEVE_VNI] = {
1952                 .name = "vni",
1953                 .help = "virtual network identifier",
1954                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1955                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1956         },
1957         [ITEM_GENEVE_PROTO] = {
1958                 .name = "protocol",
1959                 .help = "GENEVE protocol type",
1960                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1961                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
1962                                              protocol)),
1963         },
1964         [ITEM_VXLAN_GPE] = {
1965                 .name = "vxlan-gpe",
1966                 .help = "match VXLAN-GPE header",
1967                 .priv = PRIV_ITEM(VXLAN_GPE,
1968                                   sizeof(struct rte_flow_item_vxlan_gpe)),
1969                 .next = NEXT(item_vxlan_gpe),
1970                 .call = parse_vc,
1971         },
1972         [ITEM_VXLAN_GPE_VNI] = {
1973                 .name = "vni",
1974                 .help = "VXLAN-GPE identifier",
1975                 .next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
1976                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
1977                                              vni)),
1978         },
1979         [ITEM_ARP_ETH_IPV4] = {
1980                 .name = "arp_eth_ipv4",
1981                 .help = "match ARP header for Ethernet/IPv4",
1982                 .priv = PRIV_ITEM(ARP_ETH_IPV4,
1983                                   sizeof(struct rte_flow_item_arp_eth_ipv4)),
1984                 .next = NEXT(item_arp_eth_ipv4),
1985                 .call = parse_vc,
1986         },
1987         [ITEM_ARP_ETH_IPV4_SHA] = {
1988                 .name = "sha",
1989                 .help = "sender hardware address",
1990                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1991                              item_param),
1992                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1993                                              sha)),
1994         },
1995         [ITEM_ARP_ETH_IPV4_SPA] = {
1996                 .name = "spa",
1997                 .help = "sender IPv4 address",
1998                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1999                              item_param),
2000                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2001                                              spa)),
2002         },
2003         [ITEM_ARP_ETH_IPV4_THA] = {
2004                 .name = "tha",
2005                 .help = "target hardware address",
2006                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2007                              item_param),
2008                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2009                                              tha)),
2010         },
2011         [ITEM_ARP_ETH_IPV4_TPA] = {
2012                 .name = "tpa",
2013                 .help = "target IPv4 address",
2014                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2015                              item_param),
2016                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2017                                              tpa)),
2018         },
2019         [ITEM_IPV6_EXT] = {
2020                 .name = "ipv6_ext",
2021                 .help = "match presence of any IPv6 extension header",
2022                 .priv = PRIV_ITEM(IPV6_EXT,
2023                                   sizeof(struct rte_flow_item_ipv6_ext)),
2024                 .next = NEXT(item_ipv6_ext),
2025                 .call = parse_vc,
2026         },
2027         [ITEM_IPV6_EXT_NEXT_HDR] = {
2028                 .name = "next_hdr",
2029                 .help = "next header",
2030                 .next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2031                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2032                                              next_hdr)),
2033         },
2034         [ITEM_ICMP6] = {
2035                 .name = "icmp6",
2036                 .help = "match any ICMPv6 header",
2037                 .priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2038                 .next = NEXT(item_icmp6),
2039                 .call = parse_vc,
2040         },
2041         [ITEM_ICMP6_TYPE] = {
2042                 .name = "type",
2043                 .help = "ICMPv6 type",
2044                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2045                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2046                                              type)),
2047         },
2048         [ITEM_ICMP6_CODE] = {
2049                 .name = "code",
2050                 .help = "ICMPv6 code",
2051                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2052                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2053                                              code)),
2054         },
2055         [ITEM_ICMP6_ND_NS] = {
2056                 .name = "icmp6_nd_ns",
2057                 .help = "match ICMPv6 neighbor discovery solicitation",
2058                 .priv = PRIV_ITEM(ICMP6_ND_NS,
2059                                   sizeof(struct rte_flow_item_icmp6_nd_ns)),
2060                 .next = NEXT(item_icmp6_nd_ns),
2061                 .call = parse_vc,
2062         },
2063         [ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2064                 .name = "target_addr",
2065                 .help = "target address",
2066                 .next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2067                              item_param),
2068                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2069                                              target_addr)),
2070         },
2071         [ITEM_ICMP6_ND_NA] = {
2072                 .name = "icmp6_nd_na",
2073                 .help = "match ICMPv6 neighbor discovery advertisement",
2074                 .priv = PRIV_ITEM(ICMP6_ND_NA,
2075                                   sizeof(struct rte_flow_item_icmp6_nd_na)),
2076                 .next = NEXT(item_icmp6_nd_na),
2077                 .call = parse_vc,
2078         },
2079         [ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2080                 .name = "target_addr",
2081                 .help = "target address",
2082                 .next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2083                              item_param),
2084                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2085                                              target_addr)),
2086         },
2087         [ITEM_ICMP6_ND_OPT] = {
2088                 .name = "icmp6_nd_opt",
2089                 .help = "match presence of any ICMPv6 neighbor discovery"
2090                         " option",
2091                 .priv = PRIV_ITEM(ICMP6_ND_OPT,
2092                                   sizeof(struct rte_flow_item_icmp6_nd_opt)),
2093                 .next = NEXT(item_icmp6_nd_opt),
2094                 .call = parse_vc,
2095         },
2096         [ITEM_ICMP6_ND_OPT_TYPE] = {
2097                 .name = "type",
2098                 .help = "ND option type",
2099                 .next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2100                              item_param),
2101                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2102                                              type)),
2103         },
2104         [ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2105                 .name = "icmp6_nd_opt_sla_eth",
2106                 .help = "match ICMPv6 neighbor discovery source Ethernet"
2107                         " link-layer address option",
2108                 .priv = PRIV_ITEM
2109                         (ICMP6_ND_OPT_SLA_ETH,
2110                          sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2111                 .next = NEXT(item_icmp6_nd_opt_sla_eth),
2112                 .call = parse_vc,
2113         },
2114         [ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2115                 .name = "sla",
2116                 .help = "source Ethernet LLA",
2117                 .next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2118                              item_param),
2119                 .args = ARGS(ARGS_ENTRY_HTON
2120                              (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2121         },
2122         [ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2123                 .name = "icmp6_nd_opt_tla_eth",
2124                 .help = "match ICMPv6 neighbor discovery target Ethernet"
2125                         " link-layer address option",
2126                 .priv = PRIV_ITEM
2127                         (ICMP6_ND_OPT_TLA_ETH,
2128                          sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2129                 .next = NEXT(item_icmp6_nd_opt_tla_eth),
2130                 .call = parse_vc,
2131         },
2132         [ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2133                 .name = "tla",
2134                 .help = "target Ethernet LLA",
2135                 .next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2136                              item_param),
2137                 .args = ARGS(ARGS_ENTRY_HTON
2138                              (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2139         },
2140         [ITEM_META] = {
2141                 .name = "meta",
2142                 .help = "match metadata header",
2143                 .priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2144                 .next = NEXT(item_meta),
2145                 .call = parse_vc,
2146         },
2147         [ITEM_META_DATA] = {
2148                 .name = "data",
2149                 .help = "metadata value",
2150                 .next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2151                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2152                                                   data, "\xff\xff\xff\xff")),
2153         },
2154
2155         /* Validate/create actions. */
2156         [ACTIONS] = {
2157                 .name = "actions",
2158                 .help = "submit a list of associated actions",
2159                 .next = NEXT(next_action),
2160                 .call = parse_vc,
2161         },
2162         [ACTION_NEXT] = {
2163                 .name = "/",
2164                 .help = "specify next action",
2165                 .next = NEXT(next_action),
2166         },
2167         [ACTION_END] = {
2168                 .name = "end",
2169                 .help = "end list of actions",
2170                 .priv = PRIV_ACTION(END, 0),
2171                 .call = parse_vc,
2172         },
2173         [ACTION_VOID] = {
2174                 .name = "void",
2175                 .help = "no-op action",
2176                 .priv = PRIV_ACTION(VOID, 0),
2177                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2178                 .call = parse_vc,
2179         },
2180         [ACTION_PASSTHRU] = {
2181                 .name = "passthru",
2182                 .help = "let subsequent rule process matched packets",
2183                 .priv = PRIV_ACTION(PASSTHRU, 0),
2184                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2185                 .call = parse_vc,
2186         },
2187         [ACTION_JUMP] = {
2188                 .name = "jump",
2189                 .help = "redirect traffic to a given group",
2190                 .priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2191                 .next = NEXT(action_jump),
2192                 .call = parse_vc,
2193         },
2194         [ACTION_JUMP_GROUP] = {
2195                 .name = "group",
2196                 .help = "group to redirect traffic to",
2197                 .next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2198                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2199                 .call = parse_vc_conf,
2200         },
2201         [ACTION_MARK] = {
2202                 .name = "mark",
2203                 .help = "attach 32 bit value to packets",
2204                 .priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2205                 .next = NEXT(action_mark),
2206                 .call = parse_vc,
2207         },
2208         [ACTION_MARK_ID] = {
2209                 .name = "id",
2210                 .help = "32 bit value to return with packets",
2211                 .next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2212                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2213                 .call = parse_vc_conf,
2214         },
2215         [ACTION_FLAG] = {
2216                 .name = "flag",
2217                 .help = "flag packets",
2218                 .priv = PRIV_ACTION(FLAG, 0),
2219                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2220                 .call = parse_vc,
2221         },
2222         [ACTION_QUEUE] = {
2223                 .name = "queue",
2224                 .help = "assign packets to a given queue index",
2225                 .priv = PRIV_ACTION(QUEUE,
2226                                     sizeof(struct rte_flow_action_queue)),
2227                 .next = NEXT(action_queue),
2228                 .call = parse_vc,
2229         },
2230         [ACTION_QUEUE_INDEX] = {
2231                 .name = "index",
2232                 .help = "queue index to use",
2233                 .next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2234                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2235                 .call = parse_vc_conf,
2236         },
2237         [ACTION_DROP] = {
2238                 .name = "drop",
2239                 .help = "drop packets (note: passthru has priority)",
2240                 .priv = PRIV_ACTION(DROP, 0),
2241                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2242                 .call = parse_vc,
2243         },
2244         [ACTION_COUNT] = {
2245                 .name = "count",
2246                 .help = "enable counters for this rule",
2247                 .priv = PRIV_ACTION(COUNT,
2248                                     sizeof(struct rte_flow_action_count)),
2249                 .next = NEXT(action_count),
2250                 .call = parse_vc,
2251         },
2252         [ACTION_COUNT_ID] = {
2253                 .name = "identifier",
2254                 .help = "counter identifier to use",
2255                 .next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2256                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2257                 .call = parse_vc_conf,
2258         },
2259         [ACTION_COUNT_SHARED] = {
2260                 .name = "shared",
2261                 .help = "shared counter",
2262                 .next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2263                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2264                                            shared, 1)),
2265                 .call = parse_vc_conf,
2266         },
2267         [ACTION_RSS] = {
2268                 .name = "rss",
2269                 .help = "spread packets among several queues",
2270                 .priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2271                 .next = NEXT(action_rss),
2272                 .call = parse_vc_action_rss,
2273         },
2274         [ACTION_RSS_FUNC] = {
2275                 .name = "func",
2276                 .help = "RSS hash function to apply",
2277                 .next = NEXT(action_rss,
2278                              NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2279                                         ACTION_RSS_FUNC_TOEPLITZ,
2280                                         ACTION_RSS_FUNC_SIMPLE_XOR)),
2281         },
2282         [ACTION_RSS_FUNC_DEFAULT] = {
2283                 .name = "default",
2284                 .help = "default hash function",
2285                 .call = parse_vc_action_rss_func,
2286         },
2287         [ACTION_RSS_FUNC_TOEPLITZ] = {
2288                 .name = "toeplitz",
2289                 .help = "Toeplitz hash function",
2290                 .call = parse_vc_action_rss_func,
2291         },
2292         [ACTION_RSS_FUNC_SIMPLE_XOR] = {
2293                 .name = "simple_xor",
2294                 .help = "simple XOR hash function",
2295                 .call = parse_vc_action_rss_func,
2296         },
2297         [ACTION_RSS_LEVEL] = {
2298                 .name = "level",
2299                 .help = "encapsulation level for \"types\"",
2300                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2301                 .args = ARGS(ARGS_ENTRY_ARB
2302                              (offsetof(struct action_rss_data, conf) +
2303                               offsetof(struct rte_flow_action_rss, level),
2304                               sizeof(((struct rte_flow_action_rss *)0)->
2305                                      level))),
2306         },
2307         [ACTION_RSS_TYPES] = {
2308                 .name = "types",
2309                 .help = "specific RSS hash types",
2310                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2311         },
2312         [ACTION_RSS_TYPE] = {
2313                 .name = "{type}",
2314                 .help = "RSS hash type",
2315                 .call = parse_vc_action_rss_type,
2316                 .comp = comp_vc_action_rss_type,
2317         },
2318         [ACTION_RSS_KEY] = {
2319                 .name = "key",
2320                 .help = "RSS hash key",
2321                 .next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2322                 .args = ARGS(ARGS_ENTRY_ARB(0, 0),
2323                              ARGS_ENTRY_ARB
2324                              (offsetof(struct action_rss_data, conf) +
2325                               offsetof(struct rte_flow_action_rss, key_len),
2326                               sizeof(((struct rte_flow_action_rss *)0)->
2327                                      key_len)),
2328                              ARGS_ENTRY(struct action_rss_data, key)),
2329         },
2330         [ACTION_RSS_KEY_LEN] = {
2331                 .name = "key_len",
2332                 .help = "RSS hash key length in bytes",
2333                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2334                 .args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2335                              (offsetof(struct action_rss_data, conf) +
2336                               offsetof(struct rte_flow_action_rss, key_len),
2337                               sizeof(((struct rte_flow_action_rss *)0)->
2338                                      key_len),
2339                               0,
2340                               RSS_HASH_KEY_LENGTH)),
2341         },
2342         [ACTION_RSS_QUEUES] = {
2343                 .name = "queues",
2344                 .help = "queue indices to use",
2345                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2346                 .call = parse_vc_conf,
2347         },
2348         [ACTION_RSS_QUEUE] = {
2349                 .name = "{queue}",
2350                 .help = "queue index",
2351                 .call = parse_vc_action_rss_queue,
2352                 .comp = comp_vc_action_rss_queue,
2353         },
2354         [ACTION_PF] = {
2355                 .name = "pf",
2356                 .help = "direct traffic to physical function",
2357                 .priv = PRIV_ACTION(PF, 0),
2358                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2359                 .call = parse_vc,
2360         },
2361         [ACTION_VF] = {
2362                 .name = "vf",
2363                 .help = "direct traffic to a virtual function ID",
2364                 .priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2365                 .next = NEXT(action_vf),
2366                 .call = parse_vc,
2367         },
2368         [ACTION_VF_ORIGINAL] = {
2369                 .name = "original",
2370                 .help = "use original VF ID if possible",
2371                 .next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2372                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2373                                            original, 1)),
2374                 .call = parse_vc_conf,
2375         },
2376         [ACTION_VF_ID] = {
2377                 .name = "id",
2378                 .help = "VF ID",
2379                 .next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2380                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2381                 .call = parse_vc_conf,
2382         },
2383         [ACTION_PHY_PORT] = {
2384                 .name = "phy_port",
2385                 .help = "direct packets to physical port index",
2386                 .priv = PRIV_ACTION(PHY_PORT,
2387                                     sizeof(struct rte_flow_action_phy_port)),
2388                 .next = NEXT(action_phy_port),
2389                 .call = parse_vc,
2390         },
2391         [ACTION_PHY_PORT_ORIGINAL] = {
2392                 .name = "original",
2393                 .help = "use original port index if possible",
2394                 .next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2395                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2396                                            original, 1)),
2397                 .call = parse_vc_conf,
2398         },
2399         [ACTION_PHY_PORT_INDEX] = {
2400                 .name = "index",
2401                 .help = "physical port index",
2402                 .next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2403                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2404                                         index)),
2405                 .call = parse_vc_conf,
2406         },
2407         [ACTION_PORT_ID] = {
2408                 .name = "port_id",
2409                 .help = "direct matching traffic to a given DPDK port ID",
2410                 .priv = PRIV_ACTION(PORT_ID,
2411                                     sizeof(struct rte_flow_action_port_id)),
2412                 .next = NEXT(action_port_id),
2413                 .call = parse_vc,
2414         },
2415         [ACTION_PORT_ID_ORIGINAL] = {
2416                 .name = "original",
2417                 .help = "use original DPDK port ID if possible",
2418                 .next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2419                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2420                                            original, 1)),
2421                 .call = parse_vc_conf,
2422         },
2423         [ACTION_PORT_ID_ID] = {
2424                 .name = "id",
2425                 .help = "DPDK port ID",
2426                 .next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2427                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2428                 .call = parse_vc_conf,
2429         },
2430         [ACTION_METER] = {
2431                 .name = "meter",
2432                 .help = "meter the directed packets at given id",
2433                 .priv = PRIV_ACTION(METER,
2434                                     sizeof(struct rte_flow_action_meter)),
2435                 .next = NEXT(action_meter),
2436                 .call = parse_vc,
2437         },
2438         [ACTION_METER_ID] = {
2439                 .name = "mtr_id",
2440                 .help = "meter id to use",
2441                 .next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2442                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2443                 .call = parse_vc_conf,
2444         },
2445         [ACTION_OF_SET_MPLS_TTL] = {
2446                 .name = "of_set_mpls_ttl",
2447                 .help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2448                 .priv = PRIV_ACTION
2449                         (OF_SET_MPLS_TTL,
2450                          sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2451                 .next = NEXT(action_of_set_mpls_ttl),
2452                 .call = parse_vc,
2453         },
2454         [ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2455                 .name = "mpls_ttl",
2456                 .help = "MPLS TTL",
2457                 .next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2458                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2459                                         mpls_ttl)),
2460                 .call = parse_vc_conf,
2461         },
2462         [ACTION_OF_DEC_MPLS_TTL] = {
2463                 .name = "of_dec_mpls_ttl",
2464                 .help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2465                 .priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2466                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2467                 .call = parse_vc,
2468         },
2469         [ACTION_OF_SET_NW_TTL] = {
2470                 .name = "of_set_nw_ttl",
2471                 .help = "OpenFlow's OFPAT_SET_NW_TTL",
2472                 .priv = PRIV_ACTION
2473                         (OF_SET_NW_TTL,
2474                          sizeof(struct rte_flow_action_of_set_nw_ttl)),
2475                 .next = NEXT(action_of_set_nw_ttl),
2476                 .call = parse_vc,
2477         },
2478         [ACTION_OF_SET_NW_TTL_NW_TTL] = {
2479                 .name = "nw_ttl",
2480                 .help = "IP TTL",
2481                 .next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2482                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2483                                         nw_ttl)),
2484                 .call = parse_vc_conf,
2485         },
2486         [ACTION_OF_DEC_NW_TTL] = {
2487                 .name = "of_dec_nw_ttl",
2488                 .help = "OpenFlow's OFPAT_DEC_NW_TTL",
2489                 .priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2490                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2491                 .call = parse_vc,
2492         },
2493         [ACTION_OF_COPY_TTL_OUT] = {
2494                 .name = "of_copy_ttl_out",
2495                 .help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2496                 .priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2497                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2498                 .call = parse_vc,
2499         },
2500         [ACTION_OF_COPY_TTL_IN] = {
2501                 .name = "of_copy_ttl_in",
2502                 .help = "OpenFlow's OFPAT_COPY_TTL_IN",
2503                 .priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2504                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2505                 .call = parse_vc,
2506         },
2507         [ACTION_OF_POP_VLAN] = {
2508                 .name = "of_pop_vlan",
2509                 .help = "OpenFlow's OFPAT_POP_VLAN",
2510                 .priv = PRIV_ACTION(OF_POP_VLAN, 0),
2511                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2512                 .call = parse_vc,
2513         },
2514         [ACTION_OF_PUSH_VLAN] = {
2515                 .name = "of_push_vlan",
2516                 .help = "OpenFlow's OFPAT_PUSH_VLAN",
2517                 .priv = PRIV_ACTION
2518                         (OF_PUSH_VLAN,
2519                          sizeof(struct rte_flow_action_of_push_vlan)),
2520                 .next = NEXT(action_of_push_vlan),
2521                 .call = parse_vc,
2522         },
2523         [ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2524                 .name = "ethertype",
2525                 .help = "EtherType",
2526                 .next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2527                 .args = ARGS(ARGS_ENTRY_HTON
2528                              (struct rte_flow_action_of_push_vlan,
2529                               ethertype)),
2530                 .call = parse_vc_conf,
2531         },
2532         [ACTION_OF_SET_VLAN_VID] = {
2533                 .name = "of_set_vlan_vid",
2534                 .help = "OpenFlow's OFPAT_SET_VLAN_VID",
2535                 .priv = PRIV_ACTION
2536                         (OF_SET_VLAN_VID,
2537                          sizeof(struct rte_flow_action_of_set_vlan_vid)),
2538                 .next = NEXT(action_of_set_vlan_vid),
2539                 .call = parse_vc,
2540         },
2541         [ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2542                 .name = "vlan_vid",
2543                 .help = "VLAN id",
2544                 .next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2545                 .args = ARGS(ARGS_ENTRY_HTON
2546                              (struct rte_flow_action_of_set_vlan_vid,
2547                               vlan_vid)),
2548                 .call = parse_vc_conf,
2549         },
2550         [ACTION_OF_SET_VLAN_PCP] = {
2551                 .name = "of_set_vlan_pcp",
2552                 .help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2553                 .priv = PRIV_ACTION
2554                         (OF_SET_VLAN_PCP,
2555                          sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2556                 .next = NEXT(action_of_set_vlan_pcp),
2557                 .call = parse_vc,
2558         },
2559         [ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2560                 .name = "vlan_pcp",
2561                 .help = "VLAN priority",
2562                 .next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2563                 .args = ARGS(ARGS_ENTRY_HTON
2564                              (struct rte_flow_action_of_set_vlan_pcp,
2565                               vlan_pcp)),
2566                 .call = parse_vc_conf,
2567         },
2568         [ACTION_OF_POP_MPLS] = {
2569                 .name = "of_pop_mpls",
2570                 .help = "OpenFlow's OFPAT_POP_MPLS",
2571                 .priv = PRIV_ACTION(OF_POP_MPLS,
2572                                     sizeof(struct rte_flow_action_of_pop_mpls)),
2573                 .next = NEXT(action_of_pop_mpls),
2574                 .call = parse_vc,
2575         },
2576         [ACTION_OF_POP_MPLS_ETHERTYPE] = {
2577                 .name = "ethertype",
2578                 .help = "EtherType",
2579                 .next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2580                 .args = ARGS(ARGS_ENTRY_HTON
2581                              (struct rte_flow_action_of_pop_mpls,
2582                               ethertype)),
2583                 .call = parse_vc_conf,
2584         },
2585         [ACTION_OF_PUSH_MPLS] = {
2586                 .name = "of_push_mpls",
2587                 .help = "OpenFlow's OFPAT_PUSH_MPLS",
2588                 .priv = PRIV_ACTION
2589                         (OF_PUSH_MPLS,
2590                          sizeof(struct rte_flow_action_of_push_mpls)),
2591                 .next = NEXT(action_of_push_mpls),
2592                 .call = parse_vc,
2593         },
2594         [ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2595                 .name = "ethertype",
2596                 .help = "EtherType",
2597                 .next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2598                 .args = ARGS(ARGS_ENTRY_HTON
2599                              (struct rte_flow_action_of_push_mpls,
2600                               ethertype)),
2601                 .call = parse_vc_conf,
2602         },
2603         [ACTION_VXLAN_ENCAP] = {
2604                 .name = "vxlan_encap",
2605                 .help = "VXLAN encapsulation, uses configuration set by \"set"
2606                         " vxlan\"",
2607                 .priv = PRIV_ACTION(VXLAN_ENCAP,
2608                                     sizeof(struct action_vxlan_encap_data)),
2609                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2610                 .call = parse_vc_action_vxlan_encap,
2611         },
2612         [ACTION_VXLAN_DECAP] = {
2613                 .name = "vxlan_decap",
2614                 .help = "Performs a decapsulation action by stripping all"
2615                         " headers of the VXLAN tunnel network overlay from the"
2616                         " matched flow.",
2617                 .priv = PRIV_ACTION(VXLAN_DECAP, 0),
2618                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2619                 .call = parse_vc,
2620         },
2621         [ACTION_NVGRE_ENCAP] = {
2622                 .name = "nvgre_encap",
2623                 .help = "NVGRE encapsulation, uses configuration set by \"set"
2624                         " nvgre\"",
2625                 .priv = PRIV_ACTION(NVGRE_ENCAP,
2626                                     sizeof(struct action_nvgre_encap_data)),
2627                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2628                 .call = parse_vc_action_nvgre_encap,
2629         },
2630         [ACTION_NVGRE_DECAP] = {
2631                 .name = "nvgre_decap",
2632                 .help = "Performs a decapsulation action by stripping all"
2633                         " headers of the NVGRE tunnel network overlay from the"
2634                         " matched flow.",
2635                 .priv = PRIV_ACTION(NVGRE_DECAP, 0),
2636                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2637                 .call = parse_vc,
2638         },
2639         [ACTION_L2_ENCAP] = {
2640                 .name = "l2_encap",
2641                 .help = "l2 encap, uses configuration set by"
2642                         " \"set l2_encap\"",
2643                 .priv = PRIV_ACTION(RAW_ENCAP,
2644                                     sizeof(struct action_raw_encap_data)),
2645                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2646                 .call = parse_vc_action_l2_encap,
2647         },
2648         [ACTION_L2_DECAP] = {
2649                 .name = "l2_decap",
2650                 .help = "l2 decap, uses configuration set by"
2651                         " \"set l2_decap\"",
2652                 .priv = PRIV_ACTION(RAW_DECAP,
2653                                     sizeof(struct action_raw_decap_data)),
2654                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2655                 .call = parse_vc_action_l2_decap,
2656         },
2657         [ACTION_MPLSOGRE_ENCAP] = {
2658                 .name = "mplsogre_encap",
2659                 .help = "mplsogre encapsulation, uses configuration set by"
2660                         " \"set mplsogre_encap\"",
2661                 .priv = PRIV_ACTION(RAW_ENCAP,
2662                                     sizeof(struct action_raw_encap_data)),
2663                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2664                 .call = parse_vc_action_mplsogre_encap,
2665         },
2666         [ACTION_MPLSOGRE_DECAP] = {
2667                 .name = "mplsogre_decap",
2668                 .help = "mplsogre decapsulation, uses configuration set by"
2669                         " \"set mplsogre_decap\"",
2670                 .priv = PRIV_ACTION(RAW_DECAP,
2671                                     sizeof(struct action_raw_decap_data)),
2672                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2673                 .call = parse_vc_action_mplsogre_decap,
2674         },
2675         [ACTION_MPLSOUDP_ENCAP] = {
2676                 .name = "mplsoudp_encap",
2677                 .help = "mplsoudp encapsulation, uses configuration set by"
2678                         " \"set mplsoudp_encap\"",
2679                 .priv = PRIV_ACTION(RAW_ENCAP,
2680                                     sizeof(struct action_raw_encap_data)),
2681                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2682                 .call = parse_vc_action_mplsoudp_encap,
2683         },
2684         [ACTION_MPLSOUDP_DECAP] = {
2685                 .name = "mplsoudp_decap",
2686                 .help = "mplsoudp decapsulation, uses configuration set by"
2687                         " \"set mplsoudp_decap\"",
2688                 .priv = PRIV_ACTION(RAW_DECAP,
2689                                     sizeof(struct action_raw_decap_data)),
2690                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2691                 .call = parse_vc_action_mplsoudp_decap,
2692         },
2693         [ACTION_SET_IPV4_SRC] = {
2694                 .name = "set_ipv4_src",
2695                 .help = "Set a new IPv4 source address in the outermost"
2696                         " IPv4 header",
2697                 .priv = PRIV_ACTION(SET_IPV4_SRC,
2698                         sizeof(struct rte_flow_action_set_ipv4)),
2699                 .next = NEXT(action_set_ipv4_src),
2700                 .call = parse_vc,
2701         },
2702         [ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2703                 .name = "ipv4_addr",
2704                 .help = "new IPv4 source address to set",
2705                 .next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2706                 .args = ARGS(ARGS_ENTRY_HTON
2707                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
2708                 .call = parse_vc_conf,
2709         },
2710         [ACTION_SET_IPV4_DST] = {
2711                 .name = "set_ipv4_dst",
2712                 .help = "Set a new IPv4 destination address in the outermost"
2713                         " IPv4 header",
2714                 .priv = PRIV_ACTION(SET_IPV4_DST,
2715                         sizeof(struct rte_flow_action_set_ipv4)),
2716                 .next = NEXT(action_set_ipv4_dst),
2717                 .call = parse_vc,
2718         },
2719         [ACTION_SET_IPV4_DST_IPV4_DST] = {
2720                 .name = "ipv4_addr",
2721                 .help = "new IPv4 destination address to set",
2722                 .next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2723                 .args = ARGS(ARGS_ENTRY_HTON
2724                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
2725                 .call = parse_vc_conf,
2726         },
2727         [ACTION_SET_IPV6_SRC] = {
2728                 .name = "set_ipv6_src",
2729                 .help = "Set a new IPv6 source address in the outermost"
2730                         " IPv6 header",
2731                 .priv = PRIV_ACTION(SET_IPV6_SRC,
2732                         sizeof(struct rte_flow_action_set_ipv6)),
2733                 .next = NEXT(action_set_ipv6_src),
2734                 .call = parse_vc,
2735         },
2736         [ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2737                 .name = "ipv6_addr",
2738                 .help = "new IPv6 source address to set",
2739                 .next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2740                 .args = ARGS(ARGS_ENTRY_HTON
2741                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
2742                 .call = parse_vc_conf,
2743         },
2744         [ACTION_SET_IPV6_DST] = {
2745                 .name = "set_ipv6_dst",
2746                 .help = "Set a new IPv6 destination address in the outermost"
2747                         " IPv6 header",
2748                 .priv = PRIV_ACTION(SET_IPV6_DST,
2749                         sizeof(struct rte_flow_action_set_ipv6)),
2750                 .next = NEXT(action_set_ipv6_dst),
2751                 .call = parse_vc,
2752         },
2753         [ACTION_SET_IPV6_DST_IPV6_DST] = {
2754                 .name = "ipv6_addr",
2755                 .help = "new IPv6 destination address to set",
2756                 .next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2757                 .args = ARGS(ARGS_ENTRY_HTON
2758                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
2759                 .call = parse_vc_conf,
2760         },
2761         [ACTION_SET_TP_SRC] = {
2762                 .name = "set_tp_src",
2763                 .help = "set a new source port number in the outermost"
2764                         " TCP/UDP header",
2765                 .priv = PRIV_ACTION(SET_TP_SRC,
2766                         sizeof(struct rte_flow_action_set_tp)),
2767                 .next = NEXT(action_set_tp_src),
2768                 .call = parse_vc,
2769         },
2770         [ACTION_SET_TP_SRC_TP_SRC] = {
2771                 .name = "port",
2772                 .help = "new source port number to set",
2773                 .next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2774                 .args = ARGS(ARGS_ENTRY_HTON
2775                              (struct rte_flow_action_set_tp, port)),
2776                 .call = parse_vc_conf,
2777         },
2778         [ACTION_SET_TP_DST] = {
2779                 .name = "set_tp_dst",
2780                 .help = "set a new destination port number in the outermost"
2781                         " TCP/UDP header",
2782                 .priv = PRIV_ACTION(SET_TP_DST,
2783                         sizeof(struct rte_flow_action_set_tp)),
2784                 .next = NEXT(action_set_tp_dst),
2785                 .call = parse_vc,
2786         },
2787         [ACTION_SET_TP_DST_TP_DST] = {
2788                 .name = "port",
2789                 .help = "new destination port number to set",
2790                 .next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2791                 .args = ARGS(ARGS_ENTRY_HTON
2792                              (struct rte_flow_action_set_tp, port)),
2793                 .call = parse_vc_conf,
2794         },
2795         [ACTION_MAC_SWAP] = {
2796                 .name = "mac_swap",
2797                 .help = "Swap the source and destination MAC addresses"
2798                         " in the outermost Ethernet header",
2799                 .priv = PRIV_ACTION(MAC_SWAP, 0),
2800                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2801                 .call = parse_vc,
2802         },
2803         [ACTION_DEC_TTL] = {
2804                 .name = "dec_ttl",
2805                 .help = "decrease network TTL if available",
2806                 .priv = PRIV_ACTION(DEC_TTL, 0),
2807                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2808                 .call = parse_vc,
2809         },
2810         [ACTION_SET_TTL] = {
2811                 .name = "set_ttl",
2812                 .help = "set ttl value",
2813                 .priv = PRIV_ACTION(SET_TTL,
2814                         sizeof(struct rte_flow_action_set_ttl)),
2815                 .next = NEXT(action_set_ttl),
2816                 .call = parse_vc,
2817         },
2818         [ACTION_SET_TTL_TTL] = {
2819                 .name = "ttl_value",
2820                 .help = "new ttl value to set",
2821                 .next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
2822                 .args = ARGS(ARGS_ENTRY_HTON
2823                              (struct rte_flow_action_set_ttl, ttl_value)),
2824                 .call = parse_vc_conf,
2825         },
2826         [ACTION_SET_MAC_SRC] = {
2827                 .name = "set_mac_src",
2828                 .help = "set source mac address",
2829                 .priv = PRIV_ACTION(SET_MAC_SRC,
2830                         sizeof(struct rte_flow_action_set_mac)),
2831                 .next = NEXT(action_set_mac_src),
2832                 .call = parse_vc,
2833         },
2834         [ACTION_SET_MAC_SRC_MAC_SRC] = {
2835                 .name = "mac_addr",
2836                 .help = "new source mac address",
2837                 .next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
2838                 .args = ARGS(ARGS_ENTRY_HTON
2839                              (struct rte_flow_action_set_mac, mac_addr)),
2840                 .call = parse_vc_conf,
2841         },
2842         [ACTION_SET_MAC_DST] = {
2843                 .name = "set_mac_dst",
2844                 .help = "set destination mac address",
2845                 .priv = PRIV_ACTION(SET_MAC_DST,
2846                         sizeof(struct rte_flow_action_set_mac)),
2847                 .next = NEXT(action_set_mac_dst),
2848                 .call = parse_vc,
2849         },
2850         [ACTION_SET_MAC_DST_MAC_DST] = {
2851                 .name = "mac_addr",
2852                 .help = "new destination mac address to set",
2853                 .next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
2854                 .args = ARGS(ARGS_ENTRY_HTON
2855                              (struct rte_flow_action_set_mac, mac_addr)),
2856                 .call = parse_vc_conf,
2857         },
2858 };
2859
2860 /** Remove and return last entry from argument stack. */
2861 static const struct arg *
2862 pop_args(struct context *ctx)
2863 {
2864         return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2865 }
2866
2867 /** Add entry on top of the argument stack. */
2868 static int
2869 push_args(struct context *ctx, const struct arg *arg)
2870 {
2871         if (ctx->args_num == CTX_STACK_SIZE)
2872                 return -1;
2873         ctx->args[ctx->args_num++] = arg;
2874         return 0;
2875 }
2876
2877 /** Spread value into buffer according to bit-mask. */
2878 static size_t
2879 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2880 {
2881         uint32_t i = arg->size;
2882         uint32_t end = 0;
2883         int sub = 1;
2884         int add = 0;
2885         size_t len = 0;
2886
2887         if (!arg->mask)
2888                 return 0;
2889 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2890         if (!arg->hton) {
2891                 i = 0;
2892                 end = arg->size;
2893                 sub = 0;
2894                 add = 1;
2895         }
2896 #endif
2897         while (i != end) {
2898                 unsigned int shift = 0;
2899                 uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2900
2901                 for (shift = 0; arg->mask[i] >> shift; ++shift) {
2902                         if (!(arg->mask[i] & (1 << shift)))
2903                                 continue;
2904                         ++len;
2905                         if (!dst)
2906                                 continue;
2907                         *buf &= ~(1 << shift);
2908                         *buf |= (val & 1) << shift;
2909                         val >>= 1;
2910                 }
2911                 i += add;
2912         }
2913         return len;
2914 }
2915
2916 /** Compare a string with a partial one of a given length. */
2917 static int
2918 strcmp_partial(const char *full, const char *partial, size_t partial_len)
2919 {
2920         int r = strncmp(full, partial, partial_len);
2921
2922         if (r)
2923                 return r;
2924         if (strlen(full) <= partial_len)
2925                 return 0;
2926         return full[partial_len];
2927 }
2928
2929 /**
2930  * Parse a prefix length and generate a bit-mask.
2931  *
2932  * Last argument (ctx->args) is retrieved to determine mask size, storage
2933  * location and whether the result must use network byte ordering.
2934  */
2935 static int
2936 parse_prefix(struct context *ctx, const struct token *token,
2937              const char *str, unsigned int len,
2938              void *buf, unsigned int size)
2939 {
2940         const struct arg *arg = pop_args(ctx);
2941         static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
2942         char *end;
2943         uintmax_t u;
2944         unsigned int bytes;
2945         unsigned int extra;
2946
2947         (void)token;
2948         /* Argument is expected. */
2949         if (!arg)
2950                 return -1;
2951         errno = 0;
2952         u = strtoumax(str, &end, 0);
2953         if (errno || (size_t)(end - str) != len)
2954                 goto error;
2955         if (arg->mask) {
2956                 uintmax_t v = 0;
2957
2958                 extra = arg_entry_bf_fill(NULL, 0, arg);
2959                 if (u > extra)
2960                         goto error;
2961                 if (!ctx->object)
2962                         return len;
2963                 extra -= u;
2964                 while (u--)
2965                         (v <<= 1, v |= 1);
2966                 v <<= extra;
2967                 if (!arg_entry_bf_fill(ctx->object, v, arg) ||
2968                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
2969                         goto error;
2970                 return len;
2971         }
2972         bytes = u / 8;
2973         extra = u % 8;
2974         size = arg->size;
2975         if (bytes > size || bytes + !!extra > size)
2976                 goto error;
2977         if (!ctx->object)
2978                 return len;
2979         buf = (uint8_t *)ctx->object + arg->offset;
2980 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2981         if (!arg->hton) {
2982                 memset((uint8_t *)buf + size - bytes, 0xff, bytes);
2983                 memset(buf, 0x00, size - bytes);
2984                 if (extra)
2985                         ((uint8_t *)buf)[size - bytes - 1] = conv[extra];
2986         } else
2987 #endif
2988         {
2989                 memset(buf, 0xff, bytes);
2990                 memset((uint8_t *)buf + bytes, 0x00, size - bytes);
2991                 if (extra)
2992                         ((uint8_t *)buf)[bytes] = conv[extra];
2993         }
2994         if (ctx->objmask)
2995                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2996         return len;
2997 error:
2998         push_args(ctx, arg);
2999         return -1;
3000 }
3001
3002 /** Default parsing function for token name matching. */
3003 static int
3004 parse_default(struct context *ctx, const struct token *token,
3005               const char *str, unsigned int len,
3006               void *buf, unsigned int size)
3007 {
3008         (void)ctx;
3009         (void)buf;
3010         (void)size;
3011         if (strcmp_partial(token->name, str, len))
3012                 return -1;
3013         return len;
3014 }
3015
3016 /** Parse flow command, initialize output buffer for subsequent tokens. */
3017 static int
3018 parse_init(struct context *ctx, const struct token *token,
3019            const char *str, unsigned int len,
3020            void *buf, unsigned int size)
3021 {
3022         struct buffer *out = buf;
3023
3024         /* Token name must match. */
3025         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3026                 return -1;
3027         /* Nothing else to do if there is no buffer. */
3028         if (!out)
3029                 return len;
3030         /* Make sure buffer is large enough. */
3031         if (size < sizeof(*out))
3032                 return -1;
3033         /* Initialize buffer. */
3034         memset(out, 0x00, sizeof(*out));
3035         memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3036         ctx->objdata = 0;
3037         ctx->object = out;
3038         ctx->objmask = NULL;
3039         return len;
3040 }
3041
3042 /** Parse tokens for validate/create commands. */
3043 static int
3044 parse_vc(struct context *ctx, const struct token *token,
3045          const char *str, unsigned int len,
3046          void *buf, unsigned int size)
3047 {
3048         struct buffer *out = buf;
3049         uint8_t *data;
3050         uint32_t data_size;
3051
3052         /* Token name must match. */
3053         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3054                 return -1;
3055         /* Nothing else to do if there is no buffer. */
3056         if (!out)
3057                 return len;
3058         if (!out->command) {
3059                 if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3060                         return -1;
3061                 if (sizeof(*out) > size)
3062                         return -1;
3063                 out->command = ctx->curr;
3064                 ctx->objdata = 0;
3065                 ctx->object = out;
3066                 ctx->objmask = NULL;
3067                 out->args.vc.data = (uint8_t *)out + size;
3068                 return len;
3069         }
3070         ctx->objdata = 0;
3071         ctx->object = &out->args.vc.attr;
3072         ctx->objmask = NULL;
3073         switch (ctx->curr) {
3074         case GROUP:
3075         case PRIORITY:
3076                 return len;
3077         case INGRESS:
3078                 out->args.vc.attr.ingress = 1;
3079                 return len;
3080         case EGRESS:
3081                 out->args.vc.attr.egress = 1;
3082                 return len;
3083         case TRANSFER:
3084                 out->args.vc.attr.transfer = 1;
3085                 return len;
3086         case PATTERN:
3087                 out->args.vc.pattern =
3088                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3089                                                sizeof(double));
3090                 ctx->object = out->args.vc.pattern;
3091                 ctx->objmask = NULL;
3092                 return len;
3093         case ACTIONS:
3094                 out->args.vc.actions =
3095                         (void *)RTE_ALIGN_CEIL((uintptr_t)
3096                                                (out->args.vc.pattern +
3097                                                 out->args.vc.pattern_n),
3098                                                sizeof(double));
3099                 ctx->object = out->args.vc.actions;
3100                 ctx->objmask = NULL;
3101                 return len;
3102         default:
3103                 if (!token->priv)
3104                         return -1;
3105                 break;
3106         }
3107         if (!out->args.vc.actions) {
3108                 const struct parse_item_priv *priv = token->priv;
3109                 struct rte_flow_item *item =
3110                         out->args.vc.pattern + out->args.vc.pattern_n;
3111
3112                 data_size = priv->size * 3; /* spec, last, mask */
3113                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3114                                                (out->args.vc.data - data_size),
3115                                                sizeof(double));
3116                 if ((uint8_t *)item + sizeof(*item) > data)
3117                         return -1;
3118                 *item = (struct rte_flow_item){
3119                         .type = priv->type,
3120                 };
3121                 ++out->args.vc.pattern_n;
3122                 ctx->object = item;
3123                 ctx->objmask = NULL;
3124         } else {
3125                 const struct parse_action_priv *priv = token->priv;
3126                 struct rte_flow_action *action =
3127                         out->args.vc.actions + out->args.vc.actions_n;
3128
3129                 data_size = priv->size; /* configuration */
3130                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3131                                                (out->args.vc.data - data_size),
3132                                                sizeof(double));
3133                 if ((uint8_t *)action + sizeof(*action) > data)
3134                         return -1;
3135                 *action = (struct rte_flow_action){
3136                         .type = priv->type,
3137                         .conf = data_size ? data : NULL,
3138                 };
3139                 ++out->args.vc.actions_n;
3140                 ctx->object = action;
3141                 ctx->objmask = NULL;
3142         }
3143         memset(data, 0, data_size);
3144         out->args.vc.data = data;
3145         ctx->objdata = data_size;
3146         return len;
3147 }
3148
3149 /** Parse pattern item parameter type. */
3150 static int
3151 parse_vc_spec(struct context *ctx, const struct token *token,
3152               const char *str, unsigned int len,
3153               void *buf, unsigned int size)
3154 {
3155         struct buffer *out = buf;
3156         struct rte_flow_item *item;
3157         uint32_t data_size;
3158         int index;
3159         int objmask = 0;
3160
3161         (void)size;
3162         /* Token name must match. */
3163         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3164                 return -1;
3165         /* Parse parameter types. */
3166         switch (ctx->curr) {
3167                 static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3168
3169         case ITEM_PARAM_IS:
3170                 index = 0;
3171                 objmask = 1;
3172                 break;
3173         case ITEM_PARAM_SPEC:
3174                 index = 0;
3175                 break;
3176         case ITEM_PARAM_LAST:
3177                 index = 1;
3178                 break;
3179         case ITEM_PARAM_PREFIX:
3180                 /* Modify next token to expect a prefix. */
3181                 if (ctx->next_num < 2)
3182                         return -1;
3183                 ctx->next[ctx->next_num - 2] = prefix;
3184                 /* Fall through. */
3185         case ITEM_PARAM_MASK:
3186                 index = 2;
3187                 break;
3188         default:
3189                 return -1;
3190         }
3191         /* Nothing else to do if there is no buffer. */
3192         if (!out)
3193                 return len;
3194         if (!out->args.vc.pattern_n)
3195                 return -1;
3196         item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3197         data_size = ctx->objdata / 3; /* spec, last, mask */
3198         /* Point to selected object. */
3199         ctx->object = out->args.vc.data + (data_size * index);
3200         if (objmask) {
3201                 ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3202                 item->mask = ctx->objmask;
3203         } else
3204                 ctx->objmask = NULL;
3205         /* Update relevant item pointer. */
3206         *((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3207                 ctx->object;
3208         return len;
3209 }
3210
3211 /** Parse action configuration field. */
3212 static int
3213 parse_vc_conf(struct context *ctx, const struct token *token,
3214               const char *str, unsigned int len,
3215               void *buf, unsigned int size)
3216 {
3217         struct buffer *out = buf;
3218
3219         (void)size;
3220         /* Token name must match. */
3221         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3222                 return -1;
3223         /* Nothing else to do if there is no buffer. */
3224         if (!out)
3225                 return len;
3226         /* Point to selected object. */
3227         ctx->object = out->args.vc.data;
3228         ctx->objmask = NULL;
3229         return len;
3230 }
3231
3232 /** Parse RSS action. */
3233 static int
3234 parse_vc_action_rss(struct context *ctx, const struct token *token,
3235                     const char *str, unsigned int len,
3236                     void *buf, unsigned int size)
3237 {
3238         struct buffer *out = buf;
3239         struct rte_flow_action *action;
3240         struct action_rss_data *action_rss_data;
3241         unsigned int i;
3242         int ret;
3243
3244         ret = parse_vc(ctx, token, str, len, buf, size);
3245         if (ret < 0)
3246                 return ret;
3247         /* Nothing else to do if there is no buffer. */
3248         if (!out)
3249                 return ret;
3250         if (!out->args.vc.actions_n)
3251                 return -1;
3252         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3253         /* Point to selected object. */
3254         ctx->object = out->args.vc.data;
3255         ctx->objmask = NULL;
3256         /* Set up default configuration. */
3257         action_rss_data = ctx->object;
3258         *action_rss_data = (struct action_rss_data){
3259                 .conf = (struct rte_flow_action_rss){
3260                         .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3261                         .level = 0,
3262                         .types = rss_hf,
3263                         .key_len = sizeof(action_rss_data->key),
3264                         .queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3265                         .key = action_rss_data->key,
3266                         .queue = action_rss_data->queue,
3267                 },
3268                 .key = "testpmd's default RSS hash key, "
3269                         "override it for better balancing",
3270                 .queue = { 0 },
3271         };
3272         for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3273                 action_rss_data->queue[i] = i;
3274         if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3275             ctx->port != (portid_t)RTE_PORT_ALL) {
3276                 struct rte_eth_dev_info info;
3277
3278                 rte_eth_dev_info_get(ctx->port, &info);
3279                 action_rss_data->conf.key_len =
3280                         RTE_MIN(sizeof(action_rss_data->key),
3281                                 info.hash_key_size);
3282         }
3283         action->conf = &action_rss_data->conf;
3284         return ret;
3285 }
3286
3287 /**
3288  * Parse func field for RSS action.
3289  *
3290  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3291  * ACTION_RSS_FUNC_* index that called this function.
3292  */
3293 static int
3294 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3295                          const char *str, unsigned int len,
3296                          void *buf, unsigned int size)
3297 {
3298         struct action_rss_data *action_rss_data;
3299         enum rte_eth_hash_function func;
3300
3301         (void)buf;
3302         (void)size;
3303         /* Token name must match. */
3304         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3305                 return -1;
3306         switch (ctx->curr) {
3307         case ACTION_RSS_FUNC_DEFAULT:
3308                 func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3309                 break;
3310         case ACTION_RSS_FUNC_TOEPLITZ:
3311                 func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3312                 break;
3313         case ACTION_RSS_FUNC_SIMPLE_XOR:
3314                 func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3315                 break;
3316         default:
3317                 return -1;
3318         }
3319         if (!ctx->object)
3320                 return len;
3321         action_rss_data = ctx->object;
3322         action_rss_data->conf.func = func;
3323         return len;
3324 }
3325
3326 /**
3327  * Parse type field for RSS action.
3328  *
3329  * Valid tokens are type field names and the "end" token.
3330  */
3331 static int
3332 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3333                           const char *str, unsigned int len,
3334                           void *buf, unsigned int size)
3335 {
3336         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3337         struct action_rss_data *action_rss_data;
3338         unsigned int i;
3339
3340         (void)token;
3341         (void)buf;
3342         (void)size;
3343         if (ctx->curr != ACTION_RSS_TYPE)
3344                 return -1;
3345         if (!(ctx->objdata >> 16) && ctx->object) {
3346                 action_rss_data = ctx->object;
3347                 action_rss_data->conf.types = 0;
3348         }
3349         if (!strcmp_partial("end", str, len)) {
3350                 ctx->objdata &= 0xffff;
3351                 return len;
3352         }
3353         for (i = 0; rss_type_table[i].str; ++i)
3354                 if (!strcmp_partial(rss_type_table[i].str, str, len))
3355                         break;
3356         if (!rss_type_table[i].str)
3357                 return -1;
3358         ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3359         /* Repeat token. */
3360         if (ctx->next_num == RTE_DIM(ctx->next))
3361                 return -1;
3362         ctx->next[ctx->next_num++] = next;
3363         if (!ctx->object)
3364                 return len;
3365         action_rss_data = ctx->object;
3366         action_rss_data->conf.types |= rss_type_table[i].rss_type;
3367         return len;
3368 }
3369
3370 /**
3371  * Parse queue field for RSS action.
3372  *
3373  * Valid tokens are queue indices and the "end" token.
3374  */
3375 static int
3376 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3377                           const char *str, unsigned int len,
3378                           void *buf, unsigned int size)
3379 {
3380         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3381         struct action_rss_data *action_rss_data;
3382         int ret;
3383         int i;
3384
3385         (void)token;
3386         (void)buf;
3387         (void)size;
3388         if (ctx->curr != ACTION_RSS_QUEUE)
3389                 return -1;
3390         i = ctx->objdata >> 16;
3391         if (!strcmp_partial("end", str, len)) {
3392                 ctx->objdata &= 0xffff;
3393                 goto end;
3394         }
3395         if (i >= ACTION_RSS_QUEUE_NUM)
3396                 return -1;
3397         if (push_args(ctx,
3398                       ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3399                                      i * sizeof(action_rss_data->queue[i]),
3400                                      sizeof(action_rss_data->queue[i]))))
3401                 return -1;
3402         ret = parse_int(ctx, token, str, len, NULL, 0);
3403         if (ret < 0) {
3404                 pop_args(ctx);
3405                 return -1;
3406         }
3407         ++i;
3408         ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3409         /* Repeat token. */
3410         if (ctx->next_num == RTE_DIM(ctx->next))
3411                 return -1;
3412         ctx->next[ctx->next_num++] = next;
3413 end:
3414         if (!ctx->object)
3415                 return len;
3416         action_rss_data = ctx->object;
3417         action_rss_data->conf.queue_num = i;
3418         action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3419         return len;
3420 }
3421
3422 /** Parse VXLAN encap action. */
3423 static int
3424 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3425                             const char *str, unsigned int len,
3426                             void *buf, unsigned int size)
3427 {
3428         struct buffer *out = buf;
3429         struct rte_flow_action *action;
3430         struct action_vxlan_encap_data *action_vxlan_encap_data;
3431         int ret;
3432
3433         ret = parse_vc(ctx, token, str, len, buf, size);
3434         if (ret < 0)
3435                 return ret;
3436         /* Nothing else to do if there is no buffer. */
3437         if (!out)
3438                 return ret;
3439         if (!out->args.vc.actions_n)
3440                 return -1;
3441         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3442         /* Point to selected object. */
3443         ctx->object = out->args.vc.data;
3444         ctx->objmask = NULL;
3445         /* Set up default configuration. */
3446         action_vxlan_encap_data = ctx->object;
3447         *action_vxlan_encap_data = (struct action_vxlan_encap_data){
3448                 .conf = (struct rte_flow_action_vxlan_encap){
3449                         .definition = action_vxlan_encap_data->items,
3450                 },
3451                 .items = {
3452                         {
3453                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3454                                 .spec = &action_vxlan_encap_data->item_eth,
3455                                 .mask = &rte_flow_item_eth_mask,
3456                         },
3457                         {
3458                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
3459                                 .spec = &action_vxlan_encap_data->item_vlan,
3460                                 .mask = &rte_flow_item_vlan_mask,
3461                         },
3462                         {
3463                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
3464                                 .spec = &action_vxlan_encap_data->item_ipv4,
3465                                 .mask = &rte_flow_item_ipv4_mask,
3466                         },
3467                         {
3468                                 .type = RTE_FLOW_ITEM_TYPE_UDP,
3469                                 .spec = &action_vxlan_encap_data->item_udp,
3470                                 .mask = &rte_flow_item_udp_mask,
3471                         },
3472                         {
3473                                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
3474                                 .spec = &action_vxlan_encap_data->item_vxlan,
3475                                 .mask = &rte_flow_item_vxlan_mask,
3476                         },
3477                         {
3478                                 .type = RTE_FLOW_ITEM_TYPE_END,
3479                         },
3480                 },
3481                 .item_eth.type = 0,
3482                 .item_vlan = {
3483                         .tci = vxlan_encap_conf.vlan_tci,
3484                         .inner_type = 0,
3485                 },
3486                 .item_ipv4.hdr = {
3487                         .src_addr = vxlan_encap_conf.ipv4_src,
3488                         .dst_addr = vxlan_encap_conf.ipv4_dst,
3489                 },
3490                 .item_udp.hdr = {
3491                         .src_port = vxlan_encap_conf.udp_src,
3492                         .dst_port = vxlan_encap_conf.udp_dst,
3493                 },
3494                 .item_vxlan.flags = 0,
3495         };
3496         memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3497                vxlan_encap_conf.eth_dst, ETHER_ADDR_LEN);
3498         memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3499                vxlan_encap_conf.eth_src, ETHER_ADDR_LEN);
3500         if (!vxlan_encap_conf.select_ipv4) {
3501                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3502                        &vxlan_encap_conf.ipv6_src,
3503                        sizeof(vxlan_encap_conf.ipv6_src));
3504                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3505                        &vxlan_encap_conf.ipv6_dst,
3506                        sizeof(vxlan_encap_conf.ipv6_dst));
3507                 action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3508                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3509                         .spec = &action_vxlan_encap_data->item_ipv6,
3510                         .mask = &rte_flow_item_ipv6_mask,
3511                 };
3512         }
3513         if (!vxlan_encap_conf.select_vlan)
3514                 action_vxlan_encap_data->items[1].type =
3515                         RTE_FLOW_ITEM_TYPE_VOID;
3516         if (vxlan_encap_conf.select_tos_ttl) {
3517                 if (vxlan_encap_conf.select_ipv4) {
3518                         static struct rte_flow_item_ipv4 ipv4_mask_tos;
3519
3520                         memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3521                                sizeof(ipv4_mask_tos));
3522                         ipv4_mask_tos.hdr.type_of_service = 0xff;
3523                         ipv4_mask_tos.hdr.time_to_live = 0xff;
3524                         action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3525                                         vxlan_encap_conf.ip_tos;
3526                         action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3527                                         vxlan_encap_conf.ip_ttl;
3528                         action_vxlan_encap_data->items[2].mask =
3529                                                         &ipv4_mask_tos;
3530                 } else {
3531                         static struct rte_flow_item_ipv6 ipv6_mask_tos;
3532
3533                         memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3534                                sizeof(ipv6_mask_tos));
3535                         ipv6_mask_tos.hdr.vtc_flow |=
3536                                 RTE_BE32(0xfful << IPV6_HDR_TC_SHIFT);
3537                         ipv6_mask_tos.hdr.hop_limits = 0xff;
3538                         action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3539                                 rte_cpu_to_be_32
3540                                         ((uint32_t)vxlan_encap_conf.ip_tos <<
3541                                          IPV6_HDR_TC_SHIFT);
3542                         action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3543                                         vxlan_encap_conf.ip_ttl;
3544                         action_vxlan_encap_data->items[2].mask =
3545                                                         &ipv6_mask_tos;
3546                 }
3547         }
3548         memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3549                RTE_DIM(vxlan_encap_conf.vni));
3550         action->conf = &action_vxlan_encap_data->conf;
3551         return ret;
3552 }
3553
3554 /** Parse NVGRE encap action. */
3555 static int
3556 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3557                             const char *str, unsigned int len,
3558                             void *buf, unsigned int size)
3559 {
3560         struct buffer *out = buf;
3561         struct rte_flow_action *action;
3562         struct action_nvgre_encap_data *action_nvgre_encap_data;
3563         int ret;
3564
3565         ret = parse_vc(ctx, token, str, len, buf, size);
3566         if (ret < 0)
3567                 return ret;
3568         /* Nothing else to do if there is no buffer. */
3569         if (!out)
3570                 return ret;
3571         if (!out->args.vc.actions_n)
3572                 return -1;
3573         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3574         /* Point to selected object. */
3575         ctx->object = out->args.vc.data;
3576         ctx->objmask = NULL;
3577         /* Set up default configuration. */
3578         action_nvgre_encap_data = ctx->object;
3579         *action_nvgre_encap_data = (struct action_nvgre_encap_data){
3580                 .conf = (struct rte_flow_action_nvgre_encap){
3581                         .definition = action_nvgre_encap_data->items,
3582                 },
3583                 .items = {
3584                         {
3585                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3586                                 .spec = &action_nvgre_encap_data->item_eth,
3587                                 .mask = &rte_flow_item_eth_mask,
3588                         },
3589                         {
3590                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
3591                                 .spec = &action_nvgre_encap_data->item_vlan,
3592                                 .mask = &rte_flow_item_vlan_mask,
3593                         },
3594                         {
3595                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
3596                                 .spec = &action_nvgre_encap_data->item_ipv4,
3597                                 .mask = &rte_flow_item_ipv4_mask,
3598                         },
3599                         {
3600                                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
3601                                 .spec = &action_nvgre_encap_data->item_nvgre,
3602                                 .mask = &rte_flow_item_nvgre_mask,
3603                         },
3604                         {
3605                                 .type = RTE_FLOW_ITEM_TYPE_END,
3606                         },
3607                 },
3608                 .item_eth.type = 0,
3609                 .item_vlan = {
3610                         .tci = nvgre_encap_conf.vlan_tci,
3611                         .inner_type = 0,
3612                 },
3613                 .item_ipv4.hdr = {
3614                        .src_addr = nvgre_encap_conf.ipv4_src,
3615                        .dst_addr = nvgre_encap_conf.ipv4_dst,
3616                 },
3617                 .item_nvgre.flow_id = 0,
3618         };
3619         memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3620                nvgre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3621         memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3622                nvgre_encap_conf.eth_src, ETHER_ADDR_LEN);
3623         if (!nvgre_encap_conf.select_ipv4) {
3624                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3625                        &nvgre_encap_conf.ipv6_src,
3626                        sizeof(nvgre_encap_conf.ipv6_src));
3627                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3628                        &nvgre_encap_conf.ipv6_dst,
3629                        sizeof(nvgre_encap_conf.ipv6_dst));
3630                 action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3631                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3632                         .spec = &action_nvgre_encap_data->item_ipv6,
3633                         .mask = &rte_flow_item_ipv6_mask,
3634                 };
3635         }
3636         if (!nvgre_encap_conf.select_vlan)
3637                 action_nvgre_encap_data->items[1].type =
3638                         RTE_FLOW_ITEM_TYPE_VOID;
3639         memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3640                RTE_DIM(nvgre_encap_conf.tni));
3641         action->conf = &action_nvgre_encap_data->conf;
3642         return ret;
3643 }
3644
3645 /** Parse l2 encap action. */
3646 static int
3647 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
3648                          const char *str, unsigned int len,
3649                          void *buf, unsigned int size)
3650 {
3651         struct buffer *out = buf;
3652         struct rte_flow_action *action;
3653         struct action_raw_encap_data *action_encap_data;
3654         struct rte_flow_item_eth eth = { .type = 0, };
3655         struct rte_flow_item_vlan vlan = {
3656                 .tci = mplsoudp_encap_conf.vlan_tci,
3657                 .inner_type = 0,
3658         };
3659         uint8_t *header;
3660         int ret;
3661
3662         ret = parse_vc(ctx, token, str, len, buf, size);
3663         if (ret < 0)
3664                 return ret;
3665         /* Nothing else to do if there is no buffer. */
3666         if (!out)
3667                 return ret;
3668         if (!out->args.vc.actions_n)
3669                 return -1;
3670         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3671         /* Point to selected object. */
3672         ctx->object = out->args.vc.data;
3673         ctx->objmask = NULL;
3674         /* Copy the headers to the buffer. */
3675         action_encap_data = ctx->object;
3676         *action_encap_data = (struct action_raw_encap_data) {
3677                 .conf = (struct rte_flow_action_raw_encap){
3678                         .data = action_encap_data->data,
3679                 },
3680                 .data = {},
3681         };
3682         header = action_encap_data->data;
3683         if (l2_encap_conf.select_vlan)
3684                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3685         else if (l2_encap_conf.select_ipv4)
3686                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3687         else
3688                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3689         memcpy(eth.dst.addr_bytes,
3690                l2_encap_conf.eth_dst, ETHER_ADDR_LEN);
3691         memcpy(eth.src.addr_bytes,
3692                l2_encap_conf.eth_src, ETHER_ADDR_LEN);
3693         memcpy(header, &eth, sizeof(eth));
3694         header += sizeof(eth);
3695         if (l2_encap_conf.select_vlan) {
3696                 if (l2_encap_conf.select_ipv4)
3697                         vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3698                 else
3699                         vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3700                 memcpy(header, &vlan, sizeof(vlan));
3701                 header += sizeof(vlan);
3702         }
3703         action_encap_data->conf.size = header -
3704                 action_encap_data->data;
3705         action->conf = &action_encap_data->conf;
3706         return ret;
3707 }
3708
3709 /** Parse l2 decap action. */
3710 static int
3711 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
3712                          const char *str, unsigned int len,
3713                          void *buf, unsigned int size)
3714 {
3715         struct buffer *out = buf;
3716         struct rte_flow_action *action;
3717         struct action_raw_decap_data *action_decap_data;
3718         struct rte_flow_item_eth eth = { .type = 0, };
3719         struct rte_flow_item_vlan vlan = {
3720                 .tci = mplsoudp_encap_conf.vlan_tci,
3721                 .inner_type = 0,
3722         };
3723         uint8_t *header;
3724         int ret;
3725
3726         ret = parse_vc(ctx, token, str, len, buf, size);
3727         if (ret < 0)
3728                 return ret;
3729         /* Nothing else to do if there is no buffer. */
3730         if (!out)
3731                 return ret;
3732         if (!out->args.vc.actions_n)
3733                 return -1;
3734         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3735         /* Point to selected object. */
3736         ctx->object = out->args.vc.data;
3737         ctx->objmask = NULL;
3738         /* Copy the headers to the buffer. */
3739         action_decap_data = ctx->object;
3740         *action_decap_data = (struct action_raw_decap_data) {
3741                 .conf = (struct rte_flow_action_raw_decap){
3742                         .data = action_decap_data->data,
3743                 },
3744                 .data = {},
3745         };
3746         header = action_decap_data->data;
3747         if (l2_decap_conf.select_vlan)
3748                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3749         memcpy(header, &eth, sizeof(eth));
3750         header += sizeof(eth);
3751         if (l2_decap_conf.select_vlan) {
3752                 memcpy(header, &vlan, sizeof(vlan));
3753                 header += sizeof(vlan);
3754         }
3755         action_decap_data->conf.size = header -
3756                 action_decap_data->data;
3757         action->conf = &action_decap_data->conf;
3758         return ret;
3759 }
3760
3761 #define ETHER_TYPE_MPLS_UNICAST 0x8847
3762
3763 /** Parse MPLSOGRE encap action. */
3764 static int
3765 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
3766                                const char *str, unsigned int len,
3767                                void *buf, unsigned int size)
3768 {
3769         struct buffer *out = buf;
3770         struct rte_flow_action *action;
3771         struct action_raw_encap_data *action_encap_data;
3772         struct rte_flow_item_eth eth = { .type = 0, };
3773         struct rte_flow_item_vlan vlan = {
3774                 .tci = mplsogre_encap_conf.vlan_tci,
3775                 .inner_type = 0,
3776         };
3777         struct rte_flow_item_ipv4 ipv4 = {
3778                 .hdr =  {
3779                         .src_addr = mplsogre_encap_conf.ipv4_src,
3780                         .dst_addr = mplsogre_encap_conf.ipv4_dst,
3781                         .next_proto_id = IPPROTO_GRE,
3782                 },
3783         };
3784         struct rte_flow_item_ipv6 ipv6 = {
3785                 .hdr =  {
3786                         .proto = IPPROTO_GRE,
3787                 },
3788         };
3789         struct rte_flow_item_gre gre = {
3790                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3791         };
3792         struct rte_flow_item_mpls mpls;
3793         uint8_t *header;
3794         int ret;
3795
3796         ret = parse_vc(ctx, token, str, len, buf, size);
3797         if (ret < 0)
3798                 return ret;
3799         /* Nothing else to do if there is no buffer. */
3800         if (!out)
3801                 return ret;
3802         if (!out->args.vc.actions_n)
3803                 return -1;
3804         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3805         /* Point to selected object. */
3806         ctx->object = out->args.vc.data;
3807         ctx->objmask = NULL;
3808         /* Copy the headers to the buffer. */
3809         action_encap_data = ctx->object;
3810         *action_encap_data = (struct action_raw_encap_data) {
3811                 .conf = (struct rte_flow_action_raw_encap){
3812                         .data = action_encap_data->data,
3813                 },
3814                 .data = {},
3815                 .preserve = {},
3816         };
3817         header = action_encap_data->data;
3818         if (mplsogre_encap_conf.select_vlan)
3819                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3820         else if (mplsogre_encap_conf.select_ipv4)
3821                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3822         else
3823                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3824         memcpy(eth.dst.addr_bytes,
3825                mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3826         memcpy(eth.src.addr_bytes,
3827                mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3828         memcpy(header, &eth, sizeof(eth));
3829         header += sizeof(eth);
3830         if (mplsogre_encap_conf.select_vlan) {
3831                 if (mplsogre_encap_conf.select_ipv4)
3832                         vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3833                 else
3834                         vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3835                 memcpy(header, &vlan, sizeof(vlan));
3836                 header += sizeof(vlan);
3837         }
3838         if (mplsogre_encap_conf.select_ipv4) {
3839                 memcpy(header, &ipv4, sizeof(ipv4));
3840                 header += sizeof(ipv4);
3841         } else {
3842                 memcpy(&ipv6.hdr.src_addr,
3843                        &mplsogre_encap_conf.ipv6_src,
3844                        sizeof(mplsogre_encap_conf.ipv6_src));
3845                 memcpy(&ipv6.hdr.dst_addr,
3846                        &mplsogre_encap_conf.ipv6_dst,
3847                        sizeof(mplsogre_encap_conf.ipv6_dst));
3848                 memcpy(header, &ipv6, sizeof(ipv6));
3849                 header += sizeof(ipv6);
3850         }
3851         memcpy(header, &gre, sizeof(gre));
3852         header += sizeof(gre);
3853         memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
3854                RTE_DIM(mplsogre_encap_conf.label));
3855         mpls.label_tc_s[2] |= 0x1;
3856         memcpy(header, &mpls, sizeof(mpls));
3857         header += sizeof(mpls);
3858         action_encap_data->conf.size = header -
3859                 action_encap_data->data;
3860         action->conf = &action_encap_data->conf;
3861         return ret;
3862 }
3863
3864 /** Parse MPLSOGRE decap action. */
3865 static int
3866 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
3867                                const char *str, unsigned int len,
3868                                void *buf, unsigned int size)
3869 {
3870         struct buffer *out = buf;
3871         struct rte_flow_action *action;
3872         struct action_raw_decap_data *action_decap_data;
3873         struct rte_flow_item_eth eth = { .type = 0, };
3874         struct rte_flow_item_vlan vlan = {.tci = 0};
3875         struct rte_flow_item_ipv4 ipv4 = {
3876                 .hdr =  {
3877                         .next_proto_id = IPPROTO_GRE,
3878                 },
3879         };
3880         struct rte_flow_item_ipv6 ipv6 = {
3881                 .hdr =  {
3882                         .proto = IPPROTO_GRE,
3883                 },
3884         };
3885         struct rte_flow_item_gre gre = {
3886                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3887         };
3888         struct rte_flow_item_mpls mpls;
3889         uint8_t *header;
3890         int ret;
3891
3892         ret = parse_vc(ctx, token, str, len, buf, size);
3893         if (ret < 0)
3894                 return ret;
3895         /* Nothing else to do if there is no buffer. */
3896         if (!out)
3897                 return ret;
3898         if (!out->args.vc.actions_n)
3899                 return -1;
3900         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3901         /* Point to selected object. */
3902         ctx->object = out->args.vc.data;
3903         ctx->objmask = NULL;
3904         /* Copy the headers to the buffer. */
3905         action_decap_data = ctx->object;
3906         *action_decap_data = (struct action_raw_decap_data) {
3907                 .conf = (struct rte_flow_action_raw_decap){
3908                         .data = action_decap_data->data,
3909                 },
3910                 .data = {},
3911         };
3912         header = action_decap_data->data;
3913         if (mplsogre_decap_conf.select_vlan)
3914                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
3915         else if (mplsogre_encap_conf.select_ipv4)
3916                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3917         else
3918                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3919         memcpy(eth.dst.addr_bytes,
3920                mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3921         memcpy(eth.src.addr_bytes,
3922                mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
3923         memcpy(header, &eth, sizeof(eth));
3924         header += sizeof(eth);
3925         if (mplsogre_encap_conf.select_vlan) {
3926                 if (mplsogre_encap_conf.select_ipv4)
3927                         vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
3928                 else
3929                         vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
3930                 memcpy(header, &vlan, sizeof(vlan));
3931                 header += sizeof(vlan);
3932         }
3933         if (mplsogre_encap_conf.select_ipv4) {
3934                 memcpy(header, &ipv4, sizeof(ipv4));
3935                 header += sizeof(ipv4);
3936         } else {
3937                 memcpy(header, &ipv6, sizeof(ipv6));
3938                 header += sizeof(ipv6);
3939         }
3940         memcpy(header, &gre, sizeof(gre));
3941         header += sizeof(gre);
3942         memset(&mpls, 0, sizeof(mpls));
3943         memcpy(header, &mpls, sizeof(mpls));
3944         header += sizeof(mpls);
3945         action_decap_data->conf.size = header -
3946                 action_decap_data->data;
3947         action->conf = &action_decap_data->conf;
3948         return ret;
3949 }
3950
3951 /** Parse MPLSOUDP encap action. */
3952 static int
3953 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
3954                                const char *str, unsigned int len,
3955                                void *buf, unsigned int size)
3956 {
3957         struct buffer *out = buf;
3958         struct rte_flow_action *action;
3959         struct action_raw_encap_data *action_encap_data;
3960         struct rte_flow_item_eth eth = { .type = 0, };
3961         struct rte_flow_item_vlan vlan = {
3962                 .tci = mplsoudp_encap_conf.vlan_tci,
3963                 .inner_type = 0,
3964         };
3965         struct rte_flow_item_ipv4 ipv4 = {
3966                 .hdr =  {
3967                         .src_addr = mplsoudp_encap_conf.ipv4_src,
3968                         .dst_addr = mplsoudp_encap_conf.ipv4_dst,
3969                         .next_proto_id = IPPROTO_UDP,
3970                 },
3971         };
3972         struct rte_flow_item_ipv6 ipv6 = {
3973                 .hdr =  {
3974                         .proto = IPPROTO_UDP,
3975                 },
3976         };
3977         struct rte_flow_item_udp udp = {
3978                 .hdr = {
3979                         .src_port = mplsoudp_encap_conf.udp_src,
3980                         .dst_port = mplsoudp_encap_conf.udp_dst,
3981                 },
3982         };
3983         struct rte_flow_item_mpls mpls;
3984         uint8_t *header;
3985         int ret;
3986
3987         ret = parse_vc(ctx, token, str, len, buf, size);
3988         if (ret < 0)
3989                 return ret;
3990         /* Nothing else to do if there is no buffer. */
3991         if (!out)
3992                 return ret;
3993         if (!out->args.vc.actions_n)
3994                 return -1;
3995         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3996         /* Point to selected object. */
3997         ctx->object = out->args.vc.data;
3998         ctx->objmask = NULL;
3999         /* Copy the headers to the buffer. */
4000         action_encap_data = ctx->object;
4001         *action_encap_data = (struct action_raw_encap_data) {
4002                 .conf = (struct rte_flow_action_raw_encap){
4003                         .data = action_encap_data->data,
4004                 },
4005                 .data = {},
4006                 .preserve = {},
4007         };
4008         header = action_encap_data->data;
4009         if (mplsoudp_encap_conf.select_vlan)
4010                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
4011         else if (mplsoudp_encap_conf.select_ipv4)
4012                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4013         else
4014                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4015         memcpy(eth.dst.addr_bytes,
4016                mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
4017         memcpy(eth.src.addr_bytes,
4018                mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
4019         memcpy(header, &eth, sizeof(eth));
4020         header += sizeof(eth);
4021         if (mplsoudp_encap_conf.select_vlan) {
4022                 if (mplsoudp_encap_conf.select_ipv4)
4023                         vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4024                 else
4025                         vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4026                 memcpy(header, &vlan, sizeof(vlan));
4027                 header += sizeof(vlan);
4028         }
4029         if (mplsoudp_encap_conf.select_ipv4) {
4030                 memcpy(header, &ipv4, sizeof(ipv4));
4031                 header += sizeof(ipv4);
4032         } else {
4033                 memcpy(&ipv6.hdr.src_addr,
4034                        &mplsoudp_encap_conf.ipv6_src,
4035                        sizeof(mplsoudp_encap_conf.ipv6_src));
4036                 memcpy(&ipv6.hdr.dst_addr,
4037                        &mplsoudp_encap_conf.ipv6_dst,
4038                        sizeof(mplsoudp_encap_conf.ipv6_dst));
4039                 memcpy(header, &ipv6, sizeof(ipv6));
4040                 header += sizeof(ipv6);
4041         }
4042         memcpy(header, &udp, sizeof(udp));
4043         header += sizeof(udp);
4044         memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4045                RTE_DIM(mplsoudp_encap_conf.label));
4046         mpls.label_tc_s[2] |= 0x1;
4047         memcpy(header, &mpls, sizeof(mpls));
4048         header += sizeof(mpls);
4049         action_encap_data->conf.size = header -
4050                 action_encap_data->data;
4051         action->conf = &action_encap_data->conf;
4052         return ret;
4053 }
4054
4055 /** Parse MPLSOUDP decap action. */
4056 static int
4057 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4058                                const char *str, unsigned int len,
4059                                void *buf, unsigned int size)
4060 {
4061         struct buffer *out = buf;
4062         struct rte_flow_action *action;
4063         struct action_raw_decap_data *action_decap_data;
4064         struct rte_flow_item_eth eth = { .type = 0, };
4065         struct rte_flow_item_vlan vlan = {.tci = 0};
4066         struct rte_flow_item_ipv4 ipv4 = {
4067                 .hdr =  {
4068                         .next_proto_id = IPPROTO_UDP,
4069                 },
4070         };
4071         struct rte_flow_item_ipv6 ipv6 = {
4072                 .hdr =  {
4073                         .proto = IPPROTO_UDP,
4074                 },
4075         };
4076         struct rte_flow_item_udp udp = {
4077                 .hdr = {
4078                         .dst_port = rte_cpu_to_be_16(6635),
4079                 },
4080         };
4081         struct rte_flow_item_mpls mpls;
4082         uint8_t *header;
4083         int ret;
4084
4085         ret = parse_vc(ctx, token, str, len, buf, size);
4086         if (ret < 0)
4087                 return ret;
4088         /* Nothing else to do if there is no buffer. */
4089         if (!out)
4090                 return ret;
4091         if (!out->args.vc.actions_n)
4092                 return -1;
4093         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4094         /* Point to selected object. */
4095         ctx->object = out->args.vc.data;
4096         ctx->objmask = NULL;
4097         /* Copy the headers to the buffer. */
4098         action_decap_data = ctx->object;
4099         *action_decap_data = (struct action_raw_decap_data) {
4100                 .conf = (struct rte_flow_action_raw_decap){
4101                         .data = action_decap_data->data,
4102                 },
4103                 .data = {},
4104         };
4105         header = action_decap_data->data;
4106         if (mplsoudp_decap_conf.select_vlan)
4107                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
4108         else if (mplsoudp_encap_conf.select_ipv4)
4109                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4110         else
4111                 eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4112         memcpy(eth.dst.addr_bytes,
4113                mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
4114         memcpy(eth.src.addr_bytes,
4115                mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
4116         memcpy(header, &eth, sizeof(eth));
4117         header += sizeof(eth);
4118         if (mplsoudp_encap_conf.select_vlan) {
4119                 if (mplsoudp_encap_conf.select_ipv4)
4120                         vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
4121                 else
4122                         vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
4123                 memcpy(header, &vlan, sizeof(vlan));
4124                 header += sizeof(vlan);
4125         }
4126         if (mplsoudp_encap_conf.select_ipv4) {
4127                 memcpy(header, &ipv4, sizeof(ipv4));
4128                 header += sizeof(ipv4);
4129         } else {
4130                 memcpy(header, &ipv6, sizeof(ipv6));
4131                 header += sizeof(ipv6);
4132         }
4133         memcpy(header, &udp, sizeof(udp));
4134         header += sizeof(udp);
4135         memset(&mpls, 0, sizeof(mpls));
4136         memcpy(header, &mpls, sizeof(mpls));
4137         header += sizeof(mpls);
4138         action_decap_data->conf.size = header -
4139                 action_decap_data->data;
4140         action->conf = &action_decap_data->conf;
4141         return ret;
4142 }
4143
4144 /** Parse tokens for destroy command. */
4145 static int
4146 parse_destroy(struct context *ctx, const struct token *token,
4147               const char *str, unsigned int len,
4148               void *buf, unsigned int size)
4149 {
4150         struct buffer *out = buf;
4151
4152         /* Token name must match. */
4153         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4154                 return -1;
4155         /* Nothing else to do if there is no buffer. */
4156         if (!out)
4157                 return len;
4158         if (!out->command) {
4159                 if (ctx->curr != DESTROY)
4160                         return -1;
4161                 if (sizeof(*out) > size)
4162                         return -1;
4163                 out->command = ctx->curr;
4164                 ctx->objdata = 0;
4165                 ctx->object = out;
4166                 ctx->objmask = NULL;
4167                 out->args.destroy.rule =
4168                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4169                                                sizeof(double));
4170                 return len;
4171         }
4172         if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4173              sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4174                 return -1;
4175         ctx->objdata = 0;
4176         ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4177         ctx->objmask = NULL;
4178         return len;
4179 }
4180
4181 /** Parse tokens for flush command. */
4182 static int
4183 parse_flush(struct context *ctx, const struct token *token,
4184             const char *str, unsigned int len,
4185             void *buf, unsigned int size)
4186 {
4187         struct buffer *out = buf;
4188
4189         /* Token name must match. */
4190         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4191                 return -1;
4192         /* Nothing else to do if there is no buffer. */
4193         if (!out)
4194                 return len;
4195         if (!out->command) {
4196                 if (ctx->curr != FLUSH)
4197                         return -1;
4198                 if (sizeof(*out) > size)
4199                         return -1;
4200                 out->command = ctx->curr;
4201                 ctx->objdata = 0;
4202                 ctx->object = out;
4203                 ctx->objmask = NULL;
4204         }
4205         return len;
4206 }
4207
4208 /** Parse tokens for query command. */
4209 static int
4210 parse_query(struct context *ctx, const struct token *token,
4211             const char *str, unsigned int len,
4212             void *buf, unsigned int size)
4213 {
4214         struct buffer *out = buf;
4215
4216         /* Token name must match. */
4217         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4218                 return -1;
4219         /* Nothing else to do if there is no buffer. */
4220         if (!out)
4221                 return len;
4222         if (!out->command) {
4223                 if (ctx->curr != QUERY)
4224                         return -1;
4225                 if (sizeof(*out) > size)
4226                         return -1;
4227                 out->command = ctx->curr;
4228                 ctx->objdata = 0;
4229                 ctx->object = out;
4230                 ctx->objmask = NULL;
4231         }
4232         return len;
4233 }
4234
4235 /** Parse action names. */
4236 static int
4237 parse_action(struct context *ctx, const struct token *token,
4238              const char *str, unsigned int len,
4239              void *buf, unsigned int size)
4240 {
4241         struct buffer *out = buf;
4242         const struct arg *arg = pop_args(ctx);
4243         unsigned int i;
4244
4245         (void)size;
4246         /* Argument is expected. */
4247         if (!arg)
4248                 return -1;
4249         /* Parse action name. */
4250         for (i = 0; next_action[i]; ++i) {
4251                 const struct parse_action_priv *priv;
4252
4253                 token = &token_list[next_action[i]];
4254                 if (strcmp_partial(token->name, str, len))
4255                         continue;
4256                 priv = token->priv;
4257                 if (!priv)
4258                         goto error;
4259                 if (out)
4260                         memcpy((uint8_t *)ctx->object + arg->offset,
4261                                &priv->type,
4262                                arg->size);
4263                 return len;
4264         }
4265 error:
4266         push_args(ctx, arg);
4267         return -1;
4268 }
4269
4270 /** Parse tokens for list command. */
4271 static int
4272 parse_list(struct context *ctx, const struct token *token,
4273            const char *str, unsigned int len,
4274            void *buf, unsigned int size)
4275 {
4276         struct buffer *out = buf;
4277
4278         /* Token name must match. */
4279         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4280                 return -1;
4281         /* Nothing else to do if there is no buffer. */
4282         if (!out)
4283                 return len;
4284         if (!out->command) {
4285                 if (ctx->curr != LIST)
4286                         return -1;
4287                 if (sizeof(*out) > size)
4288                         return -1;
4289                 out->command = ctx->curr;
4290                 ctx->objdata = 0;
4291                 ctx->object = out;
4292                 ctx->objmask = NULL;
4293                 out->args.list.group =
4294                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4295                                                sizeof(double));
4296                 return len;
4297         }
4298         if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4299              sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4300                 return -1;
4301         ctx->objdata = 0;
4302         ctx->object = out->args.list.group + out->args.list.group_n++;
4303         ctx->objmask = NULL;
4304         return len;
4305 }
4306
4307 /** Parse tokens for isolate command. */
4308 static int
4309 parse_isolate(struct context *ctx, const struct token *token,
4310               const char *str, unsigned int len,
4311               void *buf, unsigned int size)
4312 {
4313         struct buffer *out = buf;
4314
4315         /* Token name must match. */
4316         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4317                 return -1;
4318         /* Nothing else to do if there is no buffer. */
4319         if (!out)
4320                 return len;
4321         if (!out->command) {
4322                 if (ctx->curr != ISOLATE)
4323                         return -1;
4324                 if (sizeof(*out) > size)
4325                         return -1;
4326                 out->command = ctx->curr;
4327                 ctx->objdata = 0;
4328                 ctx->object = out;
4329                 ctx->objmask = NULL;
4330         }
4331         return len;
4332 }
4333
4334 /**
4335  * Parse signed/unsigned integers 8 to 64-bit long.
4336  *
4337  * Last argument (ctx->args) is retrieved to determine integer type and
4338  * storage location.
4339  */
4340 static int
4341 parse_int(struct context *ctx, const struct token *token,
4342           const char *str, unsigned int len,
4343           void *buf, unsigned int size)
4344 {
4345         const struct arg *arg = pop_args(ctx);
4346         uintmax_t u;
4347         char *end;
4348
4349         (void)token;
4350         /* Argument is expected. */
4351         if (!arg)
4352                 return -1;
4353         errno = 0;
4354         u = arg->sign ?
4355                 (uintmax_t)strtoimax(str, &end, 0) :
4356                 strtoumax(str, &end, 0);
4357         if (errno || (size_t)(end - str) != len)
4358                 goto error;
4359         if (arg->bounded &&
4360             ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4361                             (intmax_t)u > (intmax_t)arg->max)) ||
4362              (!arg->sign && (u < arg->min || u > arg->max))))
4363                 goto error;
4364         if (!ctx->object)
4365                 return len;
4366         if (arg->mask) {
4367                 if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4368                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
4369                         goto error;
4370                 return len;
4371         }
4372         buf = (uint8_t *)ctx->object + arg->offset;
4373         size = arg->size;
4374         if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4375                 return -1;
4376 objmask:
4377         switch (size) {
4378         case sizeof(uint8_t):
4379                 *(uint8_t *)buf = u;
4380                 break;
4381         case sizeof(uint16_t):
4382                 *(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4383                 break;
4384         case sizeof(uint8_t [3]):
4385 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4386                 if (!arg->hton) {
4387                         ((uint8_t *)buf)[0] = u;
4388                         ((uint8_t *)buf)[1] = u >> 8;
4389                         ((uint8_t *)buf)[2] = u >> 16;
4390                         break;
4391                 }
4392 #endif
4393                 ((uint8_t *)buf)[0] = u >> 16;
4394                 ((uint8_t *)buf)[1] = u >> 8;
4395                 ((uint8_t *)buf)[2] = u;
4396                 break;
4397         case sizeof(uint32_t):
4398                 *(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4399                 break;
4400         case sizeof(uint64_t):
4401                 *(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4402                 break;
4403         default:
4404                 goto error;
4405         }
4406         if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4407                 u = -1;
4408                 buf = (uint8_t *)ctx->objmask + arg->offset;
4409                 goto objmask;
4410         }
4411         return len;
4412 error:
4413         push_args(ctx, arg);
4414         return -1;
4415 }
4416
4417 /**
4418  * Parse a string.
4419  *
4420  * Three arguments (ctx->args) are retrieved from the stack to store data,
4421  * its actual length and address (in that order).
4422  */
4423 static int
4424 parse_string(struct context *ctx, const struct token *token,
4425              const char *str, unsigned int len,
4426              void *buf, unsigned int size)
4427 {
4428         const struct arg *arg_data = pop_args(ctx);
4429         const struct arg *arg_len = pop_args(ctx);
4430         const struct arg *arg_addr = pop_args(ctx);
4431         char tmp[16]; /* Ought to be enough. */
4432         int ret;
4433
4434         /* Arguments are expected. */
4435         if (!arg_data)
4436                 return -1;
4437         if (!arg_len) {
4438                 push_args(ctx, arg_data);
4439                 return -1;
4440         }
4441         if (!arg_addr) {
4442                 push_args(ctx, arg_len);
4443                 push_args(ctx, arg_data);
4444                 return -1;
4445         }
4446         size = arg_data->size;
4447         /* Bit-mask fill is not supported. */
4448         if (arg_data->mask || size < len)
4449                 goto error;
4450         if (!ctx->object)
4451                 return len;
4452         /* Let parse_int() fill length information first. */
4453         ret = snprintf(tmp, sizeof(tmp), "%u", len);
4454         if (ret < 0)
4455                 goto error;
4456         push_args(ctx, arg_len);
4457         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4458         if (ret < 0) {
4459                 pop_args(ctx);
4460                 goto error;
4461         }
4462         buf = (uint8_t *)ctx->object + arg_data->offset;
4463         /* Output buffer is not necessarily NUL-terminated. */
4464         memcpy(buf, str, len);
4465         memset((uint8_t *)buf + len, 0x00, size - len);
4466         if (ctx->objmask)
4467                 memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4468         /* Save address if requested. */
4469         if (arg_addr->size) {
4470                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
4471                        (void *[]){
4472                         (uint8_t *)ctx->object + arg_data->offset
4473                        },
4474                        arg_addr->size);
4475                 if (ctx->objmask)
4476                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4477                                (void *[]){
4478                                 (uint8_t *)ctx->objmask + arg_data->offset
4479                                },
4480                                arg_addr->size);
4481         }
4482         return len;
4483 error:
4484         push_args(ctx, arg_addr);
4485         push_args(ctx, arg_len);
4486         push_args(ctx, arg_data);
4487         return -1;
4488 }
4489
4490 static int
4491 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
4492 {
4493         char *c = NULL;
4494         uint32_t i, len;
4495         char tmp[3];
4496
4497         /* Check input parameters */
4498         if ((src == NULL) ||
4499                 (dst == NULL) ||
4500                 (size == NULL) ||
4501                 (*size == 0))
4502                 return -1;
4503
4504         /* Convert chars to bytes */
4505         for (i = 0, len = 0; i < *size; i += 2) {
4506                 snprintf(tmp, 3, "%s", src + i);
4507                 dst[len++] = strtoul(tmp, &c, 16);
4508                 if (*c != 0) {
4509                         len--;
4510                         dst[len] = 0;
4511                         *size = len;
4512                         return -1;
4513                 }
4514         }
4515         dst[len] = 0;
4516         *size = len;
4517
4518         return 0;
4519 }
4520
4521 static int
4522 parse_hex(struct context *ctx, const struct token *token,
4523                 const char *str, unsigned int len,
4524                 void *buf, unsigned int size)
4525 {
4526         const struct arg *arg_data = pop_args(ctx);
4527         const struct arg *arg_len = pop_args(ctx);
4528         const struct arg *arg_addr = pop_args(ctx);
4529         char tmp[16]; /* Ought to be enough. */
4530         int ret;
4531         unsigned int hexlen = len;
4532         unsigned int length = 256;
4533         uint8_t hex_tmp[length];
4534
4535         /* Arguments are expected. */
4536         if (!arg_data)
4537                 return -1;
4538         if (!arg_len) {
4539                 push_args(ctx, arg_data);
4540                 return -1;
4541         }
4542         if (!arg_addr) {
4543                 push_args(ctx, arg_len);
4544                 push_args(ctx, arg_data);
4545                 return -1;
4546         }
4547         size = arg_data->size;
4548         /* Bit-mask fill is not supported. */
4549         if (arg_data->mask)
4550                 goto error;
4551         if (!ctx->object)
4552                 return len;
4553
4554         /* translate bytes string to array. */
4555         if (str[0] == '0' && ((str[1] == 'x') ||
4556                         (str[1] == 'X'))) {
4557                 str += 2;
4558                 hexlen -= 2;
4559         }
4560         if (hexlen > length)
4561                 return -1;
4562         ret = parse_hex_string(str, hex_tmp, &hexlen);
4563         if (ret < 0)
4564                 goto error;
4565         /* Let parse_int() fill length information first. */
4566         ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
4567         if (ret < 0)
4568                 goto error;
4569         push_args(ctx, arg_len);
4570         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4571         if (ret < 0) {
4572                 pop_args(ctx);
4573                 goto error;
4574         }
4575         buf = (uint8_t *)ctx->object + arg_data->offset;
4576         /* Output buffer is not necessarily NUL-terminated. */
4577         memcpy(buf, hex_tmp, hexlen);
4578         memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
4579         if (ctx->objmask)
4580                 memset((uint8_t *)ctx->objmask + arg_data->offset,
4581                                         0xff, hexlen);
4582         /* Save address if requested. */
4583         if (arg_addr->size) {
4584                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
4585                        (void *[]){
4586                         (uint8_t *)ctx->object + arg_data->offset
4587                        },
4588                        arg_addr->size);
4589                 if (ctx->objmask)
4590                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4591                                (void *[]){
4592                                 (uint8_t *)ctx->objmask + arg_data->offset
4593                                },
4594                                arg_addr->size);
4595         }
4596         return len;
4597 error:
4598         push_args(ctx, arg_addr);
4599         push_args(ctx, arg_len);
4600         push_args(ctx, arg_data);
4601         return -1;
4602
4603 }
4604
4605 /**
4606  * Parse a MAC address.
4607  *
4608  * Last argument (ctx->args) is retrieved to determine storage size and
4609  * location.
4610  */
4611 static int
4612 parse_mac_addr(struct context *ctx, const struct token *token,
4613                const char *str, unsigned int len,
4614                void *buf, unsigned int size)
4615 {
4616         const struct arg *arg = pop_args(ctx);
4617         struct ether_addr tmp;
4618         int ret;
4619
4620         (void)token;
4621         /* Argument is expected. */
4622         if (!arg)
4623                 return -1;
4624         size = arg->size;
4625         /* Bit-mask fill is not supported. */
4626         if (arg->mask || size != sizeof(tmp))
4627                 goto error;
4628         /* Only network endian is supported. */
4629         if (!arg->hton)
4630                 goto error;
4631         ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
4632         if (ret < 0 || (unsigned int)ret != len)
4633                 goto error;
4634         if (!ctx->object)
4635                 return len;
4636         buf = (uint8_t *)ctx->object + arg->offset;
4637         memcpy(buf, &tmp, size);
4638         if (ctx->objmask)
4639                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4640         return len;
4641 error:
4642         push_args(ctx, arg);
4643         return -1;
4644 }
4645
4646 /**
4647  * Parse an IPv4 address.
4648  *
4649  * Last argument (ctx->args) is retrieved to determine storage size and
4650  * location.
4651  */
4652 static int
4653 parse_ipv4_addr(struct context *ctx, const struct token *token,
4654                 const char *str, unsigned int len,
4655                 void *buf, unsigned int size)
4656 {
4657         const struct arg *arg = pop_args(ctx);
4658         char str2[len + 1];
4659         struct in_addr tmp;
4660         int ret;
4661
4662         /* Argument is expected. */
4663         if (!arg)
4664                 return -1;
4665         size = arg->size;
4666         /* Bit-mask fill is not supported. */
4667         if (arg->mask || size != sizeof(tmp))
4668                 goto error;
4669         /* Only network endian is supported. */
4670         if (!arg->hton)
4671                 goto error;
4672         memcpy(str2, str, len);
4673         str2[len] = '\0';
4674         ret = inet_pton(AF_INET, str2, &tmp);
4675         if (ret != 1) {
4676                 /* Attempt integer parsing. */
4677                 push_args(ctx, arg);
4678                 return parse_int(ctx, token, str, len, buf, size);
4679         }
4680         if (!ctx->object)
4681                 return len;
4682         buf = (uint8_t *)ctx->object + arg->offset;
4683         memcpy(buf, &tmp, size);
4684         if (ctx->objmask)
4685                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4686         return len;
4687 error:
4688         push_args(ctx, arg);
4689         return -1;
4690 }
4691
4692 /**
4693  * Parse an IPv6 address.
4694  *
4695  * Last argument (ctx->args) is retrieved to determine storage size and
4696  * location.
4697  */
4698 static int
4699 parse_ipv6_addr(struct context *ctx, const struct token *token,
4700                 const char *str, unsigned int len,
4701                 void *buf, unsigned int size)
4702 {
4703         const struct arg *arg = pop_args(ctx);
4704         char str2[len + 1];
4705         struct in6_addr tmp;
4706         int ret;
4707
4708         (void)token;
4709         /* Argument is expected. */
4710         if (!arg)
4711                 return -1;
4712         size = arg->size;
4713         /* Bit-mask fill is not supported. */
4714         if (arg->mask || size != sizeof(tmp))
4715                 goto error;
4716         /* Only network endian is supported. */
4717         if (!arg->hton)
4718                 goto error;
4719         memcpy(str2, str, len);
4720         str2[len] = '\0';
4721         ret = inet_pton(AF_INET6, str2, &tmp);
4722         if (ret != 1)
4723                 goto error;
4724         if (!ctx->object)
4725                 return len;
4726         buf = (uint8_t *)ctx->object + arg->offset;
4727         memcpy(buf, &tmp, size);
4728         if (ctx->objmask)
4729                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4730         return len;
4731 error:
4732         push_args(ctx, arg);
4733         return -1;
4734 }
4735
4736 /** Boolean values (even indices stand for false). */
4737 static const char *const boolean_name[] = {
4738         "0", "1",
4739         "false", "true",
4740         "no", "yes",
4741         "N", "Y",
4742         "off", "on",
4743         NULL,
4744 };
4745
4746 /**
4747  * Parse a boolean value.
4748  *
4749  * Last argument (ctx->args) is retrieved to determine storage size and
4750  * location.
4751  */
4752 static int
4753 parse_boolean(struct context *ctx, const struct token *token,
4754               const char *str, unsigned int len,
4755               void *buf, unsigned int size)
4756 {
4757         const struct arg *arg = pop_args(ctx);
4758         unsigned int i;
4759         int ret;
4760
4761         /* Argument is expected. */
4762         if (!arg)
4763                 return -1;
4764         for (i = 0; boolean_name[i]; ++i)
4765                 if (!strcmp_partial(boolean_name[i], str, len))
4766                         break;
4767         /* Process token as integer. */
4768         if (boolean_name[i])
4769                 str = i & 1 ? "1" : "0";
4770         push_args(ctx, arg);
4771         ret = parse_int(ctx, token, str, strlen(str), buf, size);
4772         return ret > 0 ? (int)len : ret;
4773 }
4774
4775 /** Parse port and update context. */
4776 static int
4777 parse_port(struct context *ctx, const struct token *token,
4778            const char *str, unsigned int len,
4779            void *buf, unsigned int size)
4780 {
4781         struct buffer *out = &(struct buffer){ .port = 0 };
4782         int ret;
4783
4784         if (buf)
4785                 out = buf;
4786         else {
4787                 ctx->objdata = 0;
4788                 ctx->object = out;
4789                 ctx->objmask = NULL;
4790                 size = sizeof(*out);
4791         }
4792         ret = parse_int(ctx, token, str, len, out, size);
4793         if (ret >= 0)
4794                 ctx->port = out->port;
4795         if (!buf)
4796                 ctx->object = NULL;
4797         return ret;
4798 }
4799
4800 /** No completion. */
4801 static int
4802 comp_none(struct context *ctx, const struct token *token,
4803           unsigned int ent, char *buf, unsigned int size)
4804 {
4805         (void)ctx;
4806         (void)token;
4807         (void)ent;
4808         (void)buf;
4809         (void)size;
4810         return 0;
4811 }
4812
4813 /** Complete boolean values. */
4814 static int
4815 comp_boolean(struct context *ctx, const struct token *token,
4816              unsigned int ent, char *buf, unsigned int size)
4817 {
4818         unsigned int i;
4819
4820         (void)ctx;
4821         (void)token;
4822         for (i = 0; boolean_name[i]; ++i)
4823                 if (buf && i == ent)
4824                         return strlcpy(buf, boolean_name[i], size);
4825         if (buf)
4826                 return -1;
4827         return i;
4828 }
4829
4830 /** Complete action names. */
4831 static int
4832 comp_action(struct context *ctx, const struct token *token,
4833             unsigned int ent, char *buf, unsigned int size)
4834 {
4835         unsigned int i;
4836
4837         (void)ctx;
4838         (void)token;
4839         for (i = 0; next_action[i]; ++i)
4840                 if (buf && i == ent)
4841                         return strlcpy(buf, token_list[next_action[i]].name,
4842                                        size);
4843         if (buf)
4844                 return -1;
4845         return i;
4846 }
4847
4848 /** Complete available ports. */
4849 static int
4850 comp_port(struct context *ctx, const struct token *token,
4851           unsigned int ent, char *buf, unsigned int size)
4852 {
4853         unsigned int i = 0;
4854         portid_t p;
4855
4856         (void)ctx;
4857         (void)token;
4858         RTE_ETH_FOREACH_DEV(p) {
4859                 if (buf && i == ent)
4860                         return snprintf(buf, size, "%u", p);
4861                 ++i;
4862         }
4863         if (buf)
4864                 return -1;
4865         return i;
4866 }
4867
4868 /** Complete available rule IDs. */
4869 static int
4870 comp_rule_id(struct context *ctx, const struct token *token,
4871              unsigned int ent, char *buf, unsigned int size)
4872 {
4873         unsigned int i = 0;
4874         struct rte_port *port;
4875         struct port_flow *pf;
4876
4877         (void)token;
4878         if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
4879             ctx->port == (portid_t)RTE_PORT_ALL)
4880                 return -1;
4881         port = &ports[ctx->port];
4882         for (pf = port->flow_list; pf != NULL; pf = pf->next) {
4883                 if (buf && i == ent)
4884                         return snprintf(buf, size, "%u", pf->id);
4885                 ++i;
4886         }
4887         if (buf)
4888                 return -1;
4889         return i;
4890 }
4891
4892 /** Complete type field for RSS action. */
4893 static int
4894 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
4895                         unsigned int ent, char *buf, unsigned int size)
4896 {
4897         unsigned int i;
4898
4899         (void)ctx;
4900         (void)token;
4901         for (i = 0; rss_type_table[i].str; ++i)
4902                 ;
4903         if (!buf)
4904                 return i + 1;
4905         if (ent < i)
4906                 return strlcpy(buf, rss_type_table[ent].str, size);
4907         if (ent == i)
4908                 return snprintf(buf, size, "end");
4909         return -1;
4910 }
4911
4912 /** Complete queue field for RSS action. */
4913 static int
4914 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
4915                          unsigned int ent, char *buf, unsigned int size)
4916 {
4917         (void)ctx;
4918         (void)token;
4919         if (!buf)
4920                 return nb_rxq + 1;
4921         if (ent < nb_rxq)
4922                 return snprintf(buf, size, "%u", ent);
4923         if (ent == nb_rxq)
4924                 return snprintf(buf, size, "end");
4925         return -1;
4926 }
4927
4928 /** Internal context. */
4929 static struct context cmd_flow_context;
4930
4931 /** Global parser instance (cmdline API). */
4932 cmdline_parse_inst_t cmd_flow;
4933
4934 /** Initialize context. */
4935 static void
4936 cmd_flow_context_init(struct context *ctx)
4937 {
4938         /* A full memset() is not necessary. */
4939         ctx->curr = ZERO;
4940         ctx->prev = ZERO;
4941         ctx->next_num = 0;
4942         ctx->args_num = 0;
4943         ctx->eol = 0;
4944         ctx->last = 0;
4945         ctx->port = 0;
4946         ctx->objdata = 0;
4947         ctx->object = NULL;
4948         ctx->objmask = NULL;
4949 }
4950
4951 /** Parse a token (cmdline API). */
4952 static int
4953 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
4954                unsigned int size)
4955 {
4956         struct context *ctx = &cmd_flow_context;
4957         const struct token *token;
4958         const enum index *list;
4959         int len;
4960         int i;
4961
4962         (void)hdr;
4963         token = &token_list[ctx->curr];
4964         /* Check argument length. */
4965         ctx->eol = 0;
4966         ctx->last = 1;
4967         for (len = 0; src[len]; ++len)
4968                 if (src[len] == '#' || isspace(src[len]))
4969                         break;
4970         if (!len)
4971                 return -1;
4972         /* Last argument and EOL detection. */
4973         for (i = len; src[i]; ++i)
4974                 if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
4975                         break;
4976                 else if (!isspace(src[i])) {
4977                         ctx->last = 0;
4978                         break;
4979                 }
4980         for (; src[i]; ++i)
4981                 if (src[i] == '\r' || src[i] == '\n') {
4982                         ctx->eol = 1;
4983                         break;
4984                 }
4985         /* Initialize context if necessary. */
4986         if (!ctx->next_num) {
4987                 if (!token->next)
4988                         return 0;
4989                 ctx->next[ctx->next_num++] = token->next[0];
4990         }
4991         /* Process argument through candidates. */
4992         ctx->prev = ctx->curr;
4993         list = ctx->next[ctx->next_num - 1];
4994         for (i = 0; list[i]; ++i) {
4995                 const struct token *next = &token_list[list[i]];
4996                 int tmp;
4997
4998                 ctx->curr = list[i];
4999                 if (next->call)
5000                         tmp = next->call(ctx, next, src, len, result, size);
5001                 else
5002                         tmp = parse_default(ctx, next, src, len, result, size);
5003                 if (tmp == -1 || tmp != len)
5004                         continue;
5005                 token = next;
5006                 break;
5007         }
5008         if (!list[i])
5009                 return -1;
5010         --ctx->next_num;
5011         /* Push subsequent tokens if any. */
5012         if (token->next)
5013                 for (i = 0; token->next[i]; ++i) {
5014                         if (ctx->next_num == RTE_DIM(ctx->next))
5015                                 return -1;
5016                         ctx->next[ctx->next_num++] = token->next[i];
5017                 }
5018         /* Push arguments if any. */
5019         if (token->args)
5020                 for (i = 0; token->args[i]; ++i) {
5021                         if (ctx->args_num == RTE_DIM(ctx->args))
5022                                 return -1;
5023                         ctx->args[ctx->args_num++] = token->args[i];
5024                 }
5025         return len;
5026 }
5027
5028 /** Return number of completion entries (cmdline API). */
5029 static int
5030 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5031 {
5032         struct context *ctx = &cmd_flow_context;
5033         const struct token *token = &token_list[ctx->curr];
5034         const enum index *list;
5035         int i;
5036
5037         (void)hdr;
5038         /* Count number of tokens in current list. */
5039         if (ctx->next_num)
5040                 list = ctx->next[ctx->next_num - 1];
5041         else
5042                 list = token->next[0];
5043         for (i = 0; list[i]; ++i)
5044                 ;
5045         if (!i)
5046                 return 0;
5047         /*
5048          * If there is a single token, use its completion callback, otherwise
5049          * return the number of entries.
5050          */
5051         token = &token_list[list[0]];
5052         if (i == 1 && token->comp) {
5053                 /* Save index for cmd_flow_get_help(). */
5054                 ctx->prev = list[0];
5055                 return token->comp(ctx, token, 0, NULL, 0);
5056         }
5057         return i;
5058 }
5059
5060 /** Return a completion entry (cmdline API). */
5061 static int
5062 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5063                           char *dst, unsigned int size)
5064 {
5065         struct context *ctx = &cmd_flow_context;
5066         const struct token *token = &token_list[ctx->curr];
5067         const enum index *list;
5068         int i;
5069
5070         (void)hdr;
5071         /* Count number of tokens in current list. */
5072         if (ctx->next_num)
5073                 list = ctx->next[ctx->next_num - 1];
5074         else
5075                 list = token->next[0];
5076         for (i = 0; list[i]; ++i)
5077                 ;
5078         if (!i)
5079                 return -1;
5080         /* If there is a single token, use its completion callback. */
5081         token = &token_list[list[0]];
5082         if (i == 1 && token->comp) {
5083                 /* Save index for cmd_flow_get_help(). */
5084                 ctx->prev = list[0];
5085                 return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5086         }
5087         /* Otherwise make sure the index is valid and use defaults. */
5088         if (index >= i)
5089                 return -1;
5090         token = &token_list[list[index]];
5091         strlcpy(dst, token->name, size);
5092         /* Save index for cmd_flow_get_help(). */
5093         ctx->prev = list[index];
5094         return 0;
5095 }
5096
5097 /** Populate help strings for current token (cmdline API). */
5098 static int
5099 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5100 {
5101         struct context *ctx = &cmd_flow_context;
5102         const struct token *token = &token_list[ctx->prev];
5103
5104         (void)hdr;
5105         if (!size)
5106                 return -1;
5107         /* Set token type and update global help with details. */
5108         strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
5109         if (token->help)
5110                 cmd_flow.help_str = token->help;
5111         else
5112                 cmd_flow.help_str = token->name;
5113         return 0;
5114 }
5115
5116 /** Token definition template (cmdline API). */
5117 static struct cmdline_token_hdr cmd_flow_token_hdr = {
5118         .ops = &(struct cmdline_token_ops){
5119                 .parse = cmd_flow_parse,
5120                 .complete_get_nb = cmd_flow_complete_get_nb,
5121                 .complete_get_elt = cmd_flow_complete_get_elt,
5122                 .get_help = cmd_flow_get_help,
5123         },
5124         .offset = 0,
5125 };
5126
5127 /** Populate the next dynamic token. */
5128 static void
5129 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5130              cmdline_parse_token_hdr_t **hdr_inst)
5131 {
5132         struct context *ctx = &cmd_flow_context;
5133
5134         /* Always reinitialize context before requesting the first token. */
5135         if (!(hdr_inst - cmd_flow.tokens))
5136                 cmd_flow_context_init(ctx);
5137         /* Return NULL when no more tokens are expected. */
5138         if (!ctx->next_num && ctx->curr) {
5139                 *hdr = NULL;
5140                 return;
5141         }
5142         /* Determine if command should end here. */
5143         if (ctx->eol && ctx->last && ctx->next_num) {
5144                 const enum index *list = ctx->next[ctx->next_num - 1];
5145                 int i;
5146
5147                 for (i = 0; list[i]; ++i) {
5148                         if (list[i] != END)
5149                                 continue;
5150                         *hdr = NULL;
5151                         return;
5152                 }
5153         }
5154         *hdr = &cmd_flow_token_hdr;
5155 }
5156
5157 /** Dispatch parsed buffer to function calls. */
5158 static void
5159 cmd_flow_parsed(const struct buffer *in)
5160 {
5161         switch (in->command) {
5162         case VALIDATE:
5163                 port_flow_validate(in->port, &in->args.vc.attr,
5164                                    in->args.vc.pattern, in->args.vc.actions);
5165                 break;
5166         case CREATE:
5167                 port_flow_create(in->port, &in->args.vc.attr,
5168                                  in->args.vc.pattern, in->args.vc.actions);
5169                 break;
5170         case DESTROY:
5171                 port_flow_destroy(in->port, in->args.destroy.rule_n,
5172                                   in->args.destroy.rule);
5173                 break;
5174         case FLUSH:
5175                 port_flow_flush(in->port);
5176                 break;
5177         case QUERY:
5178                 port_flow_query(in->port, in->args.query.rule,
5179                                 &in->args.query.action);
5180                 break;
5181         case LIST:
5182                 port_flow_list(in->port, in->args.list.group_n,
5183                                in->args.list.group);
5184                 break;
5185         case ISOLATE:
5186                 port_flow_isolate(in->port, in->args.isolate.set);
5187                 break;
5188         default:
5189                 break;
5190         }
5191 }
5192
5193 /** Token generator and output processing callback (cmdline API). */
5194 static void
5195 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5196 {
5197         if (cl == NULL)
5198                 cmd_flow_tok(arg0, arg2);
5199         else
5200                 cmd_flow_parsed(arg0);
5201 }
5202
5203 /** Global parser instance (cmdline API). */
5204 cmdline_parse_inst_t cmd_flow = {
5205         .f = cmd_flow_cb,
5206         .data = NULL, /**< Unused. */
5207         .help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5208         .tokens = {
5209                 NULL,
5210         }, /**< Tokens are returned by cmd_flow_tok(). */
5211 };