app/testpmd: introduce new tunnel VXLAN-GPE
[dpdk.git] / app / test-pmd / config.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53
54 #include "testpmd.h"
55
56 static char *flowtype_to_str(uint16_t flow_type);
57
58 static const struct {
59         enum tx_pkt_split split;
60         const char *name;
61 } tx_split_name[] = {
62         {
63                 .split = TX_PKT_SPLIT_OFF,
64                 .name = "off",
65         },
66         {
67                 .split = TX_PKT_SPLIT_ON,
68                 .name = "on",
69         },
70         {
71                 .split = TX_PKT_SPLIT_RND,
72                 .name = "rand",
73         },
74 };
75
76 const struct rss_type_info rss_type_table[] = {
77         { "ipv4", ETH_RSS_IPV4 },
78         { "ipv4-frag", ETH_RSS_FRAG_IPV4 },
79         { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
80         { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
81         { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
82         { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
83         { "ipv6", ETH_RSS_IPV6 },
84         { "ipv6-frag", ETH_RSS_FRAG_IPV6 },
85         { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
86         { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
87         { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
88         { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
89         { "l2-payload", ETH_RSS_L2_PAYLOAD },
90         { "ipv6-ex", ETH_RSS_IPV6_EX },
91         { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
92         { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
93         { "port", ETH_RSS_PORT },
94         { "vxlan", ETH_RSS_VXLAN },
95         { "geneve", ETH_RSS_GENEVE },
96         { "nvgre", ETH_RSS_NVGRE },
97         { "ip", ETH_RSS_IP },
98         { "udp", ETH_RSS_UDP },
99         { "tcp", ETH_RSS_TCP },
100         { "sctp", ETH_RSS_SCTP },
101         { "tunnel", ETH_RSS_TUNNEL },
102         { NULL, 0 },
103 };
104
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108         char buf[ETHER_ADDR_FMT_SIZE];
109         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110         printf("%s%s", name, buf);
111 }
112
113 void
114 nic_stats_display(portid_t port_id)
115 {
116         static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117         static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118         static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119         uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120         uint64_t mpps_rx, mpps_tx;
121         struct rte_eth_stats stats;
122         struct rte_port *port = &ports[port_id];
123         uint8_t i;
124         portid_t pid;
125
126         static const char *nic_stats_border = "########################";
127
128         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
129                 printf("Valid port range is [0");
130                 RTE_ETH_FOREACH_DEV(pid)
131                         printf(", %d", pid);
132                 printf("]\n");
133                 return;
134         }
135         rte_eth_stats_get(port_id, &stats);
136         printf("\n  %s NIC statistics for port %-2d %s\n",
137                nic_stats_border, port_id, nic_stats_border);
138
139         if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
140                 printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
141                        "%-"PRIu64"\n",
142                        stats.ipackets, stats.imissed, stats.ibytes);
143                 printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
144                 printf("  RX-nombuf:  %-10"PRIu64"\n",
145                        stats.rx_nombuf);
146                 printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
147                        "%-"PRIu64"\n",
148                        stats.opackets, stats.oerrors, stats.obytes);
149         }
150         else {
151                 printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
152                        "    RX-bytes: %10"PRIu64"\n",
153                        stats.ipackets, stats.ierrors, stats.ibytes);
154                 printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
155                 printf("  RX-nombuf:               %10"PRIu64"\n",
156                        stats.rx_nombuf);
157                 printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
158                        "    TX-bytes: %10"PRIu64"\n",
159                        stats.opackets, stats.oerrors, stats.obytes);
160         }
161
162         if (port->rx_queue_stats_mapping_enabled) {
163                 printf("\n");
164                 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
165                         printf("  Stats reg %2d RX-packets: %10"PRIu64
166                                "    RX-errors: %10"PRIu64
167                                "    RX-bytes: %10"PRIu64"\n",
168                                i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
169                 }
170         }
171         if (port->tx_queue_stats_mapping_enabled) {
172                 printf("\n");
173                 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
174                         printf("  Stats reg %2d TX-packets: %10"PRIu64
175                                "                             TX-bytes: %10"PRIu64"\n",
176                                i, stats.q_opackets[i], stats.q_obytes[i]);
177                 }
178         }
179
180         diff_cycles = prev_cycles[port_id];
181         prev_cycles[port_id] = rte_rdtsc();
182         if (diff_cycles > 0)
183                 diff_cycles = prev_cycles[port_id] - diff_cycles;
184
185         diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
186                 (stats.ipackets - prev_pkts_rx[port_id]) : 0;
187         diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
188                 (stats.opackets - prev_pkts_tx[port_id]) : 0;
189         prev_pkts_rx[port_id] = stats.ipackets;
190         prev_pkts_tx[port_id] = stats.opackets;
191         mpps_rx = diff_cycles > 0 ?
192                 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
193         mpps_tx = diff_cycles > 0 ?
194                 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
195         printf("\n  Throughput (since last show)\n");
196         printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
197                         mpps_rx, mpps_tx);
198
199         printf("  %s############################%s\n",
200                nic_stats_border, nic_stats_border);
201 }
202
203 void
204 nic_stats_clear(portid_t port_id)
205 {
206         portid_t pid;
207
208         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
209                 printf("Valid port range is [0");
210                 RTE_ETH_FOREACH_DEV(pid)
211                         printf(", %d", pid);
212                 printf("]\n");
213                 return;
214         }
215         rte_eth_stats_reset(port_id);
216         printf("\n  NIC statistics for port %d cleared\n", port_id);
217 }
218
219 void
220 nic_xstats_display(portid_t port_id)
221 {
222         struct rte_eth_xstat *xstats;
223         int cnt_xstats, idx_xstat;
224         struct rte_eth_xstat_name *xstats_names;
225
226         printf("###### NIC extended statistics for port %-2d\n", port_id);
227         if (!rte_eth_dev_is_valid_port(port_id)) {
228                 printf("Error: Invalid port number %i\n", port_id);
229                 return;
230         }
231
232         /* Get count */
233         cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
234         if (cnt_xstats  < 0) {
235                 printf("Error: Cannot get count of xstats\n");
236                 return;
237         }
238
239         /* Get id-name lookup table */
240         xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
241         if (xstats_names == NULL) {
242                 printf("Cannot allocate memory for xstats lookup\n");
243                 return;
244         }
245         if (cnt_xstats != rte_eth_xstats_get_names(
246                         port_id, xstats_names, cnt_xstats)) {
247                 printf("Error: Cannot get xstats lookup\n");
248                 free(xstats_names);
249                 return;
250         }
251
252         /* Get stats themselves */
253         xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
254         if (xstats == NULL) {
255                 printf("Cannot allocate memory for xstats\n");
256                 free(xstats_names);
257                 return;
258         }
259         if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
260                 printf("Error: Unable to get xstats\n");
261                 free(xstats_names);
262                 free(xstats);
263                 return;
264         }
265
266         /* Display xstats */
267         for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
268                 if (xstats_hide_zero && !xstats[idx_xstat].value)
269                         continue;
270                 printf("%s: %"PRIu64"\n",
271                         xstats_names[idx_xstat].name,
272                         xstats[idx_xstat].value);
273         }
274         free(xstats_names);
275         free(xstats);
276 }
277
278 void
279 nic_xstats_clear(portid_t port_id)
280 {
281         rte_eth_xstats_reset(port_id);
282 }
283
284 void
285 nic_stats_mapping_display(portid_t port_id)
286 {
287         struct rte_port *port = &ports[port_id];
288         uint16_t i;
289         portid_t pid;
290
291         static const char *nic_stats_mapping_border = "########################";
292
293         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
294                 printf("Valid port range is [0");
295                 RTE_ETH_FOREACH_DEV(pid)
296                         printf(", %d", pid);
297                 printf("]\n");
298                 return;
299         }
300
301         if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
302                 printf("Port id %d - either does not support queue statistic mapping or"
303                        " no queue statistic mapping set\n", port_id);
304                 return;
305         }
306
307         printf("\n  %s NIC statistics mapping for port %-2d %s\n",
308                nic_stats_mapping_border, port_id, nic_stats_mapping_border);
309
310         if (port->rx_queue_stats_mapping_enabled) {
311                 for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
312                         if (rx_queue_stats_mappings[i].port_id == port_id) {
313                                 printf("  RX-queue %2d mapped to Stats Reg %2d\n",
314                                        rx_queue_stats_mappings[i].queue_id,
315                                        rx_queue_stats_mappings[i].stats_counter_id);
316                         }
317                 }
318                 printf("\n");
319         }
320
321
322         if (port->tx_queue_stats_mapping_enabled) {
323                 for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
324                         if (tx_queue_stats_mappings[i].port_id == port_id) {
325                                 printf("  TX-queue %2d mapped to Stats Reg %2d\n",
326                                        tx_queue_stats_mappings[i].queue_id,
327                                        tx_queue_stats_mappings[i].stats_counter_id);
328                         }
329                 }
330         }
331
332         printf("  %s####################################%s\n",
333                nic_stats_mapping_border, nic_stats_mapping_border);
334 }
335
336 void
337 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
338 {
339         struct rte_eth_rxq_info qinfo;
340         int32_t rc;
341         static const char *info_border = "*********************";
342
343         rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
344         if (rc != 0) {
345                 printf("Failed to retrieve information for port: %u, "
346                         "RX queue: %hu\nerror desc: %s(%d)\n",
347                         port_id, queue_id, strerror(-rc), rc);
348                 return;
349         }
350
351         printf("\n%s Infos for port %-2u, RX queue %-2u %s",
352                info_border, port_id, queue_id, info_border);
353
354         printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
355         printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
356         printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
357         printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
358         printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
359         printf("\nRX drop packets: %s",
360                 (qinfo.conf.rx_drop_en != 0) ? "on" : "off");
361         printf("\nRX deferred start: %s",
362                 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
363         printf("\nRX scattered packets: %s",
364                 (qinfo.scattered_rx != 0) ? "on" : "off");
365         printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
366         printf("\n");
367 }
368
369 void
370 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
371 {
372         struct rte_eth_txq_info qinfo;
373         int32_t rc;
374         static const char *info_border = "*********************";
375
376         rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
377         if (rc != 0) {
378                 printf("Failed to retrieve information for port: %u, "
379                         "TX queue: %hu\nerror desc: %s(%d)\n",
380                         port_id, queue_id, strerror(-rc), rc);
381                 return;
382         }
383
384         printf("\n%s Infos for port %-2u, TX queue %-2u %s",
385                info_border, port_id, queue_id, info_border);
386
387         printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
388         printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
389         printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
390         printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
391         printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
392         printf("\nTX deferred start: %s",
393                 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
394         printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
395         printf("\n");
396 }
397
398 void
399 port_infos_display(portid_t port_id)
400 {
401         struct rte_port *port;
402         struct ether_addr mac_addr;
403         struct rte_eth_link link;
404         struct rte_eth_dev_info dev_info;
405         int vlan_offload;
406         struct rte_mempool * mp;
407         static const char *info_border = "*********************";
408         portid_t pid;
409         uint16_t mtu;
410
411         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
412                 printf("Valid port range is [0");
413                 RTE_ETH_FOREACH_DEV(pid)
414                         printf(", %d", pid);
415                 printf("]\n");
416                 return;
417         }
418         port = &ports[port_id];
419         rte_eth_link_get_nowait(port_id, &link);
420         memset(&dev_info, 0, sizeof(dev_info));
421         rte_eth_dev_info_get(port_id, &dev_info);
422         printf("\n%s Infos for port %-2d %s\n",
423                info_border, port_id, info_border);
424         rte_eth_macaddr_get(port_id, &mac_addr);
425         print_ethaddr("MAC address: ", &mac_addr);
426         printf("\nDriver name: %s", dev_info.driver_name);
427         printf("\nConnect to socket: %u", port->socket_id);
428
429         if (port_numa[port_id] != NUMA_NO_CONFIG) {
430                 mp = mbuf_pool_find(port_numa[port_id]);
431                 if (mp)
432                         printf("\nmemory allocation on the socket: %d",
433                                                         port_numa[port_id]);
434         } else
435                 printf("\nmemory allocation on the socket: %u",port->socket_id);
436
437         printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
438         printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
439         printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
440                ("full-duplex") : ("half-duplex"));
441
442         if (!rte_eth_dev_get_mtu(port_id, &mtu))
443                 printf("MTU: %u\n", mtu);
444
445         printf("Promiscuous mode: %s\n",
446                rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
447         printf("Allmulticast mode: %s\n",
448                rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
449         printf("Maximum number of MAC addresses: %u\n",
450                (unsigned int)(port->dev_info.max_mac_addrs));
451         printf("Maximum number of MAC addresses of hash filtering: %u\n",
452                (unsigned int)(port->dev_info.max_hash_mac_addrs));
453
454         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
455         if (vlan_offload >= 0){
456                 printf("VLAN offload: \n");
457                 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
458                         printf("  strip on \n");
459                 else
460                         printf("  strip off \n");
461
462                 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
463                         printf("  filter on \n");
464                 else
465                         printf("  filter off \n");
466
467                 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
468                         printf("  qinq(extend) on \n");
469                 else
470                         printf("  qinq(extend) off \n");
471         }
472
473         if (dev_info.hash_key_size > 0)
474                 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
475         if (dev_info.reta_size > 0)
476                 printf("Redirection table size: %u\n", dev_info.reta_size);
477         if (!dev_info.flow_type_rss_offloads)
478                 printf("No flow type is supported.\n");
479         else {
480                 uint16_t i;
481                 char *p;
482
483                 printf("Supported flow types:\n");
484                 for (i = RTE_ETH_FLOW_UNKNOWN + 1;
485                      i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
486                         if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
487                                 continue;
488                         p = flowtype_to_str(i);
489                         if (p)
490                                 printf("  %s\n", p);
491                         else
492                                 printf("  user defined %d\n", i);
493                 }
494         }
495
496         printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
497         printf("Maximum configurable length of RX packet: %u\n",
498                 dev_info.max_rx_pktlen);
499         if (dev_info.max_vfs)
500                 printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
501         if (dev_info.max_vmdq_pools)
502                 printf("Maximum number of VMDq pools: %u\n",
503                         dev_info.max_vmdq_pools);
504
505         printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
506         printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
507         printf("Max possible number of RXDs per queue: %hu\n",
508                 dev_info.rx_desc_lim.nb_max);
509         printf("Min possible number of RXDs per queue: %hu\n",
510                 dev_info.rx_desc_lim.nb_min);
511         printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
512
513         printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
514         printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
515         printf("Max possible number of TXDs per queue: %hu\n",
516                 dev_info.tx_desc_lim.nb_max);
517         printf("Min possible number of TXDs per queue: %hu\n",
518                 dev_info.tx_desc_lim.nb_min);
519         printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
520 }
521
522 void
523 port_offload_cap_display(portid_t port_id)
524 {
525         struct rte_eth_dev_info dev_info;
526         static const char *info_border = "************";
527
528         if (port_id_is_invalid(port_id, ENABLED_WARN))
529                 return;
530
531         rte_eth_dev_info_get(port_id, &dev_info);
532
533         printf("\n%s Port %d supported offload features: %s\n",
534                 info_border, port_id, info_border);
535
536         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
537                 printf("VLAN stripped:                 ");
538                 if (ports[port_id].dev_conf.rxmode.offloads &
539                     DEV_RX_OFFLOAD_VLAN_STRIP)
540                         printf("on\n");
541                 else
542                         printf("off\n");
543         }
544
545         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
546                 printf("Double VLANs stripped:         ");
547                 if (ports[port_id].dev_conf.rxmode.offloads &
548                     DEV_RX_OFFLOAD_VLAN_EXTEND)
549                         printf("on\n");
550                 else
551                         printf("off\n");
552         }
553
554         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
555                 printf("RX IPv4 checksum:              ");
556                 if (ports[port_id].dev_conf.rxmode.offloads &
557                     DEV_RX_OFFLOAD_IPV4_CKSUM)
558                         printf("on\n");
559                 else
560                         printf("off\n");
561         }
562
563         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
564                 printf("RX UDP checksum:               ");
565                 if (ports[port_id].dev_conf.rxmode.offloads &
566                     DEV_RX_OFFLOAD_UDP_CKSUM)
567                         printf("on\n");
568                 else
569                         printf("off\n");
570         }
571
572         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
573                 printf("RX TCP checksum:               ");
574                 if (ports[port_id].dev_conf.rxmode.offloads &
575                     DEV_RX_OFFLOAD_TCP_CKSUM)
576                         printf("on\n");
577                 else
578                         printf("off\n");
579         }
580
581         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
582                 printf("RX Outer IPv4 checksum:               ");
583                 if (ports[port_id].dev_conf.rxmode.offloads &
584                     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
585                         printf("on\n");
586                 else
587                         printf("off\n");
588         }
589
590         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
591                 printf("Large receive offload:         ");
592                 if (ports[port_id].dev_conf.rxmode.offloads &
593                     DEV_RX_OFFLOAD_TCP_LRO)
594                         printf("on\n");
595                 else
596                         printf("off\n");
597         }
598
599         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
600                 printf("VLAN insert:                   ");
601                 if (ports[port_id].dev_conf.txmode.offloads &
602                     DEV_TX_OFFLOAD_VLAN_INSERT)
603                         printf("on\n");
604                 else
605                         printf("off\n");
606         }
607
608         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
609                 printf("HW timestamp:                  ");
610                 if (ports[port_id].dev_conf.rxmode.offloads &
611                     DEV_RX_OFFLOAD_TIMESTAMP)
612                         printf("on\n");
613                 else
614                         printf("off\n");
615         }
616
617         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
618                 printf("Double VLANs insert:           ");
619                 if (ports[port_id].dev_conf.txmode.offloads &
620                     DEV_TX_OFFLOAD_QINQ_INSERT)
621                         printf("on\n");
622                 else
623                         printf("off\n");
624         }
625
626         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
627                 printf("TX IPv4 checksum:              ");
628                 if (ports[port_id].dev_conf.txmode.offloads &
629                     DEV_TX_OFFLOAD_IPV4_CKSUM)
630                         printf("on\n");
631                 else
632                         printf("off\n");
633         }
634
635         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
636                 printf("TX UDP checksum:               ");
637                 if (ports[port_id].dev_conf.txmode.offloads &
638                     DEV_TX_OFFLOAD_UDP_CKSUM)
639                         printf("on\n");
640                 else
641                         printf("off\n");
642         }
643
644         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
645                 printf("TX TCP checksum:               ");
646                 if (ports[port_id].dev_conf.txmode.offloads &
647                     DEV_TX_OFFLOAD_TCP_CKSUM)
648                         printf("on\n");
649                 else
650                         printf("off\n");
651         }
652
653         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
654                 printf("TX SCTP checksum:              ");
655                 if (ports[port_id].dev_conf.txmode.offloads &
656                     DEV_TX_OFFLOAD_SCTP_CKSUM)
657                         printf("on\n");
658                 else
659                         printf("off\n");
660         }
661
662         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
663                 printf("TX Outer IPv4 checksum:        ");
664                 if (ports[port_id].dev_conf.txmode.offloads &
665                     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
666                         printf("on\n");
667                 else
668                         printf("off\n");
669         }
670
671         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
672                 printf("TX TCP segmentation:           ");
673                 if (ports[port_id].dev_conf.txmode.offloads &
674                     DEV_TX_OFFLOAD_TCP_TSO)
675                         printf("on\n");
676                 else
677                         printf("off\n");
678         }
679
680         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
681                 printf("TX UDP segmentation:           ");
682                 if (ports[port_id].dev_conf.txmode.offloads &
683                     DEV_TX_OFFLOAD_UDP_TSO)
684                         printf("on\n");
685                 else
686                         printf("off\n");
687         }
688
689         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
690                 printf("TSO for VXLAN tunnel packet:   ");
691                 if (ports[port_id].dev_conf.txmode.offloads &
692                     DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
693                         printf("on\n");
694                 else
695                         printf("off\n");
696         }
697
698         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
699                 printf("TSO for GRE tunnel packet:     ");
700                 if (ports[port_id].dev_conf.txmode.offloads &
701                     DEV_TX_OFFLOAD_GRE_TNL_TSO)
702                         printf("on\n");
703                 else
704                         printf("off\n");
705         }
706
707         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
708                 printf("TSO for IPIP tunnel packet:    ");
709                 if (ports[port_id].dev_conf.txmode.offloads &
710                     DEV_TX_OFFLOAD_IPIP_TNL_TSO)
711                         printf("on\n");
712                 else
713                         printf("off\n");
714         }
715
716         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
717                 printf("TSO for GENEVE tunnel packet:  ");
718                 if (ports[port_id].dev_conf.txmode.offloads &
719                     DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
720                         printf("on\n");
721                 else
722                         printf("off\n");
723         }
724
725         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) {
726                 printf("IP tunnel TSO:  ");
727                 if (ports[port_id].dev_conf.txmode.offloads &
728                     DEV_TX_OFFLOAD_IP_TNL_TSO)
729                         printf("on\n");
730                 else
731                         printf("off\n");
732         }
733
734         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) {
735                 printf("UDP tunnel TSO:  ");
736                 if (ports[port_id].dev_conf.txmode.offloads &
737                     DEV_TX_OFFLOAD_UDP_TNL_TSO)
738                         printf("on\n");
739                 else
740                         printf("off\n");
741         }
742 }
743
744 int
745 port_id_is_invalid(portid_t port_id, enum print_warning warning)
746 {
747         uint16_t pid;
748
749         if (port_id == (portid_t)RTE_PORT_ALL)
750                 return 0;
751
752         RTE_ETH_FOREACH_DEV(pid)
753                 if (port_id == pid)
754                         return 0;
755
756         if (warning == ENABLED_WARN)
757                 printf("Invalid port %d\n", port_id);
758
759         return 1;
760 }
761
762 static int
763 vlan_id_is_invalid(uint16_t vlan_id)
764 {
765         if (vlan_id < 4096)
766                 return 0;
767         printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
768         return 1;
769 }
770
771 static int
772 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
773 {
774         const struct rte_pci_device *pci_dev;
775         const struct rte_bus *bus;
776         uint64_t pci_len;
777
778         if (reg_off & 0x3) {
779                 printf("Port register offset 0x%X not aligned on a 4-byte "
780                        "boundary\n",
781                        (unsigned)reg_off);
782                 return 1;
783         }
784
785         if (!ports[port_id].dev_info.device) {
786                 printf("Invalid device\n");
787                 return 0;
788         }
789
790         bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
791         if (bus && !strcmp(bus->name, "pci")) {
792                 pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
793         } else {
794                 printf("Not a PCI device\n");
795                 return 1;
796         }
797
798         pci_len = pci_dev->mem_resource[0].len;
799         if (reg_off >= pci_len) {
800                 printf("Port %d: register offset %u (0x%X) out of port PCI "
801                        "resource (length=%"PRIu64")\n",
802                        port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
803                 return 1;
804         }
805         return 0;
806 }
807
808 static int
809 reg_bit_pos_is_invalid(uint8_t bit_pos)
810 {
811         if (bit_pos <= 31)
812                 return 0;
813         printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
814         return 1;
815 }
816
817 #define display_port_and_reg_off(port_id, reg_off) \
818         printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
819
820 static inline void
821 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
822 {
823         display_port_and_reg_off(port_id, (unsigned)reg_off);
824         printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
825 }
826
827 void
828 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
829 {
830         uint32_t reg_v;
831
832
833         if (port_id_is_invalid(port_id, ENABLED_WARN))
834                 return;
835         if (port_reg_off_is_invalid(port_id, reg_off))
836                 return;
837         if (reg_bit_pos_is_invalid(bit_x))
838                 return;
839         reg_v = port_id_pci_reg_read(port_id, reg_off);
840         display_port_and_reg_off(port_id, (unsigned)reg_off);
841         printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
842 }
843
844 void
845 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
846                            uint8_t bit1_pos, uint8_t bit2_pos)
847 {
848         uint32_t reg_v;
849         uint8_t  l_bit;
850         uint8_t  h_bit;
851
852         if (port_id_is_invalid(port_id, ENABLED_WARN))
853                 return;
854         if (port_reg_off_is_invalid(port_id, reg_off))
855                 return;
856         if (reg_bit_pos_is_invalid(bit1_pos))
857                 return;
858         if (reg_bit_pos_is_invalid(bit2_pos))
859                 return;
860         if (bit1_pos > bit2_pos)
861                 l_bit = bit2_pos, h_bit = bit1_pos;
862         else
863                 l_bit = bit1_pos, h_bit = bit2_pos;
864
865         reg_v = port_id_pci_reg_read(port_id, reg_off);
866         reg_v >>= l_bit;
867         if (h_bit < 31)
868                 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
869         display_port_and_reg_off(port_id, (unsigned)reg_off);
870         printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
871                ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
872 }
873
874 void
875 port_reg_display(portid_t port_id, uint32_t reg_off)
876 {
877         uint32_t reg_v;
878
879         if (port_id_is_invalid(port_id, ENABLED_WARN))
880                 return;
881         if (port_reg_off_is_invalid(port_id, reg_off))
882                 return;
883         reg_v = port_id_pci_reg_read(port_id, reg_off);
884         display_port_reg_value(port_id, reg_off, reg_v);
885 }
886
887 void
888 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
889                  uint8_t bit_v)
890 {
891         uint32_t reg_v;
892
893         if (port_id_is_invalid(port_id, ENABLED_WARN))
894                 return;
895         if (port_reg_off_is_invalid(port_id, reg_off))
896                 return;
897         if (reg_bit_pos_is_invalid(bit_pos))
898                 return;
899         if (bit_v > 1) {
900                 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
901                 return;
902         }
903         reg_v = port_id_pci_reg_read(port_id, reg_off);
904         if (bit_v == 0)
905                 reg_v &= ~(1 << bit_pos);
906         else
907                 reg_v |= (1 << bit_pos);
908         port_id_pci_reg_write(port_id, reg_off, reg_v);
909         display_port_reg_value(port_id, reg_off, reg_v);
910 }
911
912 void
913 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
914                        uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
915 {
916         uint32_t max_v;
917         uint32_t reg_v;
918         uint8_t  l_bit;
919         uint8_t  h_bit;
920
921         if (port_id_is_invalid(port_id, ENABLED_WARN))
922                 return;
923         if (port_reg_off_is_invalid(port_id, reg_off))
924                 return;
925         if (reg_bit_pos_is_invalid(bit1_pos))
926                 return;
927         if (reg_bit_pos_is_invalid(bit2_pos))
928                 return;
929         if (bit1_pos > bit2_pos)
930                 l_bit = bit2_pos, h_bit = bit1_pos;
931         else
932                 l_bit = bit1_pos, h_bit = bit2_pos;
933
934         if ((h_bit - l_bit) < 31)
935                 max_v = (1 << (h_bit - l_bit + 1)) - 1;
936         else
937                 max_v = 0xFFFFFFFF;
938
939         if (value > max_v) {
940                 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
941                                 (unsigned)value, (unsigned)value,
942                                 (unsigned)max_v, (unsigned)max_v);
943                 return;
944         }
945         reg_v = port_id_pci_reg_read(port_id, reg_off);
946         reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
947         reg_v |= (value << l_bit); /* Set changed bits */
948         port_id_pci_reg_write(port_id, reg_off, reg_v);
949         display_port_reg_value(port_id, reg_off, reg_v);
950 }
951
952 void
953 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
954 {
955         if (port_id_is_invalid(port_id, ENABLED_WARN))
956                 return;
957         if (port_reg_off_is_invalid(port_id, reg_off))
958                 return;
959         port_id_pci_reg_write(port_id, reg_off, reg_v);
960         display_port_reg_value(port_id, reg_off, reg_v);
961 }
962
963 void
964 port_mtu_set(portid_t port_id, uint16_t mtu)
965 {
966         int diag;
967
968         if (port_id_is_invalid(port_id, ENABLED_WARN))
969                 return;
970         diag = rte_eth_dev_set_mtu(port_id, mtu);
971         if (diag == 0)
972                 return;
973         printf("Set MTU failed. diag=%d\n", diag);
974 }
975
976 /* Generic flow management functions. */
977
978 /** Generate flow_item[] entry. */
979 #define MK_FLOW_ITEM(t, s) \
980         [RTE_FLOW_ITEM_TYPE_ ## t] = { \
981                 .name = # t, \
982                 .size = s, \
983         }
984
985 /** Information about known flow pattern items. */
986 static const struct {
987         const char *name;
988         size_t size;
989 } flow_item[] = {
990         MK_FLOW_ITEM(END, 0),
991         MK_FLOW_ITEM(VOID, 0),
992         MK_FLOW_ITEM(INVERT, 0),
993         MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
994         MK_FLOW_ITEM(PF, 0),
995         MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
996         MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
997         MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
998         MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
999         MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1000         MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1001         MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1002         MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1003         MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1004         MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1005         MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1006         MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1007         MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1008         MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1009         MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1010         MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1011         MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1012         MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
1013         MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1014         MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1015         MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1016         MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1017         MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
1018 };
1019
1020 /** Pattern item specification types. */
1021 enum item_spec_type {
1022         ITEM_SPEC,
1023         ITEM_LAST,
1024         ITEM_MASK,
1025 };
1026
1027 /** Compute storage space needed by item specification and copy it. */
1028 static size_t
1029 flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
1030                     enum item_spec_type type)
1031 {
1032         size_t size = 0;
1033         const void *item_spec =
1034                 type == ITEM_SPEC ? item->spec :
1035                 type == ITEM_LAST ? item->last :
1036                 type == ITEM_MASK ? item->mask :
1037                 NULL;
1038
1039         if (!item_spec)
1040                 goto empty;
1041         switch (item->type) {
1042                 union {
1043                         const struct rte_flow_item_raw *raw;
1044                 } src;
1045                 union {
1046                         struct rte_flow_item_raw *raw;
1047                 } dst;
1048                 size_t off;
1049
1050         case RTE_FLOW_ITEM_TYPE_RAW:
1051                 src.raw = item_spec;
1052                 dst.raw = buf;
1053                 off = RTE_ALIGN_CEIL(sizeof(struct rte_flow_item_raw),
1054                                      sizeof(*src.raw->pattern));
1055                 size = off + src.raw->length * sizeof(*src.raw->pattern);
1056                 if (dst.raw) {
1057                         memcpy(dst.raw, src.raw, sizeof(*src.raw));
1058                         dst.raw->pattern = memcpy((uint8_t *)dst.raw + off,
1059                                                   src.raw->pattern,
1060                                                   size - off);
1061                 }
1062                 break;
1063         default:
1064                 size = flow_item[item->type].size;
1065                 if (buf)
1066                         memcpy(buf, item_spec, size);
1067                 break;
1068         }
1069 empty:
1070         return RTE_ALIGN_CEIL(size, sizeof(double));
1071 }
1072
1073 /** Generate flow_action[] entry. */
1074 #define MK_FLOW_ACTION(t, s) \
1075         [RTE_FLOW_ACTION_TYPE_ ## t] = { \
1076                 .name = # t, \
1077                 .size = s, \
1078         }
1079
1080 /** Information about known flow actions. */
1081 static const struct {
1082         const char *name;
1083         size_t size;
1084 } flow_action[] = {
1085         MK_FLOW_ACTION(END, 0),
1086         MK_FLOW_ACTION(VOID, 0),
1087         MK_FLOW_ACTION(PASSTHRU, 0),
1088         MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1089         MK_FLOW_ACTION(FLAG, 0),
1090         MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1091         MK_FLOW_ACTION(DROP, 0),
1092         MK_FLOW_ACTION(COUNT, 0),
1093         MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
1094         MK_FLOW_ACTION(PF, 0),
1095         MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1096         MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
1097         MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
1098         MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1099 };
1100
1101 /** Compute storage space needed by action configuration and copy it. */
1102 static size_t
1103 flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
1104 {
1105         size_t size = 0;
1106
1107         if (!action->conf)
1108                 goto empty;
1109         switch (action->type) {
1110                 union {
1111                         const struct rte_flow_action_rss *rss;
1112                 } src;
1113                 union {
1114                         struct rte_flow_action_rss *rss;
1115                 } dst;
1116                 size_t off;
1117
1118         case RTE_FLOW_ACTION_TYPE_RSS:
1119                 src.rss = action->conf;
1120                 dst.rss = buf;
1121                 off = 0;
1122                 if (dst.rss)
1123                         *dst.rss = (struct rte_flow_action_rss){
1124                                 .func = src.rss->func,
1125                                 .level = src.rss->level,
1126                                 .types = src.rss->types,
1127                                 .key_len = src.rss->key_len,
1128                                 .queue_num = src.rss->queue_num,
1129                         };
1130                 off += sizeof(*src.rss);
1131                 if (src.rss->key_len) {
1132                         off = RTE_ALIGN_CEIL(off, sizeof(double));
1133                         size = sizeof(*src.rss->key) * src.rss->key_len;
1134                         if (dst.rss)
1135                                 dst.rss->key = memcpy
1136                                         ((void *)((uintptr_t)dst.rss + off),
1137                                          src.rss->key, size);
1138                         off += size;
1139                 }
1140                 if (src.rss->queue_num) {
1141                         off = RTE_ALIGN_CEIL(off, sizeof(double));
1142                         size = sizeof(*src.rss->queue) * src.rss->queue_num;
1143                         if (dst.rss)
1144                                 dst.rss->queue = memcpy
1145                                         ((void *)((uintptr_t)dst.rss + off),
1146                                          src.rss->queue, size);
1147                         off += size;
1148                 }
1149                 size = off;
1150                 break;
1151         default:
1152                 size = flow_action[action->type].size;
1153                 if (buf)
1154                         memcpy(buf, action->conf, size);
1155                 break;
1156         }
1157 empty:
1158         return RTE_ALIGN_CEIL(size, sizeof(double));
1159 }
1160
1161 /** Generate a port_flow entry from attributes/pattern/actions. */
1162 static struct port_flow *
1163 port_flow_new(const struct rte_flow_attr *attr,
1164               const struct rte_flow_item *pattern,
1165               const struct rte_flow_action *actions)
1166 {
1167         const struct rte_flow_item *item;
1168         const struct rte_flow_action *action;
1169         struct port_flow *pf = NULL;
1170         size_t tmp;
1171         size_t off1 = 0;
1172         size_t off2 = 0;
1173         int err = ENOTSUP;
1174
1175 store:
1176         item = pattern;
1177         if (pf)
1178                 pf->pattern = (void *)&pf->data[off1];
1179         do {
1180                 struct rte_flow_item *dst = NULL;
1181
1182                 if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1183                     !flow_item[item->type].name)
1184                         goto notsup;
1185                 if (pf)
1186                         dst = memcpy(pf->data + off1, item, sizeof(*item));
1187                 off1 += sizeof(*item);
1188                 if (item->spec) {
1189                         if (pf)
1190                                 dst->spec = pf->data + off2;
1191                         off2 += flow_item_spec_copy
1192                                 (pf ? pf->data + off2 : NULL, item, ITEM_SPEC);
1193                 }
1194                 if (item->last) {
1195                         if (pf)
1196                                 dst->last = pf->data + off2;
1197                         off2 += flow_item_spec_copy
1198                                 (pf ? pf->data + off2 : NULL, item, ITEM_LAST);
1199                 }
1200                 if (item->mask) {
1201                         if (pf)
1202                                 dst->mask = pf->data + off2;
1203                         off2 += flow_item_spec_copy
1204                                 (pf ? pf->data + off2 : NULL, item, ITEM_MASK);
1205                 }
1206                 off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1207         } while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1208         off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1209         action = actions;
1210         if (pf)
1211                 pf->actions = (void *)&pf->data[off1];
1212         do {
1213                 struct rte_flow_action *dst = NULL;
1214
1215                 if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1216                     !flow_action[action->type].name)
1217                         goto notsup;
1218                 if (pf)
1219                         dst = memcpy(pf->data + off1, action, sizeof(*action));
1220                 off1 += sizeof(*action);
1221                 if (action->conf) {
1222                         if (pf)
1223                                 dst->conf = pf->data + off2;
1224                         off2 += flow_action_conf_copy
1225                                 (pf ? pf->data + off2 : NULL, action);
1226                 }
1227                 off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1228         } while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1229         if (pf != NULL)
1230                 return pf;
1231         off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1232         tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1233         pf = calloc(1, tmp + off1 + off2);
1234         if (pf == NULL)
1235                 err = errno;
1236         else {
1237                 *pf = (const struct port_flow){
1238                         .size = tmp + off1 + off2,
1239                         .attr = *attr,
1240                 };
1241                 tmp -= offsetof(struct port_flow, data);
1242                 off2 = tmp + off1;
1243                 off1 = tmp;
1244                 goto store;
1245         }
1246 notsup:
1247         rte_errno = err;
1248         return NULL;
1249 }
1250
1251 /** Print a message out of a flow error. */
1252 static int
1253 port_flow_complain(struct rte_flow_error *error)
1254 {
1255         static const char *const errstrlist[] = {
1256                 [RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1257                 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1258                 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1259                 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1260                 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1261                 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1262                 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1263                 [RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
1264                 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1265                 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1266                 [RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
1267                 [RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
1268                 [RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
1269                 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1270                 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1271                 [RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
1272                 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1273         };
1274         const char *errstr;
1275         char buf[32];
1276         int err = rte_errno;
1277
1278         if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1279             !errstrlist[error->type])
1280                 errstr = "unknown type";
1281         else
1282                 errstr = errstrlist[error->type];
1283         printf("Caught error type %d (%s): %s%s\n",
1284                error->type, errstr,
1285                error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1286                                         error->cause), buf) : "",
1287                error->message ? error->message : "(no stated reason)");
1288         return -err;
1289 }
1290
1291 /** Validate flow rule. */
1292 int
1293 port_flow_validate(portid_t port_id,
1294                    const struct rte_flow_attr *attr,
1295                    const struct rte_flow_item *pattern,
1296                    const struct rte_flow_action *actions)
1297 {
1298         struct rte_flow_error error;
1299
1300         /* Poisoning to make sure PMDs update it in case of error. */
1301         memset(&error, 0x11, sizeof(error));
1302         if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1303                 return port_flow_complain(&error);
1304         printf("Flow rule validated\n");
1305         return 0;
1306 }
1307
1308 /** Create flow rule. */
1309 int
1310 port_flow_create(portid_t port_id,
1311                  const struct rte_flow_attr *attr,
1312                  const struct rte_flow_item *pattern,
1313                  const struct rte_flow_action *actions)
1314 {
1315         struct rte_flow *flow;
1316         struct rte_port *port;
1317         struct port_flow *pf;
1318         uint32_t id;
1319         struct rte_flow_error error;
1320
1321         /* Poisoning to make sure PMDs update it in case of error. */
1322         memset(&error, 0x22, sizeof(error));
1323         flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1324         if (!flow)
1325                 return port_flow_complain(&error);
1326         port = &ports[port_id];
1327         if (port->flow_list) {
1328                 if (port->flow_list->id == UINT32_MAX) {
1329                         printf("Highest rule ID is already assigned, delete"
1330                                " it first");
1331                         rte_flow_destroy(port_id, flow, NULL);
1332                         return -ENOMEM;
1333                 }
1334                 id = port->flow_list->id + 1;
1335         } else
1336                 id = 0;
1337         pf = port_flow_new(attr, pattern, actions);
1338         if (!pf) {
1339                 int err = rte_errno;
1340
1341                 printf("Cannot allocate flow: %s\n", rte_strerror(err));
1342                 rte_flow_destroy(port_id, flow, NULL);
1343                 return -err;
1344         }
1345         pf->next = port->flow_list;
1346         pf->id = id;
1347         pf->flow = flow;
1348         port->flow_list = pf;
1349         printf("Flow rule #%u created\n", pf->id);
1350         return 0;
1351 }
1352
1353 /** Destroy a number of flow rules. */
1354 int
1355 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1356 {
1357         struct rte_port *port;
1358         struct port_flow **tmp;
1359         uint32_t c = 0;
1360         int ret = 0;
1361
1362         if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1363             port_id == (portid_t)RTE_PORT_ALL)
1364                 return -EINVAL;
1365         port = &ports[port_id];
1366         tmp = &port->flow_list;
1367         while (*tmp) {
1368                 uint32_t i;
1369
1370                 for (i = 0; i != n; ++i) {
1371                         struct rte_flow_error error;
1372                         struct port_flow *pf = *tmp;
1373
1374                         if (rule[i] != pf->id)
1375                                 continue;
1376                         /*
1377                          * Poisoning to make sure PMDs update it in case
1378                          * of error.
1379                          */
1380                         memset(&error, 0x33, sizeof(error));
1381                         if (rte_flow_destroy(port_id, pf->flow, &error)) {
1382                                 ret = port_flow_complain(&error);
1383                                 continue;
1384                         }
1385                         printf("Flow rule #%u destroyed\n", pf->id);
1386                         *tmp = pf->next;
1387                         free(pf);
1388                         break;
1389                 }
1390                 if (i == n)
1391                         tmp = &(*tmp)->next;
1392                 ++c;
1393         }
1394         return ret;
1395 }
1396
1397 /** Remove all flow rules. */
1398 int
1399 port_flow_flush(portid_t port_id)
1400 {
1401         struct rte_flow_error error;
1402         struct rte_port *port;
1403         int ret = 0;
1404
1405         /* Poisoning to make sure PMDs update it in case of error. */
1406         memset(&error, 0x44, sizeof(error));
1407         if (rte_flow_flush(port_id, &error)) {
1408                 ret = port_flow_complain(&error);
1409                 if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1410                     port_id == (portid_t)RTE_PORT_ALL)
1411                         return ret;
1412         }
1413         port = &ports[port_id];
1414         while (port->flow_list) {
1415                 struct port_flow *pf = port->flow_list->next;
1416
1417                 free(port->flow_list);
1418                 port->flow_list = pf;
1419         }
1420         return ret;
1421 }
1422
1423 /** Query a flow rule. */
1424 int
1425 port_flow_query(portid_t port_id, uint32_t rule,
1426                 enum rte_flow_action_type action)
1427 {
1428         struct rte_flow_error error;
1429         struct rte_port *port;
1430         struct port_flow *pf;
1431         const char *name;
1432         union {
1433                 struct rte_flow_query_count count;
1434         } query;
1435
1436         if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1437             port_id == (portid_t)RTE_PORT_ALL)
1438                 return -EINVAL;
1439         port = &ports[port_id];
1440         for (pf = port->flow_list; pf; pf = pf->next)
1441                 if (pf->id == rule)
1442                         break;
1443         if (!pf) {
1444                 printf("Flow rule #%u not found\n", rule);
1445                 return -ENOENT;
1446         }
1447         if ((unsigned int)action >= RTE_DIM(flow_action) ||
1448             !flow_action[action].name)
1449                 name = "unknown";
1450         else
1451                 name = flow_action[action].name;
1452         switch (action) {
1453         case RTE_FLOW_ACTION_TYPE_COUNT:
1454                 break;
1455         default:
1456                 printf("Cannot query action type %d (%s)\n", action, name);
1457                 return -ENOTSUP;
1458         }
1459         /* Poisoning to make sure PMDs update it in case of error. */
1460         memset(&error, 0x55, sizeof(error));
1461         memset(&query, 0, sizeof(query));
1462         if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1463                 return port_flow_complain(&error);
1464         switch (action) {
1465         case RTE_FLOW_ACTION_TYPE_COUNT:
1466                 printf("%s:\n"
1467                        " hits_set: %u\n"
1468                        " bytes_set: %u\n"
1469                        " hits: %" PRIu64 "\n"
1470                        " bytes: %" PRIu64 "\n",
1471                        name,
1472                        query.count.hits_set,
1473                        query.count.bytes_set,
1474                        query.count.hits,
1475                        query.count.bytes);
1476                 break;
1477         default:
1478                 printf("Cannot display result for action type %d (%s)\n",
1479                        action, name);
1480                 break;
1481         }
1482         return 0;
1483 }
1484
1485 /** List flow rules. */
1486 void
1487 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1488 {
1489         struct rte_port *port;
1490         struct port_flow *pf;
1491         struct port_flow *list = NULL;
1492         uint32_t i;
1493
1494         if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1495             port_id == (portid_t)RTE_PORT_ALL)
1496                 return;
1497         port = &ports[port_id];
1498         if (!port->flow_list)
1499                 return;
1500         /* Sort flows by group, priority and ID. */
1501         for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1502                 struct port_flow **tmp;
1503
1504                 if (n) {
1505                         /* Filter out unwanted groups. */
1506                         for (i = 0; i != n; ++i)
1507                                 if (pf->attr.group == group[i])
1508                                         break;
1509                         if (i == n)
1510                                 continue;
1511                 }
1512                 tmp = &list;
1513                 while (*tmp &&
1514                        (pf->attr.group > (*tmp)->attr.group ||
1515                         (pf->attr.group == (*tmp)->attr.group &&
1516                          pf->attr.priority > (*tmp)->attr.priority) ||
1517                         (pf->attr.group == (*tmp)->attr.group &&
1518                          pf->attr.priority == (*tmp)->attr.priority &&
1519                          pf->id > (*tmp)->id)))
1520                         tmp = &(*tmp)->tmp;
1521                 pf->tmp = *tmp;
1522                 *tmp = pf;
1523         }
1524         printf("ID\tGroup\tPrio\tAttr\tRule\n");
1525         for (pf = list; pf != NULL; pf = pf->tmp) {
1526                 const struct rte_flow_item *item = pf->pattern;
1527                 const struct rte_flow_action *action = pf->actions;
1528
1529                 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
1530                        pf->id,
1531                        pf->attr.group,
1532                        pf->attr.priority,
1533                        pf->attr.ingress ? 'i' : '-',
1534                        pf->attr.egress ? 'e' : '-',
1535                        pf->attr.transfer ? 't' : '-');
1536                 while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1537                         if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1538                                 printf("%s ", flow_item[item->type].name);
1539                         ++item;
1540                 }
1541                 printf("=>");
1542                 while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1543                         if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1544                                 printf(" %s", flow_action[action->type].name);
1545                         ++action;
1546                 }
1547                 printf("\n");
1548         }
1549 }
1550
1551 /** Restrict ingress traffic to the defined flow rules. */
1552 int
1553 port_flow_isolate(portid_t port_id, int set)
1554 {
1555         struct rte_flow_error error;
1556
1557         /* Poisoning to make sure PMDs update it in case of error. */
1558         memset(&error, 0x66, sizeof(error));
1559         if (rte_flow_isolate(port_id, set, &error))
1560                 return port_flow_complain(&error);
1561         printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1562                port_id,
1563                set ? "now restricted" : "not restricted anymore");
1564         return 0;
1565 }
1566
1567 /*
1568  * RX/TX ring descriptors display functions.
1569  */
1570 int
1571 rx_queue_id_is_invalid(queueid_t rxq_id)
1572 {
1573         if (rxq_id < nb_rxq)
1574                 return 0;
1575         printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1576         return 1;
1577 }
1578
1579 int
1580 tx_queue_id_is_invalid(queueid_t txq_id)
1581 {
1582         if (txq_id < nb_txq)
1583                 return 0;
1584         printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1585         return 1;
1586 }
1587
1588 static int
1589 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1590 {
1591         if (rxdesc_id < nb_rxd)
1592                 return 0;
1593         printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1594                rxdesc_id, nb_rxd);
1595         return 1;
1596 }
1597
1598 static int
1599 tx_desc_id_is_invalid(uint16_t txdesc_id)
1600 {
1601         if (txdesc_id < nb_txd)
1602                 return 0;
1603         printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1604                txdesc_id, nb_txd);
1605         return 1;
1606 }
1607
1608 static const struct rte_memzone *
1609 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1610 {
1611         char mz_name[RTE_MEMZONE_NAMESIZE];
1612         const struct rte_memzone *mz;
1613
1614         snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1615                  ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1616         mz = rte_memzone_lookup(mz_name);
1617         if (mz == NULL)
1618                 printf("%s ring memory zoneof (port %d, queue %d) not"
1619                        "found (zone name = %s\n",
1620                        ring_name, port_id, q_id, mz_name);
1621         return mz;
1622 }
1623
1624 union igb_ring_dword {
1625         uint64_t dword;
1626         struct {
1627 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1628                 uint32_t lo;
1629                 uint32_t hi;
1630 #else
1631                 uint32_t hi;
1632                 uint32_t lo;
1633 #endif
1634         } words;
1635 };
1636
1637 struct igb_ring_desc_32_bytes {
1638         union igb_ring_dword lo_dword;
1639         union igb_ring_dword hi_dword;
1640         union igb_ring_dword resv1;
1641         union igb_ring_dword resv2;
1642 };
1643
1644 struct igb_ring_desc_16_bytes {
1645         union igb_ring_dword lo_dword;
1646         union igb_ring_dword hi_dword;
1647 };
1648
1649 static void
1650 ring_rxd_display_dword(union igb_ring_dword dword)
1651 {
1652         printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1653                                         (unsigned)dword.words.hi);
1654 }
1655
1656 static void
1657 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1658 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1659                            portid_t port_id,
1660 #else
1661                            __rte_unused portid_t port_id,
1662 #endif
1663                            uint16_t desc_id)
1664 {
1665         struct igb_ring_desc_16_bytes *ring =
1666                 (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1667 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1668         struct rte_eth_dev_info dev_info;
1669
1670         memset(&dev_info, 0, sizeof(dev_info));
1671         rte_eth_dev_info_get(port_id, &dev_info);
1672         if (strstr(dev_info.driver_name, "i40e") != NULL) {
1673                 /* 32 bytes RX descriptor, i40e only */
1674                 struct igb_ring_desc_32_bytes *ring =
1675                         (struct igb_ring_desc_32_bytes *)ring_mz->addr;
1676                 ring[desc_id].lo_dword.dword =
1677                         rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1678                 ring_rxd_display_dword(ring[desc_id].lo_dword);
1679                 ring[desc_id].hi_dword.dword =
1680                         rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1681                 ring_rxd_display_dword(ring[desc_id].hi_dword);
1682                 ring[desc_id].resv1.dword =
1683                         rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1684                 ring_rxd_display_dword(ring[desc_id].resv1);
1685                 ring[desc_id].resv2.dword =
1686                         rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1687                 ring_rxd_display_dword(ring[desc_id].resv2);
1688
1689                 return;
1690         }
1691 #endif
1692         /* 16 bytes RX descriptor */
1693         ring[desc_id].lo_dword.dword =
1694                 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1695         ring_rxd_display_dword(ring[desc_id].lo_dword);
1696         ring[desc_id].hi_dword.dword =
1697                 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1698         ring_rxd_display_dword(ring[desc_id].hi_dword);
1699 }
1700
1701 static void
1702 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1703 {
1704         struct igb_ring_desc_16_bytes *ring;
1705         struct igb_ring_desc_16_bytes txd;
1706
1707         ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1708         txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1709         txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1710         printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1711                         (unsigned)txd.lo_dword.words.lo,
1712                         (unsigned)txd.lo_dword.words.hi,
1713                         (unsigned)txd.hi_dword.words.lo,
1714                         (unsigned)txd.hi_dword.words.hi);
1715 }
1716
1717 void
1718 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1719 {
1720         const struct rte_memzone *rx_mz;
1721
1722         if (port_id_is_invalid(port_id, ENABLED_WARN))
1723                 return;
1724         if (rx_queue_id_is_invalid(rxq_id))
1725                 return;
1726         if (rx_desc_id_is_invalid(rxd_id))
1727                 return;
1728         rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1729         if (rx_mz == NULL)
1730                 return;
1731         ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1732 }
1733
1734 void
1735 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1736 {
1737         const struct rte_memzone *tx_mz;
1738
1739         if (port_id_is_invalid(port_id, ENABLED_WARN))
1740                 return;
1741         if (tx_queue_id_is_invalid(txq_id))
1742                 return;
1743         if (tx_desc_id_is_invalid(txd_id))
1744                 return;
1745         tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1746         if (tx_mz == NULL)
1747                 return;
1748         ring_tx_descriptor_display(tx_mz, txd_id);
1749 }
1750
1751 void
1752 fwd_lcores_config_display(void)
1753 {
1754         lcoreid_t lc_id;
1755
1756         printf("List of forwarding lcores:");
1757         for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1758                 printf(" %2u", fwd_lcores_cpuids[lc_id]);
1759         printf("\n");
1760 }
1761 void
1762 rxtx_config_display(void)
1763 {
1764         portid_t pid;
1765         queueid_t qid;
1766
1767         printf("  %s packet forwarding%s packets/burst=%d\n",
1768                cur_fwd_eng->fwd_mode_name,
1769                retry_enabled == 0 ? "" : " with retry",
1770                nb_pkt_per_burst);
1771
1772         if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1773                 printf("  packet len=%u - nb packet segments=%d\n",
1774                                 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1775
1776         printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1777                nb_fwd_lcores, nb_fwd_ports);
1778
1779         RTE_ETH_FOREACH_DEV(pid) {
1780                 struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
1781                 struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
1782                 uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
1783                 uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
1784
1785                 /* per port config */
1786                 printf("  port %d: RX queue number: %d Tx queue number: %d\n",
1787                                 (unsigned int)pid, nb_rxq, nb_txq);
1788
1789                 printf("    Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
1790                                 ports[pid].dev_conf.rxmode.offloads,
1791                                 ports[pid].dev_conf.txmode.offloads);
1792
1793                 /* per rx queue config only for first queue to be less verbose */
1794                 for (qid = 0; qid < 1; qid++) {
1795                         printf("    RX queue: %d\n", qid);
1796                         printf("      RX desc=%d - RX free threshold=%d\n",
1797                                 nb_rx_desc[qid], rx_conf[qid].rx_free_thresh);
1798                         printf("      RX threshold registers: pthresh=%d hthresh=%d "
1799                                 " wthresh=%d\n",
1800                                 rx_conf[qid].rx_thresh.pthresh,
1801                                 rx_conf[qid].rx_thresh.hthresh,
1802                                 rx_conf[qid].rx_thresh.wthresh);
1803                         printf("      RX Offloads=0x%"PRIx64"\n",
1804                                 rx_conf[qid].offloads);
1805                 }
1806
1807                 /* per tx queue config only for first queue to be less verbose */
1808                 for (qid = 0; qid < 1; qid++) {
1809                         printf("    TX queue: %d\n", qid);
1810                         printf("      TX desc=%d - TX free threshold=%d\n",
1811                                 nb_tx_desc[qid], tx_conf[qid].tx_free_thresh);
1812                         printf("      TX threshold registers: pthresh=%d hthresh=%d "
1813                                 " wthresh=%d\n",
1814                                 tx_conf[qid].tx_thresh.pthresh,
1815                                 tx_conf[qid].tx_thresh.hthresh,
1816                                 tx_conf[qid].tx_thresh.wthresh);
1817                         printf("      TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
1818                                 tx_conf[qid].offloads, tx_conf->tx_rs_thresh);
1819                 }
1820         }
1821 }
1822
1823 void
1824 port_rss_reta_info(portid_t port_id,
1825                    struct rte_eth_rss_reta_entry64 *reta_conf,
1826                    uint16_t nb_entries)
1827 {
1828         uint16_t i, idx, shift;
1829         int ret;
1830
1831         if (port_id_is_invalid(port_id, ENABLED_WARN))
1832                 return;
1833
1834         ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1835         if (ret != 0) {
1836                 printf("Failed to get RSS RETA info, return code = %d\n", ret);
1837                 return;
1838         }
1839
1840         for (i = 0; i < nb_entries; i++) {
1841                 idx = i / RTE_RETA_GROUP_SIZE;
1842                 shift = i % RTE_RETA_GROUP_SIZE;
1843                 if (!(reta_conf[idx].mask & (1ULL << shift)))
1844                         continue;
1845                 printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1846                                         i, reta_conf[idx].reta[shift]);
1847         }
1848 }
1849
1850 /*
1851  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1852  * key of the port.
1853  */
1854 void
1855 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1856 {
1857         struct rte_eth_rss_conf rss_conf;
1858         uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1859         uint64_t rss_hf;
1860         uint8_t i;
1861         int diag;
1862         struct rte_eth_dev_info dev_info;
1863         uint8_t hash_key_size;
1864
1865         if (port_id_is_invalid(port_id, ENABLED_WARN))
1866                 return;
1867
1868         memset(&dev_info, 0, sizeof(dev_info));
1869         rte_eth_dev_info_get(port_id, &dev_info);
1870         if (dev_info.hash_key_size > 0 &&
1871                         dev_info.hash_key_size <= sizeof(rss_key))
1872                 hash_key_size = dev_info.hash_key_size;
1873         else {
1874                 printf("dev_info did not provide a valid hash key size\n");
1875                 return;
1876         }
1877
1878         rss_conf.rss_hf = 0;
1879         for (i = 0; rss_type_table[i].str; i++) {
1880                 if (!strcmp(rss_info, rss_type_table[i].str))
1881                         rss_conf.rss_hf = rss_type_table[i].rss_type;
1882         }
1883
1884         /* Get RSS hash key if asked to display it */
1885         rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1886         rss_conf.rss_key_len = hash_key_size;
1887         diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1888         if (diag != 0) {
1889                 switch (diag) {
1890                 case -ENODEV:
1891                         printf("port index %d invalid\n", port_id);
1892                         break;
1893                 case -ENOTSUP:
1894                         printf("operation not supported by device\n");
1895                         break;
1896                 default:
1897                         printf("operation failed - diag=%d\n", diag);
1898                         break;
1899                 }
1900                 return;
1901         }
1902         rss_hf = rss_conf.rss_hf;
1903         if (rss_hf == 0) {
1904                 printf("RSS disabled\n");
1905                 return;
1906         }
1907         printf("RSS functions:\n ");
1908         for (i = 0; rss_type_table[i].str; i++) {
1909                 if (rss_hf & rss_type_table[i].rss_type)
1910                         printf("%s ", rss_type_table[i].str);
1911         }
1912         printf("\n");
1913         if (!show_rss_key)
1914                 return;
1915         printf("RSS key:\n");
1916         for (i = 0; i < hash_key_size; i++)
1917                 printf("%02X", rss_key[i]);
1918         printf("\n");
1919 }
1920
1921 void
1922 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1923                          uint hash_key_len)
1924 {
1925         struct rte_eth_rss_conf rss_conf;
1926         int diag;
1927         unsigned int i;
1928
1929         rss_conf.rss_key = NULL;
1930         rss_conf.rss_key_len = hash_key_len;
1931         rss_conf.rss_hf = 0;
1932         for (i = 0; rss_type_table[i].str; i++) {
1933                 if (!strcmp(rss_type_table[i].str, rss_type))
1934                         rss_conf.rss_hf = rss_type_table[i].rss_type;
1935         }
1936         diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1937         if (diag == 0) {
1938                 rss_conf.rss_key = hash_key;
1939                 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1940         }
1941         if (diag == 0)
1942                 return;
1943
1944         switch (diag) {
1945         case -ENODEV:
1946                 printf("port index %d invalid\n", port_id);
1947                 break;
1948         case -ENOTSUP:
1949                 printf("operation not supported by device\n");
1950                 break;
1951         default:
1952                 printf("operation failed - diag=%d\n", diag);
1953                 break;
1954         }
1955 }
1956
1957 /*
1958  * Setup forwarding configuration for each logical core.
1959  */
1960 static void
1961 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1962 {
1963         streamid_t nb_fs_per_lcore;
1964         streamid_t nb_fs;
1965         streamid_t sm_id;
1966         lcoreid_t  nb_extra;
1967         lcoreid_t  nb_fc;
1968         lcoreid_t  nb_lc;
1969         lcoreid_t  lc_id;
1970
1971         nb_fs = cfg->nb_fwd_streams;
1972         nb_fc = cfg->nb_fwd_lcores;
1973         if (nb_fs <= nb_fc) {
1974                 nb_fs_per_lcore = 1;
1975                 nb_extra = 0;
1976         } else {
1977                 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1978                 nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1979         }
1980
1981         nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1982         sm_id = 0;
1983         for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1984                 fwd_lcores[lc_id]->stream_idx = sm_id;
1985                 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1986                 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1987         }
1988
1989         /*
1990          * Assign extra remaining streams, if any.
1991          */
1992         nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1993         for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1994                 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1995                 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1996                 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1997         }
1998 }
1999
2000 static portid_t
2001 fwd_topology_tx_port_get(portid_t rxp)
2002 {
2003         static int warning_once = 1;
2004
2005         RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
2006
2007         switch (port_topology) {
2008         default:
2009         case PORT_TOPOLOGY_PAIRED:
2010                 if ((rxp & 0x1) == 0) {
2011                         if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
2012                                 return rxp + 1;
2013                         if (warning_once) {
2014                                 printf("\nWarning! port-topology=paired"
2015                                        " and odd forward ports number,"
2016                                        " the last port will pair with"
2017                                        " itself.\n\n");
2018                                 warning_once = 0;
2019                         }
2020                         return rxp;
2021                 }
2022                 return rxp - 1;
2023         case PORT_TOPOLOGY_CHAINED:
2024                 return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
2025         case PORT_TOPOLOGY_LOOP:
2026                 return rxp;
2027         }
2028 }
2029
2030 static void
2031 simple_fwd_config_setup(void)
2032 {
2033         portid_t i;
2034
2035         cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
2036         cur_fwd_config.nb_fwd_streams =
2037                 (streamid_t) cur_fwd_config.nb_fwd_ports;
2038
2039         /* reinitialize forwarding streams */
2040         init_fwd_streams();
2041
2042         /*
2043          * In the simple forwarding test, the number of forwarding cores
2044          * must be lower or equal to the number of forwarding ports.
2045          */
2046         cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2047         if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
2048                 cur_fwd_config.nb_fwd_lcores =
2049                         (lcoreid_t) cur_fwd_config.nb_fwd_ports;
2050         setup_fwd_config_of_each_lcore(&cur_fwd_config);
2051
2052         for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2053                 fwd_streams[i]->rx_port   = fwd_ports_ids[i];
2054                 fwd_streams[i]->rx_queue  = 0;
2055                 fwd_streams[i]->tx_port   =
2056                                 fwd_ports_ids[fwd_topology_tx_port_get(i)];
2057                 fwd_streams[i]->tx_queue  = 0;
2058                 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
2059                 fwd_streams[i]->retry_enabled = retry_enabled;
2060         }
2061 }
2062
2063 /**
2064  * For the RSS forwarding test all streams distributed over lcores. Each stream
2065  * being composed of a RX queue to poll on a RX port for input messages,
2066  * associated with a TX queue of a TX port where to send forwarded packets.
2067  */
2068 static void
2069 rss_fwd_config_setup(void)
2070 {
2071         portid_t   rxp;
2072         portid_t   txp;
2073         queueid_t  rxq;
2074         queueid_t  nb_q;
2075         streamid_t  sm_id;
2076
2077         nb_q = nb_rxq;
2078         if (nb_q > nb_txq)
2079                 nb_q = nb_txq;
2080         cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2081         cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2082         cur_fwd_config.nb_fwd_streams =
2083                 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
2084
2085         if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2086                 cur_fwd_config.nb_fwd_lcores =
2087                         (lcoreid_t)cur_fwd_config.nb_fwd_streams;
2088
2089         /* reinitialize forwarding streams */
2090         init_fwd_streams();
2091
2092         setup_fwd_config_of_each_lcore(&cur_fwd_config);
2093         rxp = 0; rxq = 0;
2094         for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
2095                 struct fwd_stream *fs;
2096
2097                 fs = fwd_streams[sm_id];
2098                 txp = fwd_topology_tx_port_get(rxp);
2099                 fs->rx_port = fwd_ports_ids[rxp];
2100                 fs->rx_queue = rxq;
2101                 fs->tx_port = fwd_ports_ids[txp];
2102                 fs->tx_queue = rxq;
2103                 fs->peer_addr = fs->tx_port;
2104                 fs->retry_enabled = retry_enabled;
2105                 rxq = (queueid_t) (rxq + 1);
2106                 if (rxq < nb_q)
2107                         continue;
2108                 /*
2109                  * rxq == nb_q
2110                  * Restart from RX queue 0 on next RX port
2111                  */
2112                 rxq = 0;
2113                 rxp++;
2114         }
2115 }
2116
2117 /**
2118  * For the DCB forwarding test, each core is assigned on each traffic class.
2119  *
2120  * Each core is assigned a multi-stream, each stream being composed of
2121  * a RX queue to poll on a RX port for input messages, associated with
2122  * a TX queue of a TX port where to send forwarded packets. All RX and
2123  * TX queues are mapping to the same traffic class.
2124  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2125  * the same core
2126  */
2127 static void
2128 dcb_fwd_config_setup(void)
2129 {
2130         struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2131         portid_t txp, rxp = 0;
2132         queueid_t txq, rxq = 0;
2133         lcoreid_t  lc_id;
2134         uint16_t nb_rx_queue, nb_tx_queue;
2135         uint16_t i, j, k, sm_id = 0;
2136         uint8_t tc = 0;
2137
2138         cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2139         cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2140         cur_fwd_config.nb_fwd_streams =
2141                 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2142
2143         /* reinitialize forwarding streams */
2144         init_fwd_streams();
2145         sm_id = 0;
2146         txp = 1;
2147         /* get the dcb info on the first RX and TX ports */
2148         (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2149         (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2150
2151         for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2152                 fwd_lcores[lc_id]->stream_nb = 0;
2153                 fwd_lcores[lc_id]->stream_idx = sm_id;
2154                 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2155                         /* if the nb_queue is zero, means this tc is
2156                          * not enabled on the POOL
2157                          */
2158                         if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2159                                 break;
2160                         k = fwd_lcores[lc_id]->stream_nb +
2161                                 fwd_lcores[lc_id]->stream_idx;
2162                         rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2163                         txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2164                         nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2165                         nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2166                         for (j = 0; j < nb_rx_queue; j++) {
2167                                 struct fwd_stream *fs;
2168
2169                                 fs = fwd_streams[k + j];
2170                                 fs->rx_port = fwd_ports_ids[rxp];
2171                                 fs->rx_queue = rxq + j;
2172                                 fs->tx_port = fwd_ports_ids[txp];
2173                                 fs->tx_queue = txq + j % nb_tx_queue;
2174                                 fs->peer_addr = fs->tx_port;
2175                                 fs->retry_enabled = retry_enabled;
2176                         }
2177                         fwd_lcores[lc_id]->stream_nb +=
2178                                 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2179                 }
2180                 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2181
2182                 tc++;
2183                 if (tc < rxp_dcb_info.nb_tcs)
2184                         continue;
2185                 /* Restart from TC 0 on next RX port */
2186                 tc = 0;
2187                 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2188                         rxp = (portid_t)
2189                                 (rxp + ((nb_ports >> 1) / nb_fwd_ports));
2190                 else
2191                         rxp++;
2192                 if (rxp >= nb_fwd_ports)
2193                         return;
2194                 /* get the dcb information on next RX and TX ports */
2195                 if ((rxp & 0x1) == 0)
2196                         txp = (portid_t) (rxp + 1);
2197                 else
2198                         txp = (portid_t) (rxp - 1);
2199                 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2200                 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2201         }
2202 }
2203
2204 static void
2205 icmp_echo_config_setup(void)
2206 {
2207         portid_t  rxp;
2208         queueid_t rxq;
2209         lcoreid_t lc_id;
2210         uint16_t  sm_id;
2211
2212         if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2213                 cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2214                         (nb_txq * nb_fwd_ports);
2215         else
2216                 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2217         cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2218         cur_fwd_config.nb_fwd_streams =
2219                 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2220         if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2221                 cur_fwd_config.nb_fwd_lcores =
2222                         (lcoreid_t)cur_fwd_config.nb_fwd_streams;
2223         if (verbose_level > 0) {
2224                 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2225                        __FUNCTION__,
2226                        cur_fwd_config.nb_fwd_lcores,
2227                        cur_fwd_config.nb_fwd_ports,
2228                        cur_fwd_config.nb_fwd_streams);
2229         }
2230
2231         /* reinitialize forwarding streams */
2232         init_fwd_streams();
2233         setup_fwd_config_of_each_lcore(&cur_fwd_config);
2234         rxp = 0; rxq = 0;
2235         for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2236                 if (verbose_level > 0)
2237                         printf("  core=%d: \n", lc_id);
2238                 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2239                         struct fwd_stream *fs;
2240                         fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2241                         fs->rx_port = fwd_ports_ids[rxp];
2242                         fs->rx_queue = rxq;
2243                         fs->tx_port = fs->rx_port;
2244                         fs->tx_queue = rxq;
2245                         fs->peer_addr = fs->tx_port;
2246                         fs->retry_enabled = retry_enabled;
2247                         if (verbose_level > 0)
2248                                 printf("  stream=%d port=%d rxq=%d txq=%d\n",
2249                                        sm_id, fs->rx_port, fs->rx_queue,
2250                                        fs->tx_queue);
2251                         rxq = (queueid_t) (rxq + 1);
2252                         if (rxq == nb_rxq) {
2253                                 rxq = 0;
2254                                 rxp = (portid_t) (rxp + 1);
2255                         }
2256                 }
2257         }
2258 }
2259
2260 void
2261 fwd_config_setup(void)
2262 {
2263         cur_fwd_config.fwd_eng = cur_fwd_eng;
2264         if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2265                 icmp_echo_config_setup();
2266                 return;
2267         }
2268         if ((nb_rxq > 1) && (nb_txq > 1)){
2269                 if (dcb_config)
2270                         dcb_fwd_config_setup();
2271                 else
2272                         rss_fwd_config_setup();
2273         }
2274         else
2275                 simple_fwd_config_setup();
2276 }
2277
2278 void
2279 pkt_fwd_config_display(struct fwd_config *cfg)
2280 {
2281         struct fwd_stream *fs;
2282         lcoreid_t  lc_id;
2283         streamid_t sm_id;
2284
2285         printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2286                 "NUMA support %s, MP over anonymous pages %s\n",
2287                 cfg->fwd_eng->fwd_mode_name,
2288                 retry_enabled == 0 ? "" : " with retry",
2289                 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2290                 numa_support == 1 ? "enabled" : "disabled",
2291                 mp_anon != 0 ? "enabled" : "disabled");
2292
2293         if (retry_enabled)
2294                 printf("TX retry num: %u, delay between TX retries: %uus\n",
2295                         burst_tx_retry_num, burst_tx_delay_time);
2296         for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2297                 printf("Logical Core %u (socket %u) forwards packets on "
2298                        "%d streams:",
2299                        fwd_lcores_cpuids[lc_id],
2300                        rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2301                        fwd_lcores[lc_id]->stream_nb);
2302                 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2303                         fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2304                         printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2305                                "P=%d/Q=%d (socket %u) ",
2306                                fs->rx_port, fs->rx_queue,
2307                                ports[fs->rx_port].socket_id,
2308                                fs->tx_port, fs->tx_queue,
2309                                ports[fs->tx_port].socket_id);
2310                         print_ethaddr("peer=",
2311                                       &peer_eth_addrs[fs->peer_addr]);
2312                 }
2313                 printf("\n");
2314         }
2315         printf("\n");
2316 }
2317
2318 void
2319 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2320 {
2321         uint8_t c, new_peer_addr[6];
2322         if (!rte_eth_dev_is_valid_port(port_id)) {
2323                 printf("Error: Invalid port number %i\n", port_id);
2324                 return;
2325         }
2326         if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2327                                         sizeof(new_peer_addr)) < 0) {
2328                 printf("Error: Invalid ethernet address: %s\n", peer_addr);
2329                 return;
2330         }
2331         for (c = 0; c < 6; c++)
2332                 peer_eth_addrs[port_id].addr_bytes[c] =
2333                         new_peer_addr[c];
2334 }
2335
2336 int
2337 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2338 {
2339         unsigned int i;
2340         unsigned int lcore_cpuid;
2341         int record_now;
2342
2343         record_now = 0;
2344  again:
2345         for (i = 0; i < nb_lc; i++) {
2346                 lcore_cpuid = lcorelist[i];
2347                 if (! rte_lcore_is_enabled(lcore_cpuid)) {
2348                         printf("lcore %u not enabled\n", lcore_cpuid);
2349                         return -1;
2350                 }
2351                 if (lcore_cpuid == rte_get_master_lcore()) {
2352                         printf("lcore %u cannot be masked on for running "
2353                                "packet forwarding, which is the master lcore "
2354                                "and reserved for command line parsing only\n",
2355                                lcore_cpuid);
2356                         return -1;
2357                 }
2358                 if (record_now)
2359                         fwd_lcores_cpuids[i] = lcore_cpuid;
2360         }
2361         if (record_now == 0) {
2362                 record_now = 1;
2363                 goto again;
2364         }
2365         nb_cfg_lcores = (lcoreid_t) nb_lc;
2366         if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2367                 printf("previous number of forwarding cores %u - changed to "
2368                        "number of configured cores %u\n",
2369                        (unsigned int) nb_fwd_lcores, nb_lc);
2370                 nb_fwd_lcores = (lcoreid_t) nb_lc;
2371         }
2372
2373         return 0;
2374 }
2375
2376 int
2377 set_fwd_lcores_mask(uint64_t lcoremask)
2378 {
2379         unsigned int lcorelist[64];
2380         unsigned int nb_lc;
2381         unsigned int i;
2382
2383         if (lcoremask == 0) {
2384                 printf("Invalid NULL mask of cores\n");
2385                 return -1;
2386         }
2387         nb_lc = 0;
2388         for (i = 0; i < 64; i++) {
2389                 if (! ((uint64_t)(1ULL << i) & lcoremask))
2390                         continue;
2391                 lcorelist[nb_lc++] = i;
2392         }
2393         return set_fwd_lcores_list(lcorelist, nb_lc);
2394 }
2395
2396 void
2397 set_fwd_lcores_number(uint16_t nb_lc)
2398 {
2399         if (nb_lc > nb_cfg_lcores) {
2400                 printf("nb fwd cores %u > %u (max. number of configured "
2401                        "lcores) - ignored\n",
2402                        (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2403                 return;
2404         }
2405         nb_fwd_lcores = (lcoreid_t) nb_lc;
2406         printf("Number of forwarding cores set to %u\n",
2407                (unsigned int) nb_fwd_lcores);
2408 }
2409
2410 void
2411 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2412 {
2413         unsigned int i;
2414         portid_t port_id;
2415         int record_now;
2416
2417         record_now = 0;
2418  again:
2419         for (i = 0; i < nb_pt; i++) {
2420                 port_id = (portid_t) portlist[i];
2421                 if (port_id_is_invalid(port_id, ENABLED_WARN))
2422                         return;
2423                 if (record_now)
2424                         fwd_ports_ids[i] = port_id;
2425         }
2426         if (record_now == 0) {
2427                 record_now = 1;
2428                 goto again;
2429         }
2430         nb_cfg_ports = (portid_t) nb_pt;
2431         if (nb_fwd_ports != (portid_t) nb_pt) {
2432                 printf("previous number of forwarding ports %u - changed to "
2433                        "number of configured ports %u\n",
2434                        (unsigned int) nb_fwd_ports, nb_pt);
2435                 nb_fwd_ports = (portid_t) nb_pt;
2436         }
2437 }
2438
2439 void
2440 set_fwd_ports_mask(uint64_t portmask)
2441 {
2442         unsigned int portlist[64];
2443         unsigned int nb_pt;
2444         unsigned int i;
2445
2446         if (portmask == 0) {
2447                 printf("Invalid NULL mask of ports\n");
2448                 return;
2449         }
2450         nb_pt = 0;
2451         RTE_ETH_FOREACH_DEV(i) {
2452                 if (! ((uint64_t)(1ULL << i) & portmask))
2453                         continue;
2454                 portlist[nb_pt++] = i;
2455         }
2456         set_fwd_ports_list(portlist, nb_pt);
2457 }
2458
2459 void
2460 set_fwd_ports_number(uint16_t nb_pt)
2461 {
2462         if (nb_pt > nb_cfg_ports) {
2463                 printf("nb fwd ports %u > %u (number of configured "
2464                        "ports) - ignored\n",
2465                        (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2466                 return;
2467         }
2468         nb_fwd_ports = (portid_t) nb_pt;
2469         printf("Number of forwarding ports set to %u\n",
2470                (unsigned int) nb_fwd_ports);
2471 }
2472
2473 int
2474 port_is_forwarding(portid_t port_id)
2475 {
2476         unsigned int i;
2477
2478         if (port_id_is_invalid(port_id, ENABLED_WARN))
2479                 return -1;
2480
2481         for (i = 0; i < nb_fwd_ports; i++) {
2482                 if (fwd_ports_ids[i] == port_id)
2483                         return 1;
2484         }
2485
2486         return 0;
2487 }
2488
2489 void
2490 set_nb_pkt_per_burst(uint16_t nb)
2491 {
2492         if (nb > MAX_PKT_BURST) {
2493                 printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2494                        " ignored\n",
2495                        (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2496                 return;
2497         }
2498         nb_pkt_per_burst = nb;
2499         printf("Number of packets per burst set to %u\n",
2500                (unsigned int) nb_pkt_per_burst);
2501 }
2502
2503 static const char *
2504 tx_split_get_name(enum tx_pkt_split split)
2505 {
2506         uint32_t i;
2507
2508         for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2509                 if (tx_split_name[i].split == split)
2510                         return tx_split_name[i].name;
2511         }
2512         return NULL;
2513 }
2514
2515 void
2516 set_tx_pkt_split(const char *name)
2517 {
2518         uint32_t i;
2519
2520         for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2521                 if (strcmp(tx_split_name[i].name, name) == 0) {
2522                         tx_pkt_split = tx_split_name[i].split;
2523                         return;
2524                 }
2525         }
2526         printf("unknown value: \"%s\"\n", name);
2527 }
2528
2529 void
2530 show_tx_pkt_segments(void)
2531 {
2532         uint32_t i, n;
2533         const char *split;
2534
2535         n = tx_pkt_nb_segs;
2536         split = tx_split_get_name(tx_pkt_split);
2537
2538         printf("Number of segments: %u\n", n);
2539         printf("Segment sizes: ");
2540         for (i = 0; i != n - 1; i++)
2541                 printf("%hu,", tx_pkt_seg_lengths[i]);
2542         printf("%hu\n", tx_pkt_seg_lengths[i]);
2543         printf("Split packet: %s\n", split);
2544 }
2545
2546 void
2547 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2548 {
2549         uint16_t tx_pkt_len;
2550         unsigned i;
2551
2552         if (nb_segs >= (unsigned) nb_txd) {
2553                 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2554                        nb_segs, (unsigned int) nb_txd);
2555                 return;
2556         }
2557
2558         /*
2559          * Check that each segment length is greater or equal than
2560          * the mbuf data sise.
2561          * Check also that the total packet length is greater or equal than the
2562          * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2563          */
2564         tx_pkt_len = 0;
2565         for (i = 0; i < nb_segs; i++) {
2566                 if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2567                         printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2568                                i, seg_lengths[i], (unsigned) mbuf_data_size);
2569                         return;
2570                 }
2571                 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2572         }
2573         if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2574                 printf("total packet length=%u < %d - give up\n",
2575                                 (unsigned) tx_pkt_len,
2576                                 (int)(sizeof(struct ether_hdr) + 20 + 8));
2577                 return;
2578         }
2579
2580         for (i = 0; i < nb_segs; i++)
2581                 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2582
2583         tx_pkt_length  = tx_pkt_len;
2584         tx_pkt_nb_segs = (uint8_t) nb_segs;
2585 }
2586
2587 void
2588 setup_gro(const char *onoff, portid_t port_id)
2589 {
2590         if (!rte_eth_dev_is_valid_port(port_id)) {
2591                 printf("invalid port id %u\n", port_id);
2592                 return;
2593         }
2594         if (test_done == 0) {
2595                 printf("Before enable/disable GRO,"
2596                                 " please stop forwarding first\n");
2597                 return;
2598         }
2599         if (strcmp(onoff, "on") == 0) {
2600                 if (gro_ports[port_id].enable != 0) {
2601                         printf("Port %u has enabled GRO. Please"
2602                                         " disable GRO first\n", port_id);
2603                         return;
2604                 }
2605                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2606                         gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2607                         gro_ports[port_id].param.max_flow_num =
2608                                 GRO_DEFAULT_FLOW_NUM;
2609                         gro_ports[port_id].param.max_item_per_flow =
2610                                 GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2611                 }
2612                 gro_ports[port_id].enable = 1;
2613         } else {
2614                 if (gro_ports[port_id].enable == 0) {
2615                         printf("Port %u has disabled GRO\n", port_id);
2616                         return;
2617                 }
2618                 gro_ports[port_id].enable = 0;
2619         }
2620 }
2621
2622 void
2623 setup_gro_flush_cycles(uint8_t cycles)
2624 {
2625         if (test_done == 0) {
2626                 printf("Before change flush interval for GRO,"
2627                                 " please stop forwarding first.\n");
2628                 return;
2629         }
2630
2631         if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2632                         GRO_DEFAULT_FLUSH_CYCLES) {
2633                 printf("The flushing cycle be in the range"
2634                                 " of 1 to %u. Revert to the default"
2635                                 " value %u.\n",
2636                                 GRO_MAX_FLUSH_CYCLES,
2637                                 GRO_DEFAULT_FLUSH_CYCLES);
2638                 cycles = GRO_DEFAULT_FLUSH_CYCLES;
2639         }
2640
2641         gro_flush_cycles = cycles;
2642 }
2643
2644 void
2645 show_gro(portid_t port_id)
2646 {
2647         struct rte_gro_param *param;
2648         uint32_t max_pkts_num;
2649
2650         param = &gro_ports[port_id].param;
2651
2652         if (!rte_eth_dev_is_valid_port(port_id)) {
2653                 printf("Invalid port id %u.\n", port_id);
2654                 return;
2655         }
2656         if (gro_ports[port_id].enable) {
2657                 printf("GRO type: TCP/IPv4\n");
2658                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2659                         max_pkts_num = param->max_flow_num *
2660                                 param->max_item_per_flow;
2661                 } else
2662                         max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2663                 printf("Max number of packets to perform GRO: %u\n",
2664                                 max_pkts_num);
2665                 printf("Flushing cycles: %u\n", gro_flush_cycles);
2666         } else
2667                 printf("Port %u doesn't enable GRO.\n", port_id);
2668 }
2669
2670 void
2671 setup_gso(const char *mode, portid_t port_id)
2672 {
2673         if (!rte_eth_dev_is_valid_port(port_id)) {
2674                 printf("invalid port id %u\n", port_id);
2675                 return;
2676         }
2677         if (strcmp(mode, "on") == 0) {
2678                 if (test_done == 0) {
2679                         printf("before enabling GSO,"
2680                                         " please stop forwarding first\n");
2681                         return;
2682                 }
2683                 gso_ports[port_id].enable = 1;
2684         } else if (strcmp(mode, "off") == 0) {
2685                 if (test_done == 0) {
2686                         printf("before disabling GSO,"
2687                                         " please stop forwarding first\n");
2688                         return;
2689                 }
2690                 gso_ports[port_id].enable = 0;
2691         }
2692 }
2693
2694 char*
2695 list_pkt_forwarding_modes(void)
2696 {
2697         static char fwd_modes[128] = "";
2698         const char *separator = "|";
2699         struct fwd_engine *fwd_eng;
2700         unsigned i = 0;
2701
2702         if (strlen (fwd_modes) == 0) {
2703                 while ((fwd_eng = fwd_engines[i++]) != NULL) {
2704                         strncat(fwd_modes, fwd_eng->fwd_mode_name,
2705                                         sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2706                         strncat(fwd_modes, separator,
2707                                         sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2708                 }
2709                 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2710         }
2711
2712         return fwd_modes;
2713 }
2714
2715 char*
2716 list_pkt_forwarding_retry_modes(void)
2717 {
2718         static char fwd_modes[128] = "";
2719         const char *separator = "|";
2720         struct fwd_engine *fwd_eng;
2721         unsigned i = 0;
2722
2723         if (strlen(fwd_modes) == 0) {
2724                 while ((fwd_eng = fwd_engines[i++]) != NULL) {
2725                         if (fwd_eng == &rx_only_engine)
2726                                 continue;
2727                         strncat(fwd_modes, fwd_eng->fwd_mode_name,
2728                                         sizeof(fwd_modes) -
2729                                         strlen(fwd_modes) - 1);
2730                         strncat(fwd_modes, separator,
2731                                         sizeof(fwd_modes) -
2732                                         strlen(fwd_modes) - 1);
2733                 }
2734                 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2735         }
2736
2737         return fwd_modes;
2738 }
2739
2740 void
2741 set_pkt_forwarding_mode(const char *fwd_mode_name)
2742 {
2743         struct fwd_engine *fwd_eng;
2744         unsigned i;
2745
2746         i = 0;
2747         while ((fwd_eng = fwd_engines[i]) != NULL) {
2748                 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2749                         printf("Set %s packet forwarding mode%s\n",
2750                                fwd_mode_name,
2751                                retry_enabled == 0 ? "" : " with retry");
2752                         cur_fwd_eng = fwd_eng;
2753                         return;
2754                 }
2755                 i++;
2756         }
2757         printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2758 }
2759
2760 void
2761 set_verbose_level(uint16_t vb_level)
2762 {
2763         printf("Change verbose level from %u to %u\n",
2764                (unsigned int) verbose_level, (unsigned int) vb_level);
2765         verbose_level = vb_level;
2766 }
2767
2768 void
2769 vlan_extend_set(portid_t port_id, int on)
2770 {
2771         int diag;
2772         int vlan_offload;
2773         uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2774
2775         if (port_id_is_invalid(port_id, ENABLED_WARN))
2776                 return;
2777
2778         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2779
2780         if (on) {
2781                 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2782                 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2783         } else {
2784                 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2785                 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2786         }
2787
2788         diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2789         if (diag < 0)
2790                 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2791                "diag=%d\n", port_id, on, diag);
2792         ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2793 }
2794
2795 void
2796 rx_vlan_strip_set(portid_t port_id, int on)
2797 {
2798         int diag;
2799         int vlan_offload;
2800         uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2801
2802         if (port_id_is_invalid(port_id, ENABLED_WARN))
2803                 return;
2804
2805         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2806
2807         if (on) {
2808                 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2809                 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2810         } else {
2811                 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2812                 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2813         }
2814
2815         diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2816         if (diag < 0)
2817                 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2818                "diag=%d\n", port_id, on, diag);
2819         ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2820 }
2821
2822 void
2823 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2824 {
2825         int diag;
2826
2827         if (port_id_is_invalid(port_id, ENABLED_WARN))
2828                 return;
2829
2830         diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2831         if (diag < 0)
2832                 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2833                "diag=%d\n", port_id, queue_id, on, diag);
2834 }
2835
2836 void
2837 rx_vlan_filter_set(portid_t port_id, int on)
2838 {
2839         int diag;
2840         int vlan_offload;
2841         uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2842
2843         if (port_id_is_invalid(port_id, ENABLED_WARN))
2844                 return;
2845
2846         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2847
2848         if (on) {
2849                 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2850                 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2851         } else {
2852                 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2853                 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2854         }
2855
2856         diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2857         if (diag < 0)
2858                 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2859                "diag=%d\n", port_id, on, diag);
2860         ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2861 }
2862
2863 int
2864 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2865 {
2866         int diag;
2867
2868         if (port_id_is_invalid(port_id, ENABLED_WARN))
2869                 return 1;
2870         if (vlan_id_is_invalid(vlan_id))
2871                 return 1;
2872         diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2873         if (diag == 0)
2874                 return 0;
2875         printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2876                "diag=%d\n",
2877                port_id, vlan_id, on, diag);
2878         return -1;
2879 }
2880
2881 void
2882 rx_vlan_all_filter_set(portid_t port_id, int on)
2883 {
2884         uint16_t vlan_id;
2885
2886         if (port_id_is_invalid(port_id, ENABLED_WARN))
2887                 return;
2888         for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2889                 if (rx_vft_set(port_id, vlan_id, on))
2890                         break;
2891         }
2892 }
2893
2894 void
2895 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2896 {
2897         int diag;
2898
2899         if (port_id_is_invalid(port_id, ENABLED_WARN))
2900                 return;
2901
2902         diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2903         if (diag == 0)
2904                 return;
2905
2906         printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2907                "diag=%d\n",
2908                port_id, vlan_type, tp_id, diag);
2909 }
2910
2911 void
2912 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2913 {
2914         int vlan_offload;
2915         struct rte_eth_dev_info dev_info;
2916
2917         if (port_id_is_invalid(port_id, ENABLED_WARN))
2918                 return;
2919         if (vlan_id_is_invalid(vlan_id))
2920                 return;
2921
2922         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2923         if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2924                 printf("Error, as QinQ has been enabled.\n");
2925                 return;
2926         }
2927         rte_eth_dev_info_get(port_id, &dev_info);
2928         if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2929                 printf("Error: vlan insert is not supported by port %d\n",
2930                         port_id);
2931                 return;
2932         }
2933
2934         tx_vlan_reset(port_id);
2935         ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2936         ports[port_id].tx_vlan_id = vlan_id;
2937 }
2938
2939 void
2940 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2941 {
2942         int vlan_offload;
2943         struct rte_eth_dev_info dev_info;
2944
2945         if (port_id_is_invalid(port_id, ENABLED_WARN))
2946                 return;
2947         if (vlan_id_is_invalid(vlan_id))
2948                 return;
2949         if (vlan_id_is_invalid(vlan_id_outer))
2950                 return;
2951
2952         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2953         if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2954                 printf("Error, as QinQ hasn't been enabled.\n");
2955                 return;
2956         }
2957         rte_eth_dev_info_get(port_id, &dev_info);
2958         if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
2959                 printf("Error: qinq insert not supported by port %d\n",
2960                         port_id);
2961                 return;
2962         }
2963
2964         tx_vlan_reset(port_id);
2965         ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
2966         ports[port_id].tx_vlan_id = vlan_id;
2967         ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2968 }
2969
2970 void
2971 tx_vlan_reset(portid_t port_id)
2972 {
2973         if (port_id_is_invalid(port_id, ENABLED_WARN))
2974                 return;
2975         ports[port_id].dev_conf.txmode.offloads &=
2976                                 ~(DEV_TX_OFFLOAD_VLAN_INSERT |
2977                                   DEV_TX_OFFLOAD_QINQ_INSERT);
2978         ports[port_id].tx_vlan_id = 0;
2979         ports[port_id].tx_vlan_id_outer = 0;
2980 }
2981
2982 void
2983 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2984 {
2985         if (port_id_is_invalid(port_id, ENABLED_WARN))
2986                 return;
2987
2988         rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2989 }
2990
2991 void
2992 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2993 {
2994         uint16_t i;
2995         uint8_t existing_mapping_found = 0;
2996
2997         if (port_id_is_invalid(port_id, ENABLED_WARN))
2998                 return;
2999
3000         if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
3001                 return;
3002
3003         if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
3004                 printf("map_value not in required range 0..%d\n",
3005                                 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
3006                 return;
3007         }
3008
3009         if (!is_rx) { /*then tx*/
3010                 for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
3011                         if ((tx_queue_stats_mappings[i].port_id == port_id) &&
3012                             (tx_queue_stats_mappings[i].queue_id == queue_id)) {
3013                                 tx_queue_stats_mappings[i].stats_counter_id = map_value;
3014                                 existing_mapping_found = 1;
3015                                 break;
3016                         }
3017                 }
3018                 if (!existing_mapping_found) { /* A new additional mapping... */
3019                         tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
3020                         tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
3021                         tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
3022                         nb_tx_queue_stats_mappings++;
3023                 }
3024         }
3025         else { /*rx*/
3026                 for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
3027                         if ((rx_queue_stats_mappings[i].port_id == port_id) &&
3028                             (rx_queue_stats_mappings[i].queue_id == queue_id)) {
3029                                 rx_queue_stats_mappings[i].stats_counter_id = map_value;
3030                                 existing_mapping_found = 1;
3031                                 break;
3032                         }
3033                 }
3034                 if (!existing_mapping_found) { /* A new additional mapping... */
3035                         rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
3036                         rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
3037                         rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
3038                         nb_rx_queue_stats_mappings++;
3039                 }
3040         }
3041 }
3042
3043 void
3044 set_xstats_hide_zero(uint8_t on_off)
3045 {
3046         xstats_hide_zero = on_off;
3047 }
3048
3049 static inline void
3050 print_fdir_mask(struct rte_eth_fdir_masks *mask)
3051 {
3052         printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
3053
3054         if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3055                 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
3056                         " tunnel_id: 0x%08x",
3057                         mask->mac_addr_byte_mask, mask->tunnel_type_mask,
3058                         rte_be_to_cpu_32(mask->tunnel_id_mask));
3059         else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3060                 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
3061                         rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
3062                         rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
3063
3064                 printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
3065                         rte_be_to_cpu_16(mask->src_port_mask),
3066                         rte_be_to_cpu_16(mask->dst_port_mask));
3067
3068                 printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3069                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
3070                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
3071                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
3072                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
3073
3074                 printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
3075                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
3076                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
3077                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
3078                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
3079         }
3080
3081         printf("\n");
3082 }
3083
3084 static inline void
3085 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3086 {
3087         struct rte_eth_flex_payload_cfg *cfg;
3088         uint32_t i, j;
3089
3090         for (i = 0; i < flex_conf->nb_payloads; i++) {
3091                 cfg = &flex_conf->flex_set[i];
3092                 if (cfg->type == RTE_ETH_RAW_PAYLOAD)
3093                         printf("\n    RAW:  ");
3094                 else if (cfg->type == RTE_ETH_L2_PAYLOAD)
3095                         printf("\n    L2_PAYLOAD:  ");
3096                 else if (cfg->type == RTE_ETH_L3_PAYLOAD)
3097                         printf("\n    L3_PAYLOAD:  ");
3098                 else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3099                         printf("\n    L4_PAYLOAD:  ");
3100                 else
3101                         printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3102                 for (j = 0; j < num; j++)
3103                         printf("  %-5u", cfg->src_offset[j]);
3104         }
3105         printf("\n");
3106 }
3107
3108 static char *
3109 flowtype_to_str(uint16_t flow_type)
3110 {
3111         struct flow_type_info {
3112                 char str[32];
3113                 uint16_t ftype;
3114         };
3115
3116         uint8_t i;
3117         static struct flow_type_info flowtype_str_table[] = {
3118                 {"raw", RTE_ETH_FLOW_RAW},
3119                 {"ipv4", RTE_ETH_FLOW_IPV4},
3120                 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3121                 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3122                 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3123                 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3124                 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3125                 {"ipv6", RTE_ETH_FLOW_IPV6},
3126                 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3127                 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3128                 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3129                 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3130                 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3131                 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3132                 {"port", RTE_ETH_FLOW_PORT},
3133                 {"vxlan", RTE_ETH_FLOW_VXLAN},
3134                 {"geneve", RTE_ETH_FLOW_GENEVE},
3135                 {"nvgre", RTE_ETH_FLOW_NVGRE},
3136                 {"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
3137         };
3138
3139         for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3140                 if (flowtype_str_table[i].ftype == flow_type)
3141                         return flowtype_str_table[i].str;
3142         }
3143
3144         return NULL;
3145 }
3146
3147 static inline void
3148 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3149 {
3150         struct rte_eth_fdir_flex_mask *mask;
3151         uint32_t i, j;
3152         char *p;
3153
3154         for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3155                 mask = &flex_conf->flex_mask[i];
3156                 p = flowtype_to_str(mask->flow_type);
3157                 printf("\n    %s:\t", p ? p : "unknown");
3158                 for (j = 0; j < num; j++)
3159                         printf(" %02x", mask->mask[j]);
3160         }
3161         printf("\n");
3162 }
3163
3164 static inline void
3165 print_fdir_flow_type(uint32_t flow_types_mask)
3166 {
3167         int i;
3168         char *p;
3169
3170         for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3171                 if (!(flow_types_mask & (1 << i)))
3172                         continue;
3173                 p = flowtype_to_str(i);
3174                 if (p)
3175                         printf(" %s", p);
3176                 else
3177                         printf(" unknown");
3178         }
3179         printf("\n");
3180 }
3181
3182 void
3183 fdir_get_infos(portid_t port_id)
3184 {
3185         struct rte_eth_fdir_stats fdir_stat;
3186         struct rte_eth_fdir_info fdir_info;
3187         int ret;
3188
3189         static const char *fdir_stats_border = "########################";
3190
3191         if (port_id_is_invalid(port_id, ENABLED_WARN))
3192                 return;
3193         ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3194         if (ret < 0) {
3195                 printf("\n FDIR is not supported on port %-2d\n",
3196                         port_id);
3197                 return;
3198         }
3199
3200         memset(&fdir_info, 0, sizeof(fdir_info));
3201         rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3202                                RTE_ETH_FILTER_INFO, &fdir_info);
3203         memset(&fdir_stat, 0, sizeof(fdir_stat));
3204         rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3205                                RTE_ETH_FILTER_STATS, &fdir_stat);
3206         printf("\n  %s FDIR infos for port %-2d     %s\n",
3207                fdir_stats_border, port_id, fdir_stats_border);
3208         printf("  MODE: ");
3209         if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3210                 printf("  PERFECT\n");
3211         else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3212                 printf("  PERFECT-MAC-VLAN\n");
3213         else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3214                 printf("  PERFECT-TUNNEL\n");
3215         else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3216                 printf("  SIGNATURE\n");
3217         else
3218                 printf("  DISABLE\n");
3219         if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3220                 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3221                 printf("  SUPPORTED FLOW TYPE: ");
3222                 print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3223         }
3224         printf("  FLEX PAYLOAD INFO:\n");
3225         printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3226                "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3227                "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3228                 fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3229                 fdir_info.flex_payload_unit,
3230                 fdir_info.max_flex_payload_segment_num,
3231                 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3232         printf("  MASK: ");
3233         print_fdir_mask(&fdir_info.mask);
3234         if (fdir_info.flex_conf.nb_payloads > 0) {
3235                 printf("  FLEX PAYLOAD SRC OFFSET:");
3236                 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3237         }
3238         if (fdir_info.flex_conf.nb_flexmasks > 0) {
3239                 printf("  FLEX MASK CFG:");
3240                 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3241         }
3242         printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3243                fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3244         printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3245                fdir_info.guarant_spc, fdir_info.best_spc);
3246         printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3247                "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3248                "  add:           %-10"PRIu64"  remove:        %"PRIu64"\n"
3249                "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3250                fdir_stat.collision, fdir_stat.free,
3251                fdir_stat.maxhash, fdir_stat.maxlen,
3252                fdir_stat.add, fdir_stat.remove,
3253                fdir_stat.f_add, fdir_stat.f_remove);
3254         printf("  %s############################%s\n",
3255                fdir_stats_border, fdir_stats_border);
3256 }
3257
3258 void
3259 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3260 {
3261         struct rte_port *port;
3262         struct rte_eth_fdir_flex_conf *flex_conf;
3263         int i, idx = 0;
3264
3265         port = &ports[port_id];
3266         flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3267         for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3268                 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3269                         idx = i;
3270                         break;
3271                 }
3272         }
3273         if (i >= RTE_ETH_FLOW_MAX) {
3274                 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3275                         idx = flex_conf->nb_flexmasks;
3276                         flex_conf->nb_flexmasks++;
3277                 } else {
3278                         printf("The flex mask table is full. Can not set flex"
3279                                 " mask for flow_type(%u).", cfg->flow_type);
3280                         return;
3281                 }
3282         }
3283         rte_memcpy(&flex_conf->flex_mask[idx],
3284                          cfg,
3285                          sizeof(struct rte_eth_fdir_flex_mask));
3286 }
3287
3288 void
3289 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3290 {
3291         struct rte_port *port;
3292         struct rte_eth_fdir_flex_conf *flex_conf;
3293         int i, idx = 0;
3294
3295         port = &ports[port_id];
3296         flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3297         for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3298                 if (cfg->type == flex_conf->flex_set[i].type) {
3299                         idx = i;
3300                         break;
3301                 }
3302         }
3303         if (i >= RTE_ETH_PAYLOAD_MAX) {
3304                 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3305                         idx = flex_conf->nb_payloads;
3306                         flex_conf->nb_payloads++;
3307                 } else {
3308                         printf("The flex payload table is full. Can not set"
3309                                 " flex payload for type(%u).", cfg->type);
3310                         return;
3311                 }
3312         }
3313         rte_memcpy(&flex_conf->flex_set[idx],
3314                          cfg,
3315                          sizeof(struct rte_eth_flex_payload_cfg));
3316
3317 }
3318
3319 void
3320 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3321 {
3322 #ifdef RTE_LIBRTE_IXGBE_PMD
3323         int diag;
3324
3325         if (is_rx)
3326                 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3327         else
3328                 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3329
3330         if (diag == 0)
3331                 return;
3332         printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3333                         is_rx ? "rx" : "tx", port_id, diag);
3334         return;
3335 #endif
3336         printf("VF %s setting not supported for port %d\n",
3337                         is_rx ? "Rx" : "Tx", port_id);
3338         RTE_SET_USED(vf);
3339         RTE_SET_USED(on);
3340 }
3341
3342 int
3343 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3344 {
3345         int diag;
3346         struct rte_eth_link link;
3347
3348         if (port_id_is_invalid(port_id, ENABLED_WARN))
3349                 return 1;
3350         rte_eth_link_get_nowait(port_id, &link);
3351         if (rate > link.link_speed) {
3352                 printf("Invalid rate value:%u bigger than link speed: %u\n",
3353                         rate, link.link_speed);
3354                 return 1;
3355         }
3356         diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3357         if (diag == 0)
3358                 return diag;
3359         printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3360                 port_id, diag);
3361         return diag;
3362 }
3363
3364 int
3365 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3366 {
3367         int diag = -ENOTSUP;
3368
3369         RTE_SET_USED(vf);
3370         RTE_SET_USED(rate);
3371         RTE_SET_USED(q_msk);
3372
3373 #ifdef RTE_LIBRTE_IXGBE_PMD
3374         if (diag == -ENOTSUP)
3375                 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3376                                                        q_msk);
3377 #endif
3378 #ifdef RTE_LIBRTE_BNXT_PMD
3379         if (diag == -ENOTSUP)
3380                 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3381 #endif
3382         if (diag == 0)
3383                 return diag;
3384
3385         printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3386                 port_id, diag);
3387         return diag;
3388 }
3389
3390 /*
3391  * Functions to manage the set of filtered Multicast MAC addresses.
3392  *
3393  * A pool of filtered multicast MAC addresses is associated with each port.
3394  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3395  * The address of the pool and the number of valid multicast MAC addresses
3396  * recorded in the pool are stored in the fields "mc_addr_pool" and
3397  * "mc_addr_nb" of the "rte_port" data structure.
3398  *
3399  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3400  * to be supplied a contiguous array of multicast MAC addresses.
3401  * To comply with this constraint, the set of multicast addresses recorded
3402  * into the pool are systematically compacted at the beginning of the pool.
3403  * Hence, when a multicast address is removed from the pool, all following
3404  * addresses, if any, are copied back to keep the set contiguous.
3405  */
3406 #define MCAST_POOL_INC 32
3407
3408 static int
3409 mcast_addr_pool_extend(struct rte_port *port)
3410 {
3411         struct ether_addr *mc_pool;
3412         size_t mc_pool_size;
3413
3414         /*
3415          * If a free entry is available at the end of the pool, just
3416          * increment the number of recorded multicast addresses.
3417          */
3418         if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3419                 port->mc_addr_nb++;
3420                 return 0;
3421         }
3422
3423         /*
3424          * [re]allocate a pool with MCAST_POOL_INC more entries.
3425          * The previous test guarantees that port->mc_addr_nb is a multiple
3426          * of MCAST_POOL_INC.
3427          */
3428         mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3429                                                     MCAST_POOL_INC);
3430         mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3431                                                 mc_pool_size);
3432         if (mc_pool == NULL) {
3433                 printf("allocation of pool of %u multicast addresses failed\n",
3434                        port->mc_addr_nb + MCAST_POOL_INC);
3435                 return -ENOMEM;
3436         }
3437
3438         port->mc_addr_pool = mc_pool;
3439         port->mc_addr_nb++;
3440         return 0;
3441
3442 }
3443
3444 static void
3445 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3446 {
3447         port->mc_addr_nb--;
3448         if (addr_idx == port->mc_addr_nb) {
3449                 /* No need to recompact the set of multicast addressses. */
3450                 if (port->mc_addr_nb == 0) {
3451                         /* free the pool of multicast addresses. */
3452                         free(port->mc_addr_pool);
3453                         port->mc_addr_pool = NULL;
3454                 }
3455                 return;
3456         }
3457         memmove(&port->mc_addr_pool[addr_idx],
3458                 &port->mc_addr_pool[addr_idx + 1],
3459                 sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3460 }
3461
3462 static void
3463 eth_port_multicast_addr_list_set(portid_t port_id)
3464 {
3465         struct rte_port *port;
3466         int diag;
3467
3468         port = &ports[port_id];
3469         diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3470                                             port->mc_addr_nb);
3471         if (diag == 0)
3472                 return;
3473         printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3474                port->mc_addr_nb, port_id, -diag);
3475 }
3476
3477 void
3478 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3479 {
3480         struct rte_port *port;
3481         uint32_t i;
3482
3483         if (port_id_is_invalid(port_id, ENABLED_WARN))
3484                 return;
3485
3486         port = &ports[port_id];
3487
3488         /*
3489          * Check that the added multicast MAC address is not already recorded
3490          * in the pool of multicast addresses.
3491          */
3492         for (i = 0; i < port->mc_addr_nb; i++) {
3493                 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3494                         printf("multicast address already filtered by port\n");
3495                         return;
3496                 }
3497         }
3498
3499         if (mcast_addr_pool_extend(port) != 0)
3500                 return;
3501         ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3502         eth_port_multicast_addr_list_set(port_id);
3503 }
3504
3505 void
3506 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3507 {
3508         struct rte_port *port;
3509         uint32_t i;
3510
3511         if (port_id_is_invalid(port_id, ENABLED_WARN))
3512                 return;
3513
3514         port = &ports[port_id];
3515
3516         /*
3517          * Search the pool of multicast MAC addresses for the removed address.
3518          */
3519         for (i = 0; i < port->mc_addr_nb; i++) {
3520                 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3521                         break;
3522         }
3523         if (i == port->mc_addr_nb) {
3524                 printf("multicast address not filtered by port %d\n", port_id);
3525                 return;
3526         }
3527
3528         mcast_addr_pool_remove(port, i);
3529         eth_port_multicast_addr_list_set(port_id);
3530 }
3531
3532 void
3533 port_dcb_info_display(portid_t port_id)
3534 {
3535         struct rte_eth_dcb_info dcb_info;
3536         uint16_t i;
3537         int ret;
3538         static const char *border = "================";
3539
3540         if (port_id_is_invalid(port_id, ENABLED_WARN))
3541                 return;
3542
3543         ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3544         if (ret) {
3545                 printf("\n Failed to get dcb infos on port %-2d\n",
3546                         port_id);
3547                 return;
3548         }
3549         printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3550         printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3551         printf("\n  TC :        ");
3552         for (i = 0; i < dcb_info.nb_tcs; i++)
3553                 printf("\t%4d", i);
3554         printf("\n  Priority :  ");
3555         for (i = 0; i < dcb_info.nb_tcs; i++)
3556                 printf("\t%4d", dcb_info.prio_tc[i]);
3557         printf("\n  BW percent :");
3558         for (i = 0; i < dcb_info.nb_tcs; i++)
3559                 printf("\t%4d%%", dcb_info.tc_bws[i]);
3560         printf("\n  RXQ base :  ");
3561         for (i = 0; i < dcb_info.nb_tcs; i++)
3562                 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3563         printf("\n  RXQ number :");
3564         for (i = 0; i < dcb_info.nb_tcs; i++)
3565                 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3566         printf("\n  TXQ base :  ");
3567         for (i = 0; i < dcb_info.nb_tcs; i++)
3568                 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3569         printf("\n  TXQ number :");
3570         for (i = 0; i < dcb_info.nb_tcs; i++)
3571                 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3572         printf("\n");
3573 }
3574
3575 uint8_t *
3576 open_file(const char *file_path, uint32_t *size)
3577 {
3578         int fd = open(file_path, O_RDONLY);
3579         off_t pkg_size;
3580         uint8_t *buf = NULL;
3581         int ret = 0;
3582         struct stat st_buf;
3583
3584         if (size)
3585                 *size = 0;
3586
3587         if (fd == -1) {
3588                 printf("%s: Failed to open %s\n", __func__, file_path);
3589                 return buf;
3590         }
3591
3592         if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3593                 close(fd);
3594                 printf("%s: File operations failed\n", __func__);
3595                 return buf;
3596         }
3597
3598         pkg_size = st_buf.st_size;
3599         if (pkg_size < 0) {
3600                 close(fd);
3601                 printf("%s: File operations failed\n", __func__);
3602                 return buf;
3603         }
3604
3605         buf = (uint8_t *)malloc(pkg_size);
3606         if (!buf) {
3607                 close(fd);
3608                 printf("%s: Failed to malloc memory\n", __func__);
3609                 return buf;
3610         }
3611
3612         ret = read(fd, buf, pkg_size);
3613         if (ret < 0) {
3614                 close(fd);
3615                 printf("%s: File read operation failed\n", __func__);
3616                 close_file(buf);
3617                 return NULL;
3618         }
3619
3620         if (size)
3621                 *size = pkg_size;
3622
3623         close(fd);
3624
3625         return buf;
3626 }
3627
3628 int
3629 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3630 {
3631         FILE *fh = fopen(file_path, "wb");
3632
3633         if (fh == NULL) {
3634                 printf("%s: Failed to open %s\n", __func__, file_path);
3635                 return -1;
3636         }
3637
3638         if (fwrite(buf, 1, size, fh) != size) {
3639                 fclose(fh);
3640                 printf("%s: File write operation failed\n", __func__);
3641                 return -1;
3642         }
3643
3644         fclose(fh);
3645
3646         return 0;
3647 }
3648
3649 int
3650 close_file(uint8_t *buf)
3651 {
3652         if (buf) {
3653                 free((void *)buf);
3654                 return 0;
3655         }
3656
3657         return -1;
3658 }
3659
3660 void
3661 port_queue_region_info_display(portid_t port_id, void *buf)
3662 {
3663 #ifdef RTE_LIBRTE_I40E_PMD
3664         uint16_t i, j;
3665         struct rte_pmd_i40e_queue_regions *info =
3666                 (struct rte_pmd_i40e_queue_regions *)buf;
3667         static const char *queue_region_info_stats_border = "-------";
3668
3669         if (!info->queue_region_number)
3670                 printf("there is no region has been set before");
3671
3672         printf("\n      %s All queue region info for port=%2d %s",
3673                         queue_region_info_stats_border, port_id,
3674                         queue_region_info_stats_border);
3675         printf("\n      queue_region_number: %-14u \n",
3676                         info->queue_region_number);
3677
3678         for (i = 0; i < info->queue_region_number; i++) {
3679                 printf("\n      region_id: %-14u queue_number: %-14u "
3680                         "queue_start_index: %-14u \n",
3681                         info->region[i].region_id,
3682                         info->region[i].queue_num,
3683                         info->region[i].queue_start_index);
3684
3685                 printf("  user_priority_num is  %-14u :",
3686                                         info->region[i].user_priority_num);
3687                 for (j = 0; j < info->region[i].user_priority_num; j++)
3688                         printf(" %-14u ", info->region[i].user_priority[j]);
3689
3690                 printf("\n      flowtype_num is  %-14u :",
3691                                 info->region[i].flowtype_num);
3692                 for (j = 0; j < info->region[i].flowtype_num; j++)
3693                         printf(" %-14u ", info->region[i].hw_flowtype[j]);
3694         }
3695 #else
3696         RTE_SET_USED(port_id);
3697         RTE_SET_USED(buf);
3698 #endif
3699
3700         printf("\n\n");
3701 }