net: add rte prefix to UDP structure
[dpdk.git] / app / test-pmd / csumonly.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_sctp.h>
39 #include <rte_prefetch.h>
40 #include <rte_string_fns.h>
41 #include <rte_flow.h>
42 #include <rte_gro.h>
43 #include <rte_gso.h>
44
45 #include "testpmd.h"
46
47 #define IP_DEFTTL  64   /* from RFC 1340. */
48 #define IP_VERSION 0x40
49 #define IP_HDRLEN  0x05 /* default IP header length == five 32-bits words. */
50 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
51
52 #define GRE_CHECKSUM_PRESENT    0x8000
53 #define GRE_KEY_PRESENT         0x2000
54 #define GRE_SEQUENCE_PRESENT    0x1000
55 #define GRE_EXT_LEN             4
56 #define GRE_SUPPORTED_FIELDS    (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
57                                  GRE_SEQUENCE_PRESENT)
58
59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
62 #else
63 #define _htons(x) (x)
64 #endif
65
66 uint16_t vxlan_gpe_udp_port = 4790;
67
68 /* structure that caches offload info for the current packet */
69 struct testpmd_offload_info {
70         uint16_t ethertype;
71         uint8_t gso_enable;
72         uint16_t l2_len;
73         uint16_t l3_len;
74         uint16_t l4_len;
75         uint8_t l4_proto;
76         uint8_t is_tunnel;
77         uint16_t outer_ethertype;
78         uint16_t outer_l2_len;
79         uint16_t outer_l3_len;
80         uint8_t outer_l4_proto;
81         uint16_t tso_segsz;
82         uint16_t tunnel_tso_segsz;
83         uint32_t pkt_len;
84 };
85
86 /* simplified GRE header */
87 struct simple_gre_hdr {
88         uint16_t flags;
89         uint16_t proto;
90 } __attribute__((__packed__));
91
92 static uint16_t
93 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
94 {
95         if (ethertype == _htons(RTE_ETHER_TYPE_IPv4))
96                 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
97         else /* assume ethertype == RTE_ETHER_TYPE_IPv6 */
98                 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
99 }
100
101 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
102 static void
103 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
104 {
105         struct rte_tcp_hdr *tcp_hdr;
106
107         info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
108         info->l4_proto = ipv4_hdr->next_proto_id;
109
110         /* only fill l4_len for TCP, it's useful for TSO */
111         if (info->l4_proto == IPPROTO_TCP) {
112                 tcp_hdr = (struct rte_tcp_hdr *)
113                         ((char *)ipv4_hdr + info->l3_len);
114                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
115         } else if (info->l4_proto == IPPROTO_UDP)
116                 info->l4_len = sizeof(struct rte_udp_hdr);
117         else
118                 info->l4_len = 0;
119 }
120
121 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
122 static void
123 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
124 {
125         struct rte_tcp_hdr *tcp_hdr;
126
127         info->l3_len = sizeof(struct rte_ipv6_hdr);
128         info->l4_proto = ipv6_hdr->proto;
129
130         /* only fill l4_len for TCP, it's useful for TSO */
131         if (info->l4_proto == IPPROTO_TCP) {
132                 tcp_hdr = (struct rte_tcp_hdr *)
133                         ((char *)ipv6_hdr + info->l3_len);
134                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
135         } else if (info->l4_proto == IPPROTO_UDP)
136                 info->l4_len = sizeof(struct rte_udp_hdr);
137         else
138                 info->l4_len = 0;
139 }
140
141 /*
142  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
143  * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
144  * header. The l4_len argument is only set in case of TCP (useful for TSO).
145  */
146 static void
147 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
148 {
149         struct rte_ipv4_hdr *ipv4_hdr;
150         struct rte_ipv6_hdr *ipv6_hdr;
151
152         info->l2_len = sizeof(struct rte_ether_hdr);
153         info->ethertype = eth_hdr->ether_type;
154
155         if (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN)) {
156                 struct rte_vlan_hdr *vlan_hdr = (
157                         struct rte_vlan_hdr *)(eth_hdr + 1);
158
159                 info->l2_len  += sizeof(struct rte_vlan_hdr);
160                 info->ethertype = vlan_hdr->eth_proto;
161         }
162
163         switch (info->ethertype) {
164         case _htons(RTE_ETHER_TYPE_IPv4):
165                 ipv4_hdr = (struct rte_ipv4_hdr *)
166                         ((char *)eth_hdr + info->l2_len);
167                 parse_ipv4(ipv4_hdr, info);
168                 break;
169         case _htons(RTE_ETHER_TYPE_IPv6):
170                 ipv6_hdr = (struct rte_ipv6_hdr *)
171                         ((char *)eth_hdr + info->l2_len);
172                 parse_ipv6(ipv6_hdr, info);
173                 break;
174         default:
175                 info->l4_len = 0;
176                 info->l3_len = 0;
177                 info->l4_proto = 0;
178                 break;
179         }
180 }
181
182 /* Parse a vxlan header */
183 static void
184 parse_vxlan(struct rte_udp_hdr *udp_hdr,
185             struct testpmd_offload_info *info,
186             uint32_t pkt_type)
187 {
188         struct rte_ether_hdr *eth_hdr;
189
190         /* check udp destination port, 4789 is the default vxlan port
191          * (rfc7348) or that the rx offload flag is set (i40e only
192          * currently) */
193         if (udp_hdr->dst_port != _htons(4789) &&
194                 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
195                 return;
196
197         info->is_tunnel = 1;
198         info->outer_ethertype = info->ethertype;
199         info->outer_l2_len = info->l2_len;
200         info->outer_l3_len = info->l3_len;
201         info->outer_l4_proto = info->l4_proto;
202
203         eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
204                 sizeof(struct rte_udp_hdr) +
205                 sizeof(struct rte_vxlan_hdr));
206
207         parse_ethernet(eth_hdr, info);
208         info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
209 }
210
211 /* Parse a vxlan-gpe header */
212 static void
213 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
214             struct testpmd_offload_info *info)
215 {
216         struct rte_ether_hdr *eth_hdr;
217         struct rte_ipv4_hdr *ipv4_hdr;
218         struct rte_ipv6_hdr *ipv6_hdr;
219         struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
220         uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
221
222         /* Check udp destination port. */
223         if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
224                 return;
225
226         vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
227                                 sizeof(struct rte_udp_hdr));
228
229         if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
230             RTE_VXLAN_GPE_TYPE_IPV4) {
231                 info->is_tunnel = 1;
232                 info->outer_ethertype = info->ethertype;
233                 info->outer_l2_len = info->l2_len;
234                 info->outer_l3_len = info->l3_len;
235                 info->outer_l4_proto = info->l4_proto;
236
237                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
238                            vxlan_gpe_len);
239
240                 parse_ipv4(ipv4_hdr, info);
241                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
242                 info->l2_len = 0;
243
244         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
245                 info->is_tunnel = 1;
246                 info->outer_ethertype = info->ethertype;
247                 info->outer_l2_len = info->l2_len;
248                 info->outer_l3_len = info->l3_len;
249                 info->outer_l4_proto = info->l4_proto;
250
251                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
252                            vxlan_gpe_len);
253
254                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
255                 parse_ipv6(ipv6_hdr, info);
256                 info->l2_len = 0;
257
258         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
259                 info->is_tunnel = 1;
260                 info->outer_ethertype = info->ethertype;
261                 info->outer_l2_len = info->l2_len;
262                 info->outer_l3_len = info->l3_len;
263                 info->outer_l4_proto = info->l4_proto;
264
265                 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
266                           vxlan_gpe_len);
267
268                 parse_ethernet(eth_hdr, info);
269         } else
270                 return;
271
272         info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
273 }
274
275 /* Parse a gre header */
276 static void
277 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
278 {
279         struct rte_ether_hdr *eth_hdr;
280         struct rte_ipv4_hdr *ipv4_hdr;
281         struct rte_ipv6_hdr *ipv6_hdr;
282         uint8_t gre_len = 0;
283
284         gre_len += sizeof(struct simple_gre_hdr);
285
286         if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
287                 gre_len += GRE_EXT_LEN;
288         if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
289                 gre_len += GRE_EXT_LEN;
290         if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
291                 gre_len += GRE_EXT_LEN;
292
293         if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPv4)) {
294                 info->is_tunnel = 1;
295                 info->outer_ethertype = info->ethertype;
296                 info->outer_l2_len = info->l2_len;
297                 info->outer_l3_len = info->l3_len;
298                 info->outer_l4_proto = info->l4_proto;
299
300                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
301
302                 parse_ipv4(ipv4_hdr, info);
303                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
304                 info->l2_len = 0;
305
306         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPv6)) {
307                 info->is_tunnel = 1;
308                 info->outer_ethertype = info->ethertype;
309                 info->outer_l2_len = info->l2_len;
310                 info->outer_l3_len = info->l3_len;
311                 info->outer_l4_proto = info->l4_proto;
312
313                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
314
315                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
316                 parse_ipv6(ipv6_hdr, info);
317                 info->l2_len = 0;
318
319         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
320                 info->is_tunnel = 1;
321                 info->outer_ethertype = info->ethertype;
322                 info->outer_l2_len = info->l2_len;
323                 info->outer_l3_len = info->l3_len;
324                 info->outer_l4_proto = info->l4_proto;
325
326                 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
327
328                 parse_ethernet(eth_hdr, info);
329         } else
330                 return;
331
332         info->l2_len += gre_len;
333 }
334
335
336 /* Parse an encapsulated ip or ipv6 header */
337 static void
338 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
339 {
340         struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
341         struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
342         uint8_t ip_version;
343
344         ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
345
346         if (ip_version != 4 && ip_version != 6)
347                 return;
348
349         info->is_tunnel = 1;
350         info->outer_ethertype = info->ethertype;
351         info->outer_l2_len = info->l2_len;
352         info->outer_l3_len = info->l3_len;
353
354         if (ip_version == 4) {
355                 parse_ipv4(ipv4_hdr, info);
356                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
357         } else {
358                 parse_ipv6(ipv6_hdr, info);
359                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
360         }
361         info->l2_len = 0;
362 }
363
364 /* if possible, calculate the checksum of a packet in hw or sw,
365  * depending on the testpmd command line configuration */
366 static uint64_t
367 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
368         uint64_t tx_offloads)
369 {
370         struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
371         struct rte_udp_hdr *udp_hdr;
372         struct rte_tcp_hdr *tcp_hdr;
373         struct rte_sctp_hdr *sctp_hdr;
374         uint64_t ol_flags = 0;
375         uint32_t max_pkt_len, tso_segsz = 0;
376
377         /* ensure packet is large enough to require tso */
378         if (!info->is_tunnel) {
379                 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
380                         info->tso_segsz;
381                 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
382                         tso_segsz = info->tso_segsz;
383         } else {
384                 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
385                         info->l2_len + info->l3_len + info->l4_len +
386                         info->tunnel_tso_segsz;
387                 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
388                         tso_segsz = info->tunnel_tso_segsz;
389         }
390
391         if (info->ethertype == _htons(RTE_ETHER_TYPE_IPv4)) {
392                 ipv4_hdr = l3_hdr;
393                 ipv4_hdr->hdr_checksum = 0;
394
395                 ol_flags |= PKT_TX_IPV4;
396                 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
397                         ol_flags |= PKT_TX_IP_CKSUM;
398                 } else {
399                         if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
400                                 ol_flags |= PKT_TX_IP_CKSUM;
401                         else
402                                 ipv4_hdr->hdr_checksum =
403                                         rte_ipv4_cksum(ipv4_hdr);
404                 }
405         } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPv6))
406                 ol_flags |= PKT_TX_IPV6;
407         else
408                 return 0; /* packet type not supported, nothing to do */
409
410         if (info->l4_proto == IPPROTO_UDP) {
411                 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
412                 /* do not recalculate udp cksum if it was 0 */
413                 if (udp_hdr->dgram_cksum != 0) {
414                         udp_hdr->dgram_cksum = 0;
415                         if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
416                                 ol_flags |= PKT_TX_UDP_CKSUM;
417                         else {
418                                 udp_hdr->dgram_cksum =
419                                         get_udptcp_checksum(l3_hdr, udp_hdr,
420                                                 info->ethertype);
421                         }
422                 }
423                 if (info->gso_enable)
424                         ol_flags |= PKT_TX_UDP_SEG;
425         } else if (info->l4_proto == IPPROTO_TCP) {
426                 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
427                 tcp_hdr->cksum = 0;
428                 if (tso_segsz)
429                         ol_flags |= PKT_TX_TCP_SEG;
430                 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
431                         ol_flags |= PKT_TX_TCP_CKSUM;
432                 else {
433                         tcp_hdr->cksum =
434                                 get_udptcp_checksum(l3_hdr, tcp_hdr,
435                                         info->ethertype);
436                 }
437                 if (info->gso_enable)
438                         ol_flags |= PKT_TX_TCP_SEG;
439         } else if (info->l4_proto == IPPROTO_SCTP) {
440                 sctp_hdr = (struct rte_sctp_hdr *)
441                         ((char *)l3_hdr + info->l3_len);
442                 sctp_hdr->cksum = 0;
443                 /* sctp payload must be a multiple of 4 to be
444                  * offloaded */
445                 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
446                         ((ipv4_hdr->total_length & 0x3) == 0)) {
447                         ol_flags |= PKT_TX_SCTP_CKSUM;
448                 } else {
449                         /* XXX implement CRC32c, example available in
450                          * RFC3309 */
451                 }
452         }
453
454         return ol_flags;
455 }
456
457 /* Calculate the checksum of outer header */
458 static uint64_t
459 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
460         uint64_t tx_offloads, int tso_enabled)
461 {
462         struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
463         struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
464         struct rte_udp_hdr *udp_hdr;
465         uint64_t ol_flags = 0;
466
467         if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPv4)) {
468                 ipv4_hdr->hdr_checksum = 0;
469                 ol_flags |= PKT_TX_OUTER_IPV4;
470
471                 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
472                         ol_flags |= PKT_TX_OUTER_IP_CKSUM;
473                 else
474                         ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
475         } else
476                 ol_flags |= PKT_TX_OUTER_IPV6;
477
478         if (info->outer_l4_proto != IPPROTO_UDP)
479                 return ol_flags;
480
481         /* Skip SW outer UDP checksum generation if HW supports it */
482         if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
483                 ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
484                 return ol_flags;
485         }
486
487         udp_hdr = (struct rte_udp_hdr *)
488                 ((char *)outer_l3_hdr + info->outer_l3_len);
489
490         /* outer UDP checksum is done in software. In the other side, for
491          * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
492          * set to zero.
493          *
494          * If a packet will be TSOed into small packets by NIC, we cannot
495          * set/calculate a non-zero checksum, because it will be a wrong
496          * value after the packet be split into several small packets.
497          */
498         if (tso_enabled)
499                 udp_hdr->dgram_cksum = 0;
500
501         /* do not recalculate udp cksum if it was 0 */
502         if (udp_hdr->dgram_cksum != 0) {
503                 udp_hdr->dgram_cksum = 0;
504                 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPv4))
505                         udp_hdr->dgram_cksum =
506                                 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
507                 else
508                         udp_hdr->dgram_cksum =
509                                 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
510         }
511
512         return ol_flags;
513 }
514
515 /*
516  * Helper function.
517  * Performs actual copying.
518  * Returns number of segments in the destination mbuf on success,
519  * or negative error code on failure.
520  */
521 static int
522 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
523         uint16_t seglen[], uint8_t nb_seg)
524 {
525         uint32_t dlen, slen, tlen;
526         uint32_t i, len;
527         const struct rte_mbuf *m;
528         const uint8_t *src;
529         uint8_t *dst;
530
531         dlen = 0;
532         slen = 0;
533         tlen = 0;
534
535         dst = NULL;
536         src = NULL;
537
538         m = ms;
539         i = 0;
540         while (ms != NULL && i != nb_seg) {
541
542                 if (slen == 0) {
543                         slen = rte_pktmbuf_data_len(ms);
544                         src = rte_pktmbuf_mtod(ms, const uint8_t *);
545                 }
546
547                 if (dlen == 0) {
548                         dlen = RTE_MIN(seglen[i], slen);
549                         md[i]->data_len = dlen;
550                         md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
551                         dst = rte_pktmbuf_mtod(md[i], uint8_t *);
552                 }
553
554                 len = RTE_MIN(slen, dlen);
555                 memcpy(dst, src, len);
556                 tlen += len;
557                 slen -= len;
558                 dlen -= len;
559                 src += len;
560                 dst += len;
561
562                 if (slen == 0)
563                         ms = ms->next;
564                 if (dlen == 0)
565                         i++;
566         }
567
568         if (ms != NULL)
569                 return -ENOBUFS;
570         else if (tlen != m->pkt_len)
571                 return -EINVAL;
572
573         md[0]->nb_segs = nb_seg;
574         md[0]->pkt_len = tlen;
575         md[0]->vlan_tci = m->vlan_tci;
576         md[0]->vlan_tci_outer = m->vlan_tci_outer;
577         md[0]->ol_flags = m->ol_flags;
578         md[0]->tx_offload = m->tx_offload;
579
580         return nb_seg;
581 }
582
583 /*
584  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
585  * Copy packet contents and offload information into the new segmented mbuf.
586  */
587 static struct rte_mbuf *
588 pkt_copy_split(const struct rte_mbuf *pkt)
589 {
590         int32_t n, rc;
591         uint32_t i, len, nb_seg;
592         struct rte_mempool *mp;
593         uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
594         struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
595
596         mp = current_fwd_lcore()->mbp;
597
598         if (tx_pkt_split == TX_PKT_SPLIT_RND)
599                 nb_seg = random() % tx_pkt_nb_segs + 1;
600         else
601                 nb_seg = tx_pkt_nb_segs;
602
603         memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
604
605         /* calculate number of segments to use and their length. */
606         len = 0;
607         for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
608                 len += seglen[i];
609                 md[i] = NULL;
610         }
611
612         n = pkt->pkt_len - len;
613
614         /* update size of the last segment to fit rest of the packet */
615         if (n >= 0) {
616                 seglen[i - 1] += n;
617                 len += n;
618         }
619
620         nb_seg = i;
621         while (i != 0) {
622                 p = rte_pktmbuf_alloc(mp);
623                 if (p == NULL) {
624                         TESTPMD_LOG(ERR,
625                                 "failed to allocate %u-th of %u mbuf "
626                                 "from mempool: %s\n",
627                                 nb_seg - i, nb_seg, mp->name);
628                         break;
629                 }
630
631                 md[--i] = p;
632                 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
633                         TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
634                                 "expected seglen: %u, "
635                                 "actual mbuf tailroom: %u\n",
636                                 mp->name, i, seglen[i],
637                                 rte_pktmbuf_tailroom(md[i]));
638                         break;
639                 }
640         }
641
642         /* all mbufs successfully allocated, do copy */
643         if (i == 0) {
644                 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
645                 if (rc < 0)
646                         TESTPMD_LOG(ERR,
647                                 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
648                                 "into %u segments failed with error code: %d\n",
649                                 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
650
651                 /* figure out how many mbufs to free. */
652                 i = RTE_MAX(rc, 0);
653         }
654
655         /* free unused mbufs */
656         for (; i != nb_seg; i++) {
657                 rte_pktmbuf_free_seg(md[i]);
658                 md[i] = NULL;
659         }
660
661         return md[0];
662 }
663
664 /*
665  * Receive a burst of packets, and for each packet:
666  *  - parse packet, and try to recognize a supported packet type (1)
667  *  - if it's not a supported packet type, don't touch the packet, else:
668  *  - reprocess the checksum of all supported layers. This is done in SW
669  *    or HW, depending on testpmd command line configuration
670  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
671  *    segmentation offload (this implies HW TCP checksum)
672  * Then transmit packets on the output port.
673  *
674  * (1) Supported packets are:
675  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
676  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
677  *           UDP|TCP|SCTP
678  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
679  *           UDP|TCP|SCTP
680  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
681  *           UDP|TCP|SCTP
682  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
683  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
684  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
685  *
686  * The testpmd command line for this forward engine sets the flags
687  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
688  * wether a checksum must be calculated in software or in hardware. The
689  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
690  * OUTER_IP is only useful for tunnel packets.
691  */
692 static void
693 pkt_burst_checksum_forward(struct fwd_stream *fs)
694 {
695         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
696         struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
697         struct rte_gso_ctx *gso_ctx;
698         struct rte_mbuf **tx_pkts_burst;
699         struct rte_port *txp;
700         struct rte_mbuf *m, *p;
701         struct rte_ether_hdr *eth_hdr;
702         void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
703         void **gro_ctx;
704         uint16_t gro_pkts_num;
705         uint8_t gro_enable;
706         uint16_t nb_rx;
707         uint16_t nb_tx;
708         uint16_t nb_prep;
709         uint16_t i;
710         uint64_t rx_ol_flags, tx_ol_flags;
711         uint64_t tx_offloads;
712         uint32_t retry;
713         uint32_t rx_bad_ip_csum;
714         uint32_t rx_bad_l4_csum;
715         uint32_t rx_bad_outer_l4_csum;
716         struct testpmd_offload_info info;
717         uint16_t nb_segments = 0;
718         int ret;
719
720 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
721         uint64_t start_tsc;
722         uint64_t end_tsc;
723         uint64_t core_cycles;
724 #endif
725
726 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
727         start_tsc = rte_rdtsc();
728 #endif
729
730         /* receive a burst of packet */
731         nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
732                                  nb_pkt_per_burst);
733         if (unlikely(nb_rx == 0))
734                 return;
735 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
736         fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
737 #endif
738         fs->rx_packets += nb_rx;
739         rx_bad_ip_csum = 0;
740         rx_bad_l4_csum = 0;
741         rx_bad_outer_l4_csum = 0;
742         gro_enable = gro_ports[fs->rx_port].enable;
743
744         txp = &ports[fs->tx_port];
745         tx_offloads = txp->dev_conf.txmode.offloads;
746         memset(&info, 0, sizeof(info));
747         info.tso_segsz = txp->tso_segsz;
748         info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
749         if (gso_ports[fs->tx_port].enable)
750                 info.gso_enable = 1;
751
752         for (i = 0; i < nb_rx; i++) {
753                 if (likely(i < nb_rx - 1))
754                         rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
755                                                        void *));
756
757                 m = pkts_burst[i];
758                 info.is_tunnel = 0;
759                 info.pkt_len = rte_pktmbuf_pkt_len(m);
760                 tx_ol_flags = m->ol_flags &
761                               (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
762                 rx_ol_flags = m->ol_flags;
763
764                 /* Update the L3/L4 checksum error packet statistics */
765                 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
766                         rx_bad_ip_csum += 1;
767                 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
768                         rx_bad_l4_csum += 1;
769                 if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
770                         rx_bad_outer_l4_csum += 1;
771
772                 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
773                  * and inner headers */
774
775                 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
776                 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
777                                 &eth_hdr->d_addr);
778                 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
779                                 &eth_hdr->s_addr);
780                 parse_ethernet(eth_hdr, &info);
781                 l3_hdr = (char *)eth_hdr + info.l2_len;
782
783                 /* check if it's a supported tunnel */
784                 if (txp->parse_tunnel) {
785                         if (info.l4_proto == IPPROTO_UDP) {
786                                 struct rte_udp_hdr *udp_hdr;
787
788                                 udp_hdr = (struct rte_udp_hdr *)
789                                         ((char *)l3_hdr + info.l3_len);
790                                 parse_vxlan_gpe(udp_hdr, &info);
791                                 if (info.is_tunnel) {
792                                         tx_ol_flags |= PKT_TX_TUNNEL_VXLAN_GPE;
793                                 } else {
794                                         parse_vxlan(udp_hdr, &info,
795                                                     m->packet_type);
796                                         if (info.is_tunnel)
797                                                 tx_ol_flags |=
798                                                         PKT_TX_TUNNEL_VXLAN;
799                                 }
800                         } else if (info.l4_proto == IPPROTO_GRE) {
801                                 struct simple_gre_hdr *gre_hdr;
802
803                                 gre_hdr = (struct simple_gre_hdr *)
804                                         ((char *)l3_hdr + info.l3_len);
805                                 parse_gre(gre_hdr, &info);
806                                 if (info.is_tunnel)
807                                         tx_ol_flags |= PKT_TX_TUNNEL_GRE;
808                         } else if (info.l4_proto == IPPROTO_IPIP) {
809                                 void *encap_ip_hdr;
810
811                                 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
812                                 parse_encap_ip(encap_ip_hdr, &info);
813                                 if (info.is_tunnel)
814                                         tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
815                         }
816                 }
817
818                 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
819                 if (info.is_tunnel) {
820                         outer_l3_hdr = l3_hdr;
821                         l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
822                 }
823
824                 /* step 2: depending on user command line configuration,
825                  * recompute checksum either in software or flag the
826                  * mbuf to offload the calculation to the NIC. If TSO
827                  * is configured, prepare the mbuf for TCP segmentation. */
828
829                 /* process checksums of inner headers first */
830                 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
831                         tx_offloads);
832
833                 /* Then process outer headers if any. Note that the software
834                  * checksum will be wrong if one of the inner checksums is
835                  * processed in hardware. */
836                 if (info.is_tunnel == 1) {
837                         tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
838                                         tx_offloads,
839                                         !!(tx_ol_flags & PKT_TX_TCP_SEG));
840                 }
841
842                 /* step 3: fill the mbuf meta data (flags and header lengths) */
843
844                 m->tx_offload = 0;
845                 if (info.is_tunnel == 1) {
846                         if (info.tunnel_tso_segsz ||
847                             (tx_offloads &
848                              DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
849                             (tx_offloads &
850                              DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
851                             (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
852                                 m->outer_l2_len = info.outer_l2_len;
853                                 m->outer_l3_len = info.outer_l3_len;
854                                 m->l2_len = info.l2_len;
855                                 m->l3_len = info.l3_len;
856                                 m->l4_len = info.l4_len;
857                                 m->tso_segsz = info.tunnel_tso_segsz;
858                         }
859                         else {
860                                 /* if there is a outer UDP cksum
861                                    processed in sw and the inner in hw,
862                                    the outer checksum will be wrong as
863                                    the payload will be modified by the
864                                    hardware */
865                                 m->l2_len = info.outer_l2_len +
866                                         info.outer_l3_len + info.l2_len;
867                                 m->l3_len = info.l3_len;
868                                 m->l4_len = info.l4_len;
869                         }
870                 } else {
871                         /* this is only useful if an offload flag is
872                          * set, but it does not hurt to fill it in any
873                          * case */
874                         m->l2_len = info.l2_len;
875                         m->l3_len = info.l3_len;
876                         m->l4_len = info.l4_len;
877                         m->tso_segsz = info.tso_segsz;
878                 }
879                 m->ol_flags = tx_ol_flags;
880
881                 /* Do split & copy for the packet. */
882                 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
883                         p = pkt_copy_split(m);
884                         if (p != NULL) {
885                                 rte_pktmbuf_free(m);
886                                 m = p;
887                                 pkts_burst[i] = m;
888                         }
889                 }
890
891                 /* if verbose mode is enabled, dump debug info */
892                 if (verbose_level > 0) {
893                         char buf[256];
894
895                         printf("-----------------\n");
896                         printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
897                                 fs->rx_port, m, m->pkt_len, m->nb_segs);
898                         /* dump rx parsed packet info */
899                         rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
900                         printf("rx: l2_len=%d ethertype=%x l3_len=%d "
901                                 "l4_proto=%d l4_len=%d flags=%s\n",
902                                 info.l2_len, rte_be_to_cpu_16(info.ethertype),
903                                 info.l3_len, info.l4_proto, info.l4_len, buf);
904                         if (rx_ol_flags & PKT_RX_LRO)
905                                 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
906                         if (info.is_tunnel == 1)
907                                 printf("rx: outer_l2_len=%d outer_ethertype=%x "
908                                         "outer_l3_len=%d\n", info.outer_l2_len,
909                                         rte_be_to_cpu_16(info.outer_ethertype),
910                                         info.outer_l3_len);
911                         /* dump tx packet info */
912                         if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
913                                             DEV_TX_OFFLOAD_UDP_CKSUM |
914                                             DEV_TX_OFFLOAD_TCP_CKSUM |
915                                             DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
916                                 info.tso_segsz != 0)
917                                 printf("tx: m->l2_len=%d m->l3_len=%d "
918                                         "m->l4_len=%d\n",
919                                         m->l2_len, m->l3_len, m->l4_len);
920                         if (info.is_tunnel == 1) {
921                                 if ((tx_offloads &
922                                     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
923                                     (tx_offloads &
924                                     DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
925                                     (tx_ol_flags & PKT_TX_OUTER_IPV6))
926                                         printf("tx: m->outer_l2_len=%d "
927                                                 "m->outer_l3_len=%d\n",
928                                                 m->outer_l2_len,
929                                                 m->outer_l3_len);
930                                 if (info.tunnel_tso_segsz != 0 &&
931                                                 (m->ol_flags & PKT_TX_TCP_SEG))
932                                         printf("tx: m->tso_segsz=%d\n",
933                                                 m->tso_segsz);
934                         } else if (info.tso_segsz != 0 &&
935                                         (m->ol_flags & PKT_TX_TCP_SEG))
936                                 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
937                         rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
938                         printf("tx: flags=%s", buf);
939                         printf("\n");
940                 }
941         }
942
943         if (unlikely(gro_enable)) {
944                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
945                         nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
946                                         &(gro_ports[fs->rx_port].param));
947                 } else {
948                         gro_ctx = current_fwd_lcore()->gro_ctx;
949                         nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
950
951                         if (++fs->gro_times >= gro_flush_cycles) {
952                                 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
953                                 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
954                                         gro_pkts_num = MAX_PKT_BURST - nb_rx;
955
956                                 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
957                                                 RTE_GRO_TCP_IPV4,
958                                                 &pkts_burst[nb_rx],
959                                                 gro_pkts_num);
960                                 fs->gro_times = 0;
961                         }
962                 }
963         }
964
965         if (gso_ports[fs->tx_port].enable == 0)
966                 tx_pkts_burst = pkts_burst;
967         else {
968                 gso_ctx = &(current_fwd_lcore()->gso_ctx);
969                 gso_ctx->gso_size = gso_max_segment_size;
970                 for (i = 0; i < nb_rx; i++) {
971                         ret = rte_gso_segment(pkts_burst[i], gso_ctx,
972                                         &gso_segments[nb_segments],
973                                         GSO_MAX_PKT_BURST - nb_segments);
974                         if (ret >= 0)
975                                 nb_segments += ret;
976                         else {
977                                 TESTPMD_LOG(DEBUG, "Unable to segment packet");
978                                 rte_pktmbuf_free(pkts_burst[i]);
979                         }
980                 }
981
982                 tx_pkts_burst = gso_segments;
983                 nb_rx = nb_segments;
984         }
985
986         nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
987                         tx_pkts_burst, nb_rx);
988         if (nb_prep != nb_rx)
989                 printf("Preparing packet burst to transmit failed: %s\n",
990                                 rte_strerror(rte_errno));
991
992         nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
993                         nb_prep);
994
995         /*
996          * Retry if necessary
997          */
998         if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
999                 retry = 0;
1000                 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1001                         rte_delay_us(burst_tx_delay_time);
1002                         nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1003                                         &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1004                 }
1005         }
1006         fs->tx_packets += nb_tx;
1007         fs->rx_bad_ip_csum += rx_bad_ip_csum;
1008         fs->rx_bad_l4_csum += rx_bad_l4_csum;
1009         fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1010
1011 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1012         fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
1013 #endif
1014         if (unlikely(nb_tx < nb_rx)) {
1015                 fs->fwd_dropped += (nb_rx - nb_tx);
1016                 do {
1017                         rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1018                 } while (++nb_tx < nb_rx);
1019         }
1020
1021 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1022         end_tsc = rte_rdtsc();
1023         core_cycles = (end_tsc - start_tsc);
1024         fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
1025 #endif
1026 }
1027
1028 struct fwd_engine csum_fwd_engine = {
1029         .fwd_mode_name  = "csum",
1030         .port_fwd_begin = NULL,
1031         .port_fwd_end   = NULL,
1032         .packet_fwd     = pkt_burst_checksum_forward,
1033 };