ethdev: add TTL change actions to flow API
[dpdk.git] / app / test-pmd / config.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53
54 #include "testpmd.h"
55
56 static char *flowtype_to_str(uint16_t flow_type);
57
58 static const struct {
59         enum tx_pkt_split split;
60         const char *name;
61 } tx_split_name[] = {
62         {
63                 .split = TX_PKT_SPLIT_OFF,
64                 .name = "off",
65         },
66         {
67                 .split = TX_PKT_SPLIT_ON,
68                 .name = "on",
69         },
70         {
71                 .split = TX_PKT_SPLIT_RND,
72                 .name = "rand",
73         },
74 };
75
76 const struct rss_type_info rss_type_table[] = {
77         { "ipv4", ETH_RSS_IPV4 },
78         { "ipv4-frag", ETH_RSS_FRAG_IPV4 },
79         { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
80         { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
81         { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
82         { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
83         { "ipv6", ETH_RSS_IPV6 },
84         { "ipv6-frag", ETH_RSS_FRAG_IPV6 },
85         { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
86         { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
87         { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
88         { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
89         { "l2-payload", ETH_RSS_L2_PAYLOAD },
90         { "ipv6-ex", ETH_RSS_IPV6_EX },
91         { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
92         { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
93         { "port", ETH_RSS_PORT },
94         { "vxlan", ETH_RSS_VXLAN },
95         { "geneve", ETH_RSS_GENEVE },
96         { "nvgre", ETH_RSS_NVGRE },
97         { "ip", ETH_RSS_IP },
98         { "udp", ETH_RSS_UDP },
99         { "tcp", ETH_RSS_TCP },
100         { "sctp", ETH_RSS_SCTP },
101         { "tunnel", ETH_RSS_TUNNEL },
102         { NULL, 0 },
103 };
104
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108         char buf[ETHER_ADDR_FMT_SIZE];
109         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110         printf("%s%s", name, buf);
111 }
112
113 void
114 nic_stats_display(portid_t port_id)
115 {
116         static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117         static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118         static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119         uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120         uint64_t mpps_rx, mpps_tx;
121         struct rte_eth_stats stats;
122         struct rte_port *port = &ports[port_id];
123         uint8_t i;
124         portid_t pid;
125
126         static const char *nic_stats_border = "########################";
127
128         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
129                 printf("Valid port range is [0");
130                 RTE_ETH_FOREACH_DEV(pid)
131                         printf(", %d", pid);
132                 printf("]\n");
133                 return;
134         }
135         rte_eth_stats_get(port_id, &stats);
136         printf("\n  %s NIC statistics for port %-2d %s\n",
137                nic_stats_border, port_id, nic_stats_border);
138
139         if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
140                 printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
141                        "%-"PRIu64"\n",
142                        stats.ipackets, stats.imissed, stats.ibytes);
143                 printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
144                 printf("  RX-nombuf:  %-10"PRIu64"\n",
145                        stats.rx_nombuf);
146                 printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
147                        "%-"PRIu64"\n",
148                        stats.opackets, stats.oerrors, stats.obytes);
149         }
150         else {
151                 printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
152                        "    RX-bytes: %10"PRIu64"\n",
153                        stats.ipackets, stats.ierrors, stats.ibytes);
154                 printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
155                 printf("  RX-nombuf:               %10"PRIu64"\n",
156                        stats.rx_nombuf);
157                 printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
158                        "    TX-bytes: %10"PRIu64"\n",
159                        stats.opackets, stats.oerrors, stats.obytes);
160         }
161
162         if (port->rx_queue_stats_mapping_enabled) {
163                 printf("\n");
164                 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
165                         printf("  Stats reg %2d RX-packets: %10"PRIu64
166                                "    RX-errors: %10"PRIu64
167                                "    RX-bytes: %10"PRIu64"\n",
168                                i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
169                 }
170         }
171         if (port->tx_queue_stats_mapping_enabled) {
172                 printf("\n");
173                 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
174                         printf("  Stats reg %2d TX-packets: %10"PRIu64
175                                "                             TX-bytes: %10"PRIu64"\n",
176                                i, stats.q_opackets[i], stats.q_obytes[i]);
177                 }
178         }
179
180         diff_cycles = prev_cycles[port_id];
181         prev_cycles[port_id] = rte_rdtsc();
182         if (diff_cycles > 0)
183                 diff_cycles = prev_cycles[port_id] - diff_cycles;
184
185         diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
186                 (stats.ipackets - prev_pkts_rx[port_id]) : 0;
187         diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
188                 (stats.opackets - prev_pkts_tx[port_id]) : 0;
189         prev_pkts_rx[port_id] = stats.ipackets;
190         prev_pkts_tx[port_id] = stats.opackets;
191         mpps_rx = diff_cycles > 0 ?
192                 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
193         mpps_tx = diff_cycles > 0 ?
194                 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
195         printf("\n  Throughput (since last show)\n");
196         printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
197                         mpps_rx, mpps_tx);
198
199         printf("  %s############################%s\n",
200                nic_stats_border, nic_stats_border);
201 }
202
203 void
204 nic_stats_clear(portid_t port_id)
205 {
206         portid_t pid;
207
208         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
209                 printf("Valid port range is [0");
210                 RTE_ETH_FOREACH_DEV(pid)
211                         printf(", %d", pid);
212                 printf("]\n");
213                 return;
214         }
215         rte_eth_stats_reset(port_id);
216         printf("\n  NIC statistics for port %d cleared\n", port_id);
217 }
218
219 void
220 nic_xstats_display(portid_t port_id)
221 {
222         struct rte_eth_xstat *xstats;
223         int cnt_xstats, idx_xstat;
224         struct rte_eth_xstat_name *xstats_names;
225
226         printf("###### NIC extended statistics for port %-2d\n", port_id);
227         if (!rte_eth_dev_is_valid_port(port_id)) {
228                 printf("Error: Invalid port number %i\n", port_id);
229                 return;
230         }
231
232         /* Get count */
233         cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
234         if (cnt_xstats  < 0) {
235                 printf("Error: Cannot get count of xstats\n");
236                 return;
237         }
238
239         /* Get id-name lookup table */
240         xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
241         if (xstats_names == NULL) {
242                 printf("Cannot allocate memory for xstats lookup\n");
243                 return;
244         }
245         if (cnt_xstats != rte_eth_xstats_get_names(
246                         port_id, xstats_names, cnt_xstats)) {
247                 printf("Error: Cannot get xstats lookup\n");
248                 free(xstats_names);
249                 return;
250         }
251
252         /* Get stats themselves */
253         xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
254         if (xstats == NULL) {
255                 printf("Cannot allocate memory for xstats\n");
256                 free(xstats_names);
257                 return;
258         }
259         if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
260                 printf("Error: Unable to get xstats\n");
261                 free(xstats_names);
262                 free(xstats);
263                 return;
264         }
265
266         /* Display xstats */
267         for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
268                 if (xstats_hide_zero && !xstats[idx_xstat].value)
269                         continue;
270                 printf("%s: %"PRIu64"\n",
271                         xstats_names[idx_xstat].name,
272                         xstats[idx_xstat].value);
273         }
274         free(xstats_names);
275         free(xstats);
276 }
277
278 void
279 nic_xstats_clear(portid_t port_id)
280 {
281         rte_eth_xstats_reset(port_id);
282 }
283
284 void
285 nic_stats_mapping_display(portid_t port_id)
286 {
287         struct rte_port *port = &ports[port_id];
288         uint16_t i;
289         portid_t pid;
290
291         static const char *nic_stats_mapping_border = "########################";
292
293         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
294                 printf("Valid port range is [0");
295                 RTE_ETH_FOREACH_DEV(pid)
296                         printf(", %d", pid);
297                 printf("]\n");
298                 return;
299         }
300
301         if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
302                 printf("Port id %d - either does not support queue statistic mapping or"
303                        " no queue statistic mapping set\n", port_id);
304                 return;
305         }
306
307         printf("\n  %s NIC statistics mapping for port %-2d %s\n",
308                nic_stats_mapping_border, port_id, nic_stats_mapping_border);
309
310         if (port->rx_queue_stats_mapping_enabled) {
311                 for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
312                         if (rx_queue_stats_mappings[i].port_id == port_id) {
313                                 printf("  RX-queue %2d mapped to Stats Reg %2d\n",
314                                        rx_queue_stats_mappings[i].queue_id,
315                                        rx_queue_stats_mappings[i].stats_counter_id);
316                         }
317                 }
318                 printf("\n");
319         }
320
321
322         if (port->tx_queue_stats_mapping_enabled) {
323                 for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
324                         if (tx_queue_stats_mappings[i].port_id == port_id) {
325                                 printf("  TX-queue %2d mapped to Stats Reg %2d\n",
326                                        tx_queue_stats_mappings[i].queue_id,
327                                        tx_queue_stats_mappings[i].stats_counter_id);
328                         }
329                 }
330         }
331
332         printf("  %s####################################%s\n",
333                nic_stats_mapping_border, nic_stats_mapping_border);
334 }
335
336 void
337 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
338 {
339         struct rte_eth_rxq_info qinfo;
340         int32_t rc;
341         static const char *info_border = "*********************";
342
343         rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
344         if (rc != 0) {
345                 printf("Failed to retrieve information for port: %u, "
346                         "RX queue: %hu\nerror desc: %s(%d)\n",
347                         port_id, queue_id, strerror(-rc), rc);
348                 return;
349         }
350
351         printf("\n%s Infos for port %-2u, RX queue %-2u %s",
352                info_border, port_id, queue_id, info_border);
353
354         printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
355         printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
356         printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
357         printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
358         printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
359         printf("\nRX drop packets: %s",
360                 (qinfo.conf.rx_drop_en != 0) ? "on" : "off");
361         printf("\nRX deferred start: %s",
362                 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
363         printf("\nRX scattered packets: %s",
364                 (qinfo.scattered_rx != 0) ? "on" : "off");
365         printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
366         printf("\n");
367 }
368
369 void
370 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
371 {
372         struct rte_eth_txq_info qinfo;
373         int32_t rc;
374         static const char *info_border = "*********************";
375
376         rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
377         if (rc != 0) {
378                 printf("Failed to retrieve information for port: %u, "
379                         "TX queue: %hu\nerror desc: %s(%d)\n",
380                         port_id, queue_id, strerror(-rc), rc);
381                 return;
382         }
383
384         printf("\n%s Infos for port %-2u, TX queue %-2u %s",
385                info_border, port_id, queue_id, info_border);
386
387         printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
388         printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
389         printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
390         printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
391         printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
392         printf("\nTX deferred start: %s",
393                 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
394         printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
395         printf("\n");
396 }
397
398 void
399 port_infos_display(portid_t port_id)
400 {
401         struct rte_port *port;
402         struct ether_addr mac_addr;
403         struct rte_eth_link link;
404         struct rte_eth_dev_info dev_info;
405         int vlan_offload;
406         struct rte_mempool * mp;
407         static const char *info_border = "*********************";
408         portid_t pid;
409         uint16_t mtu;
410
411         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
412                 printf("Valid port range is [0");
413                 RTE_ETH_FOREACH_DEV(pid)
414                         printf(", %d", pid);
415                 printf("]\n");
416                 return;
417         }
418         port = &ports[port_id];
419         rte_eth_link_get_nowait(port_id, &link);
420         memset(&dev_info, 0, sizeof(dev_info));
421         rte_eth_dev_info_get(port_id, &dev_info);
422         printf("\n%s Infos for port %-2d %s\n",
423                info_border, port_id, info_border);
424         rte_eth_macaddr_get(port_id, &mac_addr);
425         print_ethaddr("MAC address: ", &mac_addr);
426         printf("\nDriver name: %s", dev_info.driver_name);
427         printf("\nConnect to socket: %u", port->socket_id);
428
429         if (port_numa[port_id] != NUMA_NO_CONFIG) {
430                 mp = mbuf_pool_find(port_numa[port_id]);
431                 if (mp)
432                         printf("\nmemory allocation on the socket: %d",
433                                                         port_numa[port_id]);
434         } else
435                 printf("\nmemory allocation on the socket: %u",port->socket_id);
436
437         printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
438         printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
439         printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
440                ("full-duplex") : ("half-duplex"));
441
442         if (!rte_eth_dev_get_mtu(port_id, &mtu))
443                 printf("MTU: %u\n", mtu);
444
445         printf("Promiscuous mode: %s\n",
446                rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
447         printf("Allmulticast mode: %s\n",
448                rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
449         printf("Maximum number of MAC addresses: %u\n",
450                (unsigned int)(port->dev_info.max_mac_addrs));
451         printf("Maximum number of MAC addresses of hash filtering: %u\n",
452                (unsigned int)(port->dev_info.max_hash_mac_addrs));
453
454         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
455         if (vlan_offload >= 0){
456                 printf("VLAN offload: \n");
457                 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
458                         printf("  strip on \n");
459                 else
460                         printf("  strip off \n");
461
462                 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
463                         printf("  filter on \n");
464                 else
465                         printf("  filter off \n");
466
467                 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
468                         printf("  qinq(extend) on \n");
469                 else
470                         printf("  qinq(extend) off \n");
471         }
472
473         if (dev_info.hash_key_size > 0)
474                 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
475         if (dev_info.reta_size > 0)
476                 printf("Redirection table size: %u\n", dev_info.reta_size);
477         if (!dev_info.flow_type_rss_offloads)
478                 printf("No flow type is supported.\n");
479         else {
480                 uint16_t i;
481                 char *p;
482
483                 printf("Supported flow types:\n");
484                 for (i = RTE_ETH_FLOW_UNKNOWN + 1;
485                      i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
486                         if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
487                                 continue;
488                         p = flowtype_to_str(i);
489                         if (p)
490                                 printf("  %s\n", p);
491                         else
492                                 printf("  user defined %d\n", i);
493                 }
494         }
495
496         printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
497         printf("Maximum configurable length of RX packet: %u\n",
498                 dev_info.max_rx_pktlen);
499         if (dev_info.max_vfs)
500                 printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
501         if (dev_info.max_vmdq_pools)
502                 printf("Maximum number of VMDq pools: %u\n",
503                         dev_info.max_vmdq_pools);
504
505         printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
506         printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
507         printf("Max possible number of RXDs per queue: %hu\n",
508                 dev_info.rx_desc_lim.nb_max);
509         printf("Min possible number of RXDs per queue: %hu\n",
510                 dev_info.rx_desc_lim.nb_min);
511         printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
512
513         printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
514         printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
515         printf("Max possible number of TXDs per queue: %hu\n",
516                 dev_info.tx_desc_lim.nb_max);
517         printf("Min possible number of TXDs per queue: %hu\n",
518                 dev_info.tx_desc_lim.nb_min);
519         printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
520 }
521
522 void
523 port_offload_cap_display(portid_t port_id)
524 {
525         struct rte_eth_dev_info dev_info;
526         static const char *info_border = "************";
527
528         if (port_id_is_invalid(port_id, ENABLED_WARN))
529                 return;
530
531         rte_eth_dev_info_get(port_id, &dev_info);
532
533         printf("\n%s Port %d supported offload features: %s\n",
534                 info_border, port_id, info_border);
535
536         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
537                 printf("VLAN stripped:                 ");
538                 if (ports[port_id].dev_conf.rxmode.offloads &
539                     DEV_RX_OFFLOAD_VLAN_STRIP)
540                         printf("on\n");
541                 else
542                         printf("off\n");
543         }
544
545         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
546                 printf("Double VLANs stripped:         ");
547                 if (ports[port_id].dev_conf.rxmode.offloads &
548                     DEV_RX_OFFLOAD_VLAN_EXTEND)
549                         printf("on\n");
550                 else
551                         printf("off\n");
552         }
553
554         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
555                 printf("RX IPv4 checksum:              ");
556                 if (ports[port_id].dev_conf.rxmode.offloads &
557                     DEV_RX_OFFLOAD_IPV4_CKSUM)
558                         printf("on\n");
559                 else
560                         printf("off\n");
561         }
562
563         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
564                 printf("RX UDP checksum:               ");
565                 if (ports[port_id].dev_conf.rxmode.offloads &
566                     DEV_RX_OFFLOAD_UDP_CKSUM)
567                         printf("on\n");
568                 else
569                         printf("off\n");
570         }
571
572         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
573                 printf("RX TCP checksum:               ");
574                 if (ports[port_id].dev_conf.rxmode.offloads &
575                     DEV_RX_OFFLOAD_TCP_CKSUM)
576                         printf("on\n");
577                 else
578                         printf("off\n");
579         }
580
581         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
582                 printf("RX Outer IPv4 checksum:               ");
583                 if (ports[port_id].dev_conf.rxmode.offloads &
584                     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
585                         printf("on\n");
586                 else
587                         printf("off\n");
588         }
589
590         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
591                 printf("Large receive offload:         ");
592                 if (ports[port_id].dev_conf.rxmode.offloads &
593                     DEV_RX_OFFLOAD_TCP_LRO)
594                         printf("on\n");
595                 else
596                         printf("off\n");
597         }
598
599         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
600                 printf("VLAN insert:                   ");
601                 if (ports[port_id].dev_conf.txmode.offloads &
602                     DEV_TX_OFFLOAD_VLAN_INSERT)
603                         printf("on\n");
604                 else
605                         printf("off\n");
606         }
607
608         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
609                 printf("HW timestamp:                  ");
610                 if (ports[port_id].dev_conf.rxmode.offloads &
611                     DEV_RX_OFFLOAD_TIMESTAMP)
612                         printf("on\n");
613                 else
614                         printf("off\n");
615         }
616
617         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
618                 printf("Double VLANs insert:           ");
619                 if (ports[port_id].dev_conf.txmode.offloads &
620                     DEV_TX_OFFLOAD_QINQ_INSERT)
621                         printf("on\n");
622                 else
623                         printf("off\n");
624         }
625
626         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
627                 printf("TX IPv4 checksum:              ");
628                 if (ports[port_id].dev_conf.txmode.offloads &
629                     DEV_TX_OFFLOAD_IPV4_CKSUM)
630                         printf("on\n");
631                 else
632                         printf("off\n");
633         }
634
635         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
636                 printf("TX UDP checksum:               ");
637                 if (ports[port_id].dev_conf.txmode.offloads &
638                     DEV_TX_OFFLOAD_UDP_CKSUM)
639                         printf("on\n");
640                 else
641                         printf("off\n");
642         }
643
644         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
645                 printf("TX TCP checksum:               ");
646                 if (ports[port_id].dev_conf.txmode.offloads &
647                     DEV_TX_OFFLOAD_TCP_CKSUM)
648                         printf("on\n");
649                 else
650                         printf("off\n");
651         }
652
653         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
654                 printf("TX SCTP checksum:              ");
655                 if (ports[port_id].dev_conf.txmode.offloads &
656                     DEV_TX_OFFLOAD_SCTP_CKSUM)
657                         printf("on\n");
658                 else
659                         printf("off\n");
660         }
661
662         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
663                 printf("TX Outer IPv4 checksum:        ");
664                 if (ports[port_id].dev_conf.txmode.offloads &
665                     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
666                         printf("on\n");
667                 else
668                         printf("off\n");
669         }
670
671         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
672                 printf("TX TCP segmentation:           ");
673                 if (ports[port_id].dev_conf.txmode.offloads &
674                     DEV_TX_OFFLOAD_TCP_TSO)
675                         printf("on\n");
676                 else
677                         printf("off\n");
678         }
679
680         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
681                 printf("TX UDP segmentation:           ");
682                 if (ports[port_id].dev_conf.txmode.offloads &
683                     DEV_TX_OFFLOAD_UDP_TSO)
684                         printf("on\n");
685                 else
686                         printf("off\n");
687         }
688
689         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
690                 printf("TSO for VXLAN tunnel packet:   ");
691                 if (ports[port_id].dev_conf.txmode.offloads &
692                     DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
693                         printf("on\n");
694                 else
695                         printf("off\n");
696         }
697
698         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
699                 printf("TSO for GRE tunnel packet:     ");
700                 if (ports[port_id].dev_conf.txmode.offloads &
701                     DEV_TX_OFFLOAD_GRE_TNL_TSO)
702                         printf("on\n");
703                 else
704                         printf("off\n");
705         }
706
707         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
708                 printf("TSO for IPIP tunnel packet:    ");
709                 if (ports[port_id].dev_conf.txmode.offloads &
710                     DEV_TX_OFFLOAD_IPIP_TNL_TSO)
711                         printf("on\n");
712                 else
713                         printf("off\n");
714         }
715
716         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
717                 printf("TSO for GENEVE tunnel packet:  ");
718                 if (ports[port_id].dev_conf.txmode.offloads &
719                     DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
720                         printf("on\n");
721                 else
722                         printf("off\n");
723         }
724
725         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) {
726                 printf("IP tunnel TSO:  ");
727                 if (ports[port_id].dev_conf.txmode.offloads &
728                     DEV_TX_OFFLOAD_IP_TNL_TSO)
729                         printf("on\n");
730                 else
731                         printf("off\n");
732         }
733
734         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) {
735                 printf("UDP tunnel TSO:  ");
736                 if (ports[port_id].dev_conf.txmode.offloads &
737                     DEV_TX_OFFLOAD_UDP_TNL_TSO)
738                         printf("on\n");
739                 else
740                         printf("off\n");
741         }
742 }
743
744 int
745 port_id_is_invalid(portid_t port_id, enum print_warning warning)
746 {
747         uint16_t pid;
748
749         if (port_id == (portid_t)RTE_PORT_ALL)
750                 return 0;
751
752         RTE_ETH_FOREACH_DEV(pid)
753                 if (port_id == pid)
754                         return 0;
755
756         if (warning == ENABLED_WARN)
757                 printf("Invalid port %d\n", port_id);
758
759         return 1;
760 }
761
762 static int
763 vlan_id_is_invalid(uint16_t vlan_id)
764 {
765         if (vlan_id < 4096)
766                 return 0;
767         printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
768         return 1;
769 }
770
771 static int
772 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
773 {
774         const struct rte_pci_device *pci_dev;
775         const struct rte_bus *bus;
776         uint64_t pci_len;
777
778         if (reg_off & 0x3) {
779                 printf("Port register offset 0x%X not aligned on a 4-byte "
780                        "boundary\n",
781                        (unsigned)reg_off);
782                 return 1;
783         }
784
785         if (!ports[port_id].dev_info.device) {
786                 printf("Invalid device\n");
787                 return 0;
788         }
789
790         bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
791         if (bus && !strcmp(bus->name, "pci")) {
792                 pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
793         } else {
794                 printf("Not a PCI device\n");
795                 return 1;
796         }
797
798         pci_len = pci_dev->mem_resource[0].len;
799         if (reg_off >= pci_len) {
800                 printf("Port %d: register offset %u (0x%X) out of port PCI "
801                        "resource (length=%"PRIu64")\n",
802                        port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
803                 return 1;
804         }
805         return 0;
806 }
807
808 static int
809 reg_bit_pos_is_invalid(uint8_t bit_pos)
810 {
811         if (bit_pos <= 31)
812                 return 0;
813         printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
814         return 1;
815 }
816
817 #define display_port_and_reg_off(port_id, reg_off) \
818         printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
819
820 static inline void
821 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
822 {
823         display_port_and_reg_off(port_id, (unsigned)reg_off);
824         printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
825 }
826
827 void
828 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
829 {
830         uint32_t reg_v;
831
832
833         if (port_id_is_invalid(port_id, ENABLED_WARN))
834                 return;
835         if (port_reg_off_is_invalid(port_id, reg_off))
836                 return;
837         if (reg_bit_pos_is_invalid(bit_x))
838                 return;
839         reg_v = port_id_pci_reg_read(port_id, reg_off);
840         display_port_and_reg_off(port_id, (unsigned)reg_off);
841         printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
842 }
843
844 void
845 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
846                            uint8_t bit1_pos, uint8_t bit2_pos)
847 {
848         uint32_t reg_v;
849         uint8_t  l_bit;
850         uint8_t  h_bit;
851
852         if (port_id_is_invalid(port_id, ENABLED_WARN))
853                 return;
854         if (port_reg_off_is_invalid(port_id, reg_off))
855                 return;
856         if (reg_bit_pos_is_invalid(bit1_pos))
857                 return;
858         if (reg_bit_pos_is_invalid(bit2_pos))
859                 return;
860         if (bit1_pos > bit2_pos)
861                 l_bit = bit2_pos, h_bit = bit1_pos;
862         else
863                 l_bit = bit1_pos, h_bit = bit2_pos;
864
865         reg_v = port_id_pci_reg_read(port_id, reg_off);
866         reg_v >>= l_bit;
867         if (h_bit < 31)
868                 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
869         display_port_and_reg_off(port_id, (unsigned)reg_off);
870         printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
871                ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
872 }
873
874 void
875 port_reg_display(portid_t port_id, uint32_t reg_off)
876 {
877         uint32_t reg_v;
878
879         if (port_id_is_invalid(port_id, ENABLED_WARN))
880                 return;
881         if (port_reg_off_is_invalid(port_id, reg_off))
882                 return;
883         reg_v = port_id_pci_reg_read(port_id, reg_off);
884         display_port_reg_value(port_id, reg_off, reg_v);
885 }
886
887 void
888 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
889                  uint8_t bit_v)
890 {
891         uint32_t reg_v;
892
893         if (port_id_is_invalid(port_id, ENABLED_WARN))
894                 return;
895         if (port_reg_off_is_invalid(port_id, reg_off))
896                 return;
897         if (reg_bit_pos_is_invalid(bit_pos))
898                 return;
899         if (bit_v > 1) {
900                 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
901                 return;
902         }
903         reg_v = port_id_pci_reg_read(port_id, reg_off);
904         if (bit_v == 0)
905                 reg_v &= ~(1 << bit_pos);
906         else
907                 reg_v |= (1 << bit_pos);
908         port_id_pci_reg_write(port_id, reg_off, reg_v);
909         display_port_reg_value(port_id, reg_off, reg_v);
910 }
911
912 void
913 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
914                        uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
915 {
916         uint32_t max_v;
917         uint32_t reg_v;
918         uint8_t  l_bit;
919         uint8_t  h_bit;
920
921         if (port_id_is_invalid(port_id, ENABLED_WARN))
922                 return;
923         if (port_reg_off_is_invalid(port_id, reg_off))
924                 return;
925         if (reg_bit_pos_is_invalid(bit1_pos))
926                 return;
927         if (reg_bit_pos_is_invalid(bit2_pos))
928                 return;
929         if (bit1_pos > bit2_pos)
930                 l_bit = bit2_pos, h_bit = bit1_pos;
931         else
932                 l_bit = bit1_pos, h_bit = bit2_pos;
933
934         if ((h_bit - l_bit) < 31)
935                 max_v = (1 << (h_bit - l_bit + 1)) - 1;
936         else
937                 max_v = 0xFFFFFFFF;
938
939         if (value > max_v) {
940                 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
941                                 (unsigned)value, (unsigned)value,
942                                 (unsigned)max_v, (unsigned)max_v);
943                 return;
944         }
945         reg_v = port_id_pci_reg_read(port_id, reg_off);
946         reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
947         reg_v |= (value << l_bit); /* Set changed bits */
948         port_id_pci_reg_write(port_id, reg_off, reg_v);
949         display_port_reg_value(port_id, reg_off, reg_v);
950 }
951
952 void
953 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
954 {
955         if (port_id_is_invalid(port_id, ENABLED_WARN))
956                 return;
957         if (port_reg_off_is_invalid(port_id, reg_off))
958                 return;
959         port_id_pci_reg_write(port_id, reg_off, reg_v);
960         display_port_reg_value(port_id, reg_off, reg_v);
961 }
962
963 void
964 port_mtu_set(portid_t port_id, uint16_t mtu)
965 {
966         int diag;
967
968         if (port_id_is_invalid(port_id, ENABLED_WARN))
969                 return;
970         diag = rte_eth_dev_set_mtu(port_id, mtu);
971         if (diag == 0)
972                 return;
973         printf("Set MTU failed. diag=%d\n", diag);
974 }
975
976 /* Generic flow management functions. */
977
978 /** Generate flow_item[] entry. */
979 #define MK_FLOW_ITEM(t, s) \
980         [RTE_FLOW_ITEM_TYPE_ ## t] = { \
981                 .name = # t, \
982                 .size = s, \
983         }
984
985 /** Information about known flow pattern items. */
986 static const struct {
987         const char *name;
988         size_t size;
989 } flow_item[] = {
990         MK_FLOW_ITEM(END, 0),
991         MK_FLOW_ITEM(VOID, 0),
992         MK_FLOW_ITEM(INVERT, 0),
993         MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
994         MK_FLOW_ITEM(PF, 0),
995         MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
996         MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
997         MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
998         MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
999         MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1000         MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1001         MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1002         MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1003         MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1004         MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1005         MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1006         MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1007         MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1008         MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1009         MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1010         MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1011         MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1012         MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
1013         MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1014         MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1015         MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1016         MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1017         MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
1018         MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
1019         MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
1020         MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
1021         MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
1022         MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
1023         MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
1024         MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
1025                      sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
1026         MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
1027                      sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
1028 };
1029
1030 /** Pattern item specification types. */
1031 enum item_spec_type {
1032         ITEM_SPEC,
1033         ITEM_LAST,
1034         ITEM_MASK,
1035 };
1036
1037 /** Compute storage space needed by item specification and copy it. */
1038 static size_t
1039 flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
1040                     enum item_spec_type type)
1041 {
1042         size_t size = 0;
1043         const void *item_spec =
1044                 type == ITEM_SPEC ? item->spec :
1045                 type == ITEM_LAST ? item->last :
1046                 type == ITEM_MASK ? item->mask :
1047                 NULL;
1048
1049         if (!item_spec)
1050                 goto empty;
1051         switch (item->type) {
1052                 union {
1053                         const struct rte_flow_item_raw *raw;
1054                 } src;
1055                 union {
1056                         struct rte_flow_item_raw *raw;
1057                 } dst;
1058                 size_t off;
1059
1060         case RTE_FLOW_ITEM_TYPE_RAW:
1061                 src.raw = item_spec;
1062                 dst.raw = buf;
1063                 off = RTE_ALIGN_CEIL(sizeof(struct rte_flow_item_raw),
1064                                      sizeof(*src.raw->pattern));
1065                 size = off + src.raw->length * sizeof(*src.raw->pattern);
1066                 if (dst.raw) {
1067                         memcpy(dst.raw, src.raw, sizeof(*src.raw));
1068                         dst.raw->pattern = memcpy((uint8_t *)dst.raw + off,
1069                                                   src.raw->pattern,
1070                                                   size - off);
1071                 }
1072                 break;
1073         default:
1074                 size = flow_item[item->type].size;
1075                 if (buf)
1076                         memcpy(buf, item_spec, size);
1077                 break;
1078         }
1079 empty:
1080         return RTE_ALIGN_CEIL(size, sizeof(double));
1081 }
1082
1083 /** Generate flow_action[] entry. */
1084 #define MK_FLOW_ACTION(t, s) \
1085         [RTE_FLOW_ACTION_TYPE_ ## t] = { \
1086                 .name = # t, \
1087                 .size = s, \
1088         }
1089
1090 /** Information about known flow actions. */
1091 static const struct {
1092         const char *name;
1093         size_t size;
1094 } flow_action[] = {
1095         MK_FLOW_ACTION(END, 0),
1096         MK_FLOW_ACTION(VOID, 0),
1097         MK_FLOW_ACTION(PASSTHRU, 0),
1098         MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1099         MK_FLOW_ACTION(FLAG, 0),
1100         MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1101         MK_FLOW_ACTION(DROP, 0),
1102         MK_FLOW_ACTION(COUNT, 0),
1103         MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
1104         MK_FLOW_ACTION(PF, 0),
1105         MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1106         MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
1107         MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
1108         MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1109         MK_FLOW_ACTION(OF_SET_MPLS_TTL,
1110                        sizeof(struct rte_flow_action_of_set_mpls_ttl)),
1111         MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
1112         MK_FLOW_ACTION(OF_SET_NW_TTL,
1113                        sizeof(struct rte_flow_action_of_set_nw_ttl)),
1114         MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
1115         MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
1116         MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
1117 };
1118
1119 /** Compute storage space needed by action configuration and copy it. */
1120 static size_t
1121 flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
1122 {
1123         size_t size = 0;
1124
1125         if (!action->conf)
1126                 goto empty;
1127         switch (action->type) {
1128                 union {
1129                         const struct rte_flow_action_rss *rss;
1130                 } src;
1131                 union {
1132                         struct rte_flow_action_rss *rss;
1133                 } dst;
1134                 size_t off;
1135
1136         case RTE_FLOW_ACTION_TYPE_RSS:
1137                 src.rss = action->conf;
1138                 dst.rss = buf;
1139                 off = 0;
1140                 if (dst.rss)
1141                         *dst.rss = (struct rte_flow_action_rss){
1142                                 .func = src.rss->func,
1143                                 .level = src.rss->level,
1144                                 .types = src.rss->types,
1145                                 .key_len = src.rss->key_len,
1146                                 .queue_num = src.rss->queue_num,
1147                         };
1148                 off += sizeof(*src.rss);
1149                 if (src.rss->key_len) {
1150                         off = RTE_ALIGN_CEIL(off, sizeof(double));
1151                         size = sizeof(*src.rss->key) * src.rss->key_len;
1152                         if (dst.rss)
1153                                 dst.rss->key = memcpy
1154                                         ((void *)((uintptr_t)dst.rss + off),
1155                                          src.rss->key, size);
1156                         off += size;
1157                 }
1158                 if (src.rss->queue_num) {
1159                         off = RTE_ALIGN_CEIL(off, sizeof(double));
1160                         size = sizeof(*src.rss->queue) * src.rss->queue_num;
1161                         if (dst.rss)
1162                                 dst.rss->queue = memcpy
1163                                         ((void *)((uintptr_t)dst.rss + off),
1164                                          src.rss->queue, size);
1165                         off += size;
1166                 }
1167                 size = off;
1168                 break;
1169         default:
1170                 size = flow_action[action->type].size;
1171                 if (buf)
1172                         memcpy(buf, action->conf, size);
1173                 break;
1174         }
1175 empty:
1176         return RTE_ALIGN_CEIL(size, sizeof(double));
1177 }
1178
1179 /** Generate a port_flow entry from attributes/pattern/actions. */
1180 static struct port_flow *
1181 port_flow_new(const struct rte_flow_attr *attr,
1182               const struct rte_flow_item *pattern,
1183               const struct rte_flow_action *actions)
1184 {
1185         const struct rte_flow_item *item;
1186         const struct rte_flow_action *action;
1187         struct port_flow *pf = NULL;
1188         size_t tmp;
1189         size_t off1 = 0;
1190         size_t off2 = 0;
1191         int err = ENOTSUP;
1192
1193 store:
1194         item = pattern;
1195         if (pf)
1196                 pf->pattern = (void *)&pf->data[off1];
1197         do {
1198                 struct rte_flow_item *dst = NULL;
1199
1200                 if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1201                     !flow_item[item->type].name)
1202                         goto notsup;
1203                 if (pf)
1204                         dst = memcpy(pf->data + off1, item, sizeof(*item));
1205                 off1 += sizeof(*item);
1206                 if (item->spec) {
1207                         if (pf)
1208                                 dst->spec = pf->data + off2;
1209                         off2 += flow_item_spec_copy
1210                                 (pf ? pf->data + off2 : NULL, item, ITEM_SPEC);
1211                 }
1212                 if (item->last) {
1213                         if (pf)
1214                                 dst->last = pf->data + off2;
1215                         off2 += flow_item_spec_copy
1216                                 (pf ? pf->data + off2 : NULL, item, ITEM_LAST);
1217                 }
1218                 if (item->mask) {
1219                         if (pf)
1220                                 dst->mask = pf->data + off2;
1221                         off2 += flow_item_spec_copy
1222                                 (pf ? pf->data + off2 : NULL, item, ITEM_MASK);
1223                 }
1224                 off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1225         } while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1226         off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1227         action = actions;
1228         if (pf)
1229                 pf->actions = (void *)&pf->data[off1];
1230         do {
1231                 struct rte_flow_action *dst = NULL;
1232
1233                 if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1234                     !flow_action[action->type].name)
1235                         goto notsup;
1236                 if (pf)
1237                         dst = memcpy(pf->data + off1, action, sizeof(*action));
1238                 off1 += sizeof(*action);
1239                 if (action->conf) {
1240                         if (pf)
1241                                 dst->conf = pf->data + off2;
1242                         off2 += flow_action_conf_copy
1243                                 (pf ? pf->data + off2 : NULL, action);
1244                 }
1245                 off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1246         } while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1247         if (pf != NULL)
1248                 return pf;
1249         off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1250         tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1251         pf = calloc(1, tmp + off1 + off2);
1252         if (pf == NULL)
1253                 err = errno;
1254         else {
1255                 *pf = (const struct port_flow){
1256                         .size = tmp + off1 + off2,
1257                         .attr = *attr,
1258                 };
1259                 tmp -= offsetof(struct port_flow, data);
1260                 off2 = tmp + off1;
1261                 off1 = tmp;
1262                 goto store;
1263         }
1264 notsup:
1265         rte_errno = err;
1266         return NULL;
1267 }
1268
1269 /** Print a message out of a flow error. */
1270 static int
1271 port_flow_complain(struct rte_flow_error *error)
1272 {
1273         static const char *const errstrlist[] = {
1274                 [RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1275                 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1276                 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1277                 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1278                 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1279                 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1280                 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1281                 [RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1282                 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1283                 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1284                 [RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1285                 [RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1286                 [RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1287                 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1288                 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1289                 [RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1290                 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1291         };
1292         const char *errstr;
1293         char buf[32];
1294         int err = rte_errno;
1295
1296         if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1297             !errstrlist[error->type])
1298                 errstr = "unknown type";
1299         else
1300                 errstr = errstrlist[error->type];
1301         printf("Caught error type %d (%s): %s%s\n",
1302                error->type, errstr,
1303                error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1304                                         error->cause), buf) : "",
1305                error->message ? error->message : "(no stated reason)");
1306         return -err;
1307 }
1308
1309 /** Validate flow rule. */
1310 int
1311 port_flow_validate(portid_t port_id,
1312                    const struct rte_flow_attr *attr,
1313                    const struct rte_flow_item *pattern,
1314                    const struct rte_flow_action *actions)
1315 {
1316         struct rte_flow_error error;
1317
1318         /* Poisoning to make sure PMDs update it in case of error. */
1319         memset(&error, 0x11, sizeof(error));
1320         if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1321                 return port_flow_complain(&error);
1322         printf("Flow rule validated\n");
1323         return 0;
1324 }
1325
1326 /** Create flow rule. */
1327 int
1328 port_flow_create(portid_t port_id,
1329                  const struct rte_flow_attr *attr,
1330                  const struct rte_flow_item *pattern,
1331                  const struct rte_flow_action *actions)
1332 {
1333         struct rte_flow *flow;
1334         struct rte_port *port;
1335         struct port_flow *pf;
1336         uint32_t id;
1337         struct rte_flow_error error;
1338
1339         /* Poisoning to make sure PMDs update it in case of error. */
1340         memset(&error, 0x22, sizeof(error));
1341         flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1342         if (!flow)
1343                 return port_flow_complain(&error);
1344         port = &ports[port_id];
1345         if (port->flow_list) {
1346                 if (port->flow_list->id == UINT32_MAX) {
1347                         printf("Highest rule ID is already assigned, delete"
1348                                " it first");
1349                         rte_flow_destroy(port_id, flow, NULL);
1350                         return -ENOMEM;
1351                 }
1352                 id = port->flow_list->id + 1;
1353         } else
1354                 id = 0;
1355         pf = port_flow_new(attr, pattern, actions);
1356         if (!pf) {
1357                 int err = rte_errno;
1358
1359                 printf("Cannot allocate flow: %s\n", rte_strerror(err));
1360                 rte_flow_destroy(port_id, flow, NULL);
1361                 return -err;
1362         }
1363         pf->next = port->flow_list;
1364         pf->id = id;
1365         pf->flow = flow;
1366         port->flow_list = pf;
1367         printf("Flow rule #%u created\n", pf->id);
1368         return 0;
1369 }
1370
1371 /** Destroy a number of flow rules. */
1372 int
1373 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1374 {
1375         struct rte_port *port;
1376         struct port_flow **tmp;
1377         uint32_t c = 0;
1378         int ret = 0;
1379
1380         if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1381             port_id == (portid_t)RTE_PORT_ALL)
1382                 return -EINVAL;
1383         port = &ports[port_id];
1384         tmp = &port->flow_list;
1385         while (*tmp) {
1386                 uint32_t i;
1387
1388                 for (i = 0; i != n; ++i) {
1389                         struct rte_flow_error error;
1390                         struct port_flow *pf = *tmp;
1391
1392                         if (rule[i] != pf->id)
1393                                 continue;
1394                         /*
1395                          * Poisoning to make sure PMDs update it in case
1396                          * of error.
1397                          */
1398                         memset(&error, 0x33, sizeof(error));
1399                         if (rte_flow_destroy(port_id, pf->flow, &error)) {
1400                                 ret = port_flow_complain(&error);
1401                                 continue;
1402                         }
1403                         printf("Flow rule #%u destroyed\n", pf->id);
1404                         *tmp = pf->next;
1405                         free(pf);
1406                         break;
1407                 }
1408                 if (i == n)
1409                         tmp = &(*tmp)->next;
1410                 ++c;
1411         }
1412         return ret;
1413 }
1414
1415 /** Remove all flow rules. */
1416 int
1417 port_flow_flush(portid_t port_id)
1418 {
1419         struct rte_flow_error error;
1420         struct rte_port *port;
1421         int ret = 0;
1422
1423         /* Poisoning to make sure PMDs update it in case of error. */
1424         memset(&error, 0x44, sizeof(error));
1425         if (rte_flow_flush(port_id, &error)) {
1426                 ret = port_flow_complain(&error);
1427                 if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1428                     port_id == (portid_t)RTE_PORT_ALL)
1429                         return ret;
1430         }
1431         port = &ports[port_id];
1432         while (port->flow_list) {
1433                 struct port_flow *pf = port->flow_list->next;
1434
1435                 free(port->flow_list);
1436                 port->flow_list = pf;
1437         }
1438         return ret;
1439 }
1440
1441 /** Query a flow rule. */
1442 int
1443 port_flow_query(portid_t port_id, uint32_t rule,
1444                 enum rte_flow_action_type action)
1445 {
1446         struct rte_flow_error error;
1447         struct rte_port *port;
1448         struct port_flow *pf;
1449         const char *name;
1450         union {
1451                 struct rte_flow_query_count count;
1452         } query;
1453
1454         if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1455             port_id == (portid_t)RTE_PORT_ALL)
1456                 return -EINVAL;
1457         port = &ports[port_id];
1458         for (pf = port->flow_list; pf; pf = pf->next)
1459                 if (pf->id == rule)
1460                         break;
1461         if (!pf) {
1462                 printf("Flow rule #%u not found\n", rule);
1463                 return -ENOENT;
1464         }
1465         if ((unsigned int)action >= RTE_DIM(flow_action) ||
1466             !flow_action[action].name)
1467                 name = "unknown";
1468         else
1469                 name = flow_action[action].name;
1470         switch (action) {
1471         case RTE_FLOW_ACTION_TYPE_COUNT:
1472                 break;
1473         default:
1474                 printf("Cannot query action type %d (%s)\n", action, name);
1475                 return -ENOTSUP;
1476         }
1477         /* Poisoning to make sure PMDs update it in case of error. */
1478         memset(&error, 0x55, sizeof(error));
1479         memset(&query, 0, sizeof(query));
1480         if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1481                 return port_flow_complain(&error);
1482         switch (action) {
1483         case RTE_FLOW_ACTION_TYPE_COUNT:
1484                 printf("%s:\n"
1485                        " hits_set: %u\n"
1486                        " bytes_set: %u\n"
1487                        " hits: %" PRIu64 "\n"
1488                        " bytes: %" PRIu64 "\n",
1489                        name,
1490                        query.count.hits_set,
1491                        query.count.bytes_set,
1492                        query.count.hits,
1493                        query.count.bytes);
1494                 break;
1495         default:
1496                 printf("Cannot display result for action type %d (%s)\n",
1497                        action, name);
1498                 break;
1499         }
1500         return 0;
1501 }
1502
1503 /** List flow rules. */
1504 void
1505 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1506 {
1507         struct rte_port *port;
1508         struct port_flow *pf;
1509         struct port_flow *list = NULL;
1510         uint32_t i;
1511
1512         if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1513             port_id == (portid_t)RTE_PORT_ALL)
1514                 return;
1515         port = &ports[port_id];
1516         if (!port->flow_list)
1517                 return;
1518         /* Sort flows by group, priority and ID. */
1519         for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1520                 struct port_flow **tmp;
1521
1522                 if (n) {
1523                         /* Filter out unwanted groups. */
1524                         for (i = 0; i != n; ++i)
1525                                 if (pf->attr.group == group[i])
1526                                         break;
1527                         if (i == n)
1528                                 continue;
1529                 }
1530                 tmp = &list;
1531                 while (*tmp &&
1532                        (pf->attr.group > (*tmp)->attr.group ||
1533                         (pf->attr.group == (*tmp)->attr.group &&
1534                          pf->attr.priority > (*tmp)->attr.priority) ||
1535                         (pf->attr.group == (*tmp)->attr.group &&
1536                          pf->attr.priority == (*tmp)->attr.priority &&
1537                          pf->id > (*tmp)->id)))
1538                         tmp = &(*tmp)->tmp;
1539                 pf->tmp = *tmp;
1540                 *tmp = pf;
1541         }
1542         printf("ID\tGroup\tPrio\tAttr\tRule\n");
1543         for (pf = list; pf != NULL; pf = pf->tmp) {
1544                 const struct rte_flow_item *item = pf->pattern;
1545                 const struct rte_flow_action *action = pf->actions;
1546
1547                 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
1548                        pf->id,
1549                        pf->attr.group,
1550                        pf->attr.priority,
1551                        pf->attr.ingress ? 'i' : '-',
1552                        pf->attr.egress ? 'e' : '-',
1553                        pf->attr.transfer ? 't' : '-');
1554                 while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1555                         if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1556                                 printf("%s ", flow_item[item->type].name);
1557                         ++item;
1558                 }
1559                 printf("=>");
1560                 while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1561                         if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1562                                 printf(" %s", flow_action[action->type].name);
1563                         ++action;
1564                 }
1565                 printf("\n");
1566         }
1567 }
1568
1569 /** Restrict ingress traffic to the defined flow rules. */
1570 int
1571 port_flow_isolate(portid_t port_id, int set)
1572 {
1573         struct rte_flow_error error;
1574
1575         /* Poisoning to make sure PMDs update it in case of error. */
1576         memset(&error, 0x66, sizeof(error));
1577         if (rte_flow_isolate(port_id, set, &error))
1578                 return port_flow_complain(&error);
1579         printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1580                port_id,
1581                set ? "now restricted" : "not restricted anymore");
1582         return 0;
1583 }
1584
1585 /*
1586  * RX/TX ring descriptors display functions.
1587  */
1588 int
1589 rx_queue_id_is_invalid(queueid_t rxq_id)
1590 {
1591         if (rxq_id < nb_rxq)
1592                 return 0;
1593         printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1594         return 1;
1595 }
1596
1597 int
1598 tx_queue_id_is_invalid(queueid_t txq_id)
1599 {
1600         if (txq_id < nb_txq)
1601                 return 0;
1602         printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1603         return 1;
1604 }
1605
1606 static int
1607 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1608 {
1609         if (rxdesc_id < nb_rxd)
1610                 return 0;
1611         printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1612                rxdesc_id, nb_rxd);
1613         return 1;
1614 }
1615
1616 static int
1617 tx_desc_id_is_invalid(uint16_t txdesc_id)
1618 {
1619         if (txdesc_id < nb_txd)
1620                 return 0;
1621         printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1622                txdesc_id, nb_txd);
1623         return 1;
1624 }
1625
1626 static const struct rte_memzone *
1627 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1628 {
1629         char mz_name[RTE_MEMZONE_NAMESIZE];
1630         const struct rte_memzone *mz;
1631
1632         snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1633                  ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1634         mz = rte_memzone_lookup(mz_name);
1635         if (mz == NULL)
1636                 printf("%s ring memory zoneof (port %d, queue %d) not"
1637                        "found (zone name = %s\n",
1638                        ring_name, port_id, q_id, mz_name);
1639         return mz;
1640 }
1641
1642 union igb_ring_dword {
1643         uint64_t dword;
1644         struct {
1645 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1646                 uint32_t lo;
1647                 uint32_t hi;
1648 #else
1649                 uint32_t hi;
1650                 uint32_t lo;
1651 #endif
1652         } words;
1653 };
1654
1655 struct igb_ring_desc_32_bytes {
1656         union igb_ring_dword lo_dword;
1657         union igb_ring_dword hi_dword;
1658         union igb_ring_dword resv1;
1659         union igb_ring_dword resv2;
1660 };
1661
1662 struct igb_ring_desc_16_bytes {
1663         union igb_ring_dword lo_dword;
1664         union igb_ring_dword hi_dword;
1665 };
1666
1667 static void
1668 ring_rxd_display_dword(union igb_ring_dword dword)
1669 {
1670         printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1671                                         (unsigned)dword.words.hi);
1672 }
1673
1674 static void
1675 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1676 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1677                            portid_t port_id,
1678 #else
1679                            __rte_unused portid_t port_id,
1680 #endif
1681                            uint16_t desc_id)
1682 {
1683         struct igb_ring_desc_16_bytes *ring =
1684                 (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1685 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1686         struct rte_eth_dev_info dev_info;
1687
1688         memset(&dev_info, 0, sizeof(dev_info));
1689         rte_eth_dev_info_get(port_id, &dev_info);
1690         if (strstr(dev_info.driver_name, "i40e") != NULL) {
1691                 /* 32 bytes RX descriptor, i40e only */
1692                 struct igb_ring_desc_32_bytes *ring =
1693                         (struct igb_ring_desc_32_bytes *)ring_mz->addr;
1694                 ring[desc_id].lo_dword.dword =
1695                         rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1696                 ring_rxd_display_dword(ring[desc_id].lo_dword);
1697                 ring[desc_id].hi_dword.dword =
1698                         rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1699                 ring_rxd_display_dword(ring[desc_id].hi_dword);
1700                 ring[desc_id].resv1.dword =
1701                         rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1702                 ring_rxd_display_dword(ring[desc_id].resv1);
1703                 ring[desc_id].resv2.dword =
1704                         rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1705                 ring_rxd_display_dword(ring[desc_id].resv2);
1706
1707                 return;
1708         }
1709 #endif
1710         /* 16 bytes RX descriptor */
1711         ring[desc_id].lo_dword.dword =
1712                 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1713         ring_rxd_display_dword(ring[desc_id].lo_dword);
1714         ring[desc_id].hi_dword.dword =
1715                 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1716         ring_rxd_display_dword(ring[desc_id].hi_dword);
1717 }
1718
1719 static void
1720 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1721 {
1722         struct igb_ring_desc_16_bytes *ring;
1723         struct igb_ring_desc_16_bytes txd;
1724
1725         ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1726         txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1727         txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1728         printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1729                         (unsigned)txd.lo_dword.words.lo,
1730                         (unsigned)txd.lo_dword.words.hi,
1731                         (unsigned)txd.hi_dword.words.lo,
1732                         (unsigned)txd.hi_dword.words.hi);
1733 }
1734
1735 void
1736 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1737 {
1738         const struct rte_memzone *rx_mz;
1739
1740         if (port_id_is_invalid(port_id, ENABLED_WARN))
1741                 return;
1742         if (rx_queue_id_is_invalid(rxq_id))
1743                 return;
1744         if (rx_desc_id_is_invalid(rxd_id))
1745                 return;
1746         rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1747         if (rx_mz == NULL)
1748                 return;
1749         ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1750 }
1751
1752 void
1753 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1754 {
1755         const struct rte_memzone *tx_mz;
1756
1757         if (port_id_is_invalid(port_id, ENABLED_WARN))
1758                 return;
1759         if (tx_queue_id_is_invalid(txq_id))
1760                 return;
1761         if (tx_desc_id_is_invalid(txd_id))
1762                 return;
1763         tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1764         if (tx_mz == NULL)
1765                 return;
1766         ring_tx_descriptor_display(tx_mz, txd_id);
1767 }
1768
1769 void
1770 fwd_lcores_config_display(void)
1771 {
1772         lcoreid_t lc_id;
1773
1774         printf("List of forwarding lcores:");
1775         for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1776                 printf(" %2u", fwd_lcores_cpuids[lc_id]);
1777         printf("\n");
1778 }
1779 void
1780 rxtx_config_display(void)
1781 {
1782         portid_t pid;
1783         queueid_t qid;
1784
1785         printf("  %s packet forwarding%s packets/burst=%d\n",
1786                cur_fwd_eng->fwd_mode_name,
1787                retry_enabled == 0 ? "" : " with retry",
1788                nb_pkt_per_burst);
1789
1790         if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1791                 printf("  packet len=%u - nb packet segments=%d\n",
1792                                 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1793
1794         printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1795                nb_fwd_lcores, nb_fwd_ports);
1796
1797         RTE_ETH_FOREACH_DEV(pid) {
1798                 struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
1799                 struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
1800                 uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
1801                 uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
1802
1803                 /* per port config */
1804                 printf("  port %d: RX queue number: %d Tx queue number: %d\n",
1805                                 (unsigned int)pid, nb_rxq, nb_txq);
1806
1807                 printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
1808                                 ports[pid].dev_conf.rxmode.offloads,
1809                                 ports[pid].dev_conf.txmode.offloads);
1810
1811                 /* per rx queue config only for first queue to be less verbose */
1812                 for (qid = 0; qid < 1; qid++) {
1813                         printf("    RX queue: %d\n", qid);
1814                         printf("      RX desc=%d - RX free threshold=%d\n",
1815                                 nb_rx_desc[qid], rx_conf[qid].rx_free_thresh);
1816                         printf("      RX threshold registers: pthresh=%d hthresh=%d "
1817                                 " wthresh=%d\n",
1818                                 rx_conf[qid].rx_thresh.pthresh,
1819                                 rx_conf[qid].rx_thresh.hthresh,
1820                                 rx_conf[qid].rx_thresh.wthresh);
1821                         printf("      RX Offloads=0x%"PRIx64"\n",
1822                                 rx_conf[qid].offloads);
1823                 }
1824
1825                 /* per tx queue config only for first queue to be less verbose */
1826                 for (qid = 0; qid < 1; qid++) {
1827                         printf("    TX queue: %d\n", qid);
1828                         printf("      TX desc=%d - TX free threshold=%d\n",
1829                                 nb_tx_desc[qid], tx_conf[qid].tx_free_thresh);
1830                         printf("      TX threshold registers: pthresh=%d hthresh=%d "
1831                                 " wthresh=%d\n",
1832                                 tx_conf[qid].tx_thresh.pthresh,
1833                                 tx_conf[qid].tx_thresh.hthresh,
1834                                 tx_conf[qid].tx_thresh.wthresh);
1835                         printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
1836                                 tx_conf[qid].offloads, tx_conf->tx_rs_thresh);
1837                 }
1838         }
1839 }
1840
1841 void
1842 port_rss_reta_info(portid_t port_id,
1843                    struct rte_eth_rss_reta_entry64 *reta_conf,
1844                    uint16_t nb_entries)
1845 {
1846         uint16_t i, idx, shift;
1847         int ret;
1848
1849         if (port_id_is_invalid(port_id, ENABLED_WARN))
1850                 return;
1851
1852         ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1853         if (ret != 0) {
1854                 printf("Failed to get RSS RETA info, return code = %d\n", ret);
1855                 return;
1856         }
1857
1858         for (i = 0; i < nb_entries; i++) {
1859                 idx = i / RTE_RETA_GROUP_SIZE;
1860                 shift = i % RTE_RETA_GROUP_SIZE;
1861                 if (!(reta_conf[idx].mask & (1ULL << shift)))
1862                         continue;
1863                 printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1864                                         i, reta_conf[idx].reta[shift]);
1865         }
1866 }
1867
1868 /*
1869  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1870  * key of the port.
1871  */
1872 void
1873 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1874 {
1875         struct rte_eth_rss_conf rss_conf;
1876         uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1877         uint64_t rss_hf;
1878         uint8_t i;
1879         int diag;
1880         struct rte_eth_dev_info dev_info;
1881         uint8_t hash_key_size;
1882
1883         if (port_id_is_invalid(port_id, ENABLED_WARN))
1884                 return;
1885
1886         memset(&dev_info, 0, sizeof(dev_info));
1887         rte_eth_dev_info_get(port_id, &dev_info);
1888         if (dev_info.hash_key_size > 0 &&
1889                         dev_info.hash_key_size <= sizeof(rss_key))
1890                 hash_key_size = dev_info.hash_key_size;
1891         else {
1892                 printf("dev_info did not provide a valid hash key size\n");
1893                 return;
1894         }
1895
1896         rss_conf.rss_hf = 0;
1897         for (i = 0; rss_type_table[i].str; i++) {
1898                 if (!strcmp(rss_info, rss_type_table[i].str))
1899                         rss_conf.rss_hf = rss_type_table[i].rss_type;
1900         }
1901
1902         /* Get RSS hash key if asked to display it */
1903         rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1904         rss_conf.rss_key_len = hash_key_size;
1905         diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1906         if (diag != 0) {
1907                 switch (diag) {
1908                 case -ENODEV:
1909                         printf("port index %d invalid\n", port_id);
1910                         break;
1911                 case -ENOTSUP:
1912                         printf("operation not supported by device\n");
1913                         break;
1914                 default:
1915                         printf("operation failed - diag=%d\n", diag);
1916                         break;
1917                 }
1918                 return;
1919         }
1920         rss_hf = rss_conf.rss_hf;
1921         if (rss_hf == 0) {
1922                 printf("RSS disabled\n");
1923                 return;
1924         }
1925         printf("RSS functions:\n ");
1926         for (i = 0; rss_type_table[i].str; i++) {
1927                 if (rss_hf & rss_type_table[i].rss_type)
1928                         printf("%s ", rss_type_table[i].str);
1929         }
1930         printf("\n");
1931         if (!show_rss_key)
1932                 return;
1933         printf("RSS key:\n");
1934         for (i = 0; i < hash_key_size; i++)
1935                 printf("%02X", rss_key[i]);
1936         printf("\n");
1937 }
1938
1939 void
1940 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1941                          uint hash_key_len)
1942 {
1943         struct rte_eth_rss_conf rss_conf;
1944         int diag;
1945         unsigned int i;
1946
1947         rss_conf.rss_key = NULL;
1948         rss_conf.rss_key_len = hash_key_len;
1949         rss_conf.rss_hf = 0;
1950         for (i = 0; rss_type_table[i].str; i++) {
1951                 if (!strcmp(rss_type_table[i].str, rss_type))
1952                         rss_conf.rss_hf = rss_type_table[i].rss_type;
1953         }
1954         diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1955         if (diag == 0) {
1956                 rss_conf.rss_key = hash_key;
1957                 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1958         }
1959         if (diag == 0)
1960                 return;
1961
1962         switch (diag) {
1963         case -ENODEV:
1964                 printf("port index %d invalid\n", port_id);
1965                 break;
1966         case -ENOTSUP:
1967                 printf("operation not supported by device\n");
1968                 break;
1969         default:
1970                 printf("operation failed - diag=%d\n", diag);
1971                 break;
1972         }
1973 }
1974
1975 /*
1976  * Setup forwarding configuration for each logical core.
1977  */
1978 static void
1979 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1980 {
1981         streamid_t nb_fs_per_lcore;
1982         streamid_t nb_fs;
1983         streamid_t sm_id;
1984         lcoreid_t  nb_extra;
1985         lcoreid_t  nb_fc;
1986         lcoreid_t  nb_lc;
1987         lcoreid_t  lc_id;
1988
1989         nb_fs = cfg->nb_fwd_streams;
1990         nb_fc = cfg->nb_fwd_lcores;
1991         if (nb_fs <= nb_fc) {
1992                 nb_fs_per_lcore = 1;
1993                 nb_extra = 0;
1994         } else {
1995                 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1996                 nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1997         }
1998
1999         nb_lc = (lcoreid_t) (nb_fc - nb_extra);
2000         sm_id = 0;
2001         for (lc_id = 0; lc_id < nb_lc; lc_id++) {
2002                 fwd_lcores[lc_id]->stream_idx = sm_id;
2003                 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
2004                 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2005         }
2006
2007         /*
2008          * Assign extra remaining streams, if any.
2009          */
2010         nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
2011         for (lc_id = 0; lc_id < nb_extra; lc_id++) {
2012                 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
2013                 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
2014                 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
2015         }
2016 }
2017
2018 static portid_t
2019 fwd_topology_tx_port_get(portid_t rxp)
2020 {
2021         static int warning_once = 1;
2022
2023         RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
2024
2025         switch (port_topology) {
2026         default:
2027         case PORT_TOPOLOGY_PAIRED:
2028                 if ((rxp & 0x1) == 0) {
2029                         if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
2030                                 return rxp + 1;
2031                         if (warning_once) {
2032                                 printf("\nWarning! port-topology=paired"
2033                                        " and odd forward ports number,"
2034                                        " the last port will pair with"
2035                                        " itself.\n\n");
2036                                 warning_once = 0;
2037                         }
2038                         return rxp;
2039                 }
2040                 return rxp - 1;
2041         case PORT_TOPOLOGY_CHAINED:
2042                 return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
2043         case PORT_TOPOLOGY_LOOP:
2044                 return rxp;
2045         }
2046 }
2047
2048 static void
2049 simple_fwd_config_setup(void)
2050 {
2051         portid_t i;
2052
2053         cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
2054         cur_fwd_config.nb_fwd_streams =
2055                 (streamid_t) cur_fwd_config.nb_fwd_ports;
2056
2057         /* reinitialize forwarding streams */
2058         init_fwd_streams();
2059
2060         /*
2061          * In the simple forwarding test, the number of forwarding cores
2062          * must be lower or equal to the number of forwarding ports.
2063          */
2064         cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2065         if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2066                 cur_fwd_config.nb_fwd_lcores =
2067                         (lcoreid_t) cur_fwd_config.nb_fwd_ports;
2068         setup_fwd_config_of_each_lcore(&cur_fwd_config);
2069
2070         for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2071                 fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2072                 fwd_streams[i]->rx_queue  = 0;
2073                 fwd_streams[i]->tx_port   =
2074                                 fwd_ports_ids[fwd_topology_tx_port_get(i)];
2075                 fwd_streams[i]->tx_queue  = 0;
2076                 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2077                 fwd_streams[i]->retry_enabled = retry_enabled;
2078         }
2079 }
2080
2081 /**
2082  * For the RSS forwarding test all streams distributed over lcores. Each stream
2083  * being composed of a RX queue to poll on a RX port for input messages,
2084  * associated with a TX queue of a TX port where to send forwarded packets.
2085  */
2086 static void
2087 rss_fwd_config_setup(void)
2088 {
2089         portid_t   rxp;
2090         portid_t   txp;
2091         queueid_t  rxq;
2092         queueid_t  nb_q;
2093         streamid_t  sm_id;
2094
2095         nb_q = nb_rxq;
2096         if (nb_q > nb_txq)
2097                 nb_q = nb_txq;
2098         cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2099         cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2100         cur_fwd_config.nb_fwd_streams =
2101                 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
2102
2103         if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2104                 cur_fwd_config.nb_fwd_lcores =
2105                         (lcoreid_t)cur_fwd_config.nb_fwd_streams;
2106
2107         /* reinitialize forwarding streams */
2108         init_fwd_streams();
2109
2110         setup_fwd_config_of_each_lcore(&cur_fwd_config);
2111         rxp = 0; rxq = 0;
2112         for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2113                 struct fwd_stream *fs;
2114
2115                 fs = fwd_streams[sm_id];
2116                 txp = fwd_topology_tx_port_get(rxp);
2117                 fs->rx_port = fwd_ports_ids[rxp];
2118                 fs->rx_queue = rxq;
2119                 fs->tx_port = fwd_ports_ids[txp];
2120                 fs->tx_queue = rxq;
2121                 fs->peer_addr = fs->tx_port;
2122                 fs->retry_enabled = retry_enabled;
2123                 rxq = (queueid_t) (rxq + 1);
2124                 if (rxq < nb_q)
2125                         continue;
2126                 /*
2127                  * rxq == nb_q
2128                  * Restart from RX queue 0 on next RX port
2129                  */
2130                 rxq = 0;
2131                 rxp++;
2132         }
2133 }
2134
2135 /**
2136  * For the DCB forwarding test, each core is assigned on each traffic class.
2137  *
2138  * Each core is assigned a multi-stream, each stream being composed of
2139  * a RX queue to poll on a RX port for input messages, associated with
2140  * a TX queue of a TX port where to send forwarded packets. All RX and
2141  * TX queues are mapping to the same traffic class.
2142  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2143  * the same core
2144  */
2145 static void
2146 dcb_fwd_config_setup(void)
2147 {
2148         struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2149         portid_t txp, rxp = 0;
2150         queueid_t txq, rxq = 0;
2151         lcoreid_t  lc_id;
2152         uint16_t nb_rx_queue, nb_tx_queue;
2153         uint16_t i, j, k, sm_id = 0;
2154         uint8_t tc = 0;
2155
2156         cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2157         cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2158         cur_fwd_config.nb_fwd_streams =
2159                 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2160
2161         /* reinitialize forwarding streams */
2162         init_fwd_streams();
2163         sm_id = 0;
2164         txp = 1;
2165         /* get the dcb info on the first RX and TX ports */
2166         (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2167         (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2168
2169         for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2170                 fwd_lcores[lc_id]->stream_nb = 0;
2171                 fwd_lcores[lc_id]->stream_idx = sm_id;
2172                 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2173                         /* if the nb_queue is zero, means this tc is
2174                          * not enabled on the POOL
2175                          */
2176                         if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2177                                 break;
2178                         k = fwd_lcores[lc_id]->stream_nb +
2179                                 fwd_lcores[lc_id]->stream_idx;
2180                         rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2181                         txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2182                         nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2183                         nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2184                         for (j = 0; j < nb_rx_queue; j++) {
2185                                 struct fwd_stream *fs;
2186
2187                                 fs = fwd_streams[k + j];
2188                                 fs->rx_port = fwd_ports_ids[rxp];
2189                                 fs->rx_queue = rxq + j;
2190                                 fs->tx_port = fwd_ports_ids[txp];
2191                                 fs->tx_queue = txq + j % nb_tx_queue;
2192                                 fs->peer_addr = fs->tx_port;
2193                                 fs->retry_enabled = retry_enabled;
2194                         }
2195                         fwd_lcores[lc_id]->stream_nb +=
2196                                 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2197                 }
2198                 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2199
2200                 tc++;
2201                 if (tc < rxp_dcb_info.nb_tcs)
2202                         continue;
2203                 /* Restart from TC 0 on next RX port */
2204                 tc = 0;
2205                 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2206                         rxp = (portid_t)
2207                                 (rxp + ((nb_ports >> 1) / nb_fwd_ports));
2208                 else
2209                         rxp++;
2210                 if (rxp >= nb_fwd_ports)
2211                         return;
2212                 /* get the dcb information on next RX and TX ports */
2213                 if ((rxp & 0x1) == 0)
2214                         txp = (portid_t) (rxp + 1);
2215                 else
2216                         txp = (portid_t) (rxp - 1);
2217                 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2218                 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2219         }
2220 }
2221
2222 static void
2223 icmp_echo_config_setup(void)
2224 {
2225         portid_t  rxp;
2226         queueid_t rxq;
2227         lcoreid_t lc_id;
2228         uint16_t  sm_id;
2229
2230         if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2231                 cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2232                         (nb_txq * nb_fwd_ports);
2233         else
2234                 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2235         cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2236         cur_fwd_config.nb_fwd_streams =
2237                 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2238         if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2239                 cur_fwd_config.nb_fwd_lcores =
2240                         (lcoreid_t)cur_fwd_config.nb_fwd_streams;
2241         if (verbose_level > 0) {
2242                 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2243                        __FUNCTION__,
2244                        cur_fwd_config.nb_fwd_lcores,
2245                        cur_fwd_config.nb_fwd_ports,
2246                        cur_fwd_config.nb_fwd_streams);
2247         }
2248
2249         /* reinitialize forwarding streams */
2250         init_fwd_streams();
2251         setup_fwd_config_of_each_lcore(&cur_fwd_config);
2252         rxp = 0; rxq = 0;
2253         for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2254                 if (verbose_level > 0)
2255                         printf("  core=%d: \n", lc_id);
2256                 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2257                         struct fwd_stream *fs;
2258                         fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2259                         fs->rx_port = fwd_ports_ids[rxp];
2260                         fs->rx_queue = rxq;
2261                         fs->tx_port = fs->rx_port;
2262                         fs->tx_queue = rxq;
2263                         fs->peer_addr = fs->tx_port;
2264                         fs->retry_enabled = retry_enabled;
2265                         if (verbose_level > 0)
2266                                 printf("  stream=%d port=%d rxq=%d txq=%d\n",
2267                                        sm_id, fs->rx_port, fs->rx_queue,
2268                                        fs->tx_queue);
2269                         rxq = (queueid_t) (rxq + 1);
2270                         if (rxq == nb_rxq) {
2271                                 rxq = 0;
2272                                 rxp = (portid_t) (rxp + 1);
2273                         }
2274                 }
2275         }
2276 }
2277
2278 void
2279 fwd_config_setup(void)
2280 {
2281         cur_fwd_config.fwd_eng = cur_fwd_eng;
2282         if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2283                 icmp_echo_config_setup();
2284                 return;
2285         }
2286         if ((nb_rxq > 1) && (nb_txq > 1)){
2287                 if (dcb_config)
2288                         dcb_fwd_config_setup();
2289                 else
2290                         rss_fwd_config_setup();
2291         }
2292         else
2293                 simple_fwd_config_setup();
2294 }
2295
2296 void
2297 pkt_fwd_config_display(struct fwd_config *cfg)
2298 {
2299         struct fwd_stream *fs;
2300         lcoreid_t  lc_id;
2301         streamid_t sm_id;
2302
2303         printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2304                 "NUMA support %s, MP over anonymous pages %s\n",
2305                 cfg->fwd_eng->fwd_mode_name,
2306                 retry_enabled == 0 ? "" : " with retry",
2307                 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2308                 numa_support == 1 ? "enabled" : "disabled",
2309                 mp_anon != 0 ? "enabled" : "disabled");
2310
2311         if (retry_enabled)
2312                 printf("TX retry num: %u, delay between TX retries: %uus\n",
2313                         burst_tx_retry_num, burst_tx_delay_time);
2314         for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2315                 printf("Logical Core %u (socket %u) forwards packets on "
2316                        "%d streams:",
2317                        fwd_lcores_cpuids[lc_id],
2318                        rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2319                        fwd_lcores[lc_id]->stream_nb);
2320                 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2321                         fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2322                         printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2323                                "P=%d/Q=%d (socket %u) ",
2324                                fs->rx_port, fs->rx_queue,
2325                                ports[fs->rx_port].socket_id,
2326                                fs->tx_port, fs->tx_queue,
2327                                ports[fs->tx_port].socket_id);
2328                         print_ethaddr("peer=",
2329                                       &peer_eth_addrs[fs->peer_addr]);
2330                 }
2331                 printf("\n");
2332         }
2333         printf("\n");
2334 }
2335
2336 void
2337 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2338 {
2339         uint8_t c, new_peer_addr[6];
2340         if (!rte_eth_dev_is_valid_port(port_id)) {
2341                 printf("Error: Invalid port number %i\n", port_id);
2342                 return;
2343         }
2344         if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2345                                         sizeof(new_peer_addr)) < 0) {
2346                 printf("Error: Invalid ethernet address: %s\n", peer_addr);
2347                 return;
2348         }
2349         for (c = 0; c < 6; c++)
2350                 peer_eth_addrs[port_id].addr_bytes[c] =
2351                         new_peer_addr[c];
2352 }
2353
2354 int
2355 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2356 {
2357         unsigned int i;
2358         unsigned int lcore_cpuid;
2359         int record_now;
2360
2361         record_now = 0;
2362  again:
2363         for (i = 0; i < nb_lc; i++) {
2364                 lcore_cpuid = lcorelist[i];
2365                 if (! rte_lcore_is_enabled(lcore_cpuid)) {
2366                         printf("lcore %u not enabled\n", lcore_cpuid);
2367                         return -1;
2368                 }
2369                 if (lcore_cpuid == rte_get_master_lcore()) {
2370                         printf("lcore %u cannot be masked on for running "
2371                                "packet forwarding, which is the master lcore "
2372                                "and reserved for command line parsing only\n",
2373                                lcore_cpuid);
2374                         return -1;
2375                 }
2376                 if (record_now)
2377                         fwd_lcores_cpuids[i] = lcore_cpuid;
2378         }
2379         if (record_now == 0) {
2380                 record_now = 1;
2381                 goto again;
2382         }
2383         nb_cfg_lcores = (lcoreid_t) nb_lc;
2384         if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2385                 printf("previous number of forwarding cores %u - changed to "
2386                        "number of configured cores %u\n",
2387                        (unsigned int) nb_fwd_lcores, nb_lc);
2388                 nb_fwd_lcores = (lcoreid_t) nb_lc;
2389         }
2390
2391         return 0;
2392 }
2393
2394 int
2395 set_fwd_lcores_mask(uint64_t lcoremask)
2396 {
2397         unsigned int lcorelist[64];
2398         unsigned int nb_lc;
2399         unsigned int i;
2400
2401         if (lcoremask == 0) {
2402                 printf("Invalid NULL mask of cores\n");
2403                 return -1;
2404         }
2405         nb_lc = 0;
2406         for (i = 0; i < 64; i++) {
2407                 if (! ((uint64_t)(1ULL << i) & lcoremask))
2408                         continue;
2409                 lcorelist[nb_lc++] = i;
2410         }
2411         return set_fwd_lcores_list(lcorelist, nb_lc);
2412 }
2413
2414 void
2415 set_fwd_lcores_number(uint16_t nb_lc)
2416 {
2417         if (nb_lc > nb_cfg_lcores) {
2418                 printf("nb fwd cores %u > %u (max. number of configured "
2419                        "lcores) - ignored\n",
2420                        (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2421                 return;
2422         }
2423         nb_fwd_lcores = (lcoreid_t) nb_lc;
2424         printf("Number of forwarding cores set to %u\n",
2425                (unsigned int) nb_fwd_lcores);
2426 }
2427
2428 void
2429 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2430 {
2431         unsigned int i;
2432         portid_t port_id;
2433         int record_now;
2434
2435         record_now = 0;
2436  again:
2437         for (i = 0; i < nb_pt; i++) {
2438                 port_id = (portid_t) portlist[i];
2439                 if (port_id_is_invalid(port_id, ENABLED_WARN))
2440                         return;
2441                 if (record_now)
2442                         fwd_ports_ids[i] = port_id;
2443         }
2444         if (record_now == 0) {
2445                 record_now = 1;
2446                 goto again;
2447         }
2448         nb_cfg_ports = (portid_t) nb_pt;
2449         if (nb_fwd_ports != (portid_t) nb_pt) {
2450                 printf("previous number of forwarding ports %u - changed to "
2451                        "number of configured ports %u\n",
2452                        (unsigned int) nb_fwd_ports, nb_pt);
2453                 nb_fwd_ports = (portid_t) nb_pt;
2454         }
2455 }
2456
2457 void
2458 set_fwd_ports_mask(uint64_t portmask)
2459 {
2460         unsigned int portlist[64];
2461         unsigned int nb_pt;
2462         unsigned int i;
2463
2464         if (portmask == 0) {
2465                 printf("Invalid NULL mask of ports\n");
2466                 return;
2467         }
2468         nb_pt = 0;
2469         RTE_ETH_FOREACH_DEV(i) {
2470                 if (! ((uint64_t)(1ULL << i) & portmask))
2471                         continue;
2472                 portlist[nb_pt++] = i;
2473         }
2474         set_fwd_ports_list(portlist, nb_pt);
2475 }
2476
2477 void
2478 set_fwd_ports_number(uint16_t nb_pt)
2479 {
2480         if (nb_pt > nb_cfg_ports) {
2481                 printf("nb fwd ports %u > %u (number of configured "
2482                        "ports) - ignored\n",
2483                        (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2484                 return;
2485         }
2486         nb_fwd_ports = (portid_t) nb_pt;
2487         printf("Number of forwarding ports set to %u\n",
2488                (unsigned int) nb_fwd_ports);
2489 }
2490
2491 int
2492 port_is_forwarding(portid_t port_id)
2493 {
2494         unsigned int i;
2495
2496         if (port_id_is_invalid(port_id, ENABLED_WARN))
2497                 return -1;
2498
2499         for (i = 0; i < nb_fwd_ports; i++) {
2500                 if (fwd_ports_ids[i] == port_id)
2501                         return 1;
2502         }
2503
2504         return 0;
2505 }
2506
2507 void
2508 set_nb_pkt_per_burst(uint16_t nb)
2509 {
2510         if (nb > MAX_PKT_BURST) {
2511                 printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2512                        " ignored\n",
2513                        (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2514                 return;
2515         }
2516         nb_pkt_per_burst = nb;
2517         printf("Number of packets per burst set to %u\n",
2518                (unsigned int) nb_pkt_per_burst);
2519 }
2520
2521 static const char *
2522 tx_split_get_name(enum tx_pkt_split split)
2523 {
2524         uint32_t i;
2525
2526         for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2527                 if (tx_split_name[i].split == split)
2528                         return tx_split_name[i].name;
2529         }
2530         return NULL;
2531 }
2532
2533 void
2534 set_tx_pkt_split(const char *name)
2535 {
2536         uint32_t i;
2537
2538         for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2539                 if (strcmp(tx_split_name[i].name, name) == 0) {
2540                         tx_pkt_split = tx_split_name[i].split;
2541                         return;
2542                 }
2543         }
2544         printf("unknown value: \"%s\"\n", name);
2545 }
2546
2547 void
2548 show_tx_pkt_segments(void)
2549 {
2550         uint32_t i, n;
2551         const char *split;
2552
2553         n = tx_pkt_nb_segs;
2554         split = tx_split_get_name(tx_pkt_split);
2555
2556         printf("Number of segments: %u\n", n);
2557         printf("Segment sizes: ");
2558         for (i = 0; i != n - 1; i++)
2559                 printf("%hu,", tx_pkt_seg_lengths[i]);
2560         printf("%hu\n", tx_pkt_seg_lengths[i]);
2561         printf("Split packet: %s\n", split);
2562 }
2563
2564 void
2565 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2566 {
2567         uint16_t tx_pkt_len;
2568         unsigned i;
2569
2570         if (nb_segs >= (unsigned) nb_txd) {
2571                 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2572                        nb_segs, (unsigned int) nb_txd);
2573                 return;
2574         }
2575
2576         /*
2577          * Check that each segment length is greater or equal than
2578          * the mbuf data sise.
2579          * Check also that the total packet length is greater or equal than the
2580          * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2581          */
2582         tx_pkt_len = 0;
2583         for (i = 0; i < nb_segs; i++) {
2584                 if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2585                         printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2586                                i, seg_lengths[i], (unsigned) mbuf_data_size);
2587                         return;
2588                 }
2589                 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2590         }
2591         if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2592                 printf("total packet length=%u < %d - give up\n",
2593                                 (unsigned) tx_pkt_len,
2594                                 (int)(sizeof(struct ether_hdr) + 20 + 8));
2595                 return;
2596         }
2597
2598         for (i = 0; i < nb_segs; i++)
2599                 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2600
2601         tx_pkt_length  = tx_pkt_len;
2602         tx_pkt_nb_segs = (uint8_t) nb_segs;
2603 }
2604
2605 void
2606 setup_gro(const char *onoff, portid_t port_id)
2607 {
2608         if (!rte_eth_dev_is_valid_port(port_id)) {
2609                 printf("invalid port id %u\n", port_id);
2610                 return;
2611         }
2612         if (test_done == 0) {
2613                 printf("Before enable/disable GRO,"
2614                                 " please stop forwarding first\n");
2615                 return;
2616         }
2617         if (strcmp(onoff, "on") == 0) {
2618                 if (gro_ports[port_id].enable != 0) {
2619                         printf("Port %u has enabled GRO. Please"
2620                                         " disable GRO first\n", port_id);
2621                         return;
2622                 }
2623                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2624                         gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2625                         gro_ports[port_id].param.max_flow_num =
2626                                 GRO_DEFAULT_FLOW_NUM;
2627                         gro_ports[port_id].param.max_item_per_flow =
2628                                 GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2629                 }
2630                 gro_ports[port_id].enable = 1;
2631         } else {
2632                 if (gro_ports[port_id].enable == 0) {
2633                         printf("Port %u has disabled GRO\n", port_id);
2634                         return;
2635                 }
2636                 gro_ports[port_id].enable = 0;
2637         }
2638 }
2639
2640 void
2641 setup_gro_flush_cycles(uint8_t cycles)
2642 {
2643         if (test_done == 0) {
2644                 printf("Before change flush interval for GRO,"
2645                                 " please stop forwarding first.\n");
2646                 return;
2647         }
2648
2649         if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2650                         GRO_DEFAULT_FLUSH_CYCLES) {
2651                 printf("The flushing cycle be in the range"
2652                                 " of 1 to %u. Revert to the default"
2653                                 " value %u.\n",
2654                                 GRO_MAX_FLUSH_CYCLES,
2655                                 GRO_DEFAULT_FLUSH_CYCLES);
2656                 cycles = GRO_DEFAULT_FLUSH_CYCLES;
2657         }
2658
2659         gro_flush_cycles = cycles;
2660 }
2661
2662 void
2663 show_gro(portid_t port_id)
2664 {
2665         struct rte_gro_param *param;
2666         uint32_t max_pkts_num;
2667
2668         param = &gro_ports[port_id].param;
2669
2670         if (!rte_eth_dev_is_valid_port(port_id)) {
2671                 printf("Invalid port id %u.\n", port_id);
2672                 return;
2673         }
2674         if (gro_ports[port_id].enable) {
2675                 printf("GRO type: TCP/IPv4\n");
2676                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2677                         max_pkts_num = param->max_flow_num *
2678                                 param->max_item_per_flow;
2679                 } else
2680                         max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2681                 printf("Max number of packets to perform GRO: %u\n",
2682                                 max_pkts_num);
2683                 printf("Flushing cycles: %u\n", gro_flush_cycles);
2684         } else
2685                 printf("Port %u doesn't enable GRO.\n", port_id);
2686 }
2687
2688 void
2689 setup_gso(const char *mode, portid_t port_id)
2690 {
2691         if (!rte_eth_dev_is_valid_port(port_id)) {
2692                 printf("invalid port id %u\n", port_id);
2693                 return;
2694         }
2695         if (strcmp(mode, "on") == 0) {
2696                 if (test_done == 0) {
2697                         printf("before enabling GSO,"
2698                                         " please stop forwarding first\n");
2699                         return;
2700                 }
2701                 gso_ports[port_id].enable = 1;
2702         } else if (strcmp(mode, "off") == 0) {
2703                 if (test_done == 0) {
2704                         printf("before disabling GSO,"
2705                                         " please stop forwarding first\n");
2706                         return;
2707                 }
2708                 gso_ports[port_id].enable = 0;
2709         }
2710 }
2711
2712 char*
2713 list_pkt_forwarding_modes(void)
2714 {
2715         static char fwd_modes[128] = "";
2716         const char *separator = "|";
2717         struct fwd_engine *fwd_eng;
2718         unsigned i = 0;
2719
2720         if (strlen (fwd_modes) == 0) {
2721                 while ((fwd_eng = fwd_engines[i++]) != NULL) {
2722                         strncat(fwd_modes, fwd_eng->fwd_mode_name,
2723                                         sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2724                         strncat(fwd_modes, separator,
2725                                         sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2726                 }
2727                 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2728         }
2729
2730         return fwd_modes;
2731 }
2732
2733 char*
2734 list_pkt_forwarding_retry_modes(void)
2735 {
2736         static char fwd_modes[128] = "";
2737         const char *separator = "|";
2738         struct fwd_engine *fwd_eng;
2739         unsigned i = 0;
2740
2741         if (strlen(fwd_modes) == 0) {
2742                 while ((fwd_eng = fwd_engines[i++]) != NULL) {
2743                         if (fwd_eng == &rx_only_engine)
2744                                 continue;
2745                         strncat(fwd_modes, fwd_eng->fwd_mode_name,
2746                                         sizeof(fwd_modes) -
2747                                         strlen(fwd_modes) - 1);
2748                         strncat(fwd_modes, separator,
2749                                         sizeof(fwd_modes) -
2750                                         strlen(fwd_modes) - 1);
2751                 }
2752                 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2753         }
2754
2755         return fwd_modes;
2756 }
2757
2758 void
2759 set_pkt_forwarding_mode(const char *fwd_mode_name)
2760 {
2761         struct fwd_engine *fwd_eng;
2762         unsigned i;
2763
2764         i = 0;
2765         while ((fwd_eng = fwd_engines[i]) != NULL) {
2766                 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2767                         printf("Set %s packet forwarding mode%s\n",
2768                                fwd_mode_name,
2769                                retry_enabled == 0 ? "" : " with retry");
2770                         cur_fwd_eng = fwd_eng;
2771                         return;
2772                 }
2773                 i++;
2774         }
2775         printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2776 }
2777
2778 void
2779 set_verbose_level(uint16_t vb_level)
2780 {
2781         printf("Change verbose level from %u to %u\n",
2782                (unsigned int) verbose_level, (unsigned int) vb_level);
2783         verbose_level = vb_level;
2784 }
2785
2786 void
2787 vlan_extend_set(portid_t port_id, int on)
2788 {
2789         int diag;
2790         int vlan_offload;
2791         uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2792
2793         if (port_id_is_invalid(port_id, ENABLED_WARN))
2794                 return;
2795
2796         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2797
2798         if (on) {
2799                 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2800                 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2801         } else {
2802                 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2803                 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2804         }
2805
2806         diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2807         if (diag < 0)
2808                 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2809                "diag=%d\n", port_id, on, diag);
2810         ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2811 }
2812
2813 void
2814 rx_vlan_strip_set(portid_t port_id, int on)
2815 {
2816         int diag;
2817         int vlan_offload;
2818         uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2819
2820         if (port_id_is_invalid(port_id, ENABLED_WARN))
2821                 return;
2822
2823         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2824
2825         if (on) {
2826                 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2827                 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2828         } else {
2829                 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2830                 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2831         }
2832
2833         diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2834         if (diag < 0)
2835                 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2836                "diag=%d\n", port_id, on, diag);
2837         ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2838 }
2839
2840 void
2841 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2842 {
2843         int diag;
2844
2845         if (port_id_is_invalid(port_id, ENABLED_WARN))
2846                 return;
2847
2848         diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2849         if (diag < 0)
2850                 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2851                "diag=%d\n", port_id, queue_id, on, diag);
2852 }
2853
2854 void
2855 rx_vlan_filter_set(portid_t port_id, int on)
2856 {
2857         int diag;
2858         int vlan_offload;
2859         uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2860
2861         if (port_id_is_invalid(port_id, ENABLED_WARN))
2862                 return;
2863
2864         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2865
2866         if (on) {
2867                 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2868                 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2869         } else {
2870                 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2871                 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2872         }
2873
2874         diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2875         if (diag < 0)
2876                 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2877                "diag=%d\n", port_id, on, diag);
2878         ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2879 }
2880
2881 int
2882 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2883 {
2884         int diag;
2885
2886         if (port_id_is_invalid(port_id, ENABLED_WARN))
2887                 return 1;
2888         if (vlan_id_is_invalid(vlan_id))
2889                 return 1;
2890         diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2891         if (diag == 0)
2892                 return 0;
2893         printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2894                "diag=%d\n",
2895                port_id, vlan_id, on, diag);
2896         return -1;
2897 }
2898
2899 void
2900 rx_vlan_all_filter_set(portid_t port_id, int on)
2901 {
2902         uint16_t vlan_id;
2903
2904         if (port_id_is_invalid(port_id, ENABLED_WARN))
2905                 return;
2906         for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2907                 if (rx_vft_set(port_id, vlan_id, on))
2908                         break;
2909         }
2910 }
2911
2912 void
2913 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2914 {
2915         int diag;
2916
2917         if (port_id_is_invalid(port_id, ENABLED_WARN))
2918                 return;
2919
2920         diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2921         if (diag == 0)
2922                 return;
2923
2924         printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2925                "diag=%d\n",
2926                port_id, vlan_type, tp_id, diag);
2927 }
2928
2929 void
2930 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2931 {
2932         int vlan_offload;
2933         struct rte_eth_dev_info dev_info;
2934
2935         if (port_id_is_invalid(port_id, ENABLED_WARN))
2936                 return;
2937         if (vlan_id_is_invalid(vlan_id))
2938                 return;
2939
2940         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2941         if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2942                 printf("Error, as QinQ has been enabled.\n");
2943                 return;
2944         }
2945         rte_eth_dev_info_get(port_id, &dev_info);
2946         if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2947                 printf("Error: vlan insert is not supported by port %d\n",
2948                         port_id);
2949                 return;
2950         }
2951
2952         tx_vlan_reset(port_id);
2953         ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2954         ports[port_id].tx_vlan_id = vlan_id;
2955 }
2956
2957 void
2958 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2959 {
2960         int vlan_offload;
2961         struct rte_eth_dev_info dev_info;
2962
2963         if (port_id_is_invalid(port_id, ENABLED_WARN))
2964                 return;
2965         if (vlan_id_is_invalid(vlan_id))
2966                 return;
2967         if (vlan_id_is_invalid(vlan_id_outer))
2968                 return;
2969
2970         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2971         if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2972                 printf("Error, as QinQ hasn't been enabled.\n");
2973                 return;
2974         }
2975         rte_eth_dev_info_get(port_id, &dev_info);
2976         if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
2977                 printf("Error: qinq insert not supported by port %d\n",
2978                         port_id);
2979                 return;
2980         }
2981
2982         tx_vlan_reset(port_id);
2983         ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
2984         ports[port_id].tx_vlan_id = vlan_id;
2985         ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2986 }
2987
2988 void
2989 tx_vlan_reset(portid_t port_id)
2990 {
2991         if (port_id_is_invalid(port_id, ENABLED_WARN))
2992                 return;
2993         ports[port_id].dev_conf.txmode.offloads &=
2994                                 ~(DEV_TX_OFFLOAD_VLAN_INSERT |
2995                                   DEV_TX_OFFLOAD_QINQ_INSERT);
2996         ports[port_id].tx_vlan_id = 0;
2997         ports[port_id].tx_vlan_id_outer = 0;
2998 }
2999
3000 void
3001 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
3002 {
3003         if (port_id_is_invalid(port_id, ENABLED_WARN))
3004                 return;
3005
3006         rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
3007 }
3008
3009 void
3010 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
3011 {
3012         uint16_t i;
3013         uint8_t existing_mapping_found = 0;
3014
3015         if (port_id_is_invalid(port_id, ENABLED_WARN))
3016                 return;
3017
3018         if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
3019                 return;
3020
3021         if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
3022                 printf("map_value not in required range 0..%d\n",
3023                                 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
3024                 return;
3025         }
3026
3027         if (!is_rx) { /*then tx*/
3028                 for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
3029                         if ((tx_queue_stats_mappings[i].port_id == port_id) &&
3030                             (tx_queue_stats_mappings[i].queue_id == queue_id)) {
3031                                 tx_queue_stats_mappings[i].stats_counter_id = map_value;
3032                                 existing_mapping_found = 1;
3033                                 break;
3034                         }
3035                 }
3036                 if (!existing_mapping_found) { /* A new additional mapping... */
3037                         tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
3038                         tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
3039                         tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
3040                         nb_tx_queue_stats_mappings++;
3041                 }
3042         }
3043         else { /*rx*/
3044                 for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
3045                         if ((rx_queue_stats_mappings[i].port_id == port_id) &&
3046                             (rx_queue_stats_mappings[i].queue_id == queue_id)) {
3047                                 rx_queue_stats_mappings[i].stats_counter_id = map_value;
3048                                 existing_mapping_found = 1;
3049                                 break;
3050                         }
3051                 }
3052                 if (!existing_mapping_found) { /* A new additional mapping... */
3053                         rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
3054                         rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
3055                         rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
3056                         nb_rx_queue_stats_mappings++;
3057                 }
3058         }
3059 }
3060
3061 void
3062 set_xstats_hide_zero(uint8_t on_off)
3063 {
3064         xstats_hide_zero = on_off;
3065 }
3066
3067 static inline void
3068 print_fdir_mask(struct rte_eth_fdir_masks *mask)
3069 {
3070         printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
3071
3072         if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3073                 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
3074                         " tunnel_id: 0x%08x",
3075                         mask->mac_addr_byte_mask, mask->tunnel_type_mask,
3076                         rte_be_to_cpu_32(mask->tunnel_id_mask));
3077         else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3078                 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
3079                         rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
3080                         rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
3081
3082                 printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
3083                         rte_be_to_cpu_16(mask->src_port_mask),
3084                         rte_be_to_cpu_16(mask->dst_port_mask));
3085
3086                 printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3087                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
3088                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
3089                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
3090                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
3091
3092                 printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3093                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3094                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3095                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3096                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3097         }
3098
3099         printf("\n");
3100 }
3101
3102 static inline void
3103 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3104 {
3105         struct rte_eth_flex_payload_cfg *cfg;
3106         uint32_t i, j;
3107
3108         for (i = 0; i < flex_conf->nb_payloads; i++) {
3109                 cfg = &flex_conf->flex_set[i];
3110                 if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3111                         printf("\n    RAW:  ");
3112                 else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3113                         printf("\n    L2_PAYLOAD:  ");
3114                 else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3115                         printf("\n    L3_PAYLOAD:  ");
3116                 else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3117                         printf("\n    L4_PAYLOAD:  ");
3118                 else
3119                         printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3120                 for (j = 0; j < num; j++)
3121                         printf("  %-5u", cfg->src_offset[j]);
3122         }
3123         printf("\n");
3124 }
3125
3126 static char *
3127 flowtype_to_str(uint16_t flow_type)
3128 {
3129         struct flow_type_info {
3130                 char str[32];
3131                 uint16_t ftype;
3132         };
3133
3134         uint8_t i;
3135         static struct flow_type_info flowtype_str_table[] = {
3136                 {"raw", RTE_ETH_FLOW_RAW},
3137                 {"ipv4", RTE_ETH_FLOW_IPV4},
3138                 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3139                 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3140                 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3141                 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3142                 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3143                 {"ipv6", RTE_ETH_FLOW_IPV6},
3144                 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3145                 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3146                 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3147                 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3148                 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3149                 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3150                 {"port", RTE_ETH_FLOW_PORT},
3151                 {"vxlan", RTE_ETH_FLOW_VXLAN},
3152                 {"geneve", RTE_ETH_FLOW_GENEVE},
3153                 {"nvgre", RTE_ETH_FLOW_NVGRE},
3154                 {"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
3155         };
3156
3157         for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3158                 if (flowtype_str_table[i].ftype == flow_type)
3159                         return flowtype_str_table[i].str;
3160         }
3161
3162         return NULL;
3163 }
3164
3165 static inline void
3166 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3167 {
3168         struct rte_eth_fdir_flex_mask *mask;
3169         uint32_t i, j;
3170         char *p;
3171
3172         for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3173                 mask = &flex_conf->flex_mask[i];
3174                 p = flowtype_to_str(mask->flow_type);
3175                 printf("\n    %s:\t", p ? p : "unknown");
3176                 for (j = 0; j < num; j++)
3177                         printf(" %02x", mask->mask[j]);
3178         }
3179         printf("\n");
3180 }
3181
3182 static inline void
3183 print_fdir_flow_type(uint32_t flow_types_mask)
3184 {
3185         int i;
3186         char *p;
3187
3188         for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3189                 if (!(flow_types_mask & (1 << i)))
3190                         continue;
3191                 p = flowtype_to_str(i);
3192                 if (p)
3193                         printf(" %s", p);
3194                 else
3195                         printf(" unknown");
3196         }
3197         printf("\n");
3198 }
3199
3200 void
3201 fdir_get_infos(portid_t port_id)
3202 {
3203         struct rte_eth_fdir_stats fdir_stat;
3204         struct rte_eth_fdir_info fdir_info;
3205         int ret;
3206
3207         static const char *fdir_stats_border = "########################";
3208
3209         if (port_id_is_invalid(port_id, ENABLED_WARN))
3210                 return;
3211         ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3212         if (ret < 0) {
3213                 printf("\n FDIR is not supported on port %-2d\n",
3214                         port_id);
3215                 return;
3216         }
3217
3218         memset(&fdir_info, 0, sizeof(fdir_info));
3219         rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3220                                RTE_ETH_FILTER_INFO, &fdir_info);
3221         memset(&fdir_stat, 0, sizeof(fdir_stat));
3222         rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3223                                RTE_ETH_FILTER_STATS, &fdir_stat);
3224         printf("\n  %s FDIR infos for port %-2d     %s\n",
3225                fdir_stats_border, port_id, fdir_stats_border);
3226         printf("  MODE: ");
3227         if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3228                 printf("  PERFECT\n");
3229         else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3230                 printf("  PERFECT-MAC-VLAN\n");
3231         else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3232                 printf("  PERFECT-TUNNEL\n");
3233         else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3234                 printf("  SIGNATURE\n");
3235         else
3236                 printf("  DISABLE\n");
3237         if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3238                 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3239                 printf("  SUPPORTED FLOW TYPE: ");
3240                 print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3241         }
3242         printf("  FLEX PAYLOAD INFO:\n");
3243         printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3244                "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3245                "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3246                 fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3247                 fdir_info.flex_payload_unit,
3248                 fdir_info.max_flex_payload_segment_num,
3249                 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3250         printf("  MASK: ");
3251         print_fdir_mask(&fdir_info.mask);
3252         if (fdir_info.flex_conf.nb_payloads > 0) {
3253                 printf("  FLEX PAYLOAD SRC OFFSET:");
3254                 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3255         }
3256         if (fdir_info.flex_conf.nb_flexmasks > 0) {
3257                 printf("  FLEX MASK CFG:");
3258                 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3259         }
3260         printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3261                fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3262         printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3263                fdir_info.guarant_spc, fdir_info.best_spc);
3264         printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3265                "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3266                "  add:           %-10"PRIu64"  remove:        %"PRIu64"\n"
3267                "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3268                fdir_stat.collision, fdir_stat.free,
3269                fdir_stat.maxhash, fdir_stat.maxlen,
3270                fdir_stat.add, fdir_stat.remove,
3271                fdir_stat.f_add, fdir_stat.f_remove);
3272         printf("  %s############################%s\n",
3273                fdir_stats_border, fdir_stats_border);
3274 }
3275
3276 void
3277 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3278 {
3279         struct rte_port *port;
3280         struct rte_eth_fdir_flex_conf *flex_conf;
3281         int i, idx = 0;
3282
3283         port = &ports[port_id];
3284         flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3285         for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3286                 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3287                         idx = i;
3288                         break;
3289                 }
3290         }
3291         if (i >= RTE_ETH_FLOW_MAX) {
3292                 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3293                         idx = flex_conf->nb_flexmasks;
3294                         flex_conf->nb_flexmasks++;
3295                 } else {
3296                         printf("The flex mask table is full. Can not set flex"
3297                                 " mask for flow_type(%u).", cfg->flow_type);
3298                         return;
3299                 }
3300         }
3301         rte_memcpy(&flex_conf->flex_mask[idx],
3302                          cfg,
3303                          sizeof(struct rte_eth_fdir_flex_mask));
3304 }
3305
3306 void
3307 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3308 {
3309         struct rte_port *port;
3310         struct rte_eth_fdir_flex_conf *flex_conf;
3311         int i, idx = 0;
3312
3313         port = &ports[port_id];
3314         flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3315         for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3316                 if (cfg->type == flex_conf->flex_set[i].type) {
3317                         idx = i;
3318                         break;
3319                 }
3320         }
3321         if (i >= RTE_ETH_PAYLOAD_MAX) {
3322                 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3323                         idx = flex_conf->nb_payloads;
3324                         flex_conf->nb_payloads++;
3325                 } else {
3326                         printf("The flex payload table is full. Can not set"
3327                                 " flex payload for type(%u).", cfg->type);
3328                         return;
3329                 }
3330         }
3331         rte_memcpy(&flex_conf->flex_set[idx],
3332                          cfg,
3333                          sizeof(struct rte_eth_flex_payload_cfg));
3334
3335 }
3336
3337 void
3338 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3339 {
3340 #ifdef RTE_LIBRTE_IXGBE_PMD
3341         int diag;
3342
3343         if (is_rx)
3344                 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3345         else
3346                 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3347
3348         if (diag == 0)
3349                 return;
3350         printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3351                         is_rx ? "rx" : "tx", port_id, diag);
3352         return;
3353 #endif
3354         printf("VF %s setting not supported for port %d\n",
3355                         is_rx ? "Rx" : "Tx", port_id);
3356         RTE_SET_USED(vf);
3357         RTE_SET_USED(on);
3358 }
3359
3360 int
3361 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3362 {
3363         int diag;
3364         struct rte_eth_link link;
3365
3366         if (port_id_is_invalid(port_id, ENABLED_WARN))
3367                 return 1;
3368         rte_eth_link_get_nowait(port_id, &link);
3369         if (rate > link.link_speed) {
3370                 printf("Invalid rate value:%u bigger than link speed: %u\n",
3371                         rate, link.link_speed);
3372                 return 1;
3373         }
3374         diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3375         if (diag == 0)
3376                 return diag;
3377         printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3378                 port_id, diag);
3379         return diag;
3380 }
3381
3382 int
3383 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3384 {
3385         int diag = -ENOTSUP;
3386
3387         RTE_SET_USED(vf);
3388         RTE_SET_USED(rate);
3389         RTE_SET_USED(q_msk);
3390
3391 #ifdef RTE_LIBRTE_IXGBE_PMD
3392         if (diag == -ENOTSUP)
3393                 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3394                                                        q_msk);
3395 #endif
3396 #ifdef RTE_LIBRTE_BNXT_PMD
3397         if (diag == -ENOTSUP)
3398                 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3399 #endif
3400         if (diag == 0)
3401                 return diag;
3402
3403         printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3404                 port_id, diag);
3405         return diag;
3406 }
3407
3408 /*
3409  * Functions to manage the set of filtered Multicast MAC addresses.
3410  *
3411  * A pool of filtered multicast MAC addresses is associated with each port.
3412  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3413  * The address of the pool and the number of valid multicast MAC addresses
3414  * recorded in the pool are stored in the fields "mc_addr_pool" and
3415  * "mc_addr_nb" of the "rte_port" data structure.
3416  *
3417  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3418  * to be supplied a contiguous array of multicast MAC addresses.
3419  * To comply with this constraint, the set of multicast addresses recorded
3420  * into the pool are systematically compacted at the beginning of the pool.
3421  * Hence, when a multicast address is removed from the pool, all following
3422  * addresses, if any, are copied back to keep the set contiguous.
3423  */
3424 #define MCAST_POOL_INC 32
3425
3426 static int
3427 mcast_addr_pool_extend(struct rte_port *port)
3428 {
3429         struct ether_addr *mc_pool;
3430         size_t mc_pool_size;
3431
3432         /*
3433          * If a free entry is available at the end of the pool, just
3434          * increment the number of recorded multicast addresses.
3435          */
3436         if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3437                 port->mc_addr_nb++;
3438                 return 0;
3439         }
3440
3441         /*
3442          * [re]allocate a pool with MCAST_POOL_INC more entries.
3443          * The previous test guarantees that port->mc_addr_nb is a multiple
3444          * of MCAST_POOL_INC.
3445          */
3446         mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3447                                                     MCAST_POOL_INC);
3448         mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3449                                                 mc_pool_size);
3450         if (mc_pool == NULL) {
3451                 printf("allocation of pool of %u multicast addresses failed\n",
3452                        port->mc_addr_nb + MCAST_POOL_INC);
3453                 return -ENOMEM;
3454         }
3455
3456         port->mc_addr_pool = mc_pool;
3457         port->mc_addr_nb++;
3458         return 0;
3459
3460 }
3461
3462 static void
3463 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3464 {
3465         port->mc_addr_nb--;
3466         if (addr_idx == port->mc_addr_nb) {
3467                 /* No need to recompact the set of multicast addressses. */
3468                 if (port->mc_addr_nb == 0) {
3469                         /* free the pool of multicast addresses. */
3470                         free(port->mc_addr_pool);
3471                         port->mc_addr_pool = NULL;
3472                 }
3473                 return;
3474         }
3475         memmove(&port->mc_addr_pool[addr_idx],
3476                 &port->mc_addr_pool[addr_idx + 1],
3477                 sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3478 }
3479
3480 static void
3481 eth_port_multicast_addr_list_set(portid_t port_id)
3482 {
3483         struct rte_port *port;
3484         int diag;
3485
3486         port = &ports[port_id];
3487         diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3488                                             port->mc_addr_nb);
3489         if (diag == 0)
3490                 return;
3491         printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3492                port->mc_addr_nb, port_id, -diag);
3493 }
3494
3495 void
3496 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3497 {
3498         struct rte_port *port;
3499         uint32_t i;
3500
3501         if (port_id_is_invalid(port_id, ENABLED_WARN))
3502                 return;
3503
3504         port = &ports[port_id];
3505
3506         /*
3507          * Check that the added multicast MAC address is not already recorded
3508          * in the pool of multicast addresses.
3509          */
3510         for (i = 0; i < port->mc_addr_nb; i++) {
3511                 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3512                         printf("multicast address already filtered by port\n");
3513                         return;
3514                 }
3515         }
3516
3517         if (mcast_addr_pool_extend(port) != 0)
3518                 return;
3519         ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3520         eth_port_multicast_addr_list_set(port_id);
3521 }
3522
3523 void
3524 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3525 {
3526         struct rte_port *port;
3527         uint32_t i;
3528
3529         if (port_id_is_invalid(port_id, ENABLED_WARN))
3530                 return;
3531
3532         port = &ports[port_id];
3533
3534         /*
3535          * Search the pool of multicast MAC addresses for the removed address.
3536          */
3537         for (i = 0; i < port->mc_addr_nb; i++) {
3538                 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3539                         break;
3540         }
3541         if (i == port->mc_addr_nb) {
3542                 printf("multicast address not filtered by port %d\n", port_id);
3543                 return;
3544         }
3545
3546         mcast_addr_pool_remove(port, i);
3547         eth_port_multicast_addr_list_set(port_id);
3548 }
3549
3550 void
3551 port_dcb_info_display(portid_t port_id)
3552 {
3553         struct rte_eth_dcb_info dcb_info;
3554         uint16_t i;
3555         int ret;
3556         static const char *border = "================";
3557
3558         if (port_id_is_invalid(port_id, ENABLED_WARN))
3559                 return;
3560
3561         ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3562         if (ret) {
3563                 printf("\n Failed to get dcb infos on port %-2d\n",
3564                         port_id);
3565                 return;
3566         }
3567         printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3568         printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3569         printf("\n  TC :        ");
3570         for (i = 0; i < dcb_info.nb_tcs; i++)
3571                 printf("\t%4d", i);
3572         printf("\n  Priority :  ");
3573         for (i = 0; i < dcb_info.nb_tcs; i++)
3574                 printf("\t%4d", dcb_info.prio_tc[i]);
3575         printf("\n  BW percent :");
3576         for (i = 0; i < dcb_info.nb_tcs; i++)
3577                 printf("\t%4d%%", dcb_info.tc_bws[i]);
3578         printf("\n  RXQ base :  ");
3579         for (i = 0; i < dcb_info.nb_tcs; i++)
3580                 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3581         printf("\n  RXQ number :");
3582         for (i = 0; i < dcb_info.nb_tcs; i++)
3583                 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3584         printf("\n  TXQ base :  ");
3585         for (i = 0; i < dcb_info.nb_tcs; i++)
3586                 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3587         printf("\n  TXQ number :");
3588         for (i = 0; i < dcb_info.nb_tcs; i++)
3589                 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3590         printf("\n");
3591 }
3592
3593 uint8_t *
3594 open_file(const char *file_path, uint32_t *size)
3595 {
3596         int fd = open(file_path, O_RDONLY);
3597         off_t pkg_size;
3598         uint8_t *buf = NULL;
3599         int ret = 0;
3600         struct stat st_buf;
3601
3602         if (size)
3603                 *size = 0;
3604
3605         if (fd == -1) {
3606                 printf("%s: Failed to open %s\n", __func__, file_path);
3607                 return buf;
3608         }
3609
3610         if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3611                 close(fd);
3612                 printf("%s: File operations failed\n", __func__);
3613                 return buf;
3614         }
3615
3616         pkg_size = st_buf.st_size;
3617         if (pkg_size < 0) {
3618                 close(fd);
3619                 printf("%s: File operations failed\n", __func__);
3620                 return buf;
3621         }
3622
3623         buf = (uint8_t *)malloc(pkg_size);
3624         if (!buf) {
3625                 close(fd);
3626                 printf("%s: Failed to malloc memory\n", __func__);
3627                 return buf;
3628         }
3629
3630         ret = read(fd, buf, pkg_size);
3631         if (ret < 0) {
3632                 close(fd);
3633                 printf("%s: File read operation failed\n", __func__);
3634                 close_file(buf);
3635                 return NULL;
3636         }
3637
3638         if (size)
3639                 *size = pkg_size;
3640
3641         close(fd);
3642
3643         return buf;
3644 }
3645
3646 int
3647 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3648 {
3649         FILE *fh = fopen(file_path, "wb");
3650
3651         if (fh == NULL) {
3652                 printf("%s: Failed to open %s\n", __func__, file_path);
3653                 return -1;
3654         }
3655
3656         if (fwrite(buf, 1, size, fh) != size) {
3657                 fclose(fh);
3658                 printf("%s: File write operation failed\n", __func__);
3659                 return -1;
3660         }
3661
3662         fclose(fh);
3663
3664         return 0;
3665 }
3666
3667 int
3668 close_file(uint8_t *buf)
3669 {
3670         if (buf) {
3671                 free((void *)buf);
3672                 return 0;
3673         }
3674
3675         return -1;
3676 }
3677
3678 void
3679 port_queue_region_info_display(portid_t port_id, void *buf)
3680 {
3681 #ifdef RTE_LIBRTE_I40E_PMD
3682         uint16_t i, j;
3683         struct rte_pmd_i40e_queue_regions *info =
3684                 (struct rte_pmd_i40e_queue_regions *)buf;
3685         static const char *queue_region_info_stats_border = "-------";
3686
3687         if (!info->queue_region_number)
3688                 printf("there is no region has been set before");
3689
3690         printf("\n      %s All queue region info for port=%2d %s",
3691                         queue_region_info_stats_border, port_id,
3692                         queue_region_info_stats_border);
3693         printf("\n      queue_region_number: %-14u \n",
3694                         info->queue_region_number);
3695
3696         for (i = 0; i < info->queue_region_number; i++) {
3697                 printf("\n      region_id: %-14u queue_number: %-14u "
3698                         "queue_start_index: %-14u \n",
3699                         info->region[i].region_id,
3700                         info->region[i].queue_num,
3701                         info->region[i].queue_start_index);
3702
3703                 printf("  user_priority_num is  %-14u :",
3704                                         info->region[i].user_priority_num);
3705                 for (j = 0; j < info->region[i].user_priority_num; j++)
3706                         printf(" %-14u ", info->region[i].user_priority[j]);
3707
3708                 printf("\n      flowtype_num is  %-14u :",
3709                                 info->region[i].flowtype_num);
3710                 for (j = 0; j < info->region[i].flowtype_num; j++)
3711                         printf(" %-14u ", info->region[i].hw_flowtype[j]);
3712         }
3713 #else
3714         RTE_SET_USED(port_id);
3715         RTE_SET_USED(buf);
3716 #endif
3717
3718         printf("\n\n");
3719 }