net: add rte prefix to IP structure
[dpdk.git] / app / test-pmd / csumonly.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_sctp.h>
39 #include <rte_prefetch.h>
40 #include <rte_string_fns.h>
41 #include <rte_flow.h>
42 #include <rte_gro.h>
43 #include <rte_gso.h>
44
45 #include "testpmd.h"
46
47 #define IP_DEFTTL  64   /* from RFC 1340. */
48 #define IP_VERSION 0x40
49 #define IP_HDRLEN  0x05 /* default IP header length == five 32-bits words. */
50 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
51
52 #define GRE_CHECKSUM_PRESENT    0x8000
53 #define GRE_KEY_PRESENT         0x2000
54 #define GRE_SEQUENCE_PRESENT    0x1000
55 #define GRE_EXT_LEN             4
56 #define GRE_SUPPORTED_FIELDS    (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
57                                  GRE_SEQUENCE_PRESENT)
58
59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
62 #else
63 #define _htons(x) (x)
64 #endif
65
66 uint16_t vxlan_gpe_udp_port = 4790;
67
68 /* structure that caches offload info for the current packet */
69 struct testpmd_offload_info {
70         uint16_t ethertype;
71         uint8_t gso_enable;
72         uint16_t l2_len;
73         uint16_t l3_len;
74         uint16_t l4_len;
75         uint8_t l4_proto;
76         uint8_t is_tunnel;
77         uint16_t outer_ethertype;
78         uint16_t outer_l2_len;
79         uint16_t outer_l3_len;
80         uint8_t outer_l4_proto;
81         uint16_t tso_segsz;
82         uint16_t tunnel_tso_segsz;
83         uint32_t pkt_len;
84 };
85
86 /* simplified GRE header */
87 struct simple_gre_hdr {
88         uint16_t flags;
89         uint16_t proto;
90 } __attribute__((__packed__));
91
92 static uint16_t
93 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
94 {
95         if (ethertype == _htons(RTE_ETHER_TYPE_IPv4))
96                 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
97         else /* assume ethertype == RTE_ETHER_TYPE_IPv6 */
98                 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
99 }
100
101 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
102 static void
103 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
104 {
105         struct tcp_hdr *tcp_hdr;
106
107         info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
108         info->l4_proto = ipv4_hdr->next_proto_id;
109
110         /* only fill l4_len for TCP, it's useful for TSO */
111         if (info->l4_proto == IPPROTO_TCP) {
112                 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
113                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
114         } else if (info->l4_proto == IPPROTO_UDP)
115                 info->l4_len = sizeof(struct udp_hdr);
116         else
117                 info->l4_len = 0;
118 }
119
120 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
121 static void
122 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
123 {
124         struct tcp_hdr *tcp_hdr;
125
126         info->l3_len = sizeof(struct rte_ipv6_hdr);
127         info->l4_proto = ipv6_hdr->proto;
128
129         /* only fill l4_len for TCP, it's useful for TSO */
130         if (info->l4_proto == IPPROTO_TCP) {
131                 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
132                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
133         } else if (info->l4_proto == IPPROTO_UDP)
134                 info->l4_len = sizeof(struct udp_hdr);
135         else
136                 info->l4_len = 0;
137 }
138
139 /*
140  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
141  * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
142  * header. The l4_len argument is only set in case of TCP (useful for TSO).
143  */
144 static void
145 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
146 {
147         struct rte_ipv4_hdr *ipv4_hdr;
148         struct rte_ipv6_hdr *ipv6_hdr;
149
150         info->l2_len = sizeof(struct rte_ether_hdr);
151         info->ethertype = eth_hdr->ether_type;
152
153         if (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN)) {
154                 struct rte_vlan_hdr *vlan_hdr = (
155                         struct rte_vlan_hdr *)(eth_hdr + 1);
156
157                 info->l2_len  += sizeof(struct rte_vlan_hdr);
158                 info->ethertype = vlan_hdr->eth_proto;
159         }
160
161         switch (info->ethertype) {
162         case _htons(RTE_ETHER_TYPE_IPv4):
163                 ipv4_hdr = (struct rte_ipv4_hdr *)
164                         ((char *)eth_hdr + info->l2_len);
165                 parse_ipv4(ipv4_hdr, info);
166                 break;
167         case _htons(RTE_ETHER_TYPE_IPv6):
168                 ipv6_hdr = (struct rte_ipv6_hdr *)
169                         ((char *)eth_hdr + info->l2_len);
170                 parse_ipv6(ipv6_hdr, info);
171                 break;
172         default:
173                 info->l4_len = 0;
174                 info->l3_len = 0;
175                 info->l4_proto = 0;
176                 break;
177         }
178 }
179
180 /* Parse a vxlan header */
181 static void
182 parse_vxlan(struct udp_hdr *udp_hdr,
183             struct testpmd_offload_info *info,
184             uint32_t pkt_type)
185 {
186         struct rte_ether_hdr *eth_hdr;
187
188         /* check udp destination port, 4789 is the default vxlan port
189          * (rfc7348) or that the rx offload flag is set (i40e only
190          * currently) */
191         if (udp_hdr->dst_port != _htons(4789) &&
192                 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
193                 return;
194
195         info->is_tunnel = 1;
196         info->outer_ethertype = info->ethertype;
197         info->outer_l2_len = info->l2_len;
198         info->outer_l3_len = info->l3_len;
199         info->outer_l4_proto = info->l4_proto;
200
201         eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
202                 sizeof(struct udp_hdr) +
203                 sizeof(struct rte_vxlan_hdr));
204
205         parse_ethernet(eth_hdr, info);
206         info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
207 }
208
209 /* Parse a vxlan-gpe header */
210 static void
211 parse_vxlan_gpe(struct udp_hdr *udp_hdr,
212             struct testpmd_offload_info *info)
213 {
214         struct rte_ether_hdr *eth_hdr;
215         struct rte_ipv4_hdr *ipv4_hdr;
216         struct rte_ipv6_hdr *ipv6_hdr;
217         struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
218         uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
219
220         /* Check udp destination port. */
221         if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
222                 return;
223
224         vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
225                                 sizeof(struct udp_hdr));
226
227         if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
228             RTE_VXLAN_GPE_TYPE_IPV4) {
229                 info->is_tunnel = 1;
230                 info->outer_ethertype = info->ethertype;
231                 info->outer_l2_len = info->l2_len;
232                 info->outer_l3_len = info->l3_len;
233                 info->outer_l4_proto = info->l4_proto;
234
235                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
236                            vxlan_gpe_len);
237
238                 parse_ipv4(ipv4_hdr, info);
239                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
240                 info->l2_len = 0;
241
242         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
243                 info->is_tunnel = 1;
244                 info->outer_ethertype = info->ethertype;
245                 info->outer_l2_len = info->l2_len;
246                 info->outer_l3_len = info->l3_len;
247                 info->outer_l4_proto = info->l4_proto;
248
249                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
250                            vxlan_gpe_len);
251
252                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
253                 parse_ipv6(ipv6_hdr, info);
254                 info->l2_len = 0;
255
256         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
257                 info->is_tunnel = 1;
258                 info->outer_ethertype = info->ethertype;
259                 info->outer_l2_len = info->l2_len;
260                 info->outer_l3_len = info->l3_len;
261                 info->outer_l4_proto = info->l4_proto;
262
263                 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
264                           vxlan_gpe_len);
265
266                 parse_ethernet(eth_hdr, info);
267         } else
268                 return;
269
270         info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
271 }
272
273 /* Parse a gre header */
274 static void
275 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
276 {
277         struct rte_ether_hdr *eth_hdr;
278         struct rte_ipv4_hdr *ipv4_hdr;
279         struct rte_ipv6_hdr *ipv6_hdr;
280         uint8_t gre_len = 0;
281
282         gre_len += sizeof(struct simple_gre_hdr);
283
284         if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
285                 gre_len += GRE_EXT_LEN;
286         if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
287                 gre_len += GRE_EXT_LEN;
288         if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
289                 gre_len += GRE_EXT_LEN;
290
291         if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPv4)) {
292                 info->is_tunnel = 1;
293                 info->outer_ethertype = info->ethertype;
294                 info->outer_l2_len = info->l2_len;
295                 info->outer_l3_len = info->l3_len;
296                 info->outer_l4_proto = info->l4_proto;
297
298                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
299
300                 parse_ipv4(ipv4_hdr, info);
301                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
302                 info->l2_len = 0;
303
304         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPv6)) {
305                 info->is_tunnel = 1;
306                 info->outer_ethertype = info->ethertype;
307                 info->outer_l2_len = info->l2_len;
308                 info->outer_l3_len = info->l3_len;
309                 info->outer_l4_proto = info->l4_proto;
310
311                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
312
313                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
314                 parse_ipv6(ipv6_hdr, info);
315                 info->l2_len = 0;
316
317         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
318                 info->is_tunnel = 1;
319                 info->outer_ethertype = info->ethertype;
320                 info->outer_l2_len = info->l2_len;
321                 info->outer_l3_len = info->l3_len;
322                 info->outer_l4_proto = info->l4_proto;
323
324                 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
325
326                 parse_ethernet(eth_hdr, info);
327         } else
328                 return;
329
330         info->l2_len += gre_len;
331 }
332
333
334 /* Parse an encapsulated ip or ipv6 header */
335 static void
336 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
337 {
338         struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
339         struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
340         uint8_t ip_version;
341
342         ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
343
344         if (ip_version != 4 && ip_version != 6)
345                 return;
346
347         info->is_tunnel = 1;
348         info->outer_ethertype = info->ethertype;
349         info->outer_l2_len = info->l2_len;
350         info->outer_l3_len = info->l3_len;
351
352         if (ip_version == 4) {
353                 parse_ipv4(ipv4_hdr, info);
354                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
355         } else {
356                 parse_ipv6(ipv6_hdr, info);
357                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
358         }
359         info->l2_len = 0;
360 }
361
362 /* if possible, calculate the checksum of a packet in hw or sw,
363  * depending on the testpmd command line configuration */
364 static uint64_t
365 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
366         uint64_t tx_offloads)
367 {
368         struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
369         struct udp_hdr *udp_hdr;
370         struct tcp_hdr *tcp_hdr;
371         struct sctp_hdr *sctp_hdr;
372         uint64_t ol_flags = 0;
373         uint32_t max_pkt_len, tso_segsz = 0;
374
375         /* ensure packet is large enough to require tso */
376         if (!info->is_tunnel) {
377                 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
378                         info->tso_segsz;
379                 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
380                         tso_segsz = info->tso_segsz;
381         } else {
382                 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
383                         info->l2_len + info->l3_len + info->l4_len +
384                         info->tunnel_tso_segsz;
385                 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
386                         tso_segsz = info->tunnel_tso_segsz;
387         }
388
389         if (info->ethertype == _htons(RTE_ETHER_TYPE_IPv4)) {
390                 ipv4_hdr = l3_hdr;
391                 ipv4_hdr->hdr_checksum = 0;
392
393                 ol_flags |= PKT_TX_IPV4;
394                 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
395                         ol_flags |= PKT_TX_IP_CKSUM;
396                 } else {
397                         if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
398                                 ol_flags |= PKT_TX_IP_CKSUM;
399                         else
400                                 ipv4_hdr->hdr_checksum =
401                                         rte_ipv4_cksum(ipv4_hdr);
402                 }
403         } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPv6))
404                 ol_flags |= PKT_TX_IPV6;
405         else
406                 return 0; /* packet type not supported, nothing to do */
407
408         if (info->l4_proto == IPPROTO_UDP) {
409                 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
410                 /* do not recalculate udp cksum if it was 0 */
411                 if (udp_hdr->dgram_cksum != 0) {
412                         udp_hdr->dgram_cksum = 0;
413                         if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
414                                 ol_flags |= PKT_TX_UDP_CKSUM;
415                         else {
416                                 udp_hdr->dgram_cksum =
417                                         get_udptcp_checksum(l3_hdr, udp_hdr,
418                                                 info->ethertype);
419                         }
420                 }
421                 if (info->gso_enable)
422                         ol_flags |= PKT_TX_UDP_SEG;
423         } else if (info->l4_proto == IPPROTO_TCP) {
424                 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
425                 tcp_hdr->cksum = 0;
426                 if (tso_segsz)
427                         ol_flags |= PKT_TX_TCP_SEG;
428                 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
429                         ol_flags |= PKT_TX_TCP_CKSUM;
430                 else {
431                         tcp_hdr->cksum =
432                                 get_udptcp_checksum(l3_hdr, tcp_hdr,
433                                         info->ethertype);
434                 }
435                 if (info->gso_enable)
436                         ol_flags |= PKT_TX_TCP_SEG;
437         } else if (info->l4_proto == IPPROTO_SCTP) {
438                 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
439                 sctp_hdr->cksum = 0;
440                 /* sctp payload must be a multiple of 4 to be
441                  * offloaded */
442                 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
443                         ((ipv4_hdr->total_length & 0x3) == 0)) {
444                         ol_flags |= PKT_TX_SCTP_CKSUM;
445                 } else {
446                         /* XXX implement CRC32c, example available in
447                          * RFC3309 */
448                 }
449         }
450
451         return ol_flags;
452 }
453
454 /* Calculate the checksum of outer header */
455 static uint64_t
456 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
457         uint64_t tx_offloads, int tso_enabled)
458 {
459         struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
460         struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
461         struct udp_hdr *udp_hdr;
462         uint64_t ol_flags = 0;
463
464         if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPv4)) {
465                 ipv4_hdr->hdr_checksum = 0;
466                 ol_flags |= PKT_TX_OUTER_IPV4;
467
468                 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
469                         ol_flags |= PKT_TX_OUTER_IP_CKSUM;
470                 else
471                         ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
472         } else
473                 ol_flags |= PKT_TX_OUTER_IPV6;
474
475         if (info->outer_l4_proto != IPPROTO_UDP)
476                 return ol_flags;
477
478         /* Skip SW outer UDP checksum generation if HW supports it */
479         if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
480                 ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
481                 return ol_flags;
482         }
483
484         udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
485
486         /* outer UDP checksum is done in software. In the other side, for
487          * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
488          * set to zero.
489          *
490          * If a packet will be TSOed into small packets by NIC, we cannot
491          * set/calculate a non-zero checksum, because it will be a wrong
492          * value after the packet be split into several small packets.
493          */
494         if (tso_enabled)
495                 udp_hdr->dgram_cksum = 0;
496
497         /* do not recalculate udp cksum if it was 0 */
498         if (udp_hdr->dgram_cksum != 0) {
499                 udp_hdr->dgram_cksum = 0;
500                 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPv4))
501                         udp_hdr->dgram_cksum =
502                                 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
503                 else
504                         udp_hdr->dgram_cksum =
505                                 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
506         }
507
508         return ol_flags;
509 }
510
511 /*
512  * Helper function.
513  * Performs actual copying.
514  * Returns number of segments in the destination mbuf on success,
515  * or negative error code on failure.
516  */
517 static int
518 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
519         uint16_t seglen[], uint8_t nb_seg)
520 {
521         uint32_t dlen, slen, tlen;
522         uint32_t i, len;
523         const struct rte_mbuf *m;
524         const uint8_t *src;
525         uint8_t *dst;
526
527         dlen = 0;
528         slen = 0;
529         tlen = 0;
530
531         dst = NULL;
532         src = NULL;
533
534         m = ms;
535         i = 0;
536         while (ms != NULL && i != nb_seg) {
537
538                 if (slen == 0) {
539                         slen = rte_pktmbuf_data_len(ms);
540                         src = rte_pktmbuf_mtod(ms, const uint8_t *);
541                 }
542
543                 if (dlen == 0) {
544                         dlen = RTE_MIN(seglen[i], slen);
545                         md[i]->data_len = dlen;
546                         md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
547                         dst = rte_pktmbuf_mtod(md[i], uint8_t *);
548                 }
549
550                 len = RTE_MIN(slen, dlen);
551                 memcpy(dst, src, len);
552                 tlen += len;
553                 slen -= len;
554                 dlen -= len;
555                 src += len;
556                 dst += len;
557
558                 if (slen == 0)
559                         ms = ms->next;
560                 if (dlen == 0)
561                         i++;
562         }
563
564         if (ms != NULL)
565                 return -ENOBUFS;
566         else if (tlen != m->pkt_len)
567                 return -EINVAL;
568
569         md[0]->nb_segs = nb_seg;
570         md[0]->pkt_len = tlen;
571         md[0]->vlan_tci = m->vlan_tci;
572         md[0]->vlan_tci_outer = m->vlan_tci_outer;
573         md[0]->ol_flags = m->ol_flags;
574         md[0]->tx_offload = m->tx_offload;
575
576         return nb_seg;
577 }
578
579 /*
580  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
581  * Copy packet contents and offload information into the new segmented mbuf.
582  */
583 static struct rte_mbuf *
584 pkt_copy_split(const struct rte_mbuf *pkt)
585 {
586         int32_t n, rc;
587         uint32_t i, len, nb_seg;
588         struct rte_mempool *mp;
589         uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
590         struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
591
592         mp = current_fwd_lcore()->mbp;
593
594         if (tx_pkt_split == TX_PKT_SPLIT_RND)
595                 nb_seg = random() % tx_pkt_nb_segs + 1;
596         else
597                 nb_seg = tx_pkt_nb_segs;
598
599         memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
600
601         /* calculate number of segments to use and their length. */
602         len = 0;
603         for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
604                 len += seglen[i];
605                 md[i] = NULL;
606         }
607
608         n = pkt->pkt_len - len;
609
610         /* update size of the last segment to fit rest of the packet */
611         if (n >= 0) {
612                 seglen[i - 1] += n;
613                 len += n;
614         }
615
616         nb_seg = i;
617         while (i != 0) {
618                 p = rte_pktmbuf_alloc(mp);
619                 if (p == NULL) {
620                         TESTPMD_LOG(ERR,
621                                 "failed to allocate %u-th of %u mbuf "
622                                 "from mempool: %s\n",
623                                 nb_seg - i, nb_seg, mp->name);
624                         break;
625                 }
626
627                 md[--i] = p;
628                 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
629                         TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
630                                 "expected seglen: %u, "
631                                 "actual mbuf tailroom: %u\n",
632                                 mp->name, i, seglen[i],
633                                 rte_pktmbuf_tailroom(md[i]));
634                         break;
635                 }
636         }
637
638         /* all mbufs successfully allocated, do copy */
639         if (i == 0) {
640                 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
641                 if (rc < 0)
642                         TESTPMD_LOG(ERR,
643                                 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
644                                 "into %u segments failed with error code: %d\n",
645                                 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
646
647                 /* figure out how many mbufs to free. */
648                 i = RTE_MAX(rc, 0);
649         }
650
651         /* free unused mbufs */
652         for (; i != nb_seg; i++) {
653                 rte_pktmbuf_free_seg(md[i]);
654                 md[i] = NULL;
655         }
656
657         return md[0];
658 }
659
660 /*
661  * Receive a burst of packets, and for each packet:
662  *  - parse packet, and try to recognize a supported packet type (1)
663  *  - if it's not a supported packet type, don't touch the packet, else:
664  *  - reprocess the checksum of all supported layers. This is done in SW
665  *    or HW, depending on testpmd command line configuration
666  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
667  *    segmentation offload (this implies HW TCP checksum)
668  * Then transmit packets on the output port.
669  *
670  * (1) Supported packets are:
671  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
672  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
673  *           UDP|TCP|SCTP
674  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
675  *           UDP|TCP|SCTP
676  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
677  *           UDP|TCP|SCTP
678  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
679  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
680  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
681  *
682  * The testpmd command line for this forward engine sets the flags
683  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
684  * wether a checksum must be calculated in software or in hardware. The
685  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
686  * OUTER_IP is only useful for tunnel packets.
687  */
688 static void
689 pkt_burst_checksum_forward(struct fwd_stream *fs)
690 {
691         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
692         struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
693         struct rte_gso_ctx *gso_ctx;
694         struct rte_mbuf **tx_pkts_burst;
695         struct rte_port *txp;
696         struct rte_mbuf *m, *p;
697         struct rte_ether_hdr *eth_hdr;
698         void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
699         void **gro_ctx;
700         uint16_t gro_pkts_num;
701         uint8_t gro_enable;
702         uint16_t nb_rx;
703         uint16_t nb_tx;
704         uint16_t nb_prep;
705         uint16_t i;
706         uint64_t rx_ol_flags, tx_ol_flags;
707         uint64_t tx_offloads;
708         uint32_t retry;
709         uint32_t rx_bad_ip_csum;
710         uint32_t rx_bad_l4_csum;
711         uint32_t rx_bad_outer_l4_csum;
712         struct testpmd_offload_info info;
713         uint16_t nb_segments = 0;
714         int ret;
715
716 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
717         uint64_t start_tsc;
718         uint64_t end_tsc;
719         uint64_t core_cycles;
720 #endif
721
722 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
723         start_tsc = rte_rdtsc();
724 #endif
725
726         /* receive a burst of packet */
727         nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
728                                  nb_pkt_per_burst);
729         if (unlikely(nb_rx == 0))
730                 return;
731 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
732         fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
733 #endif
734         fs->rx_packets += nb_rx;
735         rx_bad_ip_csum = 0;
736         rx_bad_l4_csum = 0;
737         rx_bad_outer_l4_csum = 0;
738         gro_enable = gro_ports[fs->rx_port].enable;
739
740         txp = &ports[fs->tx_port];
741         tx_offloads = txp->dev_conf.txmode.offloads;
742         memset(&info, 0, sizeof(info));
743         info.tso_segsz = txp->tso_segsz;
744         info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
745         if (gso_ports[fs->tx_port].enable)
746                 info.gso_enable = 1;
747
748         for (i = 0; i < nb_rx; i++) {
749                 if (likely(i < nb_rx - 1))
750                         rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
751                                                        void *));
752
753                 m = pkts_burst[i];
754                 info.is_tunnel = 0;
755                 info.pkt_len = rte_pktmbuf_pkt_len(m);
756                 tx_ol_flags = m->ol_flags &
757                               (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
758                 rx_ol_flags = m->ol_flags;
759
760                 /* Update the L3/L4 checksum error packet statistics */
761                 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
762                         rx_bad_ip_csum += 1;
763                 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
764                         rx_bad_l4_csum += 1;
765                 if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
766                         rx_bad_outer_l4_csum += 1;
767
768                 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
769                  * and inner headers */
770
771                 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
772                 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
773                                 &eth_hdr->d_addr);
774                 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
775                                 &eth_hdr->s_addr);
776                 parse_ethernet(eth_hdr, &info);
777                 l3_hdr = (char *)eth_hdr + info.l2_len;
778
779                 /* check if it's a supported tunnel */
780                 if (txp->parse_tunnel) {
781                         if (info.l4_proto == IPPROTO_UDP) {
782                                 struct udp_hdr *udp_hdr;
783
784                                 udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
785                                         info.l3_len);
786                                 parse_vxlan_gpe(udp_hdr, &info);
787                                 if (info.is_tunnel) {
788                                         tx_ol_flags |= PKT_TX_TUNNEL_VXLAN_GPE;
789                                 } else {
790                                         parse_vxlan(udp_hdr, &info,
791                                                     m->packet_type);
792                                         if (info.is_tunnel)
793                                                 tx_ol_flags |=
794                                                         PKT_TX_TUNNEL_VXLAN;
795                                 }
796                         } else if (info.l4_proto == IPPROTO_GRE) {
797                                 struct simple_gre_hdr *gre_hdr;
798
799                                 gre_hdr = (struct simple_gre_hdr *)
800                                         ((char *)l3_hdr + info.l3_len);
801                                 parse_gre(gre_hdr, &info);
802                                 if (info.is_tunnel)
803                                         tx_ol_flags |= PKT_TX_TUNNEL_GRE;
804                         } else if (info.l4_proto == IPPROTO_IPIP) {
805                                 void *encap_ip_hdr;
806
807                                 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
808                                 parse_encap_ip(encap_ip_hdr, &info);
809                                 if (info.is_tunnel)
810                                         tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
811                         }
812                 }
813
814                 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
815                 if (info.is_tunnel) {
816                         outer_l3_hdr = l3_hdr;
817                         l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
818                 }
819
820                 /* step 2: depending on user command line configuration,
821                  * recompute checksum either in software or flag the
822                  * mbuf to offload the calculation to the NIC. If TSO
823                  * is configured, prepare the mbuf for TCP segmentation. */
824
825                 /* process checksums of inner headers first */
826                 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
827                         tx_offloads);
828
829                 /* Then process outer headers if any. Note that the software
830                  * checksum will be wrong if one of the inner checksums is
831                  * processed in hardware. */
832                 if (info.is_tunnel == 1) {
833                         tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
834                                         tx_offloads,
835                                         !!(tx_ol_flags & PKT_TX_TCP_SEG));
836                 }
837
838                 /* step 3: fill the mbuf meta data (flags and header lengths) */
839
840                 m->tx_offload = 0;
841                 if (info.is_tunnel == 1) {
842                         if (info.tunnel_tso_segsz ||
843                             (tx_offloads &
844                              DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
845                             (tx_offloads &
846                              DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
847                             (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
848                                 m->outer_l2_len = info.outer_l2_len;
849                                 m->outer_l3_len = info.outer_l3_len;
850                                 m->l2_len = info.l2_len;
851                                 m->l3_len = info.l3_len;
852                                 m->l4_len = info.l4_len;
853                                 m->tso_segsz = info.tunnel_tso_segsz;
854                         }
855                         else {
856                                 /* if there is a outer UDP cksum
857                                    processed in sw and the inner in hw,
858                                    the outer checksum will be wrong as
859                                    the payload will be modified by the
860                                    hardware */
861                                 m->l2_len = info.outer_l2_len +
862                                         info.outer_l3_len + info.l2_len;
863                                 m->l3_len = info.l3_len;
864                                 m->l4_len = info.l4_len;
865                         }
866                 } else {
867                         /* this is only useful if an offload flag is
868                          * set, but it does not hurt to fill it in any
869                          * case */
870                         m->l2_len = info.l2_len;
871                         m->l3_len = info.l3_len;
872                         m->l4_len = info.l4_len;
873                         m->tso_segsz = info.tso_segsz;
874                 }
875                 m->ol_flags = tx_ol_flags;
876
877                 /* Do split & copy for the packet. */
878                 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
879                         p = pkt_copy_split(m);
880                         if (p != NULL) {
881                                 rte_pktmbuf_free(m);
882                                 m = p;
883                                 pkts_burst[i] = m;
884                         }
885                 }
886
887                 /* if verbose mode is enabled, dump debug info */
888                 if (verbose_level > 0) {
889                         char buf[256];
890
891                         printf("-----------------\n");
892                         printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
893                                 fs->rx_port, m, m->pkt_len, m->nb_segs);
894                         /* dump rx parsed packet info */
895                         rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
896                         printf("rx: l2_len=%d ethertype=%x l3_len=%d "
897                                 "l4_proto=%d l4_len=%d flags=%s\n",
898                                 info.l2_len, rte_be_to_cpu_16(info.ethertype),
899                                 info.l3_len, info.l4_proto, info.l4_len, buf);
900                         if (rx_ol_flags & PKT_RX_LRO)
901                                 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
902                         if (info.is_tunnel == 1)
903                                 printf("rx: outer_l2_len=%d outer_ethertype=%x "
904                                         "outer_l3_len=%d\n", info.outer_l2_len,
905                                         rte_be_to_cpu_16(info.outer_ethertype),
906                                         info.outer_l3_len);
907                         /* dump tx packet info */
908                         if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
909                                             DEV_TX_OFFLOAD_UDP_CKSUM |
910                                             DEV_TX_OFFLOAD_TCP_CKSUM |
911                                             DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
912                                 info.tso_segsz != 0)
913                                 printf("tx: m->l2_len=%d m->l3_len=%d "
914                                         "m->l4_len=%d\n",
915                                         m->l2_len, m->l3_len, m->l4_len);
916                         if (info.is_tunnel == 1) {
917                                 if ((tx_offloads &
918                                     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
919                                     (tx_offloads &
920                                     DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
921                                     (tx_ol_flags & PKT_TX_OUTER_IPV6))
922                                         printf("tx: m->outer_l2_len=%d "
923                                                 "m->outer_l3_len=%d\n",
924                                                 m->outer_l2_len,
925                                                 m->outer_l3_len);
926                                 if (info.tunnel_tso_segsz != 0 &&
927                                                 (m->ol_flags & PKT_TX_TCP_SEG))
928                                         printf("tx: m->tso_segsz=%d\n",
929                                                 m->tso_segsz);
930                         } else if (info.tso_segsz != 0 &&
931                                         (m->ol_flags & PKT_TX_TCP_SEG))
932                                 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
933                         rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
934                         printf("tx: flags=%s", buf);
935                         printf("\n");
936                 }
937         }
938
939         if (unlikely(gro_enable)) {
940                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
941                         nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
942                                         &(gro_ports[fs->rx_port].param));
943                 } else {
944                         gro_ctx = current_fwd_lcore()->gro_ctx;
945                         nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
946
947                         if (++fs->gro_times >= gro_flush_cycles) {
948                                 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
949                                 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
950                                         gro_pkts_num = MAX_PKT_BURST - nb_rx;
951
952                                 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
953                                                 RTE_GRO_TCP_IPV4,
954                                                 &pkts_burst[nb_rx],
955                                                 gro_pkts_num);
956                                 fs->gro_times = 0;
957                         }
958                 }
959         }
960
961         if (gso_ports[fs->tx_port].enable == 0)
962                 tx_pkts_burst = pkts_burst;
963         else {
964                 gso_ctx = &(current_fwd_lcore()->gso_ctx);
965                 gso_ctx->gso_size = gso_max_segment_size;
966                 for (i = 0; i < nb_rx; i++) {
967                         ret = rte_gso_segment(pkts_burst[i], gso_ctx,
968                                         &gso_segments[nb_segments],
969                                         GSO_MAX_PKT_BURST - nb_segments);
970                         if (ret >= 0)
971                                 nb_segments += ret;
972                         else {
973                                 TESTPMD_LOG(DEBUG, "Unable to segment packet");
974                                 rte_pktmbuf_free(pkts_burst[i]);
975                         }
976                 }
977
978                 tx_pkts_burst = gso_segments;
979                 nb_rx = nb_segments;
980         }
981
982         nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
983                         tx_pkts_burst, nb_rx);
984         if (nb_prep != nb_rx)
985                 printf("Preparing packet burst to transmit failed: %s\n",
986                                 rte_strerror(rte_errno));
987
988         nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
989                         nb_prep);
990
991         /*
992          * Retry if necessary
993          */
994         if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
995                 retry = 0;
996                 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
997                         rte_delay_us(burst_tx_delay_time);
998                         nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
999                                         &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1000                 }
1001         }
1002         fs->tx_packets += nb_tx;
1003         fs->rx_bad_ip_csum += rx_bad_ip_csum;
1004         fs->rx_bad_l4_csum += rx_bad_l4_csum;
1005         fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1006
1007 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1008         fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
1009 #endif
1010         if (unlikely(nb_tx < nb_rx)) {
1011                 fs->fwd_dropped += (nb_rx - nb_tx);
1012                 do {
1013                         rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1014                 } while (++nb_tx < nb_rx);
1015         }
1016
1017 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1018         end_tsc = rte_rdtsc();
1019         core_cycles = (end_tsc - start_tsc);
1020         fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
1021 #endif
1022 }
1023
1024 struct fwd_engine csum_fwd_engine = {
1025         .fwd_mode_name  = "csum",
1026         .port_fwd_begin = NULL,
1027         .port_fwd_end   = NULL,
1028         .packet_fwd     = pkt_burst_checksum_forward,
1029 };