app/testpmd: support outer UDP HW checksum
[dpdk.git] / app / test-pmd / csumonly.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_sctp.h>
39 #include <rte_prefetch.h>
40 #include <rte_string_fns.h>
41 #include <rte_flow.h>
42 #include <rte_gro.h>
43 #include <rte_gso.h>
44
45 #include "testpmd.h"
46
47 #define IP_DEFTTL  64   /* from RFC 1340. */
48 #define IP_VERSION 0x40
49 #define IP_HDRLEN  0x05 /* default IP header length == five 32-bits words. */
50 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
51
52 #define GRE_CHECKSUM_PRESENT    0x8000
53 #define GRE_KEY_PRESENT         0x2000
54 #define GRE_SEQUENCE_PRESENT    0x1000
55 #define GRE_EXT_LEN             4
56 #define GRE_SUPPORTED_FIELDS    (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
57                                  GRE_SEQUENCE_PRESENT)
58
59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
62 #else
63 #define _htons(x) (x)
64 #endif
65
66 uint16_t vxlan_gpe_udp_port = 4790;
67
68 /* structure that caches offload info for the current packet */
69 struct testpmd_offload_info {
70         uint16_t ethertype;
71         uint8_t gso_enable;
72         uint16_t l2_len;
73         uint16_t l3_len;
74         uint16_t l4_len;
75         uint8_t l4_proto;
76         uint8_t is_tunnel;
77         uint16_t outer_ethertype;
78         uint16_t outer_l2_len;
79         uint16_t outer_l3_len;
80         uint8_t outer_l4_proto;
81         uint16_t tso_segsz;
82         uint16_t tunnel_tso_segsz;
83         uint32_t pkt_len;
84 };
85
86 /* simplified GRE header */
87 struct simple_gre_hdr {
88         uint16_t flags;
89         uint16_t proto;
90 } __attribute__((__packed__));
91
92 static uint16_t
93 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
94 {
95         if (ethertype == _htons(ETHER_TYPE_IPv4))
96                 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
97         else /* assume ethertype == ETHER_TYPE_IPv6 */
98                 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
99 }
100
101 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
102 static void
103 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
104 {
105         struct tcp_hdr *tcp_hdr;
106
107         info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
108         info->l4_proto = ipv4_hdr->next_proto_id;
109
110         /* only fill l4_len for TCP, it's useful for TSO */
111         if (info->l4_proto == IPPROTO_TCP) {
112                 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
113                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
114         } else
115                 info->l4_len = 0;
116 }
117
118 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
119 static void
120 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
121 {
122         struct tcp_hdr *tcp_hdr;
123
124         info->l3_len = sizeof(struct ipv6_hdr);
125         info->l4_proto = ipv6_hdr->proto;
126
127         /* only fill l4_len for TCP, it's useful for TSO */
128         if (info->l4_proto == IPPROTO_TCP) {
129                 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
130                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
131         } else
132                 info->l4_len = 0;
133 }
134
135 /*
136  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
137  * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
138  * header. The l4_len argument is only set in case of TCP (useful for TSO).
139  */
140 static void
141 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info)
142 {
143         struct ipv4_hdr *ipv4_hdr;
144         struct ipv6_hdr *ipv6_hdr;
145
146         info->l2_len = sizeof(struct ether_hdr);
147         info->ethertype = eth_hdr->ether_type;
148
149         if (info->ethertype == _htons(ETHER_TYPE_VLAN)) {
150                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
151
152                 info->l2_len  += sizeof(struct vlan_hdr);
153                 info->ethertype = vlan_hdr->eth_proto;
154         }
155
156         switch (info->ethertype) {
157         case _htons(ETHER_TYPE_IPv4):
158                 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len);
159                 parse_ipv4(ipv4_hdr, info);
160                 break;
161         case _htons(ETHER_TYPE_IPv6):
162                 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len);
163                 parse_ipv6(ipv6_hdr, info);
164                 break;
165         default:
166                 info->l4_len = 0;
167                 info->l3_len = 0;
168                 info->l4_proto = 0;
169                 break;
170         }
171 }
172
173 /* Parse a vxlan header */
174 static void
175 parse_vxlan(struct udp_hdr *udp_hdr,
176             struct testpmd_offload_info *info,
177             uint32_t pkt_type)
178 {
179         struct ether_hdr *eth_hdr;
180
181         /* check udp destination port, 4789 is the default vxlan port
182          * (rfc7348) or that the rx offload flag is set (i40e only
183          * currently) */
184         if (udp_hdr->dst_port != _htons(4789) &&
185                 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
186                 return;
187
188         info->is_tunnel = 1;
189         info->outer_ethertype = info->ethertype;
190         info->outer_l2_len = info->l2_len;
191         info->outer_l3_len = info->l3_len;
192         info->outer_l4_proto = info->l4_proto;
193
194         eth_hdr = (struct ether_hdr *)((char *)udp_hdr +
195                 sizeof(struct udp_hdr) +
196                 sizeof(struct vxlan_hdr));
197
198         parse_ethernet(eth_hdr, info);
199         info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */
200 }
201
202 /* Parse a vxlan-gpe header */
203 static void
204 parse_vxlan_gpe(struct udp_hdr *udp_hdr,
205             struct testpmd_offload_info *info)
206 {
207         struct ether_hdr *eth_hdr;
208         struct ipv4_hdr *ipv4_hdr;
209         struct ipv6_hdr *ipv6_hdr;
210         struct vxlan_gpe_hdr *vxlan_gpe_hdr;
211         uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
212
213         /* Check udp destination port. */
214         if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
215                 return;
216
217         vxlan_gpe_hdr = (struct vxlan_gpe_hdr *)((char *)udp_hdr +
218                                 sizeof(struct udp_hdr));
219
220         if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
221             VXLAN_GPE_TYPE_IPV4) {
222                 info->is_tunnel = 1;
223                 info->outer_ethertype = info->ethertype;
224                 info->outer_l2_len = info->l2_len;
225                 info->outer_l3_len = info->l3_len;
226                 info->outer_l4_proto = info->l4_proto;
227
228                 ipv4_hdr = (struct ipv4_hdr *)((char *)vxlan_gpe_hdr +
229                            vxlan_gpe_len);
230
231                 parse_ipv4(ipv4_hdr, info);
232                 info->ethertype = _htons(ETHER_TYPE_IPv4);
233                 info->l2_len = 0;
234
235         } else if (vxlan_gpe_hdr->proto == VXLAN_GPE_TYPE_IPV6) {
236                 info->is_tunnel = 1;
237                 info->outer_ethertype = info->ethertype;
238                 info->outer_l2_len = info->l2_len;
239                 info->outer_l3_len = info->l3_len;
240                 info->outer_l4_proto = info->l4_proto;
241
242                 ipv6_hdr = (struct ipv6_hdr *)((char *)vxlan_gpe_hdr +
243                            vxlan_gpe_len);
244
245                 info->ethertype = _htons(ETHER_TYPE_IPv6);
246                 parse_ipv6(ipv6_hdr, info);
247                 info->l2_len = 0;
248
249         } else if (vxlan_gpe_hdr->proto == VXLAN_GPE_TYPE_ETH) {
250                 info->is_tunnel = 1;
251                 info->outer_ethertype = info->ethertype;
252                 info->outer_l2_len = info->l2_len;
253                 info->outer_l3_len = info->l3_len;
254                 info->outer_l4_proto = info->l4_proto;
255
256                 eth_hdr = (struct ether_hdr *)((char *)vxlan_gpe_hdr +
257                           vxlan_gpe_len);
258
259                 parse_ethernet(eth_hdr, info);
260         } else
261                 return;
262
263         info->l2_len += ETHER_VXLAN_GPE_HLEN;
264 }
265
266 /* Parse a gre header */
267 static void
268 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
269 {
270         struct ether_hdr *eth_hdr;
271         struct ipv4_hdr *ipv4_hdr;
272         struct ipv6_hdr *ipv6_hdr;
273         uint8_t gre_len = 0;
274
275         gre_len += sizeof(struct simple_gre_hdr);
276
277         if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
278                 gre_len += GRE_EXT_LEN;
279         if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
280                 gre_len += GRE_EXT_LEN;
281         if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
282                 gre_len += GRE_EXT_LEN;
283
284         if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) {
285                 info->is_tunnel = 1;
286                 info->outer_ethertype = info->ethertype;
287                 info->outer_l2_len = info->l2_len;
288                 info->outer_l3_len = info->l3_len;
289                 info->outer_l4_proto = info->l4_proto;
290
291                 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len);
292
293                 parse_ipv4(ipv4_hdr, info);
294                 info->ethertype = _htons(ETHER_TYPE_IPv4);
295                 info->l2_len = 0;
296
297         } else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) {
298                 info->is_tunnel = 1;
299                 info->outer_ethertype = info->ethertype;
300                 info->outer_l2_len = info->l2_len;
301                 info->outer_l3_len = info->l3_len;
302                 info->outer_l4_proto = info->l4_proto;
303
304                 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len);
305
306                 info->ethertype = _htons(ETHER_TYPE_IPv6);
307                 parse_ipv6(ipv6_hdr, info);
308                 info->l2_len = 0;
309
310         } else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) {
311                 info->is_tunnel = 1;
312                 info->outer_ethertype = info->ethertype;
313                 info->outer_l2_len = info->l2_len;
314                 info->outer_l3_len = info->l3_len;
315                 info->outer_l4_proto = info->l4_proto;
316
317                 eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len);
318
319                 parse_ethernet(eth_hdr, info);
320         } else
321                 return;
322
323         info->l2_len += gre_len;
324 }
325
326
327 /* Parse an encapsulated ip or ipv6 header */
328 static void
329 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
330 {
331         struct ipv4_hdr *ipv4_hdr = encap_ip;
332         struct ipv6_hdr *ipv6_hdr = encap_ip;
333         uint8_t ip_version;
334
335         ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
336
337         if (ip_version != 4 && ip_version != 6)
338                 return;
339
340         info->is_tunnel = 1;
341         info->outer_ethertype = info->ethertype;
342         info->outer_l2_len = info->l2_len;
343         info->outer_l3_len = info->l3_len;
344
345         if (ip_version == 4) {
346                 parse_ipv4(ipv4_hdr, info);
347                 info->ethertype = _htons(ETHER_TYPE_IPv4);
348         } else {
349                 parse_ipv6(ipv6_hdr, info);
350                 info->ethertype = _htons(ETHER_TYPE_IPv6);
351         }
352         info->l2_len = 0;
353 }
354
355 /* if possible, calculate the checksum of a packet in hw or sw,
356  * depending on the testpmd command line configuration */
357 static uint64_t
358 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
359         uint64_t tx_offloads)
360 {
361         struct ipv4_hdr *ipv4_hdr = l3_hdr;
362         struct udp_hdr *udp_hdr;
363         struct tcp_hdr *tcp_hdr;
364         struct sctp_hdr *sctp_hdr;
365         uint64_t ol_flags = 0;
366         uint32_t max_pkt_len, tso_segsz = 0;
367
368         /* ensure packet is large enough to require tso */
369         if (!info->is_tunnel) {
370                 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
371                         info->tso_segsz;
372                 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
373                         tso_segsz = info->tso_segsz;
374         } else {
375                 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
376                         info->l2_len + info->l3_len + info->l4_len +
377                         info->tunnel_tso_segsz;
378                 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
379                         tso_segsz = info->tunnel_tso_segsz;
380         }
381
382         if (info->ethertype == _htons(ETHER_TYPE_IPv4)) {
383                 ipv4_hdr = l3_hdr;
384                 ipv4_hdr->hdr_checksum = 0;
385
386                 ol_flags |= PKT_TX_IPV4;
387                 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
388                         ol_flags |= PKT_TX_IP_CKSUM;
389                 } else {
390                         if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
391                                 ol_flags |= PKT_TX_IP_CKSUM;
392                         else
393                                 ipv4_hdr->hdr_checksum =
394                                         rte_ipv4_cksum(ipv4_hdr);
395                 }
396         } else if (info->ethertype == _htons(ETHER_TYPE_IPv6))
397                 ol_flags |= PKT_TX_IPV6;
398         else
399                 return 0; /* packet type not supported, nothing to do */
400
401         if (info->l4_proto == IPPROTO_UDP) {
402                 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
403                 /* do not recalculate udp cksum if it was 0 */
404                 if (udp_hdr->dgram_cksum != 0) {
405                         udp_hdr->dgram_cksum = 0;
406                         if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
407                                 ol_flags |= PKT_TX_UDP_CKSUM;
408                         else {
409                                 udp_hdr->dgram_cksum =
410                                         get_udptcp_checksum(l3_hdr, udp_hdr,
411                                                 info->ethertype);
412                         }
413                 }
414                 if (info->gso_enable)
415                         ol_flags |= PKT_TX_UDP_SEG;
416         } else if (info->l4_proto == IPPROTO_TCP) {
417                 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
418                 tcp_hdr->cksum = 0;
419                 if (tso_segsz)
420                         ol_flags |= PKT_TX_TCP_SEG;
421                 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
422                         ol_flags |= PKT_TX_TCP_CKSUM;
423                 else {
424                         tcp_hdr->cksum =
425                                 get_udptcp_checksum(l3_hdr, tcp_hdr,
426                                         info->ethertype);
427                 }
428                 if (info->gso_enable)
429                         ol_flags |= PKT_TX_TCP_SEG;
430         } else if (info->l4_proto == IPPROTO_SCTP) {
431                 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
432                 sctp_hdr->cksum = 0;
433                 /* sctp payload must be a multiple of 4 to be
434                  * offloaded */
435                 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
436                         ((ipv4_hdr->total_length & 0x3) == 0)) {
437                         ol_flags |= PKT_TX_SCTP_CKSUM;
438                 } else {
439                         /* XXX implement CRC32c, example available in
440                          * RFC3309 */
441                 }
442         }
443
444         return ol_flags;
445 }
446
447 /* Calculate the checksum of outer header */
448 static uint64_t
449 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
450         uint64_t tx_offloads, int tso_enabled)
451 {
452         struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
453         struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
454         struct udp_hdr *udp_hdr;
455         uint64_t ol_flags = 0;
456
457         if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) {
458                 ipv4_hdr->hdr_checksum = 0;
459                 ol_flags |= PKT_TX_OUTER_IPV4;
460
461                 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
462                         ol_flags |= PKT_TX_OUTER_IP_CKSUM;
463                 else
464                         ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
465         } else
466                 ol_flags |= PKT_TX_OUTER_IPV6;
467
468         if (info->outer_l4_proto != IPPROTO_UDP)
469                 return ol_flags;
470
471         /* Skip SW outer UDP checksum generation if HW supports it */
472         if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
473                 ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
474                 return ol_flags;
475         }
476
477         udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
478
479         /* outer UDP checksum is done in software. In the other side, for
480          * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
481          * set to zero.
482          *
483          * If a packet will be TSOed into small packets by NIC, we cannot
484          * set/calculate a non-zero checksum, because it will be a wrong
485          * value after the packet be split into several small packets.
486          */
487         if (tso_enabled)
488                 udp_hdr->dgram_cksum = 0;
489
490         /* do not recalculate udp cksum if it was 0 */
491         if (udp_hdr->dgram_cksum != 0) {
492                 udp_hdr->dgram_cksum = 0;
493                 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4))
494                         udp_hdr->dgram_cksum =
495                                 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
496                 else
497                         udp_hdr->dgram_cksum =
498                                 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
499         }
500
501         return ol_flags;
502 }
503
504 /*
505  * Helper function.
506  * Performs actual copying.
507  * Returns number of segments in the destination mbuf on success,
508  * or negative error code on failure.
509  */
510 static int
511 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
512         uint16_t seglen[], uint8_t nb_seg)
513 {
514         uint32_t dlen, slen, tlen;
515         uint32_t i, len;
516         const struct rte_mbuf *m;
517         const uint8_t *src;
518         uint8_t *dst;
519
520         dlen = 0;
521         slen = 0;
522         tlen = 0;
523
524         dst = NULL;
525         src = NULL;
526
527         m = ms;
528         i = 0;
529         while (ms != NULL && i != nb_seg) {
530
531                 if (slen == 0) {
532                         slen = rte_pktmbuf_data_len(ms);
533                         src = rte_pktmbuf_mtod(ms, const uint8_t *);
534                 }
535
536                 if (dlen == 0) {
537                         dlen = RTE_MIN(seglen[i], slen);
538                         md[i]->data_len = dlen;
539                         md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
540                         dst = rte_pktmbuf_mtod(md[i], uint8_t *);
541                 }
542
543                 len = RTE_MIN(slen, dlen);
544                 memcpy(dst, src, len);
545                 tlen += len;
546                 slen -= len;
547                 dlen -= len;
548                 src += len;
549                 dst += len;
550
551                 if (slen == 0)
552                         ms = ms->next;
553                 if (dlen == 0)
554                         i++;
555         }
556
557         if (ms != NULL)
558                 return -ENOBUFS;
559         else if (tlen != m->pkt_len)
560                 return -EINVAL;
561
562         md[0]->nb_segs = nb_seg;
563         md[0]->pkt_len = tlen;
564         md[0]->vlan_tci = m->vlan_tci;
565         md[0]->vlan_tci_outer = m->vlan_tci_outer;
566         md[0]->ol_flags = m->ol_flags;
567         md[0]->tx_offload = m->tx_offload;
568
569         return nb_seg;
570 }
571
572 /*
573  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
574  * Copy packet contents and offload information into then new segmented mbuf.
575  */
576 static struct rte_mbuf *
577 pkt_copy_split(const struct rte_mbuf *pkt)
578 {
579         int32_t n, rc;
580         uint32_t i, len, nb_seg;
581         struct rte_mempool *mp;
582         uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
583         struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
584
585         mp = current_fwd_lcore()->mbp;
586
587         if (tx_pkt_split == TX_PKT_SPLIT_RND)
588                 nb_seg = random() % tx_pkt_nb_segs + 1;
589         else
590                 nb_seg = tx_pkt_nb_segs;
591
592         memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
593
594         /* calculate number of segments to use and their length. */
595         len = 0;
596         for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
597                 len += seglen[i];
598                 md[i] = NULL;
599         }
600
601         n = pkt->pkt_len - len;
602
603         /* update size of the last segment to fit rest of the packet */
604         if (n >= 0) {
605                 seglen[i - 1] += n;
606                 len += n;
607         }
608
609         nb_seg = i;
610         while (i != 0) {
611                 p = rte_pktmbuf_alloc(mp);
612                 if (p == NULL) {
613                         TESTPMD_LOG(ERR,
614                                 "failed to allocate %u-th of %u mbuf "
615                                 "from mempool: %s\n",
616                                 nb_seg - i, nb_seg, mp->name);
617                         break;
618                 }
619
620                 md[--i] = p;
621                 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
622                         TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
623                                 "expected seglen: %u, "
624                                 "actual mbuf tailroom: %u\n",
625                                 mp->name, i, seglen[i],
626                                 rte_pktmbuf_tailroom(md[i]));
627                         break;
628                 }
629         }
630
631         /* all mbufs successfully allocated, do copy */
632         if (i == 0) {
633                 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
634                 if (rc < 0)
635                         TESTPMD_LOG(ERR,
636                                 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
637                                 "into %u segments failed with error code: %d\n",
638                                 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
639
640                 /* figure out how many mbufs to free. */
641                 i = RTE_MAX(rc, 0);
642         }
643
644         /* free unused mbufs */
645         for (; i != nb_seg; i++) {
646                 rte_pktmbuf_free_seg(md[i]);
647                 md[i] = NULL;
648         }
649
650         return md[0];
651 }
652
653 /*
654  * Receive a burst of packets, and for each packet:
655  *  - parse packet, and try to recognize a supported packet type (1)
656  *  - if it's not a supported packet type, don't touch the packet, else:
657  *  - reprocess the checksum of all supported layers. This is done in SW
658  *    or HW, depending on testpmd command line configuration
659  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
660  *    segmentation offload (this implies HW TCP checksum)
661  * Then transmit packets on the output port.
662  *
663  * (1) Supported packets are:
664  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
665  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
666  *           UDP|TCP|SCTP
667  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
668  *           UDP|TCP|SCTP
669  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
670  *           UDP|TCP|SCTP
671  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
672  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
673  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
674  *
675  * The testpmd command line for this forward engine sets the flags
676  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
677  * wether a checksum must be calculated in software or in hardware. The
678  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
679  * OUTER_IP is only useful for tunnel packets.
680  */
681 static void
682 pkt_burst_checksum_forward(struct fwd_stream *fs)
683 {
684         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
685         struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
686         struct rte_gso_ctx *gso_ctx;
687         struct rte_mbuf **tx_pkts_burst;
688         struct rte_port *txp;
689         struct rte_mbuf *m, *p;
690         struct ether_hdr *eth_hdr;
691         void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
692         void **gro_ctx;
693         uint16_t gro_pkts_num;
694         uint8_t gro_enable;
695         uint16_t nb_rx;
696         uint16_t nb_tx;
697         uint16_t nb_prep;
698         uint16_t i;
699         uint64_t rx_ol_flags, tx_ol_flags;
700         uint64_t tx_offloads;
701         uint32_t retry;
702         uint32_t rx_bad_ip_csum;
703         uint32_t rx_bad_l4_csum;
704         struct testpmd_offload_info info;
705         uint16_t nb_segments = 0;
706         int ret;
707
708 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
709         uint64_t start_tsc;
710         uint64_t end_tsc;
711         uint64_t core_cycles;
712 #endif
713
714 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
715         start_tsc = rte_rdtsc();
716 #endif
717
718         /* receive a burst of packet */
719         nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
720                                  nb_pkt_per_burst);
721         if (unlikely(nb_rx == 0))
722                 return;
723 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
724         fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
725 #endif
726         fs->rx_packets += nb_rx;
727         rx_bad_ip_csum = 0;
728         rx_bad_l4_csum = 0;
729         gro_enable = gro_ports[fs->rx_port].enable;
730
731         txp = &ports[fs->tx_port];
732         tx_offloads = txp->dev_conf.txmode.offloads;
733         memset(&info, 0, sizeof(info));
734         info.tso_segsz = txp->tso_segsz;
735         info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
736         if (gso_ports[fs->tx_port].enable)
737                 info.gso_enable = 1;
738
739         for (i = 0; i < nb_rx; i++) {
740                 if (likely(i < nb_rx - 1))
741                         rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
742                                                        void *));
743
744                 m = pkts_burst[i];
745                 info.is_tunnel = 0;
746                 info.pkt_len = rte_pktmbuf_pkt_len(m);
747                 tx_ol_flags = m->ol_flags &
748                               (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
749                 rx_ol_flags = m->ol_flags;
750
751                 /* Update the L3/L4 checksum error packet statistics */
752                 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
753                         rx_bad_ip_csum += 1;
754                 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
755                         rx_bad_l4_csum += 1;
756
757                 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
758                  * and inner headers */
759
760                 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
761                 ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
762                                 &eth_hdr->d_addr);
763                 ether_addr_copy(&ports[fs->tx_port].eth_addr,
764                                 &eth_hdr->s_addr);
765                 parse_ethernet(eth_hdr, &info);
766                 l3_hdr = (char *)eth_hdr + info.l2_len;
767
768                 /* check if it's a supported tunnel */
769                 if (txp->parse_tunnel) {
770                         if (info.l4_proto == IPPROTO_UDP) {
771                                 struct udp_hdr *udp_hdr;
772
773                                 udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
774                                         info.l3_len);
775                                 parse_vxlan_gpe(udp_hdr, &info);
776                                 if (info.is_tunnel) {
777                                         tx_ol_flags |= PKT_TX_TUNNEL_VXLAN_GPE;
778                                 } else {
779                                         parse_vxlan(udp_hdr, &info,
780                                                     m->packet_type);
781                                         if (info.is_tunnel)
782                                                 tx_ol_flags |=
783                                                         PKT_TX_TUNNEL_VXLAN;
784                                 }
785                         } else if (info.l4_proto == IPPROTO_GRE) {
786                                 struct simple_gre_hdr *gre_hdr;
787
788                                 gre_hdr = (struct simple_gre_hdr *)
789                                         ((char *)l3_hdr + info.l3_len);
790                                 parse_gre(gre_hdr, &info);
791                                 if (info.is_tunnel)
792                                         tx_ol_flags |= PKT_TX_TUNNEL_GRE;
793                         } else if (info.l4_proto == IPPROTO_IPIP) {
794                                 void *encap_ip_hdr;
795
796                                 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
797                                 parse_encap_ip(encap_ip_hdr, &info);
798                                 if (info.is_tunnel)
799                                         tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
800                         }
801                 }
802
803                 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
804                 if (info.is_tunnel) {
805                         outer_l3_hdr = l3_hdr;
806                         l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
807                 }
808
809                 /* step 2: depending on user command line configuration,
810                  * recompute checksum either in software or flag the
811                  * mbuf to offload the calculation to the NIC. If TSO
812                  * is configured, prepare the mbuf for TCP segmentation. */
813
814                 /* process checksums of inner headers first */
815                 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
816                         tx_offloads);
817
818                 /* Then process outer headers if any. Note that the software
819                  * checksum will be wrong if one of the inner checksums is
820                  * processed in hardware. */
821                 if (info.is_tunnel == 1) {
822                         tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
823                                         tx_offloads,
824                                         !!(tx_ol_flags & PKT_TX_TCP_SEG));
825                 }
826
827                 /* step 3: fill the mbuf meta data (flags and header lengths) */
828
829                 m->tx_offload = 0;
830                 if (info.is_tunnel == 1) {
831                         if (info.tunnel_tso_segsz ||
832                             (tx_offloads &
833                              DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
834                             (tx_offloads &
835                              DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
836                             (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
837                                 m->outer_l2_len = info.outer_l2_len;
838                                 m->outer_l3_len = info.outer_l3_len;
839                                 m->l2_len = info.l2_len;
840                                 m->l3_len = info.l3_len;
841                                 m->l4_len = info.l4_len;
842                                 m->tso_segsz = info.tunnel_tso_segsz;
843                         }
844                         else {
845                                 /* if there is a outer UDP cksum
846                                    processed in sw and the inner in hw,
847                                    the outer checksum will be wrong as
848                                    the payload will be modified by the
849                                    hardware */
850                                 m->l2_len = info.outer_l2_len +
851                                         info.outer_l3_len + info.l2_len;
852                                 m->l3_len = info.l3_len;
853                                 m->l4_len = info.l4_len;
854                         }
855                 } else {
856                         /* this is only useful if an offload flag is
857                          * set, but it does not hurt to fill it in any
858                          * case */
859                         m->l2_len = info.l2_len;
860                         m->l3_len = info.l3_len;
861                         m->l4_len = info.l4_len;
862                         m->tso_segsz = info.tso_segsz;
863                 }
864                 m->ol_flags = tx_ol_flags;
865
866                 /* Do split & copy for the packet. */
867                 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
868                         p = pkt_copy_split(m);
869                         if (p != NULL) {
870                                 rte_pktmbuf_free(m);
871                                 m = p;
872                                 pkts_burst[i] = m;
873                         }
874                 }
875
876                 /* if verbose mode is enabled, dump debug info */
877                 if (verbose_level > 0) {
878                         char buf[256];
879
880                         printf("-----------------\n");
881                         printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
882                                 fs->rx_port, m, m->pkt_len, m->nb_segs);
883                         /* dump rx parsed packet info */
884                         rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
885                         printf("rx: l2_len=%d ethertype=%x l3_len=%d "
886                                 "l4_proto=%d l4_len=%d flags=%s\n",
887                                 info.l2_len, rte_be_to_cpu_16(info.ethertype),
888                                 info.l3_len, info.l4_proto, info.l4_len, buf);
889                         if (rx_ol_flags & PKT_RX_LRO)
890                                 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
891                         if (info.is_tunnel == 1)
892                                 printf("rx: outer_l2_len=%d outer_ethertype=%x "
893                                         "outer_l3_len=%d\n", info.outer_l2_len,
894                                         rte_be_to_cpu_16(info.outer_ethertype),
895                                         info.outer_l3_len);
896                         /* dump tx packet info */
897                         if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
898                                             DEV_TX_OFFLOAD_UDP_CKSUM |
899                                             DEV_TX_OFFLOAD_TCP_CKSUM |
900                                             DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
901                                 info.tso_segsz != 0)
902                                 printf("tx: m->l2_len=%d m->l3_len=%d "
903                                         "m->l4_len=%d\n",
904                                         m->l2_len, m->l3_len, m->l4_len);
905                         if (info.is_tunnel == 1) {
906                                 if ((tx_offloads &
907                                     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
908                                     (tx_offloads &
909                                     DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
910                                     (tx_ol_flags & PKT_TX_OUTER_IPV6))
911                                         printf("tx: m->outer_l2_len=%d "
912                                                 "m->outer_l3_len=%d\n",
913                                                 m->outer_l2_len,
914                                                 m->outer_l3_len);
915                                 if (info.tunnel_tso_segsz != 0 &&
916                                                 (m->ol_flags & PKT_TX_TCP_SEG))
917                                         printf("tx: m->tso_segsz=%d\n",
918                                                 m->tso_segsz);
919                         } else if (info.tso_segsz != 0 &&
920                                         (m->ol_flags & PKT_TX_TCP_SEG))
921                                 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
922                         rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
923                         printf("tx: flags=%s", buf);
924                         printf("\n");
925                 }
926         }
927
928         if (unlikely(gro_enable)) {
929                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
930                         nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
931                                         &(gro_ports[fs->rx_port].param));
932                 } else {
933                         gro_ctx = current_fwd_lcore()->gro_ctx;
934                         nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
935
936                         if (++fs->gro_times >= gro_flush_cycles) {
937                                 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
938                                 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
939                                         gro_pkts_num = MAX_PKT_BURST - nb_rx;
940
941                                 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
942                                                 RTE_GRO_TCP_IPV4,
943                                                 &pkts_burst[nb_rx],
944                                                 gro_pkts_num);
945                                 fs->gro_times = 0;
946                         }
947                 }
948         }
949
950         if (gso_ports[fs->tx_port].enable == 0)
951                 tx_pkts_burst = pkts_burst;
952         else {
953                 gso_ctx = &(current_fwd_lcore()->gso_ctx);
954                 gso_ctx->gso_size = gso_max_segment_size;
955                 for (i = 0; i < nb_rx; i++) {
956                         ret = rte_gso_segment(pkts_burst[i], gso_ctx,
957                                         &gso_segments[nb_segments],
958                                         GSO_MAX_PKT_BURST - nb_segments);
959                         if (ret >= 0)
960                                 nb_segments += ret;
961                         else {
962                                 TESTPMD_LOG(DEBUG, "Unable to segment packet");
963                                 rte_pktmbuf_free(pkts_burst[i]);
964                         }
965                 }
966
967                 tx_pkts_burst = gso_segments;
968                 nb_rx = nb_segments;
969         }
970
971         nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
972                         tx_pkts_burst, nb_rx);
973         if (nb_prep != nb_rx)
974                 printf("Preparing packet burst to transmit failed: %s\n",
975                                 rte_strerror(rte_errno));
976
977         nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
978                         nb_prep);
979
980         /*
981          * Retry if necessary
982          */
983         if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
984                 retry = 0;
985                 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
986                         rte_delay_us(burst_tx_delay_time);
987                         nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
988                                         &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
989                 }
990         }
991         fs->tx_packets += nb_tx;
992         fs->rx_bad_ip_csum += rx_bad_ip_csum;
993         fs->rx_bad_l4_csum += rx_bad_l4_csum;
994
995 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
996         fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
997 #endif
998         if (unlikely(nb_tx < nb_rx)) {
999                 fs->fwd_dropped += (nb_rx - nb_tx);
1000                 do {
1001                         rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1002                 } while (++nb_tx < nb_rx);
1003         }
1004
1005 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1006         end_tsc = rte_rdtsc();
1007         core_cycles = (end_tsc - start_tsc);
1008         fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
1009 #endif
1010 }
1011
1012 struct fwd_engine csum_fwd_engine = {
1013         .fwd_mode_name  = "csum",
1014         .port_fwd_begin = NULL,
1015         .port_fwd_end   = NULL,
1016         .packet_fwd     = pkt_burst_checksum_forward,
1017 };