replace packed attributes
[dpdk.git] / app / test-pmd / csumonly.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_vxlan.h>
39 #include <rte_sctp.h>
40 #include <rte_gtp.h>
41 #include <rte_prefetch.h>
42 #include <rte_string_fns.h>
43 #include <rte_flow.h>
44 #include <rte_gro.h>
45 #include <rte_gso.h>
46
47 #include "testpmd.h"
48
49 #define IP_DEFTTL  64   /* from RFC 1340. */
50
51 #define GRE_CHECKSUM_PRESENT    0x8000
52 #define GRE_KEY_PRESENT         0x2000
53 #define GRE_SEQUENCE_PRESENT    0x1000
54 #define GRE_EXT_LEN             4
55 #define GRE_SUPPORTED_FIELDS    (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
56                                  GRE_SEQUENCE_PRESENT)
57
58 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
59 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
60 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
61 #else
62 #define _htons(x) (x)
63 #endif
64
65 uint16_t vxlan_gpe_udp_port = 4790;
66
67 /* structure that caches offload info for the current packet */
68 struct testpmd_offload_info {
69         uint16_t ethertype;
70         uint8_t gso_enable;
71         uint16_t l2_len;
72         uint16_t l3_len;
73         uint16_t l4_len;
74         uint8_t l4_proto;
75         uint8_t is_tunnel;
76         uint16_t outer_ethertype;
77         uint16_t outer_l2_len;
78         uint16_t outer_l3_len;
79         uint8_t outer_l4_proto;
80         uint16_t tso_segsz;
81         uint16_t tunnel_tso_segsz;
82         uint32_t pkt_len;
83 };
84
85 /* simplified GRE header */
86 struct simple_gre_hdr {
87         uint16_t flags;
88         uint16_t proto;
89 } __rte_packed;
90
91 static uint16_t
92 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
93 {
94         if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
95                 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
96         else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
97                 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
98 }
99
100 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
101 static void
102 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
103 {
104         struct rte_tcp_hdr *tcp_hdr;
105
106         info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
107         info->l4_proto = ipv4_hdr->next_proto_id;
108
109         /* only fill l4_len for TCP, it's useful for TSO */
110         if (info->l4_proto == IPPROTO_TCP) {
111                 tcp_hdr = (struct rte_tcp_hdr *)
112                         ((char *)ipv4_hdr + info->l3_len);
113                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
114         } else if (info->l4_proto == IPPROTO_UDP)
115                 info->l4_len = sizeof(struct rte_udp_hdr);
116         else
117                 info->l4_len = 0;
118 }
119
120 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
121 static void
122 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
123 {
124         struct rte_tcp_hdr *tcp_hdr;
125
126         info->l3_len = sizeof(struct rte_ipv6_hdr);
127         info->l4_proto = ipv6_hdr->proto;
128
129         /* only fill l4_len for TCP, it's useful for TSO */
130         if (info->l4_proto == IPPROTO_TCP) {
131                 tcp_hdr = (struct rte_tcp_hdr *)
132                         ((char *)ipv6_hdr + info->l3_len);
133                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
134         } else if (info->l4_proto == IPPROTO_UDP)
135                 info->l4_len = sizeof(struct rte_udp_hdr);
136         else
137                 info->l4_len = 0;
138 }
139
140 /*
141  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
142  * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
143  * header. The l4_len argument is only set in case of TCP (useful for TSO).
144  */
145 static void
146 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
147 {
148         struct rte_ipv4_hdr *ipv4_hdr;
149         struct rte_ipv6_hdr *ipv6_hdr;
150
151         info->l2_len = sizeof(struct rte_ether_hdr);
152         info->ethertype = eth_hdr->ether_type;
153
154         if (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN)) {
155                 struct rte_vlan_hdr *vlan_hdr = (
156                         struct rte_vlan_hdr *)(eth_hdr + 1);
157
158                 info->l2_len  += sizeof(struct rte_vlan_hdr);
159                 info->ethertype = vlan_hdr->eth_proto;
160         }
161
162         switch (info->ethertype) {
163         case _htons(RTE_ETHER_TYPE_IPV4):
164                 ipv4_hdr = (struct rte_ipv4_hdr *)
165                         ((char *)eth_hdr + info->l2_len);
166                 parse_ipv4(ipv4_hdr, info);
167                 break;
168         case _htons(RTE_ETHER_TYPE_IPV6):
169                 ipv6_hdr = (struct rte_ipv6_hdr *)
170                         ((char *)eth_hdr + info->l2_len);
171                 parse_ipv6(ipv6_hdr, info);
172                 break;
173         default:
174                 info->l4_len = 0;
175                 info->l3_len = 0;
176                 info->l4_proto = 0;
177                 break;
178         }
179 }
180
181 /*
182  * Parse a GTP protocol header.
183  * No optional fields and next extension header type.
184  */
185 static void
186 parse_gtp(struct rte_udp_hdr *udp_hdr,
187           struct testpmd_offload_info *info)
188 {
189         struct rte_ipv4_hdr *ipv4_hdr;
190         struct rte_ipv6_hdr *ipv6_hdr;
191         struct rte_gtp_hdr *gtp_hdr;
192         uint8_t gtp_len = sizeof(*gtp_hdr);
193         uint8_t ip_ver;
194
195         /* Check udp destination port. */
196         if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
197             udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
198             udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
199                 return;
200
201         info->is_tunnel = 1;
202         info->outer_ethertype = info->ethertype;
203         info->outer_l2_len = info->l2_len;
204         info->outer_l3_len = info->l3_len;
205         info->outer_l4_proto = info->l4_proto;
206         info->l2_len = 0;
207
208         gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
209                   sizeof(struct rte_udp_hdr));
210
211         /*
212          * Check message type. If message type is 0xff, it is
213          * a GTP data packet. If not, it is a GTP control packet
214          */
215         if (gtp_hdr->msg_type == 0xff) {
216                 ip_ver = *(uint8_t *)((char *)udp_hdr +
217                          sizeof(struct rte_udp_hdr) +
218                          sizeof(struct rte_gtp_hdr));
219                 ip_ver = (ip_ver) & 0xf0;
220
221                 if (ip_ver == RTE_GTP_TYPE_IPV4) {
222                         ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
223                                    gtp_len);
224                         info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
225                         parse_ipv4(ipv4_hdr, info);
226                 } else if (ip_ver == RTE_GTP_TYPE_IPV6) {
227                         ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
228                                    gtp_len);
229                         info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
230                         parse_ipv6(ipv6_hdr, info);
231                 }
232         } else {
233                 info->ethertype = 0;
234                 info->l4_len = 0;
235                 info->l3_len = 0;
236                 info->l4_proto = 0;
237         }
238
239         info->l2_len += RTE_ETHER_GTP_HLEN;
240 }
241
242 /* Parse a vxlan header */
243 static void
244 parse_vxlan(struct rte_udp_hdr *udp_hdr,
245             struct testpmd_offload_info *info,
246             uint32_t pkt_type)
247 {
248         struct rte_ether_hdr *eth_hdr;
249
250         /* check udp destination port, 4789 is the default vxlan port
251          * (rfc7348) or that the rx offload flag is set (i40e only
252          * currently) */
253         if (udp_hdr->dst_port != _htons(4789) &&
254                 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
255                 return;
256
257         info->is_tunnel = 1;
258         info->outer_ethertype = info->ethertype;
259         info->outer_l2_len = info->l2_len;
260         info->outer_l3_len = info->l3_len;
261         info->outer_l4_proto = info->l4_proto;
262
263         eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
264                 sizeof(struct rte_udp_hdr) +
265                 sizeof(struct rte_vxlan_hdr));
266
267         parse_ethernet(eth_hdr, info);
268         info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
269 }
270
271 /* Parse a vxlan-gpe header */
272 static void
273 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
274             struct testpmd_offload_info *info)
275 {
276         struct rte_ether_hdr *eth_hdr;
277         struct rte_ipv4_hdr *ipv4_hdr;
278         struct rte_ipv6_hdr *ipv6_hdr;
279         struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
280         uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
281
282         /* Check udp destination port. */
283         if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
284                 return;
285
286         vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
287                                 sizeof(struct rte_udp_hdr));
288
289         if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
290             RTE_VXLAN_GPE_TYPE_IPV4) {
291                 info->is_tunnel = 1;
292                 info->outer_ethertype = info->ethertype;
293                 info->outer_l2_len = info->l2_len;
294                 info->outer_l3_len = info->l3_len;
295                 info->outer_l4_proto = info->l4_proto;
296
297                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
298                            vxlan_gpe_len);
299
300                 parse_ipv4(ipv4_hdr, info);
301                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
302                 info->l2_len = 0;
303
304         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
305                 info->is_tunnel = 1;
306                 info->outer_ethertype = info->ethertype;
307                 info->outer_l2_len = info->l2_len;
308                 info->outer_l3_len = info->l3_len;
309                 info->outer_l4_proto = info->l4_proto;
310
311                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
312                            vxlan_gpe_len);
313
314                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
315                 parse_ipv6(ipv6_hdr, info);
316                 info->l2_len = 0;
317
318         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
319                 info->is_tunnel = 1;
320                 info->outer_ethertype = info->ethertype;
321                 info->outer_l2_len = info->l2_len;
322                 info->outer_l3_len = info->l3_len;
323                 info->outer_l4_proto = info->l4_proto;
324
325                 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
326                           vxlan_gpe_len);
327
328                 parse_ethernet(eth_hdr, info);
329         } else
330                 return;
331
332         info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
333 }
334
335 /* Parse a gre header */
336 static void
337 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
338 {
339         struct rte_ether_hdr *eth_hdr;
340         struct rte_ipv4_hdr *ipv4_hdr;
341         struct rte_ipv6_hdr *ipv6_hdr;
342         uint8_t gre_len = 0;
343
344         gre_len += sizeof(struct simple_gre_hdr);
345
346         if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
347                 gre_len += GRE_EXT_LEN;
348         if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
349                 gre_len += GRE_EXT_LEN;
350         if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
351                 gre_len += GRE_EXT_LEN;
352
353         if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
354                 info->is_tunnel = 1;
355                 info->outer_ethertype = info->ethertype;
356                 info->outer_l2_len = info->l2_len;
357                 info->outer_l3_len = info->l3_len;
358                 info->outer_l4_proto = info->l4_proto;
359
360                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
361
362                 parse_ipv4(ipv4_hdr, info);
363                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
364                 info->l2_len = 0;
365
366         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
367                 info->is_tunnel = 1;
368                 info->outer_ethertype = info->ethertype;
369                 info->outer_l2_len = info->l2_len;
370                 info->outer_l3_len = info->l3_len;
371                 info->outer_l4_proto = info->l4_proto;
372
373                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
374
375                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
376                 parse_ipv6(ipv6_hdr, info);
377                 info->l2_len = 0;
378
379         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
380                 info->is_tunnel = 1;
381                 info->outer_ethertype = info->ethertype;
382                 info->outer_l2_len = info->l2_len;
383                 info->outer_l3_len = info->l3_len;
384                 info->outer_l4_proto = info->l4_proto;
385
386                 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
387
388                 parse_ethernet(eth_hdr, info);
389         } else
390                 return;
391
392         info->l2_len += gre_len;
393 }
394
395
396 /* Parse an encapsulated ip or ipv6 header */
397 static void
398 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
399 {
400         struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
401         struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
402         uint8_t ip_version;
403
404         ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
405
406         if (ip_version != 4 && ip_version != 6)
407                 return;
408
409         info->is_tunnel = 1;
410         info->outer_ethertype = info->ethertype;
411         info->outer_l2_len = info->l2_len;
412         info->outer_l3_len = info->l3_len;
413
414         if (ip_version == 4) {
415                 parse_ipv4(ipv4_hdr, info);
416                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
417         } else {
418                 parse_ipv6(ipv6_hdr, info);
419                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
420         }
421         info->l2_len = 0;
422 }
423
424 /* if possible, calculate the checksum of a packet in hw or sw,
425  * depending on the testpmd command line configuration */
426 static uint64_t
427 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
428         uint64_t tx_offloads)
429 {
430         struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
431         struct rte_udp_hdr *udp_hdr;
432         struct rte_tcp_hdr *tcp_hdr;
433         struct rte_sctp_hdr *sctp_hdr;
434         uint64_t ol_flags = 0;
435         uint32_t max_pkt_len, tso_segsz = 0;
436
437         /* ensure packet is large enough to require tso */
438         if (!info->is_tunnel) {
439                 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
440                         info->tso_segsz;
441                 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
442                         tso_segsz = info->tso_segsz;
443         } else {
444                 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
445                         info->l2_len + info->l3_len + info->l4_len +
446                         info->tunnel_tso_segsz;
447                 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
448                         tso_segsz = info->tunnel_tso_segsz;
449         }
450
451         if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
452                 ipv4_hdr = l3_hdr;
453                 ipv4_hdr->hdr_checksum = 0;
454
455                 ol_flags |= PKT_TX_IPV4;
456                 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
457                         ol_flags |= PKT_TX_IP_CKSUM;
458                 } else {
459                         if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
460                                 ol_flags |= PKT_TX_IP_CKSUM;
461                         else
462                                 ipv4_hdr->hdr_checksum =
463                                         rte_ipv4_cksum(ipv4_hdr);
464                 }
465         } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
466                 ol_flags |= PKT_TX_IPV6;
467         else
468                 return 0; /* packet type not supported, nothing to do */
469
470         if (info->l4_proto == IPPROTO_UDP) {
471                 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
472                 /* do not recalculate udp cksum if it was 0 */
473                 if (udp_hdr->dgram_cksum != 0) {
474                         udp_hdr->dgram_cksum = 0;
475                         if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
476                                 ol_flags |= PKT_TX_UDP_CKSUM;
477                         else {
478                                 udp_hdr->dgram_cksum =
479                                         get_udptcp_checksum(l3_hdr, udp_hdr,
480                                                 info->ethertype);
481                         }
482                 }
483                 if (info->gso_enable)
484                         ol_flags |= PKT_TX_UDP_SEG;
485         } else if (info->l4_proto == IPPROTO_TCP) {
486                 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
487                 tcp_hdr->cksum = 0;
488                 if (tso_segsz)
489                         ol_flags |= PKT_TX_TCP_SEG;
490                 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
491                         ol_flags |= PKT_TX_TCP_CKSUM;
492                 else {
493                         tcp_hdr->cksum =
494                                 get_udptcp_checksum(l3_hdr, tcp_hdr,
495                                         info->ethertype);
496                 }
497                 if (info->gso_enable)
498                         ol_flags |= PKT_TX_TCP_SEG;
499         } else if (info->l4_proto == IPPROTO_SCTP) {
500                 sctp_hdr = (struct rte_sctp_hdr *)
501                         ((char *)l3_hdr + info->l3_len);
502                 sctp_hdr->cksum = 0;
503                 /* sctp payload must be a multiple of 4 to be
504                  * offloaded */
505                 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
506                         ((ipv4_hdr->total_length & 0x3) == 0)) {
507                         ol_flags |= PKT_TX_SCTP_CKSUM;
508                 } else {
509                         /* XXX implement CRC32c, example available in
510                          * RFC3309 */
511                 }
512         }
513
514         return ol_flags;
515 }
516
517 /* Calculate the checksum of outer header */
518 static uint64_t
519 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
520         uint64_t tx_offloads, int tso_enabled)
521 {
522         struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
523         struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
524         struct rte_udp_hdr *udp_hdr;
525         uint64_t ol_flags = 0;
526
527         if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
528                 ipv4_hdr->hdr_checksum = 0;
529                 ol_flags |= PKT_TX_OUTER_IPV4;
530
531                 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
532                         ol_flags |= PKT_TX_OUTER_IP_CKSUM;
533                 else
534                         ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
535         } else
536                 ol_flags |= PKT_TX_OUTER_IPV6;
537
538         if (info->outer_l4_proto != IPPROTO_UDP)
539                 return ol_flags;
540
541         udp_hdr = (struct rte_udp_hdr *)
542                 ((char *)outer_l3_hdr + info->outer_l3_len);
543
544         if (tso_enabled)
545                 ol_flags |= PKT_TX_TCP_SEG;
546
547         /* Skip SW outer UDP checksum generation if HW supports it */
548         if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
549                 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
550                         udp_hdr->dgram_cksum
551                                 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
552                 else
553                         udp_hdr->dgram_cksum
554                                 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
555
556                 ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
557                 return ol_flags;
558         }
559
560         /* outer UDP checksum is done in software. In the other side, for
561          * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
562          * set to zero.
563          *
564          * If a packet will be TSOed into small packets by NIC, we cannot
565          * set/calculate a non-zero checksum, because it will be a wrong
566          * value after the packet be split into several small packets.
567          */
568         if (tso_enabled)
569                 udp_hdr->dgram_cksum = 0;
570
571         /* do not recalculate udp cksum if it was 0 */
572         if (udp_hdr->dgram_cksum != 0) {
573                 udp_hdr->dgram_cksum = 0;
574                 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
575                         udp_hdr->dgram_cksum =
576                                 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
577                 else
578                         udp_hdr->dgram_cksum =
579                                 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
580         }
581
582         return ol_flags;
583 }
584
585 /*
586  * Helper function.
587  * Performs actual copying.
588  * Returns number of segments in the destination mbuf on success,
589  * or negative error code on failure.
590  */
591 static int
592 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
593         uint16_t seglen[], uint8_t nb_seg)
594 {
595         uint32_t dlen, slen, tlen;
596         uint32_t i, len;
597         const struct rte_mbuf *m;
598         const uint8_t *src;
599         uint8_t *dst;
600
601         dlen = 0;
602         slen = 0;
603         tlen = 0;
604
605         dst = NULL;
606         src = NULL;
607
608         m = ms;
609         i = 0;
610         while (ms != NULL && i != nb_seg) {
611
612                 if (slen == 0) {
613                         slen = rte_pktmbuf_data_len(ms);
614                         src = rte_pktmbuf_mtod(ms, const uint8_t *);
615                 }
616
617                 if (dlen == 0) {
618                         dlen = RTE_MIN(seglen[i], slen);
619                         md[i]->data_len = dlen;
620                         md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
621                         dst = rte_pktmbuf_mtod(md[i], uint8_t *);
622                 }
623
624                 len = RTE_MIN(slen, dlen);
625                 memcpy(dst, src, len);
626                 tlen += len;
627                 slen -= len;
628                 dlen -= len;
629                 src += len;
630                 dst += len;
631
632                 if (slen == 0)
633                         ms = ms->next;
634                 if (dlen == 0)
635                         i++;
636         }
637
638         if (ms != NULL)
639                 return -ENOBUFS;
640         else if (tlen != m->pkt_len)
641                 return -EINVAL;
642
643         md[0]->nb_segs = nb_seg;
644         md[0]->pkt_len = tlen;
645         md[0]->vlan_tci = m->vlan_tci;
646         md[0]->vlan_tci_outer = m->vlan_tci_outer;
647         md[0]->ol_flags = m->ol_flags;
648         md[0]->tx_offload = m->tx_offload;
649
650         return nb_seg;
651 }
652
653 /*
654  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
655  * Copy packet contents and offload information into the new segmented mbuf.
656  */
657 static struct rte_mbuf *
658 pkt_copy_split(const struct rte_mbuf *pkt)
659 {
660         int32_t n, rc;
661         uint32_t i, len, nb_seg;
662         struct rte_mempool *mp;
663         uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
664         struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
665
666         mp = current_fwd_lcore()->mbp;
667
668         if (tx_pkt_split == TX_PKT_SPLIT_RND)
669                 nb_seg = random() % tx_pkt_nb_segs + 1;
670         else
671                 nb_seg = tx_pkt_nb_segs;
672
673         memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
674
675         /* calculate number of segments to use and their length. */
676         len = 0;
677         for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
678                 len += seglen[i];
679                 md[i] = NULL;
680         }
681
682         n = pkt->pkt_len - len;
683
684         /* update size of the last segment to fit rest of the packet */
685         if (n >= 0) {
686                 seglen[i - 1] += n;
687                 len += n;
688         }
689
690         nb_seg = i;
691         while (i != 0) {
692                 p = rte_pktmbuf_alloc(mp);
693                 if (p == NULL) {
694                         TESTPMD_LOG(ERR,
695                                 "failed to allocate %u-th of %u mbuf "
696                                 "from mempool: %s\n",
697                                 nb_seg - i, nb_seg, mp->name);
698                         break;
699                 }
700
701                 md[--i] = p;
702                 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
703                         TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
704                                 "expected seglen: %u, "
705                                 "actual mbuf tailroom: %u\n",
706                                 mp->name, i, seglen[i],
707                                 rte_pktmbuf_tailroom(md[i]));
708                         break;
709                 }
710         }
711
712         /* all mbufs successfully allocated, do copy */
713         if (i == 0) {
714                 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
715                 if (rc < 0)
716                         TESTPMD_LOG(ERR,
717                                 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
718                                 "into %u segments failed with error code: %d\n",
719                                 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
720
721                 /* figure out how many mbufs to free. */
722                 i = RTE_MAX(rc, 0);
723         }
724
725         /* free unused mbufs */
726         for (; i != nb_seg; i++) {
727                 rte_pktmbuf_free_seg(md[i]);
728                 md[i] = NULL;
729         }
730
731         return md[0];
732 }
733
734 /*
735  * Receive a burst of packets, and for each packet:
736  *  - parse packet, and try to recognize a supported packet type (1)
737  *  - if it's not a supported packet type, don't touch the packet, else:
738  *  - reprocess the checksum of all supported layers. This is done in SW
739  *    or HW, depending on testpmd command line configuration
740  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
741  *    segmentation offload (this implies HW TCP checksum)
742  * Then transmit packets on the output port.
743  *
744  * (1) Supported packets are:
745  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
746  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
747  *           UDP|TCP|SCTP
748  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
749  *           UDP|TCP|SCTP
750  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
751  *           UDP|TCP|SCTP
752  *   Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
753  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
754  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
755  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
756  *
757  * The testpmd command line for this forward engine sets the flags
758  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
759  * wether a checksum must be calculated in software or in hardware. The
760  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
761  * OUTER_IP is only useful for tunnel packets.
762  */
763 static void
764 pkt_burst_checksum_forward(struct fwd_stream *fs)
765 {
766         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
767         struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
768         struct rte_gso_ctx *gso_ctx;
769         struct rte_mbuf **tx_pkts_burst;
770         struct rte_port *txp;
771         struct rte_mbuf *m, *p;
772         struct rte_ether_hdr *eth_hdr;
773         void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
774         void **gro_ctx;
775         uint16_t gro_pkts_num;
776         uint8_t gro_enable;
777         uint16_t nb_rx;
778         uint16_t nb_tx;
779         uint16_t nb_prep;
780         uint16_t i;
781         uint64_t rx_ol_flags, tx_ol_flags;
782         uint64_t tx_offloads;
783         uint32_t retry;
784         uint32_t rx_bad_ip_csum;
785         uint32_t rx_bad_l4_csum;
786         uint32_t rx_bad_outer_l4_csum;
787         struct testpmd_offload_info info;
788         uint16_t nb_segments = 0;
789         int ret;
790
791 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
792         uint64_t start_tsc;
793         uint64_t end_tsc;
794         uint64_t core_cycles;
795 #endif
796
797 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
798         start_tsc = rte_rdtsc();
799 #endif
800
801         /* receive a burst of packet */
802         nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
803                                  nb_pkt_per_burst);
804         if (unlikely(nb_rx == 0))
805                 return;
806 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
807         fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
808 #endif
809         fs->rx_packets += nb_rx;
810         rx_bad_ip_csum = 0;
811         rx_bad_l4_csum = 0;
812         rx_bad_outer_l4_csum = 0;
813         gro_enable = gro_ports[fs->rx_port].enable;
814
815         txp = &ports[fs->tx_port];
816         tx_offloads = txp->dev_conf.txmode.offloads;
817         memset(&info, 0, sizeof(info));
818         info.tso_segsz = txp->tso_segsz;
819         info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
820         if (gso_ports[fs->tx_port].enable)
821                 info.gso_enable = 1;
822
823         for (i = 0; i < nb_rx; i++) {
824                 if (likely(i < nb_rx - 1))
825                         rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
826                                                        void *));
827
828                 m = pkts_burst[i];
829                 info.is_tunnel = 0;
830                 info.pkt_len = rte_pktmbuf_pkt_len(m);
831                 tx_ol_flags = m->ol_flags &
832                               (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
833                 rx_ol_flags = m->ol_flags;
834
835                 /* Update the L3/L4 checksum error packet statistics */
836                 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
837                         rx_bad_ip_csum += 1;
838                 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
839                         rx_bad_l4_csum += 1;
840                 if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
841                         rx_bad_outer_l4_csum += 1;
842
843                 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
844                  * and inner headers */
845
846                 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
847                 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
848                                 &eth_hdr->d_addr);
849                 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
850                                 &eth_hdr->s_addr);
851                 parse_ethernet(eth_hdr, &info);
852                 l3_hdr = (char *)eth_hdr + info.l2_len;
853
854                 /* check if it's a supported tunnel */
855                 if (txp->parse_tunnel) {
856                         if (info.l4_proto == IPPROTO_UDP) {
857                                 struct rte_udp_hdr *udp_hdr;
858
859                                 udp_hdr = (struct rte_udp_hdr *)
860                                         ((char *)l3_hdr + info.l3_len);
861                                 parse_gtp(udp_hdr, &info);
862                                 if (info.is_tunnel) {
863                                         tx_ol_flags |= PKT_TX_TUNNEL_GTP;
864                                         goto tunnel_update;
865                                 }
866                                 parse_vxlan_gpe(udp_hdr, &info);
867                                 if (info.is_tunnel) {
868                                         tx_ol_flags |=
869                                                 PKT_TX_TUNNEL_VXLAN_GPE;
870                                         goto tunnel_update;
871                                 }
872                                 parse_vxlan(udp_hdr, &info,
873                                             m->packet_type);
874                                 if (info.is_tunnel)
875                                         tx_ol_flags |=
876                                                 PKT_TX_TUNNEL_VXLAN;
877                         } else if (info.l4_proto == IPPROTO_GRE) {
878                                 struct simple_gre_hdr *gre_hdr;
879
880                                 gre_hdr = (struct simple_gre_hdr *)
881                                         ((char *)l3_hdr + info.l3_len);
882                                 parse_gre(gre_hdr, &info);
883                                 if (info.is_tunnel)
884                                         tx_ol_flags |= PKT_TX_TUNNEL_GRE;
885                         } else if (info.l4_proto == IPPROTO_IPIP) {
886                                 void *encap_ip_hdr;
887
888                                 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
889                                 parse_encap_ip(encap_ip_hdr, &info);
890                                 if (info.is_tunnel)
891                                         tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
892                         }
893                 }
894
895 tunnel_update:
896                 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
897                 if (info.is_tunnel) {
898                         outer_l3_hdr = l3_hdr;
899                         l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
900                 }
901
902                 /* step 2: depending on user command line configuration,
903                  * recompute checksum either in software or flag the
904                  * mbuf to offload the calculation to the NIC. If TSO
905                  * is configured, prepare the mbuf for TCP segmentation. */
906
907                 /* process checksums of inner headers first */
908                 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
909                         tx_offloads);
910
911                 /* Then process outer headers if any. Note that the software
912                  * checksum will be wrong if one of the inner checksums is
913                  * processed in hardware. */
914                 if (info.is_tunnel == 1) {
915                         tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
916                                         tx_offloads,
917                                         !!(tx_ol_flags & PKT_TX_TCP_SEG));
918                 }
919
920                 /* step 3: fill the mbuf meta data (flags and header lengths) */
921
922                 m->tx_offload = 0;
923                 if (info.is_tunnel == 1) {
924                         if (info.tunnel_tso_segsz ||
925                             (tx_offloads &
926                              DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
927                             (tx_offloads &
928                              DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
929                             (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
930                                 m->outer_l2_len = info.outer_l2_len;
931                                 m->outer_l3_len = info.outer_l3_len;
932                                 m->l2_len = info.l2_len;
933                                 m->l3_len = info.l3_len;
934                                 m->l4_len = info.l4_len;
935                                 m->tso_segsz = info.tunnel_tso_segsz;
936                         }
937                         else {
938                                 /* if there is a outer UDP cksum
939                                    processed in sw and the inner in hw,
940                                    the outer checksum will be wrong as
941                                    the payload will be modified by the
942                                    hardware */
943                                 m->l2_len = info.outer_l2_len +
944                                         info.outer_l3_len + info.l2_len;
945                                 m->l3_len = info.l3_len;
946                                 m->l4_len = info.l4_len;
947                         }
948                 } else {
949                         /* this is only useful if an offload flag is
950                          * set, but it does not hurt to fill it in any
951                          * case */
952                         m->l2_len = info.l2_len;
953                         m->l3_len = info.l3_len;
954                         m->l4_len = info.l4_len;
955                         m->tso_segsz = info.tso_segsz;
956                 }
957                 m->ol_flags = tx_ol_flags;
958
959                 /* Do split & copy for the packet. */
960                 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
961                         p = pkt_copy_split(m);
962                         if (p != NULL) {
963                                 rte_pktmbuf_free(m);
964                                 m = p;
965                                 pkts_burst[i] = m;
966                         }
967                 }
968
969                 /* if verbose mode is enabled, dump debug info */
970                 if (verbose_level > 0) {
971                         char buf[256];
972
973                         printf("-----------------\n");
974                         printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
975                                 fs->rx_port, m, m->pkt_len, m->nb_segs);
976                         /* dump rx parsed packet info */
977                         rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
978                         printf("rx: l2_len=%d ethertype=%x l3_len=%d "
979                                 "l4_proto=%d l4_len=%d flags=%s\n",
980                                 info.l2_len, rte_be_to_cpu_16(info.ethertype),
981                                 info.l3_len, info.l4_proto, info.l4_len, buf);
982                         if (rx_ol_flags & PKT_RX_LRO)
983                                 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
984                         if (info.is_tunnel == 1)
985                                 printf("rx: outer_l2_len=%d outer_ethertype=%x "
986                                         "outer_l3_len=%d\n", info.outer_l2_len,
987                                         rte_be_to_cpu_16(info.outer_ethertype),
988                                         info.outer_l3_len);
989                         /* dump tx packet info */
990                         if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
991                                             DEV_TX_OFFLOAD_UDP_CKSUM |
992                                             DEV_TX_OFFLOAD_TCP_CKSUM |
993                                             DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
994                                 info.tso_segsz != 0)
995                                 printf("tx: m->l2_len=%d m->l3_len=%d "
996                                         "m->l4_len=%d\n",
997                                         m->l2_len, m->l3_len, m->l4_len);
998                         if (info.is_tunnel == 1) {
999                                 if ((tx_offloads &
1000                                     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1001                                     (tx_offloads &
1002                                     DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
1003                                     (tx_ol_flags & PKT_TX_OUTER_IPV6))
1004                                         printf("tx: m->outer_l2_len=%d "
1005                                                 "m->outer_l3_len=%d\n",
1006                                                 m->outer_l2_len,
1007                                                 m->outer_l3_len);
1008                                 if (info.tunnel_tso_segsz != 0 &&
1009                                                 (m->ol_flags & PKT_TX_TCP_SEG))
1010                                         printf("tx: m->tso_segsz=%d\n",
1011                                                 m->tso_segsz);
1012                         } else if (info.tso_segsz != 0 &&
1013                                         (m->ol_flags & PKT_TX_TCP_SEG))
1014                                 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1015                         rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1016                         printf("tx: flags=%s", buf);
1017                         printf("\n");
1018                 }
1019         }
1020
1021         if (unlikely(gro_enable)) {
1022                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1023                         nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1024                                         &(gro_ports[fs->rx_port].param));
1025                 } else {
1026                         gro_ctx = current_fwd_lcore()->gro_ctx;
1027                         nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1028
1029                         if (++fs->gro_times >= gro_flush_cycles) {
1030                                 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1031                                 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1032                                         gro_pkts_num = MAX_PKT_BURST - nb_rx;
1033
1034                                 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1035                                                 RTE_GRO_TCP_IPV4,
1036                                                 &pkts_burst[nb_rx],
1037                                                 gro_pkts_num);
1038                                 fs->gro_times = 0;
1039                         }
1040                 }
1041         }
1042
1043         if (gso_ports[fs->tx_port].enable == 0)
1044                 tx_pkts_burst = pkts_burst;
1045         else {
1046                 gso_ctx = &(current_fwd_lcore()->gso_ctx);
1047                 gso_ctx->gso_size = gso_max_segment_size;
1048                 for (i = 0; i < nb_rx; i++) {
1049                         ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1050                                         &gso_segments[nb_segments],
1051                                         GSO_MAX_PKT_BURST - nb_segments);
1052                         if (ret >= 0)
1053                                 nb_segments += ret;
1054                         else {
1055                                 TESTPMD_LOG(DEBUG, "Unable to segment packet");
1056                                 rte_pktmbuf_free(pkts_burst[i]);
1057                         }
1058                 }
1059
1060                 tx_pkts_burst = gso_segments;
1061                 nb_rx = nb_segments;
1062         }
1063
1064         nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1065                         tx_pkts_burst, nb_rx);
1066         if (nb_prep != nb_rx)
1067                 printf("Preparing packet burst to transmit failed: %s\n",
1068                                 rte_strerror(rte_errno));
1069
1070         nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
1071                         nb_prep);
1072
1073         /*
1074          * Retry if necessary
1075          */
1076         if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
1077                 retry = 0;
1078                 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1079                         rte_delay_us(burst_tx_delay_time);
1080                         nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1081                                         &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1082                 }
1083         }
1084         fs->tx_packets += nb_tx;
1085         fs->rx_bad_ip_csum += rx_bad_ip_csum;
1086         fs->rx_bad_l4_csum += rx_bad_l4_csum;
1087         fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1088
1089 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1090         fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
1091 #endif
1092         if (unlikely(nb_tx < nb_rx)) {
1093                 fs->fwd_dropped += (nb_rx - nb_tx);
1094                 do {
1095                         rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1096                 } while (++nb_tx < nb_rx);
1097         }
1098
1099 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1100         end_tsc = rte_rdtsc();
1101         core_cycles = (end_tsc - start_tsc);
1102         fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
1103 #endif
1104 }
1105
1106 struct fwd_engine csum_fwd_engine = {
1107         .fwd_mode_name  = "csum",
1108         .port_fwd_begin = NULL,
1109         .port_fwd_end   = NULL,
1110         .packet_fwd     = pkt_burst_checksum_forward,
1111 };