6ec24f4ad8e5565925597cce5b1eed2e75dc6eba
[dpdk.git] / doc / guides / sample_app_ug / l3_forward_power_man.rst
1 ..  SPDX-License-Identifier: BSD-3-Clause
2     Copyright(c) 2010-2014 Intel Corporation.
3
4 L3 Forwarding with Power Management Sample Application
5 ======================================================
6
7 Introduction
8 ------------
9
10 The L3 Forwarding with Power Management application is an example of power-aware packet processing using the DPDK.
11 The application is based on existing L3 Forwarding sample application,
12 with the power management algorithms to control the P-states and
13 C-states of the Intel processor via a power management library.
14
15 Overview
16 --------
17
18 The application demonstrates the use of the Power libraries in the DPDK to implement packet forwarding.
19 The initialization and run-time paths are very similar to those of the :doc:`l3_forward`.
20 The main difference from the L3 Forwarding sample application is that this application introduces power-aware optimization algorithms
21 by leveraging the Power library to control P-state and C-state of processor based on packet load.
22
23 The DPDK includes poll-mode drivers to configure Intel NIC devices and their receive (Rx) and transmit (Tx) queues.
24 The design principle of this PMD is to access the Rx and Tx descriptors directly without any interrupts to quickly receive,
25 process and deliver packets in the user space.
26
27 In general, the DPDK executes an endless packet processing loop on dedicated IA cores that include the following steps:
28
29 *   Retrieve input packets through the PMD to poll Rx queue
30
31 *   Process each received packet or provide received packets to other processing cores through software queues
32
33 *   Send pending output packets to Tx queue through the PMD
34
35 In this way, the PMD achieves better performance than a traditional interrupt-mode driver,
36 at the cost of keeping cores active and running at the highest frequency,
37 hence consuming the maximum power all the time.
38 However, during the period of processing light network traffic,
39 which happens regularly in communication infrastructure systems due to well-known "tidal effect",
40 the PMD is still busy waiting for network packets, which wastes a lot of power.
41
42 Processor performance states (P-states) are the capability of an Intel processor
43 to switch between different supported operating frequencies and voltages.
44 If configured correctly, according to system workload, this feature provides power savings.
45 CPUFreq is the infrastructure provided by the Linux* kernel to control the processor performance state capability.
46 CPUFreq supports a user space governor that enables setting frequency via manipulating the virtual file device from a user space application.
47 The Power library in the DPDK provides a set of APIs for manipulating a virtual file device to allow user space application
48 to set the CPUFreq governor and set the frequency of specific cores.
49
50 This application includes a P-state power management algorithm to generate a frequency hint to be sent to CPUFreq.
51 The algorithm uses the number of received and available Rx packets on recent polls to make a heuristic decision to scale frequency up/down.
52 Specifically, some thresholds are checked to see whether a specific core running an DPDK polling thread needs to increase frequency
53 a step up based on the near to full trend of polled Rx queues.
54 Also, it decreases frequency a step if packet processed per loop is far less than the expected threshold
55 or the thread's sleeping time exceeds a threshold.
56
57 C-States are also known as sleep states.
58 They allow software to put an Intel core into a low power idle state from which it is possible to exit via an event, such as an interrupt.
59 However, there is a tradeoff between the power consumed in the idle state and the time required to wake up from the idle state (exit latency).
60 Therefore, as you go into deeper C-states, the power consumed is lower but the exit latency is increased. Each C-state has a target residency.
61 It is essential that when entering into a C-state, the core remains in this C-state for at least as long as the target residency in order
62 to fully realize the benefits of entering the C-state.
63 CPUIdle is the infrastructure provide by the Linux kernel to control the processor C-state capability.
64 Unlike CPUFreq, CPUIdle does not provide a mechanism that allows the application to change C-state.
65 It actually has its own heuristic algorithms in kernel space to select target C-state to enter by executing privileged instructions like HLT and MWAIT,
66 based on the speculative sleep duration of the core.
67 In this application, we introduce a heuristic algorithm that allows packet processing cores to sleep for a short period
68 if there is no Rx packet received on recent polls.
69 In this way, CPUIdle automatically forces the corresponding cores to enter deeper C-states
70 instead of always running to the C0 state waiting for packets.
71
72 .. note::
73
74     To fully demonstrate the power saving capability of using C-states,
75     it is recommended to enable deeper C3 and C6 states in the BIOS during system boot up.
76
77 Compiling the Application
78 -------------------------
79
80 To compile the sample application see :doc:`compiling`.
81
82 The application is located in the ``l3fwd-power`` sub-directory.
83
84 Running the Application
85 -----------------------
86
87 The application has a number of command line options:
88
89 .. code-block:: console
90
91     ./build/l3fwd_power [EAL options] -- -p PORTMASK [-P]  --config(port,queue,lcore)[,(port,queue,lcore)] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa]
92
93 where,
94
95 *   -p PORTMASK: Hexadecimal bitmask of ports to configure
96
97 *   -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet's Ethernet MAC destination address.
98     Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.
99
100 *   --config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are mapped to which cores.
101
102 *   --enable-jumbo: optional, enables jumbo frames
103
104 *   --max-pkt-len: optional, maximum packet length in decimal (64-9600)
105
106 *   --no-numa: optional, disables numa awareness
107
108 *   --empty-poll: Traffic Aware power management. See below for details
109
110 *   --telemetry:  Telemetry mode.
111
112 See :doc:`l3_forward` for details.
113 The L3fwd-power example reuses the L3fwd command line options.
114
115 Explanation
116 -----------
117
118 The following sections provide some explanation of the sample application code.
119 As mentioned in the overview section,
120 the initialization and run-time paths are identical to those of the L3 forwarding application.
121 The following sections describe aspects that are specific to the L3 Forwarding with Power Management sample application.
122
123 Power Library Initialization
124 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
125
126 The Power library is initialized in the main routine.
127 It changes the P-state governor to userspace for specific cores that are under control.
128 The Timer library is also initialized and several timers are created later on,
129 responsible for checking if it needs to scale down frequency at run time by checking CPU utilization statistics.
130
131 .. note::
132
133     Only the power management related initialization is shown.
134
135 .. code-block:: c
136
137     int main(int argc, char **argv)
138     {
139         struct lcore_conf *qconf;
140         int ret;
141         unsigned nb_ports;
142         uint16_t queueid, portid;
143         unsigned lcore_id;
144         uint64_t hz;
145         uint32_t n_tx_queue, nb_lcores;
146         uint8_t nb_rx_queue, queue, socketid;
147
148         // ...
149
150         /* init RTE timer library to be used to initialize per-core timers */
151
152         rte_timer_subsystem_init();
153
154         // ...
155
156
157         /* per-core initialization */
158
159         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
160             if (rte_lcore_is_enabled(lcore_id) == 0)
161                 continue;
162
163             /* init power management library for a specified core */
164
165             ret = rte_power_init(lcore_id);
166             if (ret)
167                 rte_exit(EXIT_FAILURE, "Power management library "
168                     "initialization failed on core%d\n", lcore_id);
169
170             /* init timer structures for each enabled lcore */
171
172             rte_timer_init(&power_timers[lcore_id]);
173
174             hz = rte_get_hpet_hz();
175
176             rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, power_timer_cb, NULL);
177
178             // ...
179         }
180
181         // ...
182     }
183
184 Monitoring Loads of Rx Queues
185 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
186
187 In general, the polling nature of the DPDK prevents the OS power management subsystem from knowing
188 if the network load is actually heavy or light.
189 In this sample, sampling network load work is done by monitoring received and
190 available descriptors on NIC Rx queues in recent polls.
191 Based on the number of returned and available Rx descriptors,
192 this example implements algorithms to generate frequency scaling hints and speculative sleep duration,
193 and use them to control P-state and C-state of processors via the power management library.
194 Frequency (P-state) control and sleep state (C-state) control work individually for each logical core,
195 and the combination of them contributes to a power efficient packet processing solution when serving light network loads.
196
197 The rte_eth_rx_burst() function and the newly-added rte_eth_rx_queue_count() function are used in the endless packet processing loop
198 to return the number of received and available Rx descriptors.
199 And those numbers of specific queue are passed to P-state and C-state heuristic algorithms
200 to generate hints based on recent network load trends.
201
202 .. note::
203
204     Only power control related code is shown.
205
206 .. code-block:: c
207
208     static
209     attribute ((noreturn)) int main_loop( attribute ((unused)) void *dummy)
210     {
211         // ...
212
213         while (1) {
214         // ...
215
216         /**
217          * Read packet from RX queues
218          */
219
220         lcore_scaleup_hint = FREQ_CURRENT;
221         lcore_rx_idle_count = 0;
222
223         for (i = 0; i < qconf->n_rx_queue; ++i)
224         {
225             rx_queue = &(qconf->rx_queue_list[i]);
226             rx_queue->idle_hint = 0;
227             portid = rx_queue->port_id;
228             queueid = rx_queue->queue_id;
229
230             nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST);
231             stats[lcore_id].nb_rx_processed += nb_rx;
232
233             if (unlikely(nb_rx == 0)) {
234                 /**
235                  * no packet received from rx queue, try to
236                  * sleep for a while forcing CPU enter deeper
237                  * C states.
238                  */
239
240                 rx_queue->zero_rx_packet_count++;
241
242                 if (rx_queue->zero_rx_packet_count <= MIN_ZERO_POLL_COUNT)
243                     continue;
244
245                 rx_queue->idle_hint = power_idle_heuristic(rx_queue->zero_rx_packet_count);
246                 lcore_rx_idle_count++;
247             } else {
248                 rx_ring_length = rte_eth_rx_queue_count(portid, queueid);
249
250                 rx_queue->zero_rx_packet_count = 0;
251
252                 /**
253                  * do not scale up frequency immediately as
254                  * user to kernel space communication is costly
255                  * which might impact packet I/O for received
256                  * packets.
257                  */
258
259                 rx_queue->freq_up_hint = power_freq_scaleup_heuristic(lcore_id, rx_ring_length);
260             }
261
262             /* Prefetch and forward packets */
263
264             // ...
265         }
266
267         if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
268             for (i = 1, lcore_scaleup_hint = qconf->rx_queue_list[0].freq_up_hint; i < qconf->n_rx_queue; ++i) {
269                 x_queue = &(qconf->rx_queue_list[i]);
270
271                 if (rx_queue->freq_up_hint > lcore_scaleup_hint)
272
273                     lcore_scaleup_hint = rx_queue->freq_up_hint;
274             }
275
276             if (lcore_scaleup_hint == FREQ_HIGHEST)
277
278                 rte_power_freq_max(lcore_id);
279
280             else if (lcore_scaleup_hint == FREQ_HIGHER)
281                 rte_power_freq_up(lcore_id);
282             } else {
283                 /**
284                  *  All Rx queues empty in recent consecutive polls,
285                  *  sleep in a conservative manner, meaning sleep as
286                  * less as possible.
287                  */
288
289                 for (i = 1, lcore_idle_hint = qconf->rx_queue_list[0].idle_hint; i < qconf->n_rx_queue; ++i) {
290                     rx_queue = &(qconf->rx_queue_list[i]);
291                     if (rx_queue->idle_hint < lcore_idle_hint)
292                         lcore_idle_hint = rx_queue->idle_hint;
293                 }
294
295                 if ( lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)
296                     /**
297                      *   execute "pause" instruction to avoid context
298                      *   switch for short sleep.
299                      */
300                     rte_delay_us(lcore_idle_hint);
301                 else
302                     /* long sleep force ruining thread to suspend */
303                     usleep(lcore_idle_hint);
304
305                stats[lcore_id].sleep_time += lcore_idle_hint;
306             }
307         }
308     }
309
310 P-State Heuristic Algorithm
311 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
312
313 The power_freq_scaleup_heuristic() function is responsible for generating a frequency hint for the specified logical core
314 according to available descriptor number returned from rte_eth_rx_queue_count().
315 On every poll for new packets, the length of available descriptor on an Rx queue is evaluated,
316 and the algorithm used for frequency hinting is as follows:
317
318 *   If the size of available descriptors exceeds 96, the maximum frequency is hinted.
319
320 *   If the size of available descriptors exceeds 64, a trend counter is incremented by 100.
321
322 *   If the length of the ring exceeds 32, the trend counter is incremented by 1.
323
324 *   When the trend counter reached 10000 the frequency hint is changed to the next higher frequency.
325
326 .. note::
327
328     The assumption is that the Rx queue size is 128 and the thresholds specified above
329     must be adjusted accordingly based on actual hardware Rx queue size,
330     which are configured via the rte_eth_rx_queue_setup() function.
331
332 In general, a thread needs to poll packets from multiple Rx queues.
333 Most likely, different queue have different load, so they would return different frequency hints.
334 The algorithm evaluates all the hints and then scales up frequency in an aggressive manner
335 by scaling up to highest frequency as long as one Rx queue requires.
336 In this way, we can minimize any negative performance impact.
337
338 On the other hand, frequency scaling down is controlled in the timer callback function.
339 Specifically, if the sleep times of a logical core indicate that it is sleeping more than 25% of the sampling period,
340 or if the average packet per iteration is less than expectation, the frequency is decreased by one step.
341
342 C-State Heuristic Algorithm
343 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
344
345 Whenever recent rte_eth_rx_burst() polls return 5 consecutive zero packets,
346 an idle counter begins incrementing for each successive zero poll.
347 At the same time, the function power_idle_heuristic() is called to generate speculative sleep duration
348 in order to force logical to enter deeper sleeping C-state.
349 There is no way to control C- state directly, and the CPUIdle subsystem in OS is intelligent enough
350 to select C-state to enter based on actual sleep period time of giving logical core.
351 The algorithm has the following sleeping behavior depending on the idle counter:
352
353 *   If idle count less than 100, the counter value is used as a microsecond sleep value through rte_delay_us()
354     which execute pause instructions to avoid costly context switch but saving power at the same time.
355
356 *   If idle count is between 100 and 999, a fixed sleep interval of 100 μs is used.
357     A 100 μs sleep interval allows the core to enter the C1 state while keeping a fast response time in case new traffic arrives.
358
359 *   If idle count is greater than 1000, a fixed sleep value of 1 ms is used until the next timer expiration is used.
360     This allows the core to enter the C3/C6 states.
361
362 .. note::
363
364     The thresholds specified above need to be adjusted for different Intel processors and traffic profiles.
365
366 If a thread polls multiple Rx queues and different queue returns different sleep duration values,
367 the algorithm controls the sleep time in a conservative manner by sleeping for the least possible time
368 in order to avoid a potential performance impact.
369
370 Empty Poll Mode
371 -------------------------
372 Additionally, there is a traffic aware mode of operation called "Empty
373 Poll" where the number of empty polls can be monitored to keep track
374 of how busy the application is. Empty poll mode can be enabled by the
375 command line option --empty-poll.
376
377 See :doc:`Power Management<../prog_guide/power_man>` chapter in the DPDK Programmer's Guide for empty poll mode details.
378
379 .. code-block:: console
380
381     ./l3fwd-power -l xxx   -n 4   -w 0000:xx:00.0 -w 0000:xx:00.1 -- -p 0x3 -P --config="(0,0,xx),(1,0,xx)" --empty-poll="0,0,0" -l 14 -m 9 -h 1
382
383 Where,
384
385 --empty-poll: Enable the empty poll mode instead of original algorithm
386
387 --empty-poll="training_flag, med_threshold, high_threshold"
388
389 * ``training_flag`` : optional, enable/disable training mode. Default value is 0. If the training_flag is set as 1(true), then the application will start in training mode and print out the trained threshold values. If the training_flag is set as 0(false), the application will start in normal mode, and will use either the default thresholds or those supplied on the command line. The trained threshold values are specific to the user’s system, may give a better power profile when compared to the default threshold values.
390
391 * ``med_threshold`` : optional, sets the empty poll threshold of a modestly busy system state. If this is not supplied, the application will apply the default value of 350000.
392
393 * ``high_threshold`` : optional, sets the empty poll threshold of a busy system state. If this is not supplied, the application will apply the default value of 580000.
394
395 * -l : optional, set up the LOW power state frequency index
396
397 * -m : optional, set up the MED power state frequency index
398
399 * -h : optional, set up the HIGH power state frequency index
400
401 Empty Poll Mode Example Usage
402 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
403 To initially obtain the ideal thresholds for the system, the training
404 mode should be run first. This is achieved by running the l3fwd-power
405 app with the training flag set to “1”, and the other parameters set to
406 0.
407
408 .. code-block:: console
409
410         ./examples/l3fwd-power/build/l3fwd-power -l 1-3 -- -p 0x0f --config="(0,0,2),(0,1,3)" --empty-poll "1,0,0" –P
411
412 This will run the training algorithm for x seconds on each core (cores 2
413 and 3), and then print out the recommended threshold values for those
414 cores. The thresholds should be very similar for each core.
415
416 .. code-block:: console
417
418         POWER: Bring up the Timer
419         POWER: set the power freq to MED
420         POWER: Low threshold is 230277
421         POWER: MED threshold is 335071
422         POWER: HIGH threshold is 523769
423         POWER: Training is Complete for 2
424         POWER: set the power freq to MED
425         POWER: Low threshold is 236814
426         POWER: MED threshold is 344567
427         POWER: HIGH threshold is 538580
428         POWER: Training is Complete for 3
429
430 Once the values have been measured for a particular system, the app can
431 then be started without the training mode so traffic can start immediately.
432
433 .. code-block:: console
434
435         ./examples/l3fwd-power/build/l3fwd-power -l 1-3 -- -p 0x0f --config="(0,0,2),(0,1,3)" --empty-poll "0,340000,540000" –P
436
437 Telemetry Mode
438 --------------
439
440 The telemetry mode support for ``l3fwd-power`` is a standalone mode, in this mode
441 ``l3fwd-power`` does simple l3fwding along with calculating empty polls, full polls,
442 and busy percentage for each forwarding core. The aggregation of these
443 values of all cores is reported as application level telemetry to metric
444 library for every 500ms from the master core.
445
446 The busy percentage is calculated by recording the poll_count
447 and when the count reaches a defined value the total
448 cycles it took is measured and compared with minimum and maximum
449 reference cycles and accordingly busy rate is set  to either 0% or
450 50% or 100%.
451
452    .. Note::
453
454       * The CONFIG_RTE_LIBRTE_TELEMETRY should be set in order to get the stats in DPDK telemetry.
455
456 .. code-block:: console
457
458         ./examples/l3fwd-power/build/l3fwd-power --telemetry -l 1-3 -- -p 0x0f --config="(0,0,2),(0,1,3)" --telemetry
459
460 The new stats ``empty_poll`` , ``full_poll`` and ``busy_percent`` can be viewed by running the script
461 ``/usertools/dpdk-telemetry-client.py`` and selecting the menu option ``Send for global Metrics``.