test/mbuf: fix forged mbuf in clone test
[dpdk.git] / app / test / test_ring_perf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5
6 #include <stdio.h>
7 #include <inttypes.h>
8 #include <rte_ring.h>
9 #include <rte_cycles.h>
10 #include <rte_launch.h>
11 #include <rte_pause.h>
12
13 #include "test.h"
14
15 /*
16  * Ring
17  * ====
18  *
19  * Measures performance of various operations using rdtsc
20  *  * Empty ring dequeue
21  *  * Enqueue/dequeue of bursts in 1 threads
22  *  * Enqueue/dequeue of bursts in 2 threads
23  */
24
25 #define RING_NAME "RING_PERF"
26 #define RING_SIZE 4096
27 #define MAX_BURST 32
28
29 /*
30  * the sizes to enqueue and dequeue in testing
31  * (marked volatile so they won't be seen as compile-time constants)
32  */
33 static const volatile unsigned bulk_sizes[] = { 8, 32 };
34
35 struct lcore_pair {
36         unsigned c1, c2;
37 };
38
39 static volatile unsigned lcore_count = 0;
40
41 /**** Functions to analyse our core mask to get cores for different tests ***/
42
43 static int
44 get_two_hyperthreads(struct lcore_pair *lcp)
45 {
46         unsigned id1, id2;
47         unsigned c1, c2, s1, s2;
48         RTE_LCORE_FOREACH(id1) {
49                 /* inner loop just re-reads all id's. We could skip the first few
50                  * elements, but since number of cores is small there is little point
51                  */
52                 RTE_LCORE_FOREACH(id2) {
53                         if (id1 == id2)
54                                 continue;
55
56                         c1 = rte_lcore_to_cpu_id(id1);
57                         c2 = rte_lcore_to_cpu_id(id2);
58                         s1 = rte_lcore_to_socket_id(id1);
59                         s2 = rte_lcore_to_socket_id(id2);
60                         if ((c1 == c2) && (s1 == s2)){
61                                 lcp->c1 = id1;
62                                 lcp->c2 = id2;
63                                 return 0;
64                         }
65                 }
66         }
67         return 1;
68 }
69
70 static int
71 get_two_cores(struct lcore_pair *lcp)
72 {
73         unsigned id1, id2;
74         unsigned c1, c2, s1, s2;
75         RTE_LCORE_FOREACH(id1) {
76                 RTE_LCORE_FOREACH(id2) {
77                         if (id1 == id2)
78                                 continue;
79
80                         c1 = rte_lcore_to_cpu_id(id1);
81                         c2 = rte_lcore_to_cpu_id(id2);
82                         s1 = rte_lcore_to_socket_id(id1);
83                         s2 = rte_lcore_to_socket_id(id2);
84                         if ((c1 != c2) && (s1 == s2)){
85                                 lcp->c1 = id1;
86                                 lcp->c2 = id2;
87                                 return 0;
88                         }
89                 }
90         }
91         return 1;
92 }
93
94 static int
95 get_two_sockets(struct lcore_pair *lcp)
96 {
97         unsigned id1, id2;
98         unsigned s1, s2;
99         RTE_LCORE_FOREACH(id1) {
100                 RTE_LCORE_FOREACH(id2) {
101                         if (id1 == id2)
102                                 continue;
103                         s1 = rte_lcore_to_socket_id(id1);
104                         s2 = rte_lcore_to_socket_id(id2);
105                         if (s1 != s2){
106                                 lcp->c1 = id1;
107                                 lcp->c2 = id2;
108                                 return 0;
109                         }
110                 }
111         }
112         return 1;
113 }
114
115 /* Get cycle counts for dequeuing from an empty ring. Should be 2 or 3 cycles */
116 static void
117 test_empty_dequeue(struct rte_ring *r)
118 {
119         const unsigned iter_shift = 26;
120         const unsigned iterations = 1<<iter_shift;
121         unsigned i = 0;
122         void *burst[MAX_BURST];
123
124         const uint64_t sc_start = rte_rdtsc();
125         for (i = 0; i < iterations; i++)
126                 rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[0], NULL);
127         const uint64_t sc_end = rte_rdtsc();
128
129         const uint64_t mc_start = rte_rdtsc();
130         for (i = 0; i < iterations; i++)
131                 rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[0], NULL);
132         const uint64_t mc_end = rte_rdtsc();
133
134         printf("SC empty dequeue: %.2F\n",
135                         (double)(sc_end-sc_start) / iterations);
136         printf("MC empty dequeue: %.2F\n",
137                         (double)(mc_end-mc_start) / iterations);
138 }
139
140 /*
141  * for the separate enqueue and dequeue threads they take in one param
142  * and return two. Input = burst size, output = cycle average for sp/sc & mp/mc
143  */
144 struct thread_params {
145         struct rte_ring *r;
146         unsigned size;        /* input value, the burst size */
147         double spsc, mpmc;    /* output value, the single or multi timings */
148 };
149
150 /*
151  * Function that uses rdtsc to measure timing for ring enqueue. Needs pair
152  * thread running dequeue_bulk function
153  */
154 static int
155 enqueue_bulk(void *p)
156 {
157         const unsigned iter_shift = 23;
158         const unsigned iterations = 1<<iter_shift;
159         struct thread_params *params = p;
160         struct rte_ring *r = params->r;
161         const unsigned size = params->size;
162         unsigned i;
163         void *burst[MAX_BURST] = {0};
164
165 #ifdef RTE_USE_C11_MEM_MODEL
166         if (__atomic_add_fetch(&lcore_count, 1, __ATOMIC_RELAXED) != 2)
167 #else
168         if (__sync_add_and_fetch(&lcore_count, 1) != 2)
169 #endif
170                 while(lcore_count != 2)
171                         rte_pause();
172
173         const uint64_t sp_start = rte_rdtsc();
174         for (i = 0; i < iterations; i++)
175                 while (rte_ring_sp_enqueue_bulk(r, burst, size, NULL) == 0)
176                         rte_pause();
177         const uint64_t sp_end = rte_rdtsc();
178
179         const uint64_t mp_start = rte_rdtsc();
180         for (i = 0; i < iterations; i++)
181                 while (rte_ring_mp_enqueue_bulk(r, burst, size, NULL) == 0)
182                         rte_pause();
183         const uint64_t mp_end = rte_rdtsc();
184
185         params->spsc = ((double)(sp_end - sp_start))/(iterations*size);
186         params->mpmc = ((double)(mp_end - mp_start))/(iterations*size);
187         return 0;
188 }
189
190 /*
191  * Function that uses rdtsc to measure timing for ring dequeue. Needs pair
192  * thread running enqueue_bulk function
193  */
194 static int
195 dequeue_bulk(void *p)
196 {
197         const unsigned iter_shift = 23;
198         const unsigned iterations = 1<<iter_shift;
199         struct thread_params *params = p;
200         struct rte_ring *r = params->r;
201         const unsigned size = params->size;
202         unsigned i;
203         void *burst[MAX_BURST] = {0};
204
205 #ifdef RTE_USE_C11_MEM_MODEL
206         if (__atomic_add_fetch(&lcore_count, 1, __ATOMIC_RELAXED) != 2)
207 #else
208         if (__sync_add_and_fetch(&lcore_count, 1) != 2)
209 #endif
210                 while(lcore_count != 2)
211                         rte_pause();
212
213         const uint64_t sc_start = rte_rdtsc();
214         for (i = 0; i < iterations; i++)
215                 while (rte_ring_sc_dequeue_bulk(r, burst, size, NULL) == 0)
216                         rte_pause();
217         const uint64_t sc_end = rte_rdtsc();
218
219         const uint64_t mc_start = rte_rdtsc();
220         for (i = 0; i < iterations; i++)
221                 while (rte_ring_mc_dequeue_bulk(r, burst, size, NULL) == 0)
222                         rte_pause();
223         const uint64_t mc_end = rte_rdtsc();
224
225         params->spsc = ((double)(sc_end - sc_start))/(iterations*size);
226         params->mpmc = ((double)(mc_end - mc_start))/(iterations*size);
227         return 0;
228 }
229
230 /*
231  * Function that calls the enqueue and dequeue bulk functions on pairs of cores.
232  * used to measure ring perf between hyperthreads, cores and sockets.
233  */
234 static void
235 run_on_core_pair(struct lcore_pair *cores, struct rte_ring *r,
236                 lcore_function_t f1, lcore_function_t f2)
237 {
238         struct thread_params param1 = {0}, param2 = {0};
239         unsigned i;
240         for (i = 0; i < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); i++) {
241                 lcore_count = 0;
242                 param1.size = param2.size = bulk_sizes[i];
243                 param1.r = param2.r = r;
244                 if (cores->c1 == rte_get_master_lcore()) {
245                         rte_eal_remote_launch(f2, &param2, cores->c2);
246                         f1(&param1);
247                         rte_eal_wait_lcore(cores->c2);
248                 } else {
249                         rte_eal_remote_launch(f1, &param1, cores->c1);
250                         rte_eal_remote_launch(f2, &param2, cores->c2);
251                         rte_eal_wait_lcore(cores->c1);
252                         rte_eal_wait_lcore(cores->c2);
253                 }
254                 printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
255                                 param1.spsc + param2.spsc);
256                 printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
257                                 param1.mpmc + param2.mpmc);
258         }
259 }
260
261 /*
262  * Test function that determines how long an enqueue + dequeue of a single item
263  * takes on a single lcore. Result is for comparison with the bulk enq+deq.
264  */
265 static void
266 test_single_enqueue_dequeue(struct rte_ring *r)
267 {
268         const unsigned iter_shift = 24;
269         const unsigned iterations = 1<<iter_shift;
270         unsigned i = 0;
271         void *burst = NULL;
272
273         const uint64_t sc_start = rte_rdtsc();
274         for (i = 0; i < iterations; i++) {
275                 rte_ring_sp_enqueue(r, burst);
276                 rte_ring_sc_dequeue(r, &burst);
277         }
278         const uint64_t sc_end = rte_rdtsc();
279
280         const uint64_t mc_start = rte_rdtsc();
281         for (i = 0; i < iterations; i++) {
282                 rte_ring_mp_enqueue(r, burst);
283                 rte_ring_mc_dequeue(r, &burst);
284         }
285         const uint64_t mc_end = rte_rdtsc();
286
287         printf("SP/SC single enq/dequeue: %"PRIu64"\n",
288                         (sc_end-sc_start) >> iter_shift);
289         printf("MP/MC single enq/dequeue: %"PRIu64"\n",
290                         (mc_end-mc_start) >> iter_shift);
291 }
292
293 /*
294  * Test that does both enqueue and dequeue on a core using the burst() API calls
295  * instead of the bulk() calls used in other tests. Results should be the same
296  * as for the bulk function called on a single lcore.
297  */
298 static void
299 test_burst_enqueue_dequeue(struct rte_ring *r)
300 {
301         const unsigned iter_shift = 23;
302         const unsigned iterations = 1<<iter_shift;
303         unsigned sz, i = 0;
304         void *burst[MAX_BURST] = {0};
305
306         for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
307                 const uint64_t sc_start = rte_rdtsc();
308                 for (i = 0; i < iterations; i++) {
309                         rte_ring_sp_enqueue_burst(r, burst,
310                                         bulk_sizes[sz], NULL);
311                         rte_ring_sc_dequeue_burst(r, burst,
312                                         bulk_sizes[sz], NULL);
313                 }
314                 const uint64_t sc_end = rte_rdtsc();
315
316                 const uint64_t mc_start = rte_rdtsc();
317                 for (i = 0; i < iterations; i++) {
318                         rte_ring_mp_enqueue_burst(r, burst,
319                                         bulk_sizes[sz], NULL);
320                         rte_ring_mc_dequeue_burst(r, burst,
321                                         bulk_sizes[sz], NULL);
322                 }
323                 const uint64_t mc_end = rte_rdtsc();
324
325                 uint64_t mc_avg = ((mc_end-mc_start) >> iter_shift) / bulk_sizes[sz];
326                 uint64_t sc_avg = ((sc_end-sc_start) >> iter_shift) / bulk_sizes[sz];
327
328                 printf("SP/SC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
329                                 sc_avg);
330                 printf("MP/MC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
331                                 mc_avg);
332         }
333 }
334
335 /* Times enqueue and dequeue on a single lcore */
336 static void
337 test_bulk_enqueue_dequeue(struct rte_ring *r)
338 {
339         const unsigned iter_shift = 23;
340         const unsigned iterations = 1<<iter_shift;
341         unsigned sz, i = 0;
342         void *burst[MAX_BURST] = {0};
343
344         for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
345                 const uint64_t sc_start = rte_rdtsc();
346                 for (i = 0; i < iterations; i++) {
347                         rte_ring_sp_enqueue_bulk(r, burst,
348                                         bulk_sizes[sz], NULL);
349                         rte_ring_sc_dequeue_bulk(r, burst,
350                                         bulk_sizes[sz], NULL);
351                 }
352                 const uint64_t sc_end = rte_rdtsc();
353
354                 const uint64_t mc_start = rte_rdtsc();
355                 for (i = 0; i < iterations; i++) {
356                         rte_ring_mp_enqueue_bulk(r, burst,
357                                         bulk_sizes[sz], NULL);
358                         rte_ring_mc_dequeue_bulk(r, burst,
359                                         bulk_sizes[sz], NULL);
360                 }
361                 const uint64_t mc_end = rte_rdtsc();
362
363                 double sc_avg = ((double)(sc_end-sc_start) /
364                                 (iterations * bulk_sizes[sz]));
365                 double mc_avg = ((double)(mc_end-mc_start) /
366                                 (iterations * bulk_sizes[sz]));
367
368                 printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
369                                 sc_avg);
370                 printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
371                                 mc_avg);
372         }
373 }
374
375 static int
376 test_ring_perf(void)
377 {
378         struct lcore_pair cores;
379         struct rte_ring *r = NULL;
380
381         r = rte_ring_create(RING_NAME, RING_SIZE, rte_socket_id(), 0);
382         if (r == NULL)
383                 return -1;
384
385         printf("### Testing single element and burst enq/deq ###\n");
386         test_single_enqueue_dequeue(r);
387         test_burst_enqueue_dequeue(r);
388
389         printf("\n### Testing empty dequeue ###\n");
390         test_empty_dequeue(r);
391
392         printf("\n### Testing using a single lcore ###\n");
393         test_bulk_enqueue_dequeue(r);
394
395         if (get_two_hyperthreads(&cores) == 0) {
396                 printf("\n### Testing using two hyperthreads ###\n");
397                 run_on_core_pair(&cores, r, enqueue_bulk, dequeue_bulk);
398         }
399         if (get_two_cores(&cores) == 0) {
400                 printf("\n### Testing using two physical cores ###\n");
401                 run_on_core_pair(&cores, r, enqueue_bulk, dequeue_bulk);
402         }
403         if (get_two_sockets(&cores) == 0) {
404                 printf("\n### Testing using two NUMA nodes ###\n");
405                 run_on_core_pair(&cores, r, enqueue_bulk, dequeue_bulk);
406         }
407         rte_ring_free(r);
408         return 0;
409 }
410
411 REGISTER_TEST_COMMAND(ring_perf_autotest, test_ring_perf);