mbuf: add rte prefix to offload flags
[dpdk.git] / app / test-pmd / txonly.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5 #include <stdarg.h>
6 #include <string.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_string_fns.h>
39 #include <rte_flow.h>
40
41 #include "testpmd.h"
42
43 /* use RFC863 Discard Protocol */
44 uint16_t tx_udp_src_port = 9;
45 uint16_t tx_udp_dst_port = 9;
46
47 /* use RFC5735 / RFC2544 reserved network test addresses */
48 uint32_t tx_ip_src_addr = (198U << 24) | (18 << 16) | (0 << 8) | 1;
49 uint32_t tx_ip_dst_addr = (198U << 24) | (18 << 16) | (0 << 8) | 2;
50
51 #define IP_DEFTTL  64   /* from RFC 1340. */
52
53 static struct rte_ipv4_hdr pkt_ip_hdr; /**< IP header of transmitted packets. */
54 RTE_DEFINE_PER_LCORE(uint8_t, _ip_var); /**< IP address variation */
55 static struct rte_udp_hdr pkt_udp_hdr; /**< UDP header of tx packets. */
56 RTE_DEFINE_PER_LCORE(uint64_t, timestamp_qskew);
57                                         /**< Timestamp offset per queue */
58 RTE_DEFINE_PER_LCORE(uint32_t, timestamp_idone); /**< Timestamp init done. */
59
60 static uint64_t timestamp_mask; /**< Timestamp dynamic flag mask */
61 static int32_t timestamp_off; /**< Timestamp dynamic field offset */
62 static bool timestamp_enable; /**< Timestamp enable */
63 static uint32_t timestamp_init_req; /**< Timestamp initialization request. */
64 static uint64_t timestamp_initial[RTE_MAX_ETHPORTS];
65
66 static void
67 copy_buf_to_pkt_segs(void* buf, unsigned len, struct rte_mbuf *pkt,
68                      unsigned offset)
69 {
70         struct rte_mbuf *seg;
71         void *seg_buf;
72         unsigned copy_len;
73
74         seg = pkt;
75         while (offset >= seg->data_len) {
76                 offset -= seg->data_len;
77                 seg = seg->next;
78         }
79         copy_len = seg->data_len - offset;
80         seg_buf = rte_pktmbuf_mtod_offset(seg, char *, offset);
81         while (len > copy_len) {
82                 rte_memcpy(seg_buf, buf, (size_t) copy_len);
83                 len -= copy_len;
84                 buf = ((char*) buf + copy_len);
85                 seg = seg->next;
86                 seg_buf = rte_pktmbuf_mtod(seg, char *);
87                 copy_len = seg->data_len;
88         }
89         rte_memcpy(seg_buf, buf, (size_t) len);
90 }
91
92 static inline void
93 copy_buf_to_pkt(void* buf, unsigned len, struct rte_mbuf *pkt, unsigned offset)
94 {
95         if (offset + len <= pkt->data_len) {
96                 rte_memcpy(rte_pktmbuf_mtod_offset(pkt, char *, offset),
97                         buf, (size_t) len);
98                 return;
99         }
100         copy_buf_to_pkt_segs(buf, len, pkt, offset);
101 }
102
103 static void
104 setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr,
105                          struct rte_udp_hdr *udp_hdr,
106                          uint16_t pkt_data_len)
107 {
108         uint16_t *ptr16;
109         uint32_t ip_cksum;
110         uint16_t pkt_len;
111
112         /*
113          * Initialize UDP header.
114          */
115         pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
116         udp_hdr->src_port = rte_cpu_to_be_16(tx_udp_src_port);
117         udp_hdr->dst_port = rte_cpu_to_be_16(tx_udp_dst_port);
118         udp_hdr->dgram_len      = RTE_CPU_TO_BE_16(pkt_len);
119         udp_hdr->dgram_cksum    = 0; /* No UDP checksum. */
120
121         /*
122          * Initialize IP header.
123          */
124         pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
125         ip_hdr->version_ihl   = RTE_IPV4_VHL_DEF;
126         ip_hdr->type_of_service   = 0;
127         ip_hdr->fragment_offset = 0;
128         ip_hdr->time_to_live   = IP_DEFTTL;
129         ip_hdr->next_proto_id = IPPROTO_UDP;
130         ip_hdr->packet_id = 0;
131         ip_hdr->total_length   = RTE_CPU_TO_BE_16(pkt_len);
132         ip_hdr->src_addr = rte_cpu_to_be_32(tx_ip_src_addr);
133         ip_hdr->dst_addr = rte_cpu_to_be_32(tx_ip_dst_addr);
134
135         /*
136          * Compute IP header checksum.
137          */
138         ptr16 = (unaligned_uint16_t*) ip_hdr;
139         ip_cksum = 0;
140         ip_cksum += ptr16[0]; ip_cksum += ptr16[1];
141         ip_cksum += ptr16[2]; ip_cksum += ptr16[3];
142         ip_cksum += ptr16[4];
143         ip_cksum += ptr16[6]; ip_cksum += ptr16[7];
144         ip_cksum += ptr16[8]; ip_cksum += ptr16[9];
145
146         /*
147          * Reduce 32 bit checksum to 16 bits and complement it.
148          */
149         ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) +
150                 (ip_cksum & 0x0000FFFF);
151         if (ip_cksum > 65535)
152                 ip_cksum -= 65535;
153         ip_cksum = (~ip_cksum) & 0x0000FFFF;
154         if (ip_cksum == 0)
155                 ip_cksum = 0xFFFF;
156         ip_hdr->hdr_checksum = (uint16_t) ip_cksum;
157 }
158
159 static inline void
160 update_pkt_header(struct rte_mbuf *pkt, uint32_t total_pkt_len)
161 {
162         struct rte_ipv4_hdr *ip_hdr;
163         struct rte_udp_hdr *udp_hdr;
164         uint16_t pkt_data_len;
165         uint16_t pkt_len;
166
167         pkt_data_len = (uint16_t) (total_pkt_len - (
168                                         sizeof(struct rte_ether_hdr) +
169                                         sizeof(struct rte_ipv4_hdr) +
170                                         sizeof(struct rte_udp_hdr)));
171         /* updata udp pkt length */
172         udp_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_udp_hdr *,
173                                 sizeof(struct rte_ether_hdr) +
174                                 sizeof(struct rte_ipv4_hdr));
175         pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
176         udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
177
178         /* updata ip pkt length and csum */
179         ip_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *,
180                                 sizeof(struct rte_ether_hdr));
181         ip_hdr->hdr_checksum = 0;
182         pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
183         ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
184         ip_hdr->hdr_checksum = rte_ipv4_cksum(ip_hdr);
185 }
186
187 static inline bool
188 pkt_burst_prepare(struct rte_mbuf *pkt, struct rte_mempool *mbp,
189                 struct rte_ether_hdr *eth_hdr, const uint16_t vlan_tci,
190                 const uint16_t vlan_tci_outer, const uint64_t ol_flags,
191                 const uint16_t idx, const struct fwd_stream *fs)
192 {
193         struct rte_mbuf *pkt_segs[RTE_MAX_SEGS_PER_PKT];
194         struct rte_mbuf *pkt_seg;
195         uint32_t nb_segs, pkt_len;
196         uint8_t i;
197
198         if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND))
199                 nb_segs = rte_rand() % tx_pkt_nb_segs + 1;
200         else
201                 nb_segs = tx_pkt_nb_segs;
202
203         if (nb_segs > 1) {
204                 if (rte_mempool_get_bulk(mbp, (void **)pkt_segs, nb_segs - 1))
205                         return false;
206         }
207
208         rte_pktmbuf_reset_headroom(pkt);
209         pkt->data_len = tx_pkt_seg_lengths[0];
210         pkt->ol_flags &= RTE_MBUF_F_EXTERNAL;
211         pkt->ol_flags |= ol_flags;
212         pkt->vlan_tci = vlan_tci;
213         pkt->vlan_tci_outer = vlan_tci_outer;
214         pkt->l2_len = sizeof(struct rte_ether_hdr);
215         pkt->l3_len = sizeof(struct rte_ipv4_hdr);
216
217         pkt_len = pkt->data_len;
218         pkt_seg = pkt;
219         for (i = 1; i < nb_segs; i++) {
220                 pkt_seg->next = pkt_segs[i - 1];
221                 pkt_seg = pkt_seg->next;
222                 pkt_seg->data_len = tx_pkt_seg_lengths[i];
223                 pkt_len += pkt_seg->data_len;
224         }
225         pkt_seg->next = NULL; /* Last segment of packet. */
226         /*
227          * Copy headers in first packet segment(s).
228          */
229         copy_buf_to_pkt(eth_hdr, sizeof(*eth_hdr), pkt, 0);
230         copy_buf_to_pkt(&pkt_ip_hdr, sizeof(pkt_ip_hdr), pkt,
231                         sizeof(struct rte_ether_hdr));
232         if (txonly_multi_flow) {
233                 uint8_t  ip_var = RTE_PER_LCORE(_ip_var);
234                 struct rte_ipv4_hdr *ip_hdr;
235                 uint32_t addr;
236
237                 ip_hdr = rte_pktmbuf_mtod_offset(pkt,
238                                 struct rte_ipv4_hdr *,
239                                 sizeof(struct rte_ether_hdr));
240                 /*
241                  * Generate multiple flows by varying IP src addr. This
242                  * enables packets are well distributed by RSS in
243                  * receiver side if any and txonly mode can be a decent
244                  * packet generator for developer's quick performance
245                  * regression test.
246                  */
247                 addr = (tx_ip_dst_addr | (ip_var++ << 8)) + rte_lcore_id();
248                 ip_hdr->src_addr = rte_cpu_to_be_32(addr);
249                 RTE_PER_LCORE(_ip_var) = ip_var;
250         }
251         copy_buf_to_pkt(&pkt_udp_hdr, sizeof(pkt_udp_hdr), pkt,
252                         sizeof(struct rte_ether_hdr) +
253                         sizeof(struct rte_ipv4_hdr));
254
255         if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND) || txonly_multi_flow)
256                 update_pkt_header(pkt, pkt_len);
257
258         if (unlikely(timestamp_enable)) {
259                 uint64_t skew = RTE_PER_LCORE(timestamp_qskew);
260                 struct {
261                         rte_be32_t signature;
262                         rte_be16_t pkt_idx;
263                         rte_be16_t queue_idx;
264                         rte_be64_t ts;
265                 } timestamp_mark;
266
267                 if (unlikely(timestamp_init_req !=
268                                 RTE_PER_LCORE(timestamp_idone))) {
269                         struct rte_eth_dev_info dev_info;
270                         unsigned int txqs_n;
271                         uint64_t phase;
272                         int ret;
273
274                         ret = eth_dev_info_get_print_err(fs->tx_port, &dev_info);
275                         if (ret != 0) {
276                                 TESTPMD_LOG(ERR,
277                                         "Failed to get device info for port %d,"
278                                         "could not finish timestamp init",
279                                         fs->tx_port);
280                                 return false;
281                         }
282                         txqs_n = dev_info.nb_tx_queues;
283                         phase = tx_pkt_times_inter * fs->tx_queue /
284                                          (txqs_n ? txqs_n : 1);
285                         /*
286                          * Initialize the scheduling time phase shift
287                          * depending on queue index.
288                          */
289                         skew = timestamp_initial[fs->tx_port] +
290                                tx_pkt_times_inter + phase;
291                         RTE_PER_LCORE(timestamp_qskew) = skew;
292                         RTE_PER_LCORE(timestamp_idone) = timestamp_init_req;
293                 }
294                 timestamp_mark.pkt_idx = rte_cpu_to_be_16(idx);
295                 timestamp_mark.queue_idx = rte_cpu_to_be_16(fs->tx_queue);
296                 timestamp_mark.signature = rte_cpu_to_be_32(0xBEEFC0DE);
297                 if (unlikely(!idx)) {
298                         skew += tx_pkt_times_inter;
299                         pkt->ol_flags |= timestamp_mask;
300                         *RTE_MBUF_DYNFIELD
301                                 (pkt, timestamp_off, uint64_t *) = skew;
302                         RTE_PER_LCORE(timestamp_qskew) = skew;
303                         timestamp_mark.ts = rte_cpu_to_be_64(skew);
304                 } else if (tx_pkt_times_intra) {
305                         skew += tx_pkt_times_intra;
306                         pkt->ol_flags |= timestamp_mask;
307                         *RTE_MBUF_DYNFIELD
308                                 (pkt, timestamp_off, uint64_t *) = skew;
309                         RTE_PER_LCORE(timestamp_qskew) = skew;
310                         timestamp_mark.ts = rte_cpu_to_be_64(skew);
311                 } else {
312                         timestamp_mark.ts = RTE_BE64(0);
313                 }
314                 copy_buf_to_pkt(&timestamp_mark, sizeof(timestamp_mark), pkt,
315                         sizeof(struct rte_ether_hdr) +
316                         sizeof(struct rte_ipv4_hdr) +
317                         sizeof(pkt_udp_hdr));
318         }
319         /*
320          * Complete first mbuf of packet and append it to the
321          * burst of packets to be transmitted.
322          */
323         pkt->nb_segs = nb_segs;
324         pkt->pkt_len = pkt_len;
325
326         return true;
327 }
328
329 /*
330  * Transmit a burst of multi-segments packets.
331  */
332 static void
333 pkt_burst_transmit(struct fwd_stream *fs)
334 {
335         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
336         struct rte_port *txp;
337         struct rte_mbuf *pkt;
338         struct rte_mempool *mbp;
339         struct rte_ether_hdr eth_hdr;
340         uint16_t nb_tx;
341         uint16_t nb_pkt;
342         uint16_t vlan_tci, vlan_tci_outer;
343         uint32_t retry;
344         uint64_t ol_flags = 0;
345         uint64_t tx_offloads;
346         uint64_t start_tsc = 0;
347
348         get_start_cycles(&start_tsc);
349
350         mbp = current_fwd_lcore()->mbp;
351         txp = &ports[fs->tx_port];
352         tx_offloads = txp->dev_conf.txmode.offloads;
353         vlan_tci = txp->tx_vlan_id;
354         vlan_tci_outer = txp->tx_vlan_id_outer;
355         if (tx_offloads & DEV_TX_OFFLOAD_VLAN_INSERT)
356                 ol_flags = RTE_MBUF_F_TX_VLAN_PKT;
357         if (tx_offloads & DEV_TX_OFFLOAD_QINQ_INSERT)
358                 ol_flags |= RTE_MBUF_F_TX_QINQ_PKT;
359         if (tx_offloads & DEV_TX_OFFLOAD_MACSEC_INSERT)
360                 ol_flags |= RTE_MBUF_F_TX_MACSEC;
361
362         /*
363          * Initialize Ethernet header.
364          */
365         rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], &eth_hdr.d_addr);
366         rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, &eth_hdr.s_addr);
367         eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
368
369         if (rte_mempool_get_bulk(mbp, (void **)pkts_burst,
370                                 nb_pkt_per_burst) == 0) {
371                 for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
372                         if (unlikely(!pkt_burst_prepare(pkts_burst[nb_pkt], mbp,
373                                                         &eth_hdr, vlan_tci,
374                                                         vlan_tci_outer,
375                                                         ol_flags,
376                                                         nb_pkt, fs))) {
377                                 rte_mempool_put_bulk(mbp,
378                                                 (void **)&pkts_burst[nb_pkt],
379                                                 nb_pkt_per_burst - nb_pkt);
380                                 break;
381                         }
382                 }
383         } else {
384                 for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
385                         pkt = rte_mbuf_raw_alloc(mbp);
386                         if (pkt == NULL)
387                                 break;
388                         if (unlikely(!pkt_burst_prepare(pkt, mbp, &eth_hdr,
389                                                         vlan_tci,
390                                                         vlan_tci_outer,
391                                                         ol_flags,
392                                                         nb_pkt, fs))) {
393                                 rte_pktmbuf_free(pkt);
394                                 break;
395                         }
396                         pkts_burst[nb_pkt] = pkt;
397                 }
398         }
399
400         if (nb_pkt == 0)
401                 return;
402
403         nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_pkt);
404
405         /*
406          * Retry if necessary
407          */
408         if (unlikely(nb_tx < nb_pkt) && fs->retry_enabled) {
409                 retry = 0;
410                 while (nb_tx < nb_pkt && retry++ < burst_tx_retry_num) {
411                         rte_delay_us(burst_tx_delay_time);
412                         nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
413                                         &pkts_burst[nb_tx], nb_pkt - nb_tx);
414                 }
415         }
416         fs->tx_packets += nb_tx;
417
418         if (txonly_multi_flow)
419                 RTE_PER_LCORE(_ip_var) -= nb_pkt - nb_tx;
420
421         inc_tx_burst_stats(fs, nb_tx);
422         if (unlikely(nb_tx < nb_pkt)) {
423                 if (verbose_level > 0 && fs->fwd_dropped == 0)
424                         printf("port %d tx_queue %d - drop "
425                                "(nb_pkt:%u - nb_tx:%u)=%u packets\n",
426                                fs->tx_port, fs->tx_queue,
427                                (unsigned) nb_pkt, (unsigned) nb_tx,
428                                (unsigned) (nb_pkt - nb_tx));
429                 fs->fwd_dropped += (nb_pkt - nb_tx);
430                 do {
431                         rte_pktmbuf_free(pkts_burst[nb_tx]);
432                 } while (++nb_tx < nb_pkt);
433         }
434
435         get_end_cycles(fs, start_tsc);
436 }
437
438 static void
439 tx_only_begin(portid_t pi)
440 {
441         uint16_t pkt_data_len;
442         int dynf;
443
444         pkt_data_len = (uint16_t) (tx_pkt_length - (
445                                         sizeof(struct rte_ether_hdr) +
446                                         sizeof(struct rte_ipv4_hdr) +
447                                         sizeof(struct rte_udp_hdr)));
448         setup_pkt_udp_ip_headers(&pkt_ip_hdr, &pkt_udp_hdr, pkt_data_len);
449
450         timestamp_enable = false;
451         timestamp_mask = 0;
452         timestamp_off = -1;
453         RTE_PER_LCORE(timestamp_qskew) = 0;
454         dynf = rte_mbuf_dynflag_lookup
455                                 (RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
456         if (dynf >= 0)
457                 timestamp_mask = 1ULL << dynf;
458         dynf = rte_mbuf_dynfield_lookup
459                                 (RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
460         if (dynf >= 0)
461                 timestamp_off = dynf;
462         timestamp_enable = tx_pkt_times_inter &&
463                            timestamp_mask &&
464                            timestamp_off >= 0 &&
465                            !rte_eth_read_clock(pi, &timestamp_initial[pi]);
466         if (timestamp_enable)
467                 timestamp_init_req++;
468         /* Make sure all settings are visible on forwarding cores.*/
469         rte_wmb();
470 }
471
472 struct fwd_engine tx_only_engine = {
473         .fwd_mode_name  = "txonly",
474         .port_fwd_begin = tx_only_begin,
475         .port_fwd_end   = NULL,
476         .packet_fwd     = pkt_burst_transmit,
477 };