mbuf: add namespace to offload flags
[dpdk.git] / app / test-pmd / csumonly.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_vxlan.h>
39 #include <rte_sctp.h>
40 #include <rte_gtp.h>
41 #include <rte_prefetch.h>
42 #include <rte_string_fns.h>
43 #include <rte_flow.h>
44 #include <rte_gro.h>
45 #include <rte_gso.h>
46 #include <rte_geneve.h>
47
48 #include "testpmd.h"
49
50 #define IP_DEFTTL  64   /* from RFC 1340. */
51
52 #define GRE_CHECKSUM_PRESENT    0x8000
53 #define GRE_KEY_PRESENT         0x2000
54 #define GRE_SEQUENCE_PRESENT    0x1000
55 #define GRE_EXT_LEN             4
56 #define GRE_SUPPORTED_FIELDS    (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
57                                  GRE_SEQUENCE_PRESENT)
58
59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
62 #else
63 #define _htons(x) (x)
64 #endif
65
66 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT;
67 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT;
68
69 /* structure that caches offload info for the current packet */
70 struct testpmd_offload_info {
71         uint16_t ethertype;
72         uint8_t gso_enable;
73         uint16_t l2_len;
74         uint16_t l3_len;
75         uint16_t l4_len;
76         uint8_t l4_proto;
77         uint8_t is_tunnel;
78         uint16_t outer_ethertype;
79         uint16_t outer_l2_len;
80         uint16_t outer_l3_len;
81         uint8_t outer_l4_proto;
82         uint16_t tso_segsz;
83         uint16_t tunnel_tso_segsz;
84         uint32_t pkt_len;
85 };
86
87 /* simplified GRE header */
88 struct simple_gre_hdr {
89         uint16_t flags;
90         uint16_t proto;
91 } __rte_packed;
92
93 static uint16_t
94 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
95 {
96         if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
97                 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
98         else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
99                 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
100 }
101
102 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
103 static void
104 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
105 {
106         struct rte_tcp_hdr *tcp_hdr;
107
108         info->l3_len = rte_ipv4_hdr_len(ipv4_hdr);
109         info->l4_proto = ipv4_hdr->next_proto_id;
110
111         /* only fill l4_len for TCP, it's useful for TSO */
112         if (info->l4_proto == IPPROTO_TCP) {
113                 tcp_hdr = (struct rte_tcp_hdr *)
114                         ((char *)ipv4_hdr + info->l3_len);
115                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
116         } else if (info->l4_proto == IPPROTO_UDP)
117                 info->l4_len = sizeof(struct rte_udp_hdr);
118         else
119                 info->l4_len = 0;
120 }
121
122 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
123 static void
124 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
125 {
126         struct rte_tcp_hdr *tcp_hdr;
127
128         info->l3_len = sizeof(struct rte_ipv6_hdr);
129         info->l4_proto = ipv6_hdr->proto;
130
131         /* only fill l4_len for TCP, it's useful for TSO */
132         if (info->l4_proto == IPPROTO_TCP) {
133                 tcp_hdr = (struct rte_tcp_hdr *)
134                         ((char *)ipv6_hdr + info->l3_len);
135                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
136         } else if (info->l4_proto == IPPROTO_UDP)
137                 info->l4_len = sizeof(struct rte_udp_hdr);
138         else
139                 info->l4_len = 0;
140 }
141
142 /*
143  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
144  * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN
145  * headers. The l4_len argument is only set in case of TCP (useful for TSO).
146  */
147 static void
148 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
149 {
150         struct rte_ipv4_hdr *ipv4_hdr;
151         struct rte_ipv6_hdr *ipv6_hdr;
152         struct rte_vlan_hdr *vlan_hdr;
153
154         info->l2_len = sizeof(struct rte_ether_hdr);
155         info->ethertype = eth_hdr->ether_type;
156
157         while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) ||
158                info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) {
159                 vlan_hdr = (struct rte_vlan_hdr *)
160                         ((char *)eth_hdr + info->l2_len);
161                 info->l2_len  += sizeof(struct rte_vlan_hdr);
162                 info->ethertype = vlan_hdr->eth_proto;
163         }
164
165         switch (info->ethertype) {
166         case _htons(RTE_ETHER_TYPE_IPV4):
167                 ipv4_hdr = (struct rte_ipv4_hdr *)
168                         ((char *)eth_hdr + info->l2_len);
169                 parse_ipv4(ipv4_hdr, info);
170                 break;
171         case _htons(RTE_ETHER_TYPE_IPV6):
172                 ipv6_hdr = (struct rte_ipv6_hdr *)
173                         ((char *)eth_hdr + info->l2_len);
174                 parse_ipv6(ipv6_hdr, info);
175                 break;
176         default:
177                 info->l4_len = 0;
178                 info->l3_len = 0;
179                 info->l4_proto = 0;
180                 break;
181         }
182 }
183
184 /* Fill in outer layers length */
185 static void
186 update_tunnel_outer(struct testpmd_offload_info *info)
187 {
188         info->is_tunnel = 1;
189         info->outer_ethertype = info->ethertype;
190         info->outer_l2_len = info->l2_len;
191         info->outer_l3_len = info->l3_len;
192         info->outer_l4_proto = info->l4_proto;
193 }
194
195 /*
196  * Parse a GTP protocol header.
197  * No optional fields and next extension header type.
198  */
199 static void
200 parse_gtp(struct rte_udp_hdr *udp_hdr,
201           struct testpmd_offload_info *info)
202 {
203         struct rte_ipv4_hdr *ipv4_hdr;
204         struct rte_ipv6_hdr *ipv6_hdr;
205         struct rte_gtp_hdr *gtp_hdr;
206         uint8_t gtp_len = sizeof(*gtp_hdr);
207         uint8_t ip_ver;
208
209         /* Check udp destination port. */
210         if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
211             udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
212             udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
213                 return;
214
215         update_tunnel_outer(info);
216         info->l2_len = 0;
217
218         gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
219                   sizeof(struct rte_udp_hdr));
220
221         /*
222          * Check message type. If message type is 0xff, it is
223          * a GTP data packet. If not, it is a GTP control packet
224          */
225         if (gtp_hdr->msg_type == 0xff) {
226                 ip_ver = *(uint8_t *)((char *)udp_hdr +
227                          sizeof(struct rte_udp_hdr) +
228                          sizeof(struct rte_gtp_hdr));
229                 ip_ver = (ip_ver) & 0xf0;
230
231                 if (ip_ver == RTE_GTP_TYPE_IPV4) {
232                         ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
233                                    gtp_len);
234                         info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
235                         parse_ipv4(ipv4_hdr, info);
236                 } else if (ip_ver == RTE_GTP_TYPE_IPV6) {
237                         ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
238                                    gtp_len);
239                         info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
240                         parse_ipv6(ipv6_hdr, info);
241                 }
242         } else {
243                 info->ethertype = 0;
244                 info->l4_len = 0;
245                 info->l3_len = 0;
246                 info->l4_proto = 0;
247         }
248
249         info->l2_len += RTE_ETHER_GTP_HLEN;
250 }
251
252 /* Parse a vxlan header */
253 static void
254 parse_vxlan(struct rte_udp_hdr *udp_hdr,
255             struct testpmd_offload_info *info,
256             uint32_t pkt_type)
257 {
258         struct rte_ether_hdr *eth_hdr;
259
260         /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the
261          * default vxlan port (rfc7348) or that the rx offload flag is set
262          * (i40e only currently)
263          */
264         if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT) &&
265                 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
266                 return;
267
268         update_tunnel_outer(info);
269
270         eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
271                 sizeof(struct rte_udp_hdr) +
272                 sizeof(struct rte_vxlan_hdr));
273
274         parse_ethernet(eth_hdr, info);
275         info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
276 }
277
278 /* Parse a vxlan-gpe header */
279 static void
280 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
281             struct testpmd_offload_info *info)
282 {
283         struct rte_ether_hdr *eth_hdr;
284         struct rte_ipv4_hdr *ipv4_hdr;
285         struct rte_ipv6_hdr *ipv6_hdr;
286         struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
287         uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
288
289         /* Check udp destination port. */
290         if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
291                 return;
292
293         vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
294                                 sizeof(struct rte_udp_hdr));
295
296         if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
297             RTE_VXLAN_GPE_TYPE_IPV4) {
298                 update_tunnel_outer(info);
299
300                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
301                            vxlan_gpe_len);
302
303                 parse_ipv4(ipv4_hdr, info);
304                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
305                 info->l2_len = 0;
306
307         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
308                 update_tunnel_outer(info);
309
310                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
311                            vxlan_gpe_len);
312
313                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
314                 parse_ipv6(ipv6_hdr, info);
315                 info->l2_len = 0;
316
317         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
318                 update_tunnel_outer(info);
319
320                 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
321                           vxlan_gpe_len);
322
323                 parse_ethernet(eth_hdr, info);
324         } else
325                 return;
326
327         info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
328 }
329
330 /* Parse a geneve header */
331 static void
332 parse_geneve(struct rte_udp_hdr *udp_hdr,
333             struct testpmd_offload_info *info)
334 {
335         struct rte_ether_hdr *eth_hdr;
336         struct rte_ipv4_hdr *ipv4_hdr;
337         struct rte_ipv6_hdr *ipv6_hdr;
338         struct rte_geneve_hdr *geneve_hdr;
339         uint16_t geneve_len;
340
341         /* Check udp destination port. */
342         if (udp_hdr->dst_port != _htons(geneve_udp_port))
343                 return;
344
345         geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr +
346                                 sizeof(struct rte_udp_hdr));
347         geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4;
348         if (!geneve_hdr->proto || geneve_hdr->proto ==
349             _htons(RTE_ETHER_TYPE_IPV4)) {
350                 update_tunnel_outer(info);
351                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr +
352                            geneve_len);
353                 parse_ipv4(ipv4_hdr, info);
354                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
355                 info->l2_len = 0;
356         } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
357                 update_tunnel_outer(info);
358                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr +
359                            geneve_len);
360                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
361                 parse_ipv6(ipv6_hdr, info);
362                 info->l2_len = 0;
363
364         } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) {
365                 update_tunnel_outer(info);
366                 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr +
367                           geneve_len);
368                 parse_ethernet(eth_hdr, info);
369         } else
370                 return;
371
372         info->l2_len +=
373                 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) +
374                 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4);
375 }
376
377 /* Parse a gre header */
378 static void
379 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
380 {
381         struct rte_ether_hdr *eth_hdr;
382         struct rte_ipv4_hdr *ipv4_hdr;
383         struct rte_ipv6_hdr *ipv6_hdr;
384         uint8_t gre_len = 0;
385
386         gre_len += sizeof(struct simple_gre_hdr);
387
388         if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
389                 gre_len += GRE_EXT_LEN;
390         if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
391                 gre_len += GRE_EXT_LEN;
392         if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
393                 gre_len += GRE_EXT_LEN;
394
395         if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
396                 update_tunnel_outer(info);
397
398                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
399
400                 parse_ipv4(ipv4_hdr, info);
401                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
402                 info->l2_len = 0;
403
404         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
405                 update_tunnel_outer(info);
406
407                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
408
409                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
410                 parse_ipv6(ipv6_hdr, info);
411                 info->l2_len = 0;
412
413         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
414                 update_tunnel_outer(info);
415
416                 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
417
418                 parse_ethernet(eth_hdr, info);
419         } else
420                 return;
421
422         info->l2_len += gre_len;
423 }
424
425
426 /* Parse an encapsulated ip or ipv6 header */
427 static void
428 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
429 {
430         struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
431         struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
432         uint8_t ip_version;
433
434         ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
435
436         if (ip_version != 4 && ip_version != 6)
437                 return;
438
439         info->is_tunnel = 1;
440         info->outer_ethertype = info->ethertype;
441         info->outer_l2_len = info->l2_len;
442         info->outer_l3_len = info->l3_len;
443
444         if (ip_version == 4) {
445                 parse_ipv4(ipv4_hdr, info);
446                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
447         } else {
448                 parse_ipv6(ipv6_hdr, info);
449                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
450         }
451         info->l2_len = 0;
452 }
453
454 /* if possible, calculate the checksum of a packet in hw or sw,
455  * depending on the testpmd command line configuration */
456 static uint64_t
457 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
458         uint64_t tx_offloads)
459 {
460         struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
461         struct rte_udp_hdr *udp_hdr;
462         struct rte_tcp_hdr *tcp_hdr;
463         struct rte_sctp_hdr *sctp_hdr;
464         uint64_t ol_flags = 0;
465         uint32_t max_pkt_len, tso_segsz = 0;
466
467         /* ensure packet is large enough to require tso */
468         if (!info->is_tunnel) {
469                 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
470                         info->tso_segsz;
471                 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
472                         tso_segsz = info->tso_segsz;
473         } else {
474                 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
475                         info->l2_len + info->l3_len + info->l4_len +
476                         info->tunnel_tso_segsz;
477                 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
478                         tso_segsz = info->tunnel_tso_segsz;
479         }
480
481         if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
482                 ipv4_hdr = l3_hdr;
483
484                 ol_flags |= RTE_MBUF_F_TX_IPV4;
485                 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
486                         ol_flags |= RTE_MBUF_F_TX_IP_CKSUM;
487                 } else {
488                         if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) {
489                                 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM;
490                         } else {
491                                 ipv4_hdr->hdr_checksum = 0;
492                                 ipv4_hdr->hdr_checksum =
493                                         rte_ipv4_cksum(ipv4_hdr);
494                         }
495                 }
496         } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
497                 ol_flags |= RTE_MBUF_F_TX_IPV6;
498         else
499                 return 0; /* packet type not supported, nothing to do */
500
501         if (info->l4_proto == IPPROTO_UDP) {
502                 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
503                 /* do not recalculate udp cksum if it was 0 */
504                 if (udp_hdr->dgram_cksum != 0) {
505                         if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) {
506                                 ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM;
507                         } else {
508                                 udp_hdr->dgram_cksum = 0;
509                                 udp_hdr->dgram_cksum =
510                                         get_udptcp_checksum(l3_hdr, udp_hdr,
511                                                 info->ethertype);
512                         }
513                 }
514                 if (info->gso_enable)
515                         ol_flags |= RTE_MBUF_F_TX_UDP_SEG;
516         } else if (info->l4_proto == IPPROTO_TCP) {
517                 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
518                 if (tso_segsz)
519                         ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
520                 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) {
521                         ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM;
522                 } else {
523                         tcp_hdr->cksum = 0;
524                         tcp_hdr->cksum =
525                                 get_udptcp_checksum(l3_hdr, tcp_hdr,
526                                         info->ethertype);
527                 }
528                 if (info->gso_enable)
529                         ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
530         } else if (info->l4_proto == IPPROTO_SCTP) {
531                 sctp_hdr = (struct rte_sctp_hdr *)
532                         ((char *)l3_hdr + info->l3_len);
533                 /* sctp payload must be a multiple of 4 to be
534                  * offloaded */
535                 if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) &&
536                         ((ipv4_hdr->total_length & 0x3) == 0)) {
537                         ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM;
538                 } else {
539                         sctp_hdr->cksum = 0;
540                         /* XXX implement CRC32c, example available in
541                          * RFC3309 */
542                 }
543         }
544
545         return ol_flags;
546 }
547
548 /* Calculate the checksum of outer header */
549 static uint64_t
550 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
551         uint64_t tx_offloads, int tso_enabled)
552 {
553         struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
554         struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
555         struct rte_udp_hdr *udp_hdr;
556         uint64_t ol_flags = 0;
557
558         if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
559                 ipv4_hdr->hdr_checksum = 0;
560                 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4;
561
562                 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM)
563                         ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM;
564                 else
565                         ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
566         } else
567                 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6;
568
569         if (info->outer_l4_proto != IPPROTO_UDP)
570                 return ol_flags;
571
572         udp_hdr = (struct rte_udp_hdr *)
573                 ((char *)outer_l3_hdr + info->outer_l3_len);
574
575         if (tso_enabled)
576                 ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
577
578         /* Skip SW outer UDP checksum generation if HW supports it */
579         if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) {
580                 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
581                         udp_hdr->dgram_cksum
582                                 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
583                 else
584                         udp_hdr->dgram_cksum
585                                 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
586
587                 ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM;
588                 return ol_flags;
589         }
590
591         /* outer UDP checksum is done in software. In the other side, for
592          * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
593          * set to zero.
594          *
595          * If a packet will be TSOed into small packets by NIC, we cannot
596          * set/calculate a non-zero checksum, because it will be a wrong
597          * value after the packet be split into several small packets.
598          */
599         if (tso_enabled)
600                 udp_hdr->dgram_cksum = 0;
601
602         /* do not recalculate udp cksum if it was 0 */
603         if (udp_hdr->dgram_cksum != 0) {
604                 udp_hdr->dgram_cksum = 0;
605                 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
606                         udp_hdr->dgram_cksum =
607                                 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
608                 else
609                         udp_hdr->dgram_cksum =
610                                 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
611         }
612
613         return ol_flags;
614 }
615
616 /*
617  * Helper function.
618  * Performs actual copying.
619  * Returns number of segments in the destination mbuf on success,
620  * or negative error code on failure.
621  */
622 static int
623 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
624         uint16_t seglen[], uint8_t nb_seg)
625 {
626         uint32_t dlen, slen, tlen;
627         uint32_t i, len;
628         const struct rte_mbuf *m;
629         const uint8_t *src;
630         uint8_t *dst;
631
632         dlen = 0;
633         slen = 0;
634         tlen = 0;
635
636         dst = NULL;
637         src = NULL;
638
639         m = ms;
640         i = 0;
641         while (ms != NULL && i != nb_seg) {
642
643                 if (slen == 0) {
644                         slen = rte_pktmbuf_data_len(ms);
645                         src = rte_pktmbuf_mtod(ms, const uint8_t *);
646                 }
647
648                 if (dlen == 0) {
649                         dlen = RTE_MIN(seglen[i], slen);
650                         md[i]->data_len = dlen;
651                         md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
652                         dst = rte_pktmbuf_mtod(md[i], uint8_t *);
653                 }
654
655                 len = RTE_MIN(slen, dlen);
656                 memcpy(dst, src, len);
657                 tlen += len;
658                 slen -= len;
659                 dlen -= len;
660                 src += len;
661                 dst += len;
662
663                 if (slen == 0)
664                         ms = ms->next;
665                 if (dlen == 0)
666                         i++;
667         }
668
669         if (ms != NULL)
670                 return -ENOBUFS;
671         else if (tlen != m->pkt_len)
672                 return -EINVAL;
673
674         md[0]->nb_segs = nb_seg;
675         md[0]->pkt_len = tlen;
676         md[0]->vlan_tci = m->vlan_tci;
677         md[0]->vlan_tci_outer = m->vlan_tci_outer;
678         md[0]->ol_flags = m->ol_flags;
679         md[0]->tx_offload = m->tx_offload;
680
681         return nb_seg;
682 }
683
684 /*
685  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
686  * Copy packet contents and offload information into the new segmented mbuf.
687  */
688 static struct rte_mbuf *
689 pkt_copy_split(const struct rte_mbuf *pkt)
690 {
691         int32_t n, rc;
692         uint32_t i, len, nb_seg;
693         struct rte_mempool *mp;
694         uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
695         struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
696
697         mp = current_fwd_lcore()->mbp;
698
699         if (tx_pkt_split == TX_PKT_SPLIT_RND)
700                 nb_seg = rte_rand() % tx_pkt_nb_segs + 1;
701         else
702                 nb_seg = tx_pkt_nb_segs;
703
704         memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
705
706         /* calculate number of segments to use and their length. */
707         len = 0;
708         for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
709                 len += seglen[i];
710                 md[i] = NULL;
711         }
712
713         n = pkt->pkt_len - len;
714
715         /* update size of the last segment to fit rest of the packet */
716         if (n >= 0) {
717                 seglen[i - 1] += n;
718                 len += n;
719         }
720
721         nb_seg = i;
722         while (i != 0) {
723                 p = rte_pktmbuf_alloc(mp);
724                 if (p == NULL) {
725                         TESTPMD_LOG(ERR,
726                                 "failed to allocate %u-th of %u mbuf "
727                                 "from mempool: %s\n",
728                                 nb_seg - i, nb_seg, mp->name);
729                         break;
730                 }
731
732                 md[--i] = p;
733                 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
734                         TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
735                                 "expected seglen: %u, "
736                                 "actual mbuf tailroom: %u\n",
737                                 mp->name, i, seglen[i],
738                                 rte_pktmbuf_tailroom(md[i]));
739                         break;
740                 }
741         }
742
743         /* all mbufs successfully allocated, do copy */
744         if (i == 0) {
745                 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
746                 if (rc < 0)
747                         TESTPMD_LOG(ERR,
748                                 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
749                                 "into %u segments failed with error code: %d\n",
750                                 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
751
752                 /* figure out how many mbufs to free. */
753                 i = RTE_MAX(rc, 0);
754         }
755
756         /* free unused mbufs */
757         for (; i != nb_seg; i++) {
758                 rte_pktmbuf_free_seg(md[i]);
759                 md[i] = NULL;
760         }
761
762         return md[0];
763 }
764
765 /*
766  * Receive a burst of packets, and for each packet:
767  *  - parse packet, and try to recognize a supported packet type (1)
768  *  - if it's not a supported packet type, don't touch the packet, else:
769  *  - reprocess the checksum of all supported layers. This is done in SW
770  *    or HW, depending on testpmd command line configuration
771  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
772  *    segmentation offload (this implies HW TCP checksum)
773  * Then transmit packets on the output port.
774  *
775  * (1) Supported packets are:
776  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
777  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
778  *           UDP|TCP|SCTP
779  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
780  *           UDP|TCP|SCTP
781  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
782  *           UDP|TCP|SCTP
783  *   Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
784  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
785  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
786  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
787  *
788  * The testpmd command line for this forward engine sets the flags
789  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
790  * wether a checksum must be calculated in software or in hardware. The
791  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
792  * OUTER_IP is only useful for tunnel packets.
793  */
794 static void
795 pkt_burst_checksum_forward(struct fwd_stream *fs)
796 {
797         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
798         struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
799         struct rte_gso_ctx *gso_ctx;
800         struct rte_mbuf **tx_pkts_burst;
801         struct rte_port *txp;
802         struct rte_mbuf *m, *p;
803         struct rte_ether_hdr *eth_hdr;
804         void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
805         void **gro_ctx;
806         uint16_t gro_pkts_num;
807         uint8_t gro_enable;
808         uint16_t nb_rx;
809         uint16_t nb_tx;
810         uint16_t nb_prep;
811         uint16_t i;
812         uint64_t rx_ol_flags, tx_ol_flags;
813         uint64_t tx_offloads;
814         uint32_t retry;
815         uint32_t rx_bad_ip_csum;
816         uint32_t rx_bad_l4_csum;
817         uint32_t rx_bad_outer_l4_csum;
818         uint32_t rx_bad_outer_ip_csum;
819         struct testpmd_offload_info info;
820         uint16_t nb_segments = 0;
821         int ret;
822
823         uint64_t start_tsc = 0;
824
825         get_start_cycles(&start_tsc);
826
827         /* receive a burst of packet */
828         nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
829                                  nb_pkt_per_burst);
830         inc_rx_burst_stats(fs, nb_rx);
831         if (unlikely(nb_rx == 0))
832                 return;
833
834         fs->rx_packets += nb_rx;
835         rx_bad_ip_csum = 0;
836         rx_bad_l4_csum = 0;
837         rx_bad_outer_l4_csum = 0;
838         rx_bad_outer_ip_csum = 0;
839         gro_enable = gro_ports[fs->rx_port].enable;
840
841         txp = &ports[fs->tx_port];
842         tx_offloads = txp->dev_conf.txmode.offloads;
843         memset(&info, 0, sizeof(info));
844         info.tso_segsz = txp->tso_segsz;
845         info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
846         if (gso_ports[fs->tx_port].enable)
847                 info.gso_enable = 1;
848
849         for (i = 0; i < nb_rx; i++) {
850                 if (likely(i < nb_rx - 1))
851                         rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
852                                                        void *));
853
854                 m = pkts_burst[i];
855                 info.is_tunnel = 0;
856                 info.pkt_len = rte_pktmbuf_pkt_len(m);
857                 tx_ol_flags = m->ol_flags &
858                               (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL);
859                 rx_ol_flags = m->ol_flags;
860
861                 /* Update the L3/L4 checksum error packet statistics */
862                 if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD)
863                         rx_bad_ip_csum += 1;
864                 if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD)
865                         rx_bad_l4_csum += 1;
866                 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD)
867                         rx_bad_outer_l4_csum += 1;
868                 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD)
869                         rx_bad_outer_ip_csum += 1;
870
871                 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
872                  * and inner headers */
873
874                 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
875                 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
876                                 &eth_hdr->dst_addr);
877                 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
878                                 &eth_hdr->src_addr);
879                 parse_ethernet(eth_hdr, &info);
880                 l3_hdr = (char *)eth_hdr + info.l2_len;
881
882                 /* check if it's a supported tunnel */
883                 if (txp->parse_tunnel) {
884                         if (info.l4_proto == IPPROTO_UDP) {
885                                 struct rte_udp_hdr *udp_hdr;
886
887                                 udp_hdr = (struct rte_udp_hdr *)
888                                         ((char *)l3_hdr + info.l3_len);
889                                 parse_gtp(udp_hdr, &info);
890                                 if (info.is_tunnel) {
891                                         tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP;
892                                         goto tunnel_update;
893                                 }
894                                 parse_vxlan_gpe(udp_hdr, &info);
895                                 if (info.is_tunnel) {
896                                         tx_ol_flags |=
897                                                 RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE;
898                                         goto tunnel_update;
899                                 }
900                                 parse_vxlan(udp_hdr, &info,
901                                             m->packet_type);
902                                 if (info.is_tunnel) {
903                                         tx_ol_flags |=
904                                                 RTE_MBUF_F_TX_TUNNEL_VXLAN;
905                                         goto tunnel_update;
906                                 }
907                                 parse_geneve(udp_hdr, &info);
908                                 if (info.is_tunnel) {
909                                         tx_ol_flags |=
910                                                 RTE_MBUF_F_TX_TUNNEL_GENEVE;
911                                         goto tunnel_update;
912                                 }
913                         } else if (info.l4_proto == IPPROTO_GRE) {
914                                 struct simple_gre_hdr *gre_hdr;
915
916                                 gre_hdr = (struct simple_gre_hdr *)
917                                         ((char *)l3_hdr + info.l3_len);
918                                 parse_gre(gre_hdr, &info);
919                                 if (info.is_tunnel)
920                                         tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE;
921                         } else if (info.l4_proto == IPPROTO_IPIP) {
922                                 void *encap_ip_hdr;
923
924                                 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
925                                 parse_encap_ip(encap_ip_hdr, &info);
926                                 if (info.is_tunnel)
927                                         tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP;
928                         }
929                 }
930
931 tunnel_update:
932                 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
933                 if (info.is_tunnel) {
934                         outer_l3_hdr = l3_hdr;
935                         l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
936                 }
937
938                 /* step 2: depending on user command line configuration,
939                  * recompute checksum either in software or flag the
940                  * mbuf to offload the calculation to the NIC. If TSO
941                  * is configured, prepare the mbuf for TCP segmentation. */
942
943                 /* process checksums of inner headers first */
944                 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
945                         tx_offloads);
946
947                 /* Then process outer headers if any. Note that the software
948                  * checksum will be wrong if one of the inner checksums is
949                  * processed in hardware. */
950                 if (info.is_tunnel == 1) {
951                         tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
952                                         tx_offloads,
953                                         !!(tx_ol_flags & RTE_MBUF_F_TX_TCP_SEG));
954                 }
955
956                 /* step 3: fill the mbuf meta data (flags and header lengths) */
957
958                 m->tx_offload = 0;
959                 if (info.is_tunnel == 1) {
960                         if (info.tunnel_tso_segsz ||
961                             (tx_offloads &
962                              RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
963                             (tx_offloads &
964                              RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) {
965                                 m->outer_l2_len = info.outer_l2_len;
966                                 m->outer_l3_len = info.outer_l3_len;
967                                 m->l2_len = info.l2_len;
968                                 m->l3_len = info.l3_len;
969                                 m->l4_len = info.l4_len;
970                                 m->tso_segsz = info.tunnel_tso_segsz;
971                         }
972                         else {
973                                 /* if there is a outer UDP cksum
974                                    processed in sw and the inner in hw,
975                                    the outer checksum will be wrong as
976                                    the payload will be modified by the
977                                    hardware */
978                                 m->l2_len = info.outer_l2_len +
979                                         info.outer_l3_len + info.l2_len;
980                                 m->l3_len = info.l3_len;
981                                 m->l4_len = info.l4_len;
982                         }
983                 } else {
984                         /* this is only useful if an offload flag is
985                          * set, but it does not hurt to fill it in any
986                          * case */
987                         m->l2_len = info.l2_len;
988                         m->l3_len = info.l3_len;
989                         m->l4_len = info.l4_len;
990                         m->tso_segsz = info.tso_segsz;
991                 }
992                 m->ol_flags = tx_ol_flags;
993
994                 /* Do split & copy for the packet. */
995                 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
996                         p = pkt_copy_split(m);
997                         if (p != NULL) {
998                                 rte_pktmbuf_free(m);
999                                 m = p;
1000                                 pkts_burst[i] = m;
1001                         }
1002                 }
1003
1004                 /* if verbose mode is enabled, dump debug info */
1005                 if (verbose_level > 0) {
1006                         char buf[256];
1007
1008                         printf("-----------------\n");
1009                         printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
1010                                 fs->rx_port, m, m->pkt_len, m->nb_segs);
1011                         /* dump rx parsed packet info */
1012                         rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
1013                         printf("rx: l2_len=%d ethertype=%x l3_len=%d "
1014                                 "l4_proto=%d l4_len=%d flags=%s\n",
1015                                 info.l2_len, rte_be_to_cpu_16(info.ethertype),
1016                                 info.l3_len, info.l4_proto, info.l4_len, buf);
1017                         if (rx_ol_flags & RTE_MBUF_F_RX_LRO)
1018                                 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
1019                         if (info.is_tunnel == 1)
1020                                 printf("rx: outer_l2_len=%d outer_ethertype=%x "
1021                                         "outer_l3_len=%d\n", info.outer_l2_len,
1022                                         rte_be_to_cpu_16(info.outer_ethertype),
1023                                         info.outer_l3_len);
1024                         /* dump tx packet info */
1025                         if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1026                                             RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1027                                             RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
1028                                             RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) ||
1029                                 info.tso_segsz != 0)
1030                                 printf("tx: m->l2_len=%d m->l3_len=%d "
1031                                         "m->l4_len=%d\n",
1032                                         m->l2_len, m->l3_len, m->l4_len);
1033                         if (info.is_tunnel == 1) {
1034                                 if ((tx_offloads &
1035                                     RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1036                                     (tx_offloads &
1037                                     RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
1038                                     (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6))
1039                                         printf("tx: m->outer_l2_len=%d "
1040                                                 "m->outer_l3_len=%d\n",
1041                                                 m->outer_l2_len,
1042                                                 m->outer_l3_len);
1043                                 if (info.tunnel_tso_segsz != 0 &&
1044                                                 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG))
1045                                         printf("tx: m->tso_segsz=%d\n",
1046                                                 m->tso_segsz);
1047                         } else if (info.tso_segsz != 0 &&
1048                                         (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG))
1049                                 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1050                         rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1051                         printf("tx: flags=%s", buf);
1052                         printf("\n");
1053                 }
1054         }
1055
1056         if (unlikely(gro_enable)) {
1057                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1058                         nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1059                                         &(gro_ports[fs->rx_port].param));
1060                 } else {
1061                         gro_ctx = current_fwd_lcore()->gro_ctx;
1062                         nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1063
1064                         if (++fs->gro_times >= gro_flush_cycles) {
1065                                 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1066                                 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1067                                         gro_pkts_num = MAX_PKT_BURST - nb_rx;
1068
1069                                 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1070                                                 RTE_GRO_TCP_IPV4,
1071                                                 &pkts_burst[nb_rx],
1072                                                 gro_pkts_num);
1073                                 fs->gro_times = 0;
1074                         }
1075                 }
1076         }
1077
1078         if (gso_ports[fs->tx_port].enable == 0)
1079                 tx_pkts_burst = pkts_burst;
1080         else {
1081                 gso_ctx = &(current_fwd_lcore()->gso_ctx);
1082                 gso_ctx->gso_size = gso_max_segment_size;
1083                 for (i = 0; i < nb_rx; i++) {
1084                         ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1085                                         &gso_segments[nb_segments],
1086                                         GSO_MAX_PKT_BURST - nb_segments);
1087                         if (ret >= 1) {
1088                                 /* pkts_burst[i] can be freed safely here. */
1089                                 rte_pktmbuf_free(pkts_burst[i]);
1090                                 nb_segments += ret;
1091                         } else if (ret == 0) {
1092                                 /* 0 means it can be transmitted directly
1093                                  * without gso.
1094                                  */
1095                                 gso_segments[nb_segments] = pkts_burst[i];
1096                                 nb_segments += 1;
1097                         } else {
1098                                 TESTPMD_LOG(DEBUG, "Unable to segment packet");
1099                                 rte_pktmbuf_free(pkts_burst[i]);
1100                         }
1101                 }
1102
1103                 tx_pkts_burst = gso_segments;
1104                 nb_rx = nb_segments;
1105         }
1106
1107         nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1108                         tx_pkts_burst, nb_rx);
1109         if (nb_prep != nb_rx)
1110                 fprintf(stderr,
1111                         "Preparing packet burst to transmit failed: %s\n",
1112                         rte_strerror(rte_errno));
1113
1114         nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
1115                         nb_prep);
1116
1117         /*
1118          * Retry if necessary
1119          */
1120         if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
1121                 retry = 0;
1122                 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1123                         rte_delay_us(burst_tx_delay_time);
1124                         nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1125                                         &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1126                 }
1127         }
1128         fs->tx_packets += nb_tx;
1129         fs->rx_bad_ip_csum += rx_bad_ip_csum;
1130         fs->rx_bad_l4_csum += rx_bad_l4_csum;
1131         fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1132         fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum;
1133
1134         inc_tx_burst_stats(fs, nb_tx);
1135         if (unlikely(nb_tx < nb_rx)) {
1136                 fs->fwd_dropped += (nb_rx - nb_tx);
1137                 do {
1138                         rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1139                 } while (++nb_tx < nb_rx);
1140         }
1141
1142         get_end_cycles(fs, start_tsc);
1143 }
1144
1145 struct fwd_engine csum_fwd_engine = {
1146         .fwd_mode_name  = "csum",
1147         .port_fwd_begin = NULL,
1148         .port_fwd_end   = NULL,
1149         .packet_fwd     = pkt_burst_checksum_forward,
1150 };