crypto/octeontx2: support ChaCha20-Poly1305
[dpdk.git] / drivers / common / cpt / cpt_ucode.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4
5 #ifndef _CPT_UCODE_H_
6 #define _CPT_UCODE_H_
7 #include <stdbool.h>
8
9 #include "cpt_common.h"
10 #include "cpt_hw_types.h"
11 #include "cpt_mcode_defines.h"
12
13 /*
14  * This file defines functions that are interfaces to microcode spec.
15  *
16  */
17
18 static uint8_t zuc_d[32] = {
19         0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E,
20         0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF,
21         0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1,
22         0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC
23 };
24
25 static __rte_always_inline void
26 gen_key_snow3g(const uint8_t *ck, uint32_t *keyx)
27 {
28         int i, base;
29
30         for (i = 0; i < 4; i++) {
31                 base = 4 * i;
32                 keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
33                         (ck[base + 2] << 8) | (ck[base + 3]);
34                 keyx[3 - i] = rte_cpu_to_be_32(keyx[3 - i]);
35         }
36 }
37
38 static __rte_always_inline void
39 cpt_fc_salt_update(void *ctx,
40                    uint8_t *salt)
41 {
42         struct cpt_ctx *cpt_ctx = ctx;
43         memcpy(&cpt_ctx->fctx.enc.encr_iv, salt, 4);
44 }
45
46 static __rte_always_inline int
47 cpt_fc_ciph_validate_key_aes(uint16_t key_len)
48 {
49         switch (key_len) {
50         case CPT_BYTE_16:
51         case CPT_BYTE_24:
52         case CPT_BYTE_32:
53                 return 0;
54         default:
55                 return -1;
56         }
57 }
58
59 static __rte_always_inline int
60 cpt_fc_ciph_set_type(cipher_type_t type, struct cpt_ctx *ctx, uint16_t key_len)
61 {
62         int fc_type = 0;
63         switch (type) {
64         case PASSTHROUGH:
65                 fc_type = FC_GEN;
66                 break;
67         case DES3_CBC:
68         case DES3_ECB:
69                 fc_type = FC_GEN;
70                 break;
71         case AES_CBC:
72         case AES_ECB:
73         case AES_CFB:
74         case AES_CTR:
75         case AES_GCM:
76                 if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
77                         return -1;
78                 fc_type = FC_GEN;
79                 break;
80         case CHACHA20:
81                 fc_type = FC_GEN;
82                 break;
83         case AES_XTS:
84                 key_len = key_len / 2;
85                 if (unlikely(key_len == CPT_BYTE_24)) {
86                         CPT_LOG_DP_ERR("Invalid AES key len for XTS");
87                         return -1;
88                 }
89                 if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
90                         return -1;
91                 fc_type = FC_GEN;
92                 break;
93         case ZUC_EEA3:
94         case SNOW3G_UEA2:
95                 if (unlikely(key_len != 16))
96                         return -1;
97                 /* No support for AEAD yet */
98                 if (unlikely(ctx->hash_type))
99                         return -1;
100                 fc_type = ZUC_SNOW3G;
101                 break;
102         case KASUMI_F8_CBC:
103         case KASUMI_F8_ECB:
104                 if (unlikely(key_len != 16))
105                         return -1;
106                 /* No support for AEAD yet */
107                 if (unlikely(ctx->hash_type))
108                         return -1;
109                 fc_type = KASUMI;
110                 break;
111         default:
112                 return -1;
113         }
114
115         ctx->fc_type = fc_type;
116         return 0;
117 }
118
119 static __rte_always_inline void
120 cpt_fc_ciph_set_key_passthrough(struct cpt_ctx *cpt_ctx, mc_fc_context_t *fctx)
121 {
122         cpt_ctx->enc_cipher = 0;
123         fctx->enc.enc_cipher = 0;
124 }
125
126 static __rte_always_inline void
127 cpt_fc_ciph_set_key_set_aes_key_type(mc_fc_context_t *fctx, uint16_t key_len)
128 {
129         mc_aes_type_t aes_key_type = 0;
130         switch (key_len) {
131         case CPT_BYTE_16:
132                 aes_key_type = AES_128_BIT;
133                 break;
134         case CPT_BYTE_24:
135                 aes_key_type = AES_192_BIT;
136                 break;
137         case CPT_BYTE_32:
138                 aes_key_type = AES_256_BIT;
139                 break;
140         default:
141                 /* This should not happen */
142                 CPT_LOG_DP_ERR("Invalid AES key len");
143                 return;
144         }
145         fctx->enc.aes_key = aes_key_type;
146 }
147
148 static __rte_always_inline void
149 cpt_fc_ciph_set_key_snow3g_uea2(struct cpt_ctx *cpt_ctx, const uint8_t *key,
150                 uint16_t key_len)
151 {
152         uint32_t keyx[4];
153         cpt_ctx->snow3g = 1;
154         gen_key_snow3g(key, keyx);
155         memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
156         cpt_ctx->zsk_flags = 0;
157 }
158
159 static __rte_always_inline void
160 cpt_fc_ciph_set_key_zuc_eea3(struct cpt_ctx *cpt_ctx, const uint8_t *key,
161                 uint16_t key_len)
162 {
163         cpt_ctx->snow3g = 0;
164         memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
165         memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
166         cpt_ctx->zsk_flags = 0;
167 }
168
169 static __rte_always_inline void
170 cpt_fc_ciph_set_key_kasumi_f8_ecb(struct cpt_ctx *cpt_ctx, const uint8_t *key,
171                 uint16_t key_len)
172 {
173         cpt_ctx->k_ecb = 1;
174         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
175         cpt_ctx->zsk_flags = 0;
176 }
177
178 static __rte_always_inline void
179 cpt_fc_ciph_set_key_kasumi_f8_cbc(struct cpt_ctx *cpt_ctx, const uint8_t *key,
180                 uint16_t key_len)
181 {
182         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
183         cpt_ctx->zsk_flags = 0;
184 }
185
186 static __rte_always_inline int
187 cpt_fc_ciph_set_key(void *ctx, cipher_type_t type, const uint8_t *key,
188                     uint16_t key_len, uint8_t *salt)
189 {
190         struct cpt_ctx *cpt_ctx = ctx;
191         mc_fc_context_t *fctx = &cpt_ctx->fctx;
192         int ret;
193
194         ret = cpt_fc_ciph_set_type(type, cpt_ctx, key_len);
195         if (unlikely(ret))
196                 return -1;
197
198         if (cpt_ctx->fc_type == FC_GEN) {
199                 /*
200                  * We need to always say IV is from DPTR as user can
201                  * sometimes iverride IV per operation.
202                  */
203                 fctx->enc.iv_source = CPT_FROM_DPTR;
204
205                 if (cpt_ctx->auth_key_len > 64)
206                         return -1;
207         }
208
209         switch (type) {
210         case PASSTHROUGH:
211                 cpt_fc_ciph_set_key_passthrough(cpt_ctx, fctx);
212                 goto success;
213         case DES3_CBC:
214                 /* CPT performs DES using 3DES with the 8B DES-key
215                  * replicated 2 more times to match the 24B 3DES-key.
216                  * Eg. If org. key is "0x0a 0x0b", then new key is
217                  * "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
218                  */
219                 if (key_len == 8) {
220                         /* Skipping the first 8B as it will be copied
221                          * in the regular code flow
222                          */
223                         memcpy(fctx->enc.encr_key+key_len, key, key_len);
224                         memcpy(fctx->enc.encr_key+2*key_len, key, key_len);
225                 }
226                 break;
227         case DES3_ECB:
228                 /* For DES3_ECB IV need to be from CTX. */
229                 fctx->enc.iv_source = CPT_FROM_CTX;
230                 break;
231         case AES_CBC:
232         case AES_ECB:
233         case AES_CFB:
234         case AES_CTR:
235         case CHACHA20:
236                 cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
237                 break;
238         case AES_GCM:
239                 /* Even though iv source is from dptr,
240                  * aes_gcm salt is taken from ctx
241                  */
242                 if (salt) {
243                         memcpy(fctx->enc.encr_iv, salt, 4);
244                         /* Assuming it was just salt update
245                          * and nothing else
246                          */
247                         if (!key)
248                                 goto success;
249                 }
250                 cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
251                 break;
252         case AES_XTS:
253                 key_len = key_len / 2;
254                 cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
255
256                 /* Copy key2 for XTS into ipad */
257                 memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
258                 memcpy(fctx->hmac.ipad, &key[key_len], key_len);
259                 break;
260         case SNOW3G_UEA2:
261                 cpt_fc_ciph_set_key_snow3g_uea2(cpt_ctx, key, key_len);
262                 goto success;
263         case ZUC_EEA3:
264                 cpt_fc_ciph_set_key_zuc_eea3(cpt_ctx, key, key_len);
265                 goto success;
266         case KASUMI_F8_ECB:
267                 cpt_fc_ciph_set_key_kasumi_f8_ecb(cpt_ctx, key, key_len);
268                 goto success;
269         case KASUMI_F8_CBC:
270                 cpt_fc_ciph_set_key_kasumi_f8_cbc(cpt_ctx, key, key_len);
271                 goto success;
272         default:
273                 return -1;
274         }
275
276         /* Only for FC_GEN case */
277
278         /* For GMAC auth, cipher must be NULL */
279         if (cpt_ctx->hash_type != GMAC_TYPE)
280                 fctx->enc.enc_cipher = type;
281
282         memcpy(fctx->enc.encr_key, key, key_len);
283
284 success:
285         cpt_ctx->enc_cipher = type;
286
287         return 0;
288 }
289
290 static __rte_always_inline uint32_t
291 fill_sg_comp(sg_comp_t *list,
292              uint32_t i,
293              phys_addr_t dma_addr,
294              uint32_t size)
295 {
296         sg_comp_t *to = &list[i>>2];
297
298         to->u.s.len[i%4] = rte_cpu_to_be_16(size);
299         to->ptr[i%4] = rte_cpu_to_be_64(dma_addr);
300         i++;
301         return i;
302 }
303
304 static __rte_always_inline uint32_t
305 fill_sg_comp_from_buf(sg_comp_t *list,
306                       uint32_t i,
307                       buf_ptr_t *from)
308 {
309         sg_comp_t *to = &list[i>>2];
310
311         to->u.s.len[i%4] = rte_cpu_to_be_16(from->size);
312         to->ptr[i%4] = rte_cpu_to_be_64(from->dma_addr);
313         i++;
314         return i;
315 }
316
317 static __rte_always_inline uint32_t
318 fill_sg_comp_from_buf_min(sg_comp_t *list,
319                           uint32_t i,
320                           buf_ptr_t *from,
321                           uint32_t *psize)
322 {
323         sg_comp_t *to = &list[i >> 2];
324         uint32_t size = *psize;
325         uint32_t e_len;
326
327         e_len = (size > from->size) ? from->size : size;
328         to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
329         to->ptr[i % 4] = rte_cpu_to_be_64(from->dma_addr);
330         *psize -= e_len;
331         i++;
332         return i;
333 }
334
335 /*
336  * This fills the MC expected SGIO list
337  * from IOV given by user.
338  */
339 static __rte_always_inline uint32_t
340 fill_sg_comp_from_iov(sg_comp_t *list,
341                       uint32_t i,
342                       iov_ptr_t *from, uint32_t from_offset,
343                       uint32_t *psize, buf_ptr_t *extra_buf,
344                       uint32_t extra_offset)
345 {
346         int32_t j;
347         uint32_t extra_len = extra_buf ? extra_buf->size : 0;
348         uint32_t size = *psize;
349         buf_ptr_t *bufs;
350
351         bufs = from->bufs;
352         for (j = 0; (j < from->buf_cnt) && size; j++) {
353                 phys_addr_t e_dma_addr;
354                 uint32_t e_len;
355                 sg_comp_t *to = &list[i >> 2];
356
357                 if (unlikely(from_offset)) {
358                         if (from_offset >= bufs[j].size) {
359                                 from_offset -= bufs[j].size;
360                                 continue;
361                         }
362                         e_dma_addr = bufs[j].dma_addr + from_offset;
363                         e_len = (size > (bufs[j].size - from_offset)) ?
364                                 (bufs[j].size - from_offset) : size;
365                         from_offset = 0;
366                 } else {
367                         e_dma_addr = bufs[j].dma_addr;
368                         e_len = (size > bufs[j].size) ?
369                                 bufs[j].size : size;
370                 }
371
372                 to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
373                 to->ptr[i % 4] = rte_cpu_to_be_64(e_dma_addr);
374
375                 if (extra_len && (e_len >= extra_offset)) {
376                         /* Break the data at given offset */
377                         uint32_t next_len = e_len - extra_offset;
378                         phys_addr_t next_dma = e_dma_addr + extra_offset;
379
380                         if (!extra_offset) {
381                                 i--;
382                         } else {
383                                 e_len = extra_offset;
384                                 size -= e_len;
385                                 to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
386                         }
387
388                         extra_len = RTE_MIN(extra_len, size);
389                         /* Insert extra data ptr */
390                         if (extra_len) {
391                                 i++;
392                                 to = &list[i >> 2];
393                                 to->u.s.len[i % 4] =
394                                         rte_cpu_to_be_16(extra_len);
395                                 to->ptr[i % 4] =
396                                         rte_cpu_to_be_64(extra_buf->dma_addr);
397                                 size -= extra_len;
398                         }
399
400                         next_len = RTE_MIN(next_len, size);
401                         /* insert the rest of the data */
402                         if (next_len) {
403                                 i++;
404                                 to = &list[i >> 2];
405                                 to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
406                                 to->ptr[i % 4] = rte_cpu_to_be_64(next_dma);
407                                 size -= next_len;
408                         }
409                         extra_len = 0;
410
411                 } else {
412                         size -= e_len;
413                 }
414                 if (extra_offset)
415                         extra_offset -= size;
416                 i++;
417         }
418
419         *psize = size;
420         return (uint32_t)i;
421 }
422
423 static __rte_always_inline void
424 cpt_digest_gen_prep(uint32_t flags,
425                     uint64_t d_lens,
426                     digest_params_t *params,
427                     void *op,
428                     void **prep_req)
429 {
430         struct cpt_request_info *req;
431         uint32_t size, i;
432         uint16_t data_len, mac_len, key_len;
433         auth_type_t hash_type;
434         buf_ptr_t *meta_p;
435         struct cpt_ctx *ctx;
436         sg_comp_t *gather_comp;
437         sg_comp_t *scatter_comp;
438         uint8_t *in_buffer;
439         uint32_t g_size_bytes, s_size_bytes;
440         uint64_t dptr_dma, rptr_dma;
441         vq_cmd_word0_t vq_cmd_w0;
442         vq_cmd_word3_t vq_cmd_w3;
443         void *c_vaddr, *m_vaddr;
444         uint64_t c_dma, m_dma;
445         opcode_info_t opcode;
446
447         ctx = params->ctx_buf.vaddr;
448         meta_p = &params->meta_buf;
449
450         m_vaddr = meta_p->vaddr;
451         m_dma = meta_p->dma_addr;
452
453         /*
454          * Save initial space that followed app data for completion code &
455          * alternate completion code to fall in same cache line as app data
456          */
457         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
458         m_dma += COMPLETION_CODE_SIZE;
459         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
460                 (uint8_t *)m_vaddr;
461         c_vaddr = (uint8_t *)m_vaddr + size;
462         c_dma = m_dma + size;
463         size += sizeof(cpt_res_s_t);
464
465         m_vaddr = (uint8_t *)m_vaddr + size;
466         m_dma += size;
467
468         req = m_vaddr;
469
470         size = sizeof(struct cpt_request_info);
471         m_vaddr = (uint8_t *)m_vaddr + size;
472         m_dma += size;
473
474         hash_type = ctx->hash_type;
475         mac_len = ctx->mac_len;
476         key_len = ctx->auth_key_len;
477         data_len = AUTH_DLEN(d_lens);
478
479         /*GP op header */
480         vq_cmd_w0.u64 = 0;
481         vq_cmd_w0.s.param2 = ((uint16_t)hash_type << 8);
482         if (ctx->hmac) {
483                 opcode.s.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE;
484                 vq_cmd_w0.s.param1 = key_len;
485                 vq_cmd_w0.s.dlen = data_len + ROUNDUP8(key_len);
486         } else {
487                 opcode.s.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE;
488                 vq_cmd_w0.s.param1 = 0;
489                 vq_cmd_w0.s.dlen = data_len;
490         }
491
492         opcode.s.minor = 0;
493
494         /* Null auth only case enters the if */
495         if (unlikely(!hash_type && !ctx->enc_cipher)) {
496                 opcode.s.major = CPT_MAJOR_OP_MISC;
497                 /* Minor op is passthrough */
498                 opcode.s.minor = 0x03;
499                 /* Send out completion code only */
500                 vq_cmd_w0.s.param2 = 0x1;
501         }
502
503         vq_cmd_w0.s.opcode = opcode.flags;
504
505         /* DPTR has SG list */
506         in_buffer = m_vaddr;
507         dptr_dma = m_dma;
508
509         ((uint16_t *)in_buffer)[0] = 0;
510         ((uint16_t *)in_buffer)[1] = 0;
511
512         /* TODO Add error check if space will be sufficient */
513         gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
514
515         /*
516          * Input gather list
517          */
518
519         i = 0;
520
521         if (ctx->hmac) {
522                 uint64_t k_dma = params->ctx_buf.dma_addr +
523                         offsetof(struct cpt_ctx, auth_key);
524                 /* Key */
525                 i = fill_sg_comp(gather_comp, i, k_dma, ROUNDUP8(key_len));
526         }
527
528         /* input data */
529         size = data_len;
530         if (size) {
531                 i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov,
532                                           0, &size, NULL, 0);
533                 if (unlikely(size)) {
534                         CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short"
535                                          " by %dB", size);
536                         return;
537                 }
538         } else {
539                 /*
540                  * Looks like we need to support zero data
541                  * gather ptr in case of hash & hmac
542                  */
543                 i++;
544         }
545         ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
546         g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
547
548         /*
549          * Output Gather list
550          */
551
552         i = 0;
553         scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
554
555         if (flags & VALID_MAC_BUF) {
556                 if (unlikely(params->mac_buf.size < mac_len)) {
557                         CPT_LOG_DP_ERR("Insufficient MAC size");
558                         return;
559                 }
560
561                 size = mac_len;
562                 i = fill_sg_comp_from_buf_min(scatter_comp, i,
563                                               &params->mac_buf, &size);
564         } else {
565                 size = mac_len;
566                 i = fill_sg_comp_from_iov(scatter_comp, i,
567                                           params->src_iov, data_len,
568                                           &size, NULL, 0);
569                 if (unlikely(size)) {
570                         CPT_LOG_DP_ERR("Insufficient dst IOV size, short by"
571                                        " %dB", size);
572                         return;
573                 }
574         }
575
576         ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
577         s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
578
579         size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
580
581         /* This is DPTR len incase of SG mode */
582         vq_cmd_w0.s.dlen = size;
583
584         m_vaddr = (uint8_t *)m_vaddr + size;
585         m_dma += size;
586
587         /* cpt alternate completion address saved earlier */
588         req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
589         *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
590         rptr_dma = c_dma - 8;
591
592         req->ist.ei1 = dptr_dma;
593         req->ist.ei2 = rptr_dma;
594
595         /* vq command w3 */
596         vq_cmd_w3.u64 = 0;
597
598         /* 16 byte aligned cpt res address */
599         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
600         *req->completion_addr = COMPLETION_CODE_INIT;
601         req->comp_baddr  = c_dma;
602
603         /* Fill microcode part of instruction */
604         req->ist.ei0 = vq_cmd_w0.u64;
605         req->ist.ei3 = vq_cmd_w3.u64;
606
607         req->op = op;
608
609         *prep_req = req;
610         return;
611 }
612
613 static __rte_always_inline void
614 cpt_enc_hmac_prep(uint32_t flags,
615                   uint64_t d_offs,
616                   uint64_t d_lens,
617                   fc_params_t *fc_params,
618                   void *op,
619                   void **prep_req)
620 {
621         uint32_t iv_offset = 0;
622         int32_t inputlen, outputlen, enc_dlen, auth_dlen;
623         struct cpt_ctx *cpt_ctx;
624         uint32_t cipher_type, hash_type;
625         uint32_t mac_len, size;
626         uint8_t iv_len = 16;
627         struct cpt_request_info *req;
628         buf_ptr_t *meta_p, *aad_buf = NULL;
629         uint32_t encr_offset, auth_offset;
630         uint32_t encr_data_len, auth_data_len, aad_len = 0;
631         uint32_t passthrough_len = 0;
632         void *m_vaddr, *offset_vaddr;
633         uint64_t m_dma, offset_dma, ctx_dma;
634         vq_cmd_word0_t vq_cmd_w0;
635         vq_cmd_word3_t vq_cmd_w3;
636         void *c_vaddr;
637         uint64_t c_dma;
638         opcode_info_t opcode;
639
640         meta_p = &fc_params->meta_buf;
641         m_vaddr = meta_p->vaddr;
642         m_dma = meta_p->dma_addr;
643
644         encr_offset = ENCR_OFFSET(d_offs);
645         auth_offset = AUTH_OFFSET(d_offs);
646         encr_data_len = ENCR_DLEN(d_lens);
647         auth_data_len = AUTH_DLEN(d_lens);
648         if (unlikely(flags & VALID_AAD_BUF)) {
649                 /*
650                  * We dont support both aad
651                  * and auth data separately
652                  */
653                 auth_data_len = 0;
654                 auth_offset = 0;
655                 aad_len = fc_params->aad_buf.size;
656                 aad_buf = &fc_params->aad_buf;
657         }
658         cpt_ctx = fc_params->ctx_buf.vaddr;
659         cipher_type = cpt_ctx->enc_cipher;
660         hash_type = cpt_ctx->hash_type;
661         mac_len = cpt_ctx->mac_len;
662
663         /*
664          * Save initial space that followed app data for completion code &
665          * alternate completion code to fall in same cache line as app data
666          */
667         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
668         m_dma += COMPLETION_CODE_SIZE;
669         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
670                 (uint8_t *)m_vaddr;
671
672         c_vaddr = (uint8_t *)m_vaddr + size;
673         c_dma = m_dma + size;
674         size += sizeof(cpt_res_s_t);
675
676         m_vaddr = (uint8_t *)m_vaddr + size;
677         m_dma += size;
678
679         /* start cpt request info struct at 8 byte boundary */
680         size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
681                 (uint8_t *)m_vaddr;
682
683         req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
684
685         size += sizeof(struct cpt_request_info);
686         m_vaddr = (uint8_t *)m_vaddr + size;
687         m_dma += size;
688
689         if (unlikely(!(flags & VALID_IV_BUF))) {
690                 iv_len = 0;
691                 iv_offset = ENCR_IV_OFFSET(d_offs);
692         }
693
694         if (unlikely(flags & VALID_AAD_BUF)) {
695                 /*
696                  * When AAD is given, data above encr_offset is pass through
697                  * Since AAD is given as separate pointer and not as offset,
698                  * this is a special case as we need to fragment input data
699                  * into passthrough + encr_data and then insert AAD in between.
700                  */
701                 if (hash_type != GMAC_TYPE) {
702                         passthrough_len = encr_offset;
703                         auth_offset = passthrough_len + iv_len;
704                         encr_offset = passthrough_len + aad_len + iv_len;
705                         auth_data_len = aad_len + encr_data_len;
706                 } else {
707                         passthrough_len = 16 + aad_len;
708                         auth_offset = passthrough_len + iv_len;
709                         auth_data_len = aad_len;
710                 }
711         } else {
712                 encr_offset += iv_len;
713                 auth_offset += iv_len;
714         }
715
716         /* Encryption */
717         opcode.s.major = CPT_MAJOR_OP_FC;
718         opcode.s.minor = 0;
719
720         if (hash_type == GMAC_TYPE) {
721                 encr_offset = 0;
722                 encr_data_len = 0;
723         }
724
725         auth_dlen = auth_offset + auth_data_len;
726         enc_dlen = encr_data_len + encr_offset;
727         if (unlikely(encr_data_len & 0xf)) {
728                 if ((cipher_type == DES3_CBC) || (cipher_type == DES3_ECB))
729                         enc_dlen = ROUNDUP8(encr_data_len) + encr_offset;
730                 else if (likely((cipher_type == AES_CBC) ||
731                                 (cipher_type == AES_ECB)))
732                         enc_dlen = ROUNDUP16(encr_data_len) + encr_offset;
733         }
734
735         if (unlikely(auth_dlen > enc_dlen)) {
736                 inputlen = auth_dlen;
737                 outputlen = auth_dlen + mac_len;
738         } else {
739                 inputlen = enc_dlen;
740                 outputlen = enc_dlen + mac_len;
741         }
742
743         /* GP op header */
744         vq_cmd_w0.u64 = 0;
745         vq_cmd_w0.s.param1 = encr_data_len;
746         vq_cmd_w0.s.param2 = auth_data_len;
747         /*
748          * In 83XX since we have a limitation of
749          * IV & Offset control word not part of instruction
750          * and need to be part of Data Buffer, we check if
751          * head room is there and then only do the Direct mode processing
752          */
753         if (likely((flags & SINGLE_BUF_INPLACE) &&
754                    (flags & SINGLE_BUF_HEADTAILROOM))) {
755                 void *dm_vaddr = fc_params->bufs[0].vaddr;
756                 uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
757                 /*
758                  * This flag indicates that there is 24 bytes head room and
759                  * 8 bytes tail room available, so that we get to do
760                  * DIRECT MODE with limitation
761                  */
762
763                 offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
764                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
765
766                 /* DPTR */
767                 req->ist.ei1 = offset_dma;
768                 /* RPTR should just exclude offset control word */
769                 req->ist.ei2 = dm_dma_addr - iv_len;
770                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
771                                                     + outputlen - iv_len);
772
773                 vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
774
775                 vq_cmd_w0.s.opcode = opcode.flags;
776
777                 if (likely(iv_len)) {
778                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
779                                                       + OFF_CTRL_LEN);
780                         uint64_t *src = fc_params->iv_buf;
781                         dest[0] = src[0];
782                         dest[1] = src[1];
783                 }
784
785                 *(uint64_t *)offset_vaddr =
786                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
787                                 ((uint64_t)iv_offset << 8) |
788                                 ((uint64_t)auth_offset));
789
790         } else {
791                 uint32_t i, g_size_bytes, s_size_bytes;
792                 uint64_t dptr_dma, rptr_dma;
793                 sg_comp_t *gather_comp;
794                 sg_comp_t *scatter_comp;
795                 uint8_t *in_buffer;
796
797                 /* This falls under strict SG mode */
798                 offset_vaddr = m_vaddr;
799                 offset_dma = m_dma;
800                 size = OFF_CTRL_LEN + iv_len;
801
802                 m_vaddr = (uint8_t *)m_vaddr + size;
803                 m_dma += size;
804
805                 opcode.s.major |= CPT_DMA_MODE;
806
807                 vq_cmd_w0.s.opcode = opcode.flags;
808
809                 if (likely(iv_len)) {
810                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
811                                                       + OFF_CTRL_LEN);
812                         uint64_t *src = fc_params->iv_buf;
813                         dest[0] = src[0];
814                         dest[1] = src[1];
815                 }
816
817                 *(uint64_t *)offset_vaddr =
818                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
819                                 ((uint64_t)iv_offset << 8) |
820                                 ((uint64_t)auth_offset));
821
822                 /* DPTR has SG list */
823                 in_buffer = m_vaddr;
824                 dptr_dma = m_dma;
825
826                 ((uint16_t *)in_buffer)[0] = 0;
827                 ((uint16_t *)in_buffer)[1] = 0;
828
829                 /* TODO Add error check if space will be sufficient */
830                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
831
832                 /*
833                  * Input Gather List
834                  */
835
836                 i = 0;
837
838                 /* Offset control word that includes iv */
839                 i = fill_sg_comp(gather_comp, i, offset_dma,
840                                  OFF_CTRL_LEN + iv_len);
841
842                 /* Add input data */
843                 size = inputlen - iv_len;
844                 if (likely(size)) {
845                         uint32_t aad_offset = aad_len ? passthrough_len : 0;
846
847                         if (unlikely(flags & SINGLE_BUF_INPLACE)) {
848                                 i = fill_sg_comp_from_buf_min(gather_comp, i,
849                                                               fc_params->bufs,
850                                                               &size);
851                         } else {
852                                 i = fill_sg_comp_from_iov(gather_comp, i,
853                                                           fc_params->src_iov,
854                                                           0, &size,
855                                                           aad_buf, aad_offset);
856                         }
857
858                         if (unlikely(size)) {
859                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
860                                                " size %d needed", size);
861                                 return;
862                         }
863                 }
864                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
865                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
866
867                 /*
868                  * Output Scatter list
869                  */
870                 i = 0;
871                 scatter_comp =
872                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
873
874                 /* Add IV */
875                 if (likely(iv_len)) {
876                         i = fill_sg_comp(scatter_comp, i,
877                                          offset_dma + OFF_CTRL_LEN,
878                                          iv_len);
879                 }
880
881                 /* output data or output data + digest*/
882                 if (unlikely(flags & VALID_MAC_BUF)) {
883                         size = outputlen - iv_len - mac_len;
884                         if (size) {
885                                 uint32_t aad_offset =
886                                         aad_len ? passthrough_len : 0;
887
888                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
889                                         i = fill_sg_comp_from_buf_min(
890                                                         scatter_comp,
891                                                         i,
892                                                         fc_params->bufs,
893                                                         &size);
894                                 } else {
895                                         i = fill_sg_comp_from_iov(scatter_comp,
896                                                         i,
897                                                         fc_params->dst_iov,
898                                                         0,
899                                                         &size,
900                                                         aad_buf,
901                                                         aad_offset);
902                                 }
903                                 if (unlikely(size)) {
904                                         CPT_LOG_DP_ERR("Insufficient buffer"
905                                                        " space, size %d needed",
906                                                        size);
907                                         return;
908                                 }
909                         }
910                         /* mac_data */
911                         if (mac_len) {
912                                 i = fill_sg_comp_from_buf(scatter_comp, i,
913                                                           &fc_params->mac_buf);
914                         }
915                 } else {
916                         /* Output including mac */
917                         size = outputlen - iv_len;
918                         if (likely(size)) {
919                                 uint32_t aad_offset =
920                                         aad_len ? passthrough_len : 0;
921
922                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
923                                         i = fill_sg_comp_from_buf_min(
924                                                         scatter_comp,
925                                                         i,
926                                                         fc_params->bufs,
927                                                         &size);
928                                 } else {
929                                         i = fill_sg_comp_from_iov(scatter_comp,
930                                                         i,
931                                                         fc_params->dst_iov,
932                                                         0,
933                                                         &size,
934                                                         aad_buf,
935                                                         aad_offset);
936                                 }
937                                 if (unlikely(size)) {
938                                         CPT_LOG_DP_ERR("Insufficient buffer"
939                                                        " space, size %d needed",
940                                                        size);
941                                         return;
942                                 }
943                         }
944                 }
945                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
946                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
947
948                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
949
950                 /* This is DPTR len incase of SG mode */
951                 vq_cmd_w0.s.dlen = size;
952
953                 m_vaddr = (uint8_t *)m_vaddr + size;
954                 m_dma += size;
955
956                 /* cpt alternate completion address saved earlier */
957                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
958                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
959                 rptr_dma = c_dma - 8;
960
961                 req->ist.ei1 = dptr_dma;
962                 req->ist.ei2 = rptr_dma;
963         }
964
965         ctx_dma = fc_params->ctx_buf.dma_addr +
966                 offsetof(struct cpt_ctx, fctx);
967         /* vq command w3 */
968         vq_cmd_w3.u64 = 0;
969         vq_cmd_w3.s.grp = 0;
970         vq_cmd_w3.s.cptr = ctx_dma;
971
972         /* 16 byte aligned cpt res address */
973         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
974         *req->completion_addr = COMPLETION_CODE_INIT;
975         req->comp_baddr  = c_dma;
976
977         /* Fill microcode part of instruction */
978         req->ist.ei0 = vq_cmd_w0.u64;
979         req->ist.ei3 = vq_cmd_w3.u64;
980
981         req->op  = op;
982
983         *prep_req = req;
984         return;
985 }
986
987 static __rte_always_inline void
988 cpt_dec_hmac_prep(uint32_t flags,
989                   uint64_t d_offs,
990                   uint64_t d_lens,
991                   fc_params_t *fc_params,
992                   void *op,
993                   void **prep_req)
994 {
995         uint32_t iv_offset = 0, size;
996         int32_t inputlen, outputlen, enc_dlen, auth_dlen;
997         struct cpt_ctx *cpt_ctx;
998         int32_t hash_type, mac_len;
999         uint8_t iv_len = 16;
1000         struct cpt_request_info *req;
1001         buf_ptr_t *meta_p, *aad_buf = NULL;
1002         uint32_t encr_offset, auth_offset;
1003         uint32_t encr_data_len, auth_data_len, aad_len = 0;
1004         uint32_t passthrough_len = 0;
1005         void *m_vaddr, *offset_vaddr;
1006         uint64_t m_dma, offset_dma, ctx_dma;
1007         opcode_info_t opcode;
1008         vq_cmd_word0_t vq_cmd_w0;
1009         vq_cmd_word3_t vq_cmd_w3;
1010         void *c_vaddr;
1011         uint64_t c_dma;
1012
1013         meta_p = &fc_params->meta_buf;
1014         m_vaddr = meta_p->vaddr;
1015         m_dma = meta_p->dma_addr;
1016
1017         encr_offset = ENCR_OFFSET(d_offs);
1018         auth_offset = AUTH_OFFSET(d_offs);
1019         encr_data_len = ENCR_DLEN(d_lens);
1020         auth_data_len = AUTH_DLEN(d_lens);
1021
1022         if (unlikely(flags & VALID_AAD_BUF)) {
1023                 /*
1024                  * We dont support both aad
1025                  * and auth data separately
1026                  */
1027                 auth_data_len = 0;
1028                 auth_offset = 0;
1029                 aad_len = fc_params->aad_buf.size;
1030                 aad_buf = &fc_params->aad_buf;
1031         }
1032
1033         cpt_ctx = fc_params->ctx_buf.vaddr;
1034         hash_type = cpt_ctx->hash_type;
1035         mac_len = cpt_ctx->mac_len;
1036
1037         if (unlikely(!(flags & VALID_IV_BUF))) {
1038                 iv_len = 0;
1039                 iv_offset = ENCR_IV_OFFSET(d_offs);
1040         }
1041
1042         if (unlikely(flags & VALID_AAD_BUF)) {
1043                 /*
1044                  * When AAD is given, data above encr_offset is pass through
1045                  * Since AAD is given as separate pointer and not as offset,
1046                  * this is a special case as we need to fragment input data
1047                  * into passthrough + encr_data and then insert AAD in between.
1048                  */
1049                 if (hash_type != GMAC_TYPE) {
1050                         passthrough_len = encr_offset;
1051                         auth_offset = passthrough_len + iv_len;
1052                         encr_offset = passthrough_len + aad_len + iv_len;
1053                         auth_data_len = aad_len + encr_data_len;
1054                 } else {
1055                         passthrough_len = 16 + aad_len;
1056                         auth_offset = passthrough_len + iv_len;
1057                         auth_data_len = aad_len;
1058                 }
1059         } else {
1060                 encr_offset += iv_len;
1061                 auth_offset += iv_len;
1062         }
1063
1064         /*
1065          * Save initial space that followed app data for completion code &
1066          * alternate completion code to fall in same cache line as app data
1067          */
1068         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1069         m_dma += COMPLETION_CODE_SIZE;
1070         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1071                (uint8_t *)m_vaddr;
1072         c_vaddr = (uint8_t *)m_vaddr + size;
1073         c_dma = m_dma + size;
1074         size += sizeof(cpt_res_s_t);
1075
1076         m_vaddr = (uint8_t *)m_vaddr + size;
1077         m_dma += size;
1078
1079         /* start cpt request info structure at 8 byte alignment */
1080         size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
1081                 (uint8_t *)m_vaddr;
1082
1083         req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
1084
1085         size += sizeof(struct cpt_request_info);
1086         m_vaddr = (uint8_t *)m_vaddr + size;
1087         m_dma += size;
1088
1089         /* Decryption */
1090         opcode.s.major = CPT_MAJOR_OP_FC;
1091         opcode.s.minor = 1;
1092
1093         if (hash_type == GMAC_TYPE) {
1094                 encr_offset = 0;
1095                 encr_data_len = 0;
1096         }
1097
1098         enc_dlen = encr_offset + encr_data_len;
1099         auth_dlen = auth_offset + auth_data_len;
1100
1101         if (auth_dlen > enc_dlen) {
1102                 inputlen = auth_dlen + mac_len;
1103                 outputlen = auth_dlen;
1104         } else {
1105                 inputlen = enc_dlen + mac_len;
1106                 outputlen = enc_dlen;
1107         }
1108
1109         vq_cmd_w0.u64 = 0;
1110         vq_cmd_w0.s.param1 = encr_data_len;
1111         vq_cmd_w0.s.param2 = auth_data_len;
1112
1113         /*
1114          * In 83XX since we have a limitation of
1115          * IV & Offset control word not part of instruction
1116          * and need to be part of Data Buffer, we check if
1117          * head room is there and then only do the Direct mode processing
1118          */
1119         if (likely((flags & SINGLE_BUF_INPLACE) &&
1120                    (flags & SINGLE_BUF_HEADTAILROOM))) {
1121                 void *dm_vaddr = fc_params->bufs[0].vaddr;
1122                 uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
1123                 /*
1124                  * This flag indicates that there is 24 bytes head room and
1125                  * 8 bytes tail room available, so that we get to do
1126                  * DIRECT MODE with limitation
1127                  */
1128
1129                 offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
1130                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1131                 req->ist.ei1 = offset_dma;
1132
1133                 /* RPTR should just exclude offset control word */
1134                 req->ist.ei2 = dm_dma_addr - iv_len;
1135
1136                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr +
1137                                         outputlen - iv_len);
1138                 /* since this is decryption,
1139                  * don't touch the content of
1140                  * alternate ccode space as it contains
1141                  * hmac.
1142                  */
1143
1144                 vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1145
1146                 vq_cmd_w0.s.opcode = opcode.flags;
1147
1148                 if (likely(iv_len)) {
1149                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1150                                                       OFF_CTRL_LEN);
1151                         uint64_t *src = fc_params->iv_buf;
1152                         dest[0] = src[0];
1153                         dest[1] = src[1];
1154                 }
1155
1156                 *(uint64_t *)offset_vaddr =
1157                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1158                                 ((uint64_t)iv_offset << 8) |
1159                                 ((uint64_t)auth_offset));
1160
1161         } else {
1162                 uint64_t dptr_dma, rptr_dma;
1163                 uint32_t g_size_bytes, s_size_bytes;
1164                 sg_comp_t *gather_comp;
1165                 sg_comp_t *scatter_comp;
1166                 uint8_t *in_buffer;
1167                 uint8_t i = 0;
1168
1169                 /* This falls under strict SG mode */
1170                 offset_vaddr = m_vaddr;
1171                 offset_dma = m_dma;
1172                 size = OFF_CTRL_LEN + iv_len;
1173
1174                 m_vaddr = (uint8_t *)m_vaddr + size;
1175                 m_dma += size;
1176
1177                 opcode.s.major |= CPT_DMA_MODE;
1178
1179                 vq_cmd_w0.s.opcode = opcode.flags;
1180
1181                 if (likely(iv_len)) {
1182                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1183                                                       OFF_CTRL_LEN);
1184                         uint64_t *src = fc_params->iv_buf;
1185                         dest[0] = src[0];
1186                         dest[1] = src[1];
1187                 }
1188
1189                 *(uint64_t *)offset_vaddr =
1190                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1191                                 ((uint64_t)iv_offset << 8) |
1192                                 ((uint64_t)auth_offset));
1193
1194                 /* DPTR has SG list */
1195                 in_buffer = m_vaddr;
1196                 dptr_dma = m_dma;
1197
1198                 ((uint16_t *)in_buffer)[0] = 0;
1199                 ((uint16_t *)in_buffer)[1] = 0;
1200
1201                 /* TODO Add error check if space will be sufficient */
1202                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1203
1204                 /*
1205                  * Input Gather List
1206                  */
1207                 i = 0;
1208
1209                 /* Offset control word that includes iv */
1210                 i = fill_sg_comp(gather_comp, i, offset_dma,
1211                                  OFF_CTRL_LEN + iv_len);
1212
1213                 /* Add input data */
1214                 if (flags & VALID_MAC_BUF) {
1215                         size = inputlen - iv_len - mac_len;
1216                         if (size) {
1217                                 /* input data only */
1218                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1219                                         i = fill_sg_comp_from_buf_min(
1220                                                         gather_comp, i,
1221                                                         fc_params->bufs,
1222                                                         &size);
1223                                 } else {
1224                                         uint32_t aad_offset = aad_len ?
1225                                                 passthrough_len : 0;
1226
1227                                         i = fill_sg_comp_from_iov(gather_comp,
1228                                                         i,
1229                                                         fc_params->src_iov,
1230                                                         0, &size,
1231                                                         aad_buf,
1232                                                         aad_offset);
1233                                 }
1234                                 if (unlikely(size)) {
1235                                         CPT_LOG_DP_ERR("Insufficient buffer"
1236                                                        " space, size %d needed",
1237                                                        size);
1238                                         return;
1239                                 }
1240                         }
1241
1242                         /* mac data */
1243                         if (mac_len) {
1244                                 i = fill_sg_comp_from_buf(gather_comp, i,
1245                                                           &fc_params->mac_buf);
1246                         }
1247                 } else {
1248                         /* input data + mac */
1249                         size = inputlen - iv_len;
1250                         if (size) {
1251                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1252                                         i = fill_sg_comp_from_buf_min(
1253                                                         gather_comp, i,
1254                                                         fc_params->bufs,
1255                                                         &size);
1256                                 } else {
1257                                         uint32_t aad_offset = aad_len ?
1258                                                 passthrough_len : 0;
1259
1260                                         if (unlikely(!fc_params->src_iov)) {
1261                                                 CPT_LOG_DP_ERR("Bad input args");
1262                                                 return;
1263                                         }
1264
1265                                         i = fill_sg_comp_from_iov(
1266                                                         gather_comp, i,
1267                                                         fc_params->src_iov,
1268                                                         0, &size,
1269                                                         aad_buf,
1270                                                         aad_offset);
1271                                 }
1272
1273                                 if (unlikely(size)) {
1274                                         CPT_LOG_DP_ERR("Insufficient buffer"
1275                                                        " space, size %d needed",
1276                                                        size);
1277                                         return;
1278                                 }
1279                         }
1280                 }
1281                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1282                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1283
1284                 /*
1285                  * Output Scatter List
1286                  */
1287
1288                 i = 0;
1289                 scatter_comp =
1290                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1291
1292                 /* Add iv */
1293                 if (iv_len) {
1294                         i = fill_sg_comp(scatter_comp, i,
1295                                          offset_dma + OFF_CTRL_LEN,
1296                                          iv_len);
1297                 }
1298
1299                 /* Add output data */
1300                 size = outputlen - iv_len;
1301                 if (size) {
1302                         if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1303                                 /* handle single buffer here */
1304                                 i = fill_sg_comp_from_buf_min(scatter_comp, i,
1305                                                               fc_params->bufs,
1306                                                               &size);
1307                         } else {
1308                                 uint32_t aad_offset = aad_len ?
1309                                         passthrough_len : 0;
1310
1311                                 if (unlikely(!fc_params->dst_iov)) {
1312                                         CPT_LOG_DP_ERR("Bad input args");
1313                                         return;
1314                                 }
1315
1316                                 i = fill_sg_comp_from_iov(scatter_comp, i,
1317                                                           fc_params->dst_iov, 0,
1318                                                           &size, aad_buf,
1319                                                           aad_offset);
1320                         }
1321
1322                         if (unlikely(size)) {
1323                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
1324                                                " size %d needed", size);
1325                                 return;
1326                         }
1327                 }
1328
1329                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1330                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1331
1332                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1333
1334                 /* This is DPTR len incase of SG mode */
1335                 vq_cmd_w0.s.dlen = size;
1336
1337                 m_vaddr = (uint8_t *)m_vaddr + size;
1338                 m_dma += size;
1339
1340                 /* cpt alternate completion address saved earlier */
1341                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1342                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1343                 rptr_dma = c_dma - 8;
1344                 size += COMPLETION_CODE_SIZE;
1345
1346                 req->ist.ei1 = dptr_dma;
1347                 req->ist.ei2 = rptr_dma;
1348         }
1349
1350         ctx_dma = fc_params->ctx_buf.dma_addr +
1351                 offsetof(struct cpt_ctx, fctx);
1352         /* vq command w3 */
1353         vq_cmd_w3.u64 = 0;
1354         vq_cmd_w3.s.grp = 0;
1355         vq_cmd_w3.s.cptr = ctx_dma;
1356
1357         /* 16 byte aligned cpt res address */
1358         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1359         *req->completion_addr = COMPLETION_CODE_INIT;
1360         req->comp_baddr  = c_dma;
1361
1362         /* Fill microcode part of instruction */
1363         req->ist.ei0 = vq_cmd_w0.u64;
1364         req->ist.ei3 = vq_cmd_w3.u64;
1365
1366         req->op = op;
1367
1368         *prep_req = req;
1369         return;
1370 }
1371
1372 static __rte_always_inline void
1373 cpt_zuc_snow3g_enc_prep(uint32_t req_flags,
1374                         uint64_t d_offs,
1375                         uint64_t d_lens,
1376                         fc_params_t *params,
1377                         void *op,
1378                         void **prep_req)
1379 {
1380         uint32_t size;
1381         int32_t inputlen, outputlen;
1382         struct cpt_ctx *cpt_ctx;
1383         uint32_t mac_len = 0;
1384         uint8_t snow3g, j;
1385         struct cpt_request_info *req;
1386         buf_ptr_t *buf_p;
1387         uint32_t encr_offset = 0, auth_offset = 0;
1388         uint32_t encr_data_len = 0, auth_data_len = 0;
1389         int flags, iv_len = 16;
1390         void *m_vaddr, *c_vaddr;
1391         uint64_t m_dma, c_dma, offset_ctrl;
1392         uint64_t *offset_vaddr, offset_dma;
1393         uint32_t *iv_s, iv[4];
1394         vq_cmd_word0_t vq_cmd_w0;
1395         vq_cmd_word3_t vq_cmd_w3;
1396         opcode_info_t opcode;
1397
1398         buf_p = &params->meta_buf;
1399         m_vaddr = buf_p->vaddr;
1400         m_dma = buf_p->dma_addr;
1401
1402         cpt_ctx = params->ctx_buf.vaddr;
1403         flags = cpt_ctx->zsk_flags;
1404         mac_len = cpt_ctx->mac_len;
1405         snow3g = cpt_ctx->snow3g;
1406
1407         /*
1408          * Save initial space that followed app data for completion code &
1409          * alternate completion code to fall in same cache line as app data
1410          */
1411         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1412         m_dma += COMPLETION_CODE_SIZE;
1413         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1414                 (uint8_t *)m_vaddr;
1415
1416         c_vaddr = (uint8_t *)m_vaddr + size;
1417         c_dma = m_dma + size;
1418         size += sizeof(cpt_res_s_t);
1419
1420         m_vaddr = (uint8_t *)m_vaddr + size;
1421         m_dma += size;
1422
1423         /* Reserve memory for cpt request info */
1424         req = m_vaddr;
1425
1426         size = sizeof(struct cpt_request_info);
1427         m_vaddr = (uint8_t *)m_vaddr + size;
1428         m_dma += size;
1429
1430         opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1431
1432         /* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1433
1434         opcode.s.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1435                           (0 << 3) | (flags & 0x7));
1436
1437         if (flags == 0x1) {
1438                 /*
1439                  * Microcode expects offsets in bytes
1440                  * TODO: Rounding off
1441                  */
1442                 auth_data_len = AUTH_DLEN(d_lens);
1443
1444                 /* EIA3 or UIA2 */
1445                 auth_offset = AUTH_OFFSET(d_offs);
1446                 auth_offset = auth_offset / 8;
1447
1448                 /* consider iv len */
1449                 auth_offset += iv_len;
1450
1451                 inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
1452                 outputlen = mac_len;
1453
1454                 offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset);
1455
1456         } else {
1457                 /* EEA3 or UEA2 */
1458                 /*
1459                  * Microcode expects offsets in bytes
1460                  * TODO: Rounding off
1461                  */
1462                 encr_data_len = ENCR_DLEN(d_lens);
1463
1464                 encr_offset = ENCR_OFFSET(d_offs);
1465                 encr_offset = encr_offset / 8;
1466                 /* consider iv len */
1467                 encr_offset += iv_len;
1468
1469                 inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
1470                 outputlen = inputlen;
1471
1472                 /* iv offset is 0 */
1473                 offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1474         }
1475
1476         /* IV */
1477         iv_s = (flags == 0x1) ? params->auth_iv_buf :
1478                 params->iv_buf;
1479
1480         if (snow3g) {
1481                 /*
1482                  * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1483                  * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1484                  */
1485
1486                 for (j = 0; j < 4; j++)
1487                         iv[j] = iv_s[3 - j];
1488         } else {
1489                 /* ZUC doesn't need a swap */
1490                 for (j = 0; j < 4; j++)
1491                         iv[j] = iv_s[j];
1492         }
1493
1494         /*
1495          * GP op header, lengths are expected in bits.
1496          */
1497         vq_cmd_w0.u64 = 0;
1498         vq_cmd_w0.s.param1 = encr_data_len;
1499         vq_cmd_w0.s.param2 = auth_data_len;
1500
1501         /*
1502          * In 83XX since we have a limitation of
1503          * IV & Offset control word not part of instruction
1504          * and need to be part of Data Buffer, we check if
1505          * head room is there and then only do the Direct mode processing
1506          */
1507         if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1508                    (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1509                 void *dm_vaddr = params->bufs[0].vaddr;
1510                 uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1511                 /*
1512                  * This flag indicates that there is 24 bytes head room and
1513                  * 8 bytes tail room available, so that we get to do
1514                  * DIRECT MODE with limitation
1515                  */
1516
1517                 offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1518                                             OFF_CTRL_LEN - iv_len);
1519                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1520
1521                 /* DPTR */
1522                 req->ist.ei1 = offset_dma;
1523                 /* RPTR should just exclude offset control word */
1524                 req->ist.ei2 = dm_dma_addr - iv_len;
1525                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1526                                                     + outputlen - iv_len);
1527
1528                 vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1529
1530                 vq_cmd_w0.s.opcode = opcode.flags;
1531
1532                 if (likely(iv_len)) {
1533                         uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1534                                                       + OFF_CTRL_LEN);
1535                         memcpy(iv_d, iv, 16);
1536                 }
1537
1538                 *offset_vaddr = offset_ctrl;
1539         } else {
1540                 uint32_t i, g_size_bytes, s_size_bytes;
1541                 uint64_t dptr_dma, rptr_dma;
1542                 sg_comp_t *gather_comp;
1543                 sg_comp_t *scatter_comp;
1544                 uint8_t *in_buffer;
1545                 uint32_t *iv_d;
1546
1547                 /* save space for iv */
1548                 offset_vaddr = m_vaddr;
1549                 offset_dma = m_dma;
1550
1551                 m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1552                 m_dma += OFF_CTRL_LEN + iv_len;
1553
1554                 opcode.s.major |= CPT_DMA_MODE;
1555
1556                 vq_cmd_w0.s.opcode = opcode.flags;
1557
1558                 /* DPTR has SG list */
1559                 in_buffer = m_vaddr;
1560                 dptr_dma = m_dma;
1561
1562                 ((uint16_t *)in_buffer)[0] = 0;
1563                 ((uint16_t *)in_buffer)[1] = 0;
1564
1565                 /* TODO Add error check if space will be sufficient */
1566                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1567
1568                 /*
1569                  * Input Gather List
1570                  */
1571                 i = 0;
1572
1573                 /* Offset control word followed by iv */
1574
1575                 i = fill_sg_comp(gather_comp, i, offset_dma,
1576                                  OFF_CTRL_LEN + iv_len);
1577
1578                 /* iv offset is 0 */
1579                 *offset_vaddr = offset_ctrl;
1580
1581                 iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1582                 memcpy(iv_d, iv, 16);
1583
1584                 /* input data */
1585                 size = inputlen - iv_len;
1586                 if (size) {
1587                         i = fill_sg_comp_from_iov(gather_comp, i,
1588                                                   params->src_iov,
1589                                                   0, &size, NULL, 0);
1590                         if (unlikely(size)) {
1591                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
1592                                                " size %d needed", size);
1593                                 return;
1594                         }
1595                 }
1596                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1597                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1598
1599                 /*
1600                  * Output Scatter List
1601                  */
1602
1603                 i = 0;
1604                 scatter_comp =
1605                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1606
1607                 if (flags == 0x1) {
1608                         /* IV in SLIST only for EEA3 & UEA2 */
1609                         iv_len = 0;
1610                 }
1611
1612                 if (iv_len) {
1613                         i = fill_sg_comp(scatter_comp, i,
1614                                          offset_dma + OFF_CTRL_LEN, iv_len);
1615                 }
1616
1617                 /* Add output data */
1618                 if (req_flags & VALID_MAC_BUF) {
1619                         size = outputlen - iv_len - mac_len;
1620                         if (size) {
1621                                 i = fill_sg_comp_from_iov(scatter_comp, i,
1622                                                           params->dst_iov, 0,
1623                                                           &size, NULL, 0);
1624
1625                                 if (unlikely(size)) {
1626                                         CPT_LOG_DP_ERR("Insufficient buffer space,"
1627                                                        " size %d needed", size);
1628                                         return;
1629                                 }
1630                         }
1631
1632                         /* mac data */
1633                         if (mac_len) {
1634                                 i = fill_sg_comp_from_buf(scatter_comp, i,
1635                                                           &params->mac_buf);
1636                         }
1637                 } else {
1638                         /* Output including mac */
1639                         size = outputlen - iv_len;
1640                         if (size) {
1641                                 i = fill_sg_comp_from_iov(scatter_comp, i,
1642                                                           params->dst_iov, 0,
1643                                                           &size, NULL, 0);
1644
1645                                 if (unlikely(size)) {
1646                                         CPT_LOG_DP_ERR("Insufficient buffer space,"
1647                                                        " size %d needed", size);
1648                                         return;
1649                                 }
1650                         }
1651                 }
1652                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1653                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1654
1655                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1656
1657                 /* This is DPTR len incase of SG mode */
1658                 vq_cmd_w0.s.dlen = size;
1659
1660                 m_vaddr = (uint8_t *)m_vaddr + size;
1661                 m_dma += size;
1662
1663                 /* cpt alternate completion address saved earlier */
1664                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1665                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1666                 rptr_dma = c_dma - 8;
1667
1668                 req->ist.ei1 = dptr_dma;
1669                 req->ist.ei2 = rptr_dma;
1670         }
1671
1672         /* vq command w3 */
1673         vq_cmd_w3.u64 = 0;
1674         vq_cmd_w3.s.grp = 0;
1675         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
1676                 offsetof(struct cpt_ctx, zs_ctx);
1677
1678         /* 16 byte aligned cpt res address */
1679         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1680         *req->completion_addr = COMPLETION_CODE_INIT;
1681         req->comp_baddr  = c_dma;
1682
1683         /* Fill microcode part of instruction */
1684         req->ist.ei0 = vq_cmd_w0.u64;
1685         req->ist.ei3 = vq_cmd_w3.u64;
1686
1687         req->op = op;
1688
1689         *prep_req = req;
1690         return;
1691 }
1692
1693 static __rte_always_inline void
1694 cpt_zuc_snow3g_dec_prep(uint32_t req_flags,
1695                         uint64_t d_offs,
1696                         uint64_t d_lens,
1697                         fc_params_t *params,
1698                         void *op,
1699                         void **prep_req)
1700 {
1701         uint32_t size;
1702         int32_t inputlen = 0, outputlen;
1703         struct cpt_ctx *cpt_ctx;
1704         uint8_t snow3g, iv_len = 16;
1705         struct cpt_request_info *req;
1706         buf_ptr_t *buf_p;
1707         uint32_t encr_offset;
1708         uint32_t encr_data_len;
1709         int flags;
1710         void *m_vaddr, *c_vaddr;
1711         uint64_t m_dma, c_dma;
1712         uint64_t *offset_vaddr, offset_dma;
1713         uint32_t *iv_s, iv[4], j;
1714         vq_cmd_word0_t vq_cmd_w0;
1715         vq_cmd_word3_t vq_cmd_w3;
1716         opcode_info_t opcode;
1717
1718         buf_p = &params->meta_buf;
1719         m_vaddr = buf_p->vaddr;
1720         m_dma = buf_p->dma_addr;
1721
1722         /*
1723          * Microcode expects offsets in bytes
1724          * TODO: Rounding off
1725          */
1726         encr_offset = ENCR_OFFSET(d_offs) / 8;
1727         encr_data_len = ENCR_DLEN(d_lens);
1728
1729         cpt_ctx = params->ctx_buf.vaddr;
1730         flags = cpt_ctx->zsk_flags;
1731         snow3g = cpt_ctx->snow3g;
1732         /*
1733          * Save initial space that followed app data for completion code &
1734          * alternate completion code to fall in same cache line as app data
1735          */
1736         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1737         m_dma += COMPLETION_CODE_SIZE;
1738         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1739                 (uint8_t *)m_vaddr;
1740
1741         c_vaddr = (uint8_t *)m_vaddr + size;
1742         c_dma = m_dma + size;
1743         size += sizeof(cpt_res_s_t);
1744
1745         m_vaddr = (uint8_t *)m_vaddr + size;
1746         m_dma += size;
1747
1748         /* Reserve memory for cpt request info */
1749         req = m_vaddr;
1750
1751         size = sizeof(struct cpt_request_info);
1752         m_vaddr = (uint8_t *)m_vaddr + size;
1753         m_dma += size;
1754
1755         opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1756
1757         /* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1758
1759         opcode.s.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1760                           (0 << 3) | (flags & 0x7));
1761
1762         /* consider iv len */
1763         encr_offset += iv_len;
1764
1765         inputlen = encr_offset +
1766                 (RTE_ALIGN(encr_data_len, 8) / 8);
1767         outputlen = inputlen;
1768
1769         /* IV */
1770         iv_s = params->iv_buf;
1771         if (snow3g) {
1772                 /*
1773                  * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1774                  * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1775                  */
1776
1777                 for (j = 0; j < 4; j++)
1778                         iv[j] = iv_s[3 - j];
1779         } else {
1780                 /* ZUC doesn't need a swap */
1781                 for (j = 0; j < 4; j++)
1782                         iv[j] = iv_s[j];
1783         }
1784
1785         /*
1786          * GP op header, lengths are expected in bits.
1787          */
1788         vq_cmd_w0.u64 = 0;
1789         vq_cmd_w0.s.param1 = encr_data_len;
1790
1791         /*
1792          * In 83XX since we have a limitation of
1793          * IV & Offset control word not part of instruction
1794          * and need to be part of Data Buffer, we check if
1795          * head room is there and then only do the Direct mode processing
1796          */
1797         if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1798                    (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1799                 void *dm_vaddr = params->bufs[0].vaddr;
1800                 uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1801                 /*
1802                  * This flag indicates that there is 24 bytes head room and
1803                  * 8 bytes tail room available, so that we get to do
1804                  * DIRECT MODE with limitation
1805                  */
1806
1807                 offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1808                                             OFF_CTRL_LEN - iv_len);
1809                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1810
1811                 /* DPTR */
1812                 req->ist.ei1 = offset_dma;
1813                 /* RPTR should just exclude offset control word */
1814                 req->ist.ei2 = dm_dma_addr - iv_len;
1815                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1816                                                     + outputlen - iv_len);
1817
1818                 vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1819
1820                 vq_cmd_w0.s.opcode = opcode.flags;
1821
1822                 if (likely(iv_len)) {
1823                         uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1824                                                       + OFF_CTRL_LEN);
1825                         memcpy(iv_d, iv, 16);
1826                 }
1827
1828                 /* iv offset is 0 */
1829                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1830         } else {
1831                 uint32_t i, g_size_bytes, s_size_bytes;
1832                 uint64_t dptr_dma, rptr_dma;
1833                 sg_comp_t *gather_comp;
1834                 sg_comp_t *scatter_comp;
1835                 uint8_t *in_buffer;
1836                 uint32_t *iv_d;
1837
1838                 /* save space for offset and iv... */
1839                 offset_vaddr = m_vaddr;
1840                 offset_dma = m_dma;
1841
1842                 m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1843                 m_dma += OFF_CTRL_LEN + iv_len;
1844
1845                 opcode.s.major |= CPT_DMA_MODE;
1846
1847                 vq_cmd_w0.s.opcode = opcode.flags;
1848
1849                 /* DPTR has SG list */
1850                 in_buffer = m_vaddr;
1851                 dptr_dma = m_dma;
1852
1853                 ((uint16_t *)in_buffer)[0] = 0;
1854                 ((uint16_t *)in_buffer)[1] = 0;
1855
1856                 /* TODO Add error check if space will be sufficient */
1857                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1858
1859                 /*
1860                  * Input Gather List
1861                  */
1862                 i = 0;
1863
1864                 /* Offset control word */
1865
1866                 /* iv offset is 0 */
1867                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1868
1869                 i = fill_sg_comp(gather_comp, i, offset_dma,
1870                                  OFF_CTRL_LEN + iv_len);
1871
1872                 iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1873                 memcpy(iv_d, iv, 16);
1874
1875                 /* Add input data */
1876                 size = inputlen - iv_len;
1877                 if (size) {
1878                         i = fill_sg_comp_from_iov(gather_comp, i,
1879                                                   params->src_iov,
1880                                                   0, &size, NULL, 0);
1881                         if (unlikely(size)) {
1882                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
1883                                                " size %d needed", size);
1884                                 return;
1885                         }
1886                 }
1887                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1888                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1889
1890                 /*
1891                  * Output Scatter List
1892                  */
1893
1894                 i = 0;
1895                 scatter_comp =
1896                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1897
1898                 /* IV */
1899                 i = fill_sg_comp(scatter_comp, i,
1900                                  offset_dma + OFF_CTRL_LEN,
1901                                  iv_len);
1902
1903                 /* Add output data */
1904                 size = outputlen - iv_len;
1905                 if (size) {
1906                         i = fill_sg_comp_from_iov(scatter_comp, i,
1907                                                   params->dst_iov, 0,
1908                                                   &size, NULL, 0);
1909
1910                         if (unlikely(size)) {
1911                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
1912                                                " size %d needed", size);
1913                                 return;
1914                         }
1915                 }
1916                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1917                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1918
1919                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1920
1921                 /* This is DPTR len incase of SG mode */
1922                 vq_cmd_w0.s.dlen = size;
1923
1924                 m_vaddr = (uint8_t *)m_vaddr + size;
1925                 m_dma += size;
1926
1927                 /* cpt alternate completion address saved earlier */
1928                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1929                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1930                 rptr_dma = c_dma - 8;
1931
1932                 req->ist.ei1 = dptr_dma;
1933                 req->ist.ei2 = rptr_dma;
1934         }
1935
1936         /* vq command w3 */
1937         vq_cmd_w3.u64 = 0;
1938         vq_cmd_w3.s.grp = 0;
1939         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
1940                 offsetof(struct cpt_ctx, zs_ctx);
1941
1942         /* 16 byte aligned cpt res address */
1943         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1944         *req->completion_addr = COMPLETION_CODE_INIT;
1945         req->comp_baddr  = c_dma;
1946
1947         /* Fill microcode part of instruction */
1948         req->ist.ei0 = vq_cmd_w0.u64;
1949         req->ist.ei3 = vq_cmd_w3.u64;
1950
1951         req->op = op;
1952
1953         *prep_req = req;
1954         return;
1955 }
1956
1957 static __rte_always_inline void
1958 cpt_kasumi_enc_prep(uint32_t req_flags,
1959                     uint64_t d_offs,
1960                     uint64_t d_lens,
1961                     fc_params_t *params,
1962                     void *op,
1963                     void **prep_req)
1964 {
1965         uint32_t size;
1966         int32_t inputlen = 0, outputlen = 0;
1967         struct cpt_ctx *cpt_ctx;
1968         uint32_t mac_len = 0;
1969         uint8_t i = 0;
1970         struct cpt_request_info *req;
1971         buf_ptr_t *buf_p;
1972         uint32_t encr_offset, auth_offset;
1973         uint32_t encr_data_len, auth_data_len;
1974         int flags;
1975         uint8_t *iv_s, *iv_d, iv_len = 8;
1976         uint8_t dir = 0;
1977         void *m_vaddr, *c_vaddr;
1978         uint64_t m_dma, c_dma;
1979         uint64_t *offset_vaddr, offset_dma;
1980         vq_cmd_word0_t vq_cmd_w0;
1981         vq_cmd_word3_t vq_cmd_w3;
1982         opcode_info_t opcode;
1983         uint8_t *in_buffer;
1984         uint32_t g_size_bytes, s_size_bytes;
1985         uint64_t dptr_dma, rptr_dma;
1986         sg_comp_t *gather_comp;
1987         sg_comp_t *scatter_comp;
1988
1989         buf_p = &params->meta_buf;
1990         m_vaddr = buf_p->vaddr;
1991         m_dma = buf_p->dma_addr;
1992
1993         encr_offset = ENCR_OFFSET(d_offs) / 8;
1994         auth_offset = AUTH_OFFSET(d_offs) / 8;
1995         encr_data_len = ENCR_DLEN(d_lens);
1996         auth_data_len = AUTH_DLEN(d_lens);
1997
1998         cpt_ctx = params->ctx_buf.vaddr;
1999         flags = cpt_ctx->zsk_flags;
2000         mac_len = cpt_ctx->mac_len;
2001
2002         if (flags == 0x0)
2003                 iv_s = params->iv_buf;
2004         else
2005                 iv_s = params->auth_iv_buf;
2006
2007         dir = iv_s[8] & 0x1;
2008
2009         /*
2010          * Save initial space that followed app data for completion code &
2011          * alternate completion code to fall in same cache line as app data
2012          */
2013         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2014         m_dma += COMPLETION_CODE_SIZE;
2015         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2016                 (uint8_t *)m_vaddr;
2017
2018         c_vaddr = (uint8_t *)m_vaddr + size;
2019         c_dma = m_dma + size;
2020         size += sizeof(cpt_res_s_t);
2021
2022         m_vaddr = (uint8_t *)m_vaddr + size;
2023         m_dma += size;
2024
2025         /* Reserve memory for cpt request info */
2026         req = m_vaddr;
2027
2028         size = sizeof(struct cpt_request_info);
2029         m_vaddr = (uint8_t *)m_vaddr + size;
2030         m_dma += size;
2031
2032         opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2033
2034         /* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2035         opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2036                           (dir << 4) | (0 << 3) | (flags & 0x7));
2037
2038         /*
2039          * GP op header, lengths are expected in bits.
2040          */
2041         vq_cmd_w0.u64 = 0;
2042         vq_cmd_w0.s.param1 = encr_data_len;
2043         vq_cmd_w0.s.param2 = auth_data_len;
2044         vq_cmd_w0.s.opcode = opcode.flags;
2045
2046         /* consider iv len */
2047         if (flags == 0x0) {
2048                 encr_offset += iv_len;
2049                 auth_offset += iv_len;
2050         }
2051
2052         /* save space for offset ctrl and iv */
2053         offset_vaddr = m_vaddr;
2054         offset_dma = m_dma;
2055
2056         m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2057         m_dma += OFF_CTRL_LEN + iv_len;
2058
2059         /* DPTR has SG list */
2060         in_buffer = m_vaddr;
2061         dptr_dma = m_dma;
2062
2063         ((uint16_t *)in_buffer)[0] = 0;
2064         ((uint16_t *)in_buffer)[1] = 0;
2065
2066         /* TODO Add error check if space will be sufficient */
2067         gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2068
2069         /*
2070          * Input Gather List
2071          */
2072         i = 0;
2073
2074         /* Offset control word followed by iv */
2075
2076         if (flags == 0x0) {
2077                 inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
2078                 outputlen = inputlen;
2079                 /* iv offset is 0 */
2080                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2081         } else {
2082                 inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
2083                 outputlen = mac_len;
2084                 /* iv offset is 0 */
2085                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset);
2086         }
2087
2088         i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2089
2090         /* IV */
2091         iv_d = (uint8_t *)offset_vaddr + OFF_CTRL_LEN;
2092         memcpy(iv_d, iv_s, iv_len);
2093
2094         /* input data */
2095         size = inputlen - iv_len;
2096         if (size) {
2097                 i = fill_sg_comp_from_iov(gather_comp, i,
2098                                           params->src_iov, 0,
2099                                           &size, NULL, 0);
2100
2101                 if (unlikely(size)) {
2102                         CPT_LOG_DP_ERR("Insufficient buffer space,"
2103                                        " size %d needed", size);
2104                         return;
2105                 }
2106         }
2107         ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2108         g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2109
2110         /*
2111          * Output Scatter List
2112          */
2113
2114         i = 0;
2115         scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2116
2117         if (flags == 0x1) {
2118                 /* IV in SLIST only for F8 */
2119                 iv_len = 0;
2120         }
2121
2122         /* IV */
2123         if (iv_len) {
2124                 i = fill_sg_comp(scatter_comp, i,
2125                                  offset_dma + OFF_CTRL_LEN,
2126                                  iv_len);
2127         }
2128
2129         /* Add output data */
2130         if (req_flags & VALID_MAC_BUF) {
2131                 size = outputlen - iv_len - mac_len;
2132                 if (size) {
2133                         i = fill_sg_comp_from_iov(scatter_comp, i,
2134                                                   params->dst_iov, 0,
2135                                                   &size, NULL, 0);
2136
2137                         if (unlikely(size)) {
2138                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
2139                                                " size %d needed", size);
2140                                 return;
2141                         }
2142                 }
2143
2144                 /* mac data */
2145                 if (mac_len) {
2146                         i = fill_sg_comp_from_buf(scatter_comp, i,
2147                                                   &params->mac_buf);
2148                 }
2149         } else {
2150                 /* Output including mac */
2151                 size = outputlen - iv_len;
2152                 if (size) {
2153                         i = fill_sg_comp_from_iov(scatter_comp, i,
2154                                                   params->dst_iov, 0,
2155                                                   &size, NULL, 0);
2156
2157                         if (unlikely(size)) {
2158                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
2159                                                " size %d needed", size);
2160                                 return;
2161                         }
2162                 }
2163         }
2164         ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2165         s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2166
2167         size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2168
2169         /* This is DPTR len incase of SG mode */
2170         vq_cmd_w0.s.dlen = size;
2171
2172         m_vaddr = (uint8_t *)m_vaddr + size;
2173         m_dma += size;
2174
2175         /* cpt alternate completion address saved earlier */
2176         req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2177         *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2178         rptr_dma = c_dma - 8;
2179
2180         req->ist.ei1 = dptr_dma;
2181         req->ist.ei2 = rptr_dma;
2182
2183         /* vq command w3 */
2184         vq_cmd_w3.u64 = 0;
2185         vq_cmd_w3.s.grp = 0;
2186         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2187                 offsetof(struct cpt_ctx, k_ctx);
2188
2189         /* 16 byte aligned cpt res address */
2190         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2191         *req->completion_addr = COMPLETION_CODE_INIT;
2192         req->comp_baddr  = c_dma;
2193
2194         /* Fill microcode part of instruction */
2195         req->ist.ei0 = vq_cmd_w0.u64;
2196         req->ist.ei3 = vq_cmd_w3.u64;
2197
2198         req->op = op;
2199
2200         *prep_req = req;
2201         return;
2202 }
2203
2204 static __rte_always_inline void
2205 cpt_kasumi_dec_prep(uint64_t d_offs,
2206                     uint64_t d_lens,
2207                     fc_params_t *params,
2208                     void *op,
2209                     void **prep_req)
2210 {
2211         uint32_t size;
2212         int32_t inputlen = 0, outputlen;
2213         struct cpt_ctx *cpt_ctx;
2214         uint8_t i = 0, iv_len = 8;
2215         struct cpt_request_info *req;
2216         buf_ptr_t *buf_p;
2217         uint32_t encr_offset;
2218         uint32_t encr_data_len;
2219         int flags;
2220         uint8_t dir = 0;
2221         void *m_vaddr, *c_vaddr;
2222         uint64_t m_dma, c_dma;
2223         uint64_t *offset_vaddr, offset_dma;
2224         vq_cmd_word0_t vq_cmd_w0;
2225         vq_cmd_word3_t vq_cmd_w3;
2226         opcode_info_t opcode;
2227         uint8_t *in_buffer;
2228         uint32_t g_size_bytes, s_size_bytes;
2229         uint64_t dptr_dma, rptr_dma;
2230         sg_comp_t *gather_comp;
2231         sg_comp_t *scatter_comp;
2232
2233         buf_p = &params->meta_buf;
2234         m_vaddr = buf_p->vaddr;
2235         m_dma = buf_p->dma_addr;
2236
2237         encr_offset = ENCR_OFFSET(d_offs) / 8;
2238         encr_data_len = ENCR_DLEN(d_lens);
2239
2240         cpt_ctx = params->ctx_buf.vaddr;
2241         flags = cpt_ctx->zsk_flags;
2242         /*
2243          * Save initial space that followed app data for completion code &
2244          * alternate completion code to fall in same cache line as app data
2245          */
2246         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2247         m_dma += COMPLETION_CODE_SIZE;
2248         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2249                 (uint8_t *)m_vaddr;
2250
2251         c_vaddr = (uint8_t *)m_vaddr + size;
2252         c_dma = m_dma + size;
2253         size += sizeof(cpt_res_s_t);
2254
2255         m_vaddr = (uint8_t *)m_vaddr + size;
2256         m_dma += size;
2257
2258         /* Reserve memory for cpt request info */
2259         req = m_vaddr;
2260
2261         size = sizeof(struct cpt_request_info);
2262         m_vaddr = (uint8_t *)m_vaddr + size;
2263         m_dma += size;
2264
2265         opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2266
2267         /* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2268         opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2269                           (dir << 4) | (0 << 3) | (flags & 0x7));
2270
2271         /*
2272          * GP op header, lengths are expected in bits.
2273          */
2274         vq_cmd_w0.u64 = 0;
2275         vq_cmd_w0.s.param1 = encr_data_len;
2276         vq_cmd_w0.s.opcode = opcode.flags;
2277
2278         /* consider iv len */
2279         encr_offset += iv_len;
2280
2281         inputlen = iv_len + (RTE_ALIGN(encr_data_len, 8) / 8);
2282         outputlen = inputlen;
2283
2284         /* save space for offset ctrl & iv */
2285         offset_vaddr = m_vaddr;
2286         offset_dma = m_dma;
2287
2288         m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2289         m_dma += OFF_CTRL_LEN + iv_len;
2290
2291         /* DPTR has SG list */
2292         in_buffer = m_vaddr;
2293         dptr_dma = m_dma;
2294
2295         ((uint16_t *)in_buffer)[0] = 0;
2296         ((uint16_t *)in_buffer)[1] = 0;
2297
2298         /* TODO Add error check if space will be sufficient */
2299         gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2300
2301         /*
2302          * Input Gather List
2303          */
2304         i = 0;
2305
2306         /* Offset control word followed by iv */
2307         *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2308
2309         i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2310
2311         /* IV */
2312         memcpy((uint8_t *)offset_vaddr + OFF_CTRL_LEN,
2313                params->iv_buf, iv_len);
2314
2315         /* Add input data */
2316         size = inputlen - iv_len;
2317         if (size) {
2318                 i = fill_sg_comp_from_iov(gather_comp, i,
2319                                           params->src_iov,
2320                                           0, &size, NULL, 0);
2321                 if (unlikely(size)) {
2322                         CPT_LOG_DP_ERR("Insufficient buffer space,"
2323                                        " size %d needed", size);
2324                         return;
2325                 }
2326         }
2327         ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2328         g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2329
2330         /*
2331          * Output Scatter List
2332          */
2333
2334         i = 0;
2335         scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2336
2337         /* IV */
2338         i = fill_sg_comp(scatter_comp, i,
2339                          offset_dma + OFF_CTRL_LEN,
2340                          iv_len);
2341
2342         /* Add output data */
2343         size = outputlen - iv_len;
2344         if (size) {
2345                 i = fill_sg_comp_from_iov(scatter_comp, i,
2346                                           params->dst_iov, 0,
2347                                           &size, NULL, 0);
2348                 if (unlikely(size)) {
2349                         CPT_LOG_DP_ERR("Insufficient buffer space,"
2350                                        " size %d needed", size);
2351                         return;
2352                 }
2353         }
2354         ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2355         s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2356
2357         size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2358
2359         /* This is DPTR len incase of SG mode */
2360         vq_cmd_w0.s.dlen = size;
2361
2362         m_vaddr = (uint8_t *)m_vaddr + size;
2363         m_dma += size;
2364
2365         /* cpt alternate completion address saved earlier */
2366         req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2367         *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2368         rptr_dma = c_dma - 8;
2369
2370         req->ist.ei1 = dptr_dma;
2371         req->ist.ei2 = rptr_dma;
2372
2373         /* vq command w3 */
2374         vq_cmd_w3.u64 = 0;
2375         vq_cmd_w3.s.grp = 0;
2376         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2377                 offsetof(struct cpt_ctx, k_ctx);
2378
2379         /* 16 byte aligned cpt res address */
2380         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2381         *req->completion_addr = COMPLETION_CODE_INIT;
2382         req->comp_baddr  = c_dma;
2383
2384         /* Fill microcode part of instruction */
2385         req->ist.ei0 = vq_cmd_w0.u64;
2386         req->ist.ei3 = vq_cmd_w3.u64;
2387
2388         req->op = op;
2389
2390         *prep_req = req;
2391         return;
2392 }
2393
2394 static __rte_always_inline void *
2395 cpt_fc_dec_hmac_prep(uint32_t flags,
2396                      uint64_t d_offs,
2397                      uint64_t d_lens,
2398                      fc_params_t *fc_params,
2399                      void *op)
2400 {
2401         struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2402         uint8_t fc_type;
2403         void *prep_req = NULL;
2404
2405         fc_type = ctx->fc_type;
2406
2407         if (likely(fc_type == FC_GEN)) {
2408                 cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2409                                   &prep_req);
2410         } else if (fc_type == ZUC_SNOW3G) {
2411                 cpt_zuc_snow3g_dec_prep(flags, d_offs, d_lens, fc_params, op,
2412                                         &prep_req);
2413         } else if (fc_type == KASUMI) {
2414                 cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, op, &prep_req);
2415         }
2416
2417         /*
2418          * For AUTH_ONLY case,
2419          * MC only supports digest generation and verification
2420          * should be done in software by memcmp()
2421          */
2422
2423         return prep_req;
2424 }
2425
2426 static __rte_always_inline void *__rte_hot
2427 cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
2428                      fc_params_t *fc_params, void *op)
2429 {
2430         struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2431         uint8_t fc_type;
2432         void *prep_req = NULL;
2433
2434         fc_type = ctx->fc_type;
2435
2436         /* Common api for rest of the ops */
2437         if (likely(fc_type == FC_GEN)) {
2438                 cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2439                                   &prep_req);
2440         } else if (fc_type == ZUC_SNOW3G) {
2441                 cpt_zuc_snow3g_enc_prep(flags, d_offs, d_lens, fc_params, op,
2442                                         &prep_req);
2443         } else if (fc_type == KASUMI) {
2444                 cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, op,
2445                                     &prep_req);
2446         } else if (fc_type == HASH_HMAC) {
2447                 cpt_digest_gen_prep(flags, d_lens, fc_params, op, &prep_req);
2448         }
2449
2450         return prep_req;
2451 }
2452
2453 static __rte_always_inline int
2454 cpt_fc_auth_set_key(void *ctx, auth_type_t type, const uint8_t *key,
2455                     uint16_t key_len, uint16_t mac_len)
2456 {
2457         struct cpt_ctx *cpt_ctx = ctx;
2458         mc_fc_context_t *fctx = &cpt_ctx->fctx;
2459
2460         if ((type >= ZUC_EIA3) && (type <= KASUMI_F9_ECB)) {
2461                 uint32_t keyx[4];
2462
2463                 if (key_len != 16)
2464                         return -1;
2465                 /* No support for AEAD yet */
2466                 if (cpt_ctx->enc_cipher)
2467                         return -1;
2468                 /* For ZUC/SNOW3G/Kasumi */
2469                 switch (type) {
2470                 case SNOW3G_UIA2:
2471                         cpt_ctx->snow3g = 1;
2472                         gen_key_snow3g(key, keyx);
2473                         memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
2474                         cpt_ctx->fc_type = ZUC_SNOW3G;
2475                         cpt_ctx->zsk_flags = 0x1;
2476                         break;
2477                 case ZUC_EIA3:
2478                         cpt_ctx->snow3g = 0;
2479                         memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
2480                         memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
2481                         cpt_ctx->fc_type = ZUC_SNOW3G;
2482                         cpt_ctx->zsk_flags = 0x1;
2483                         break;
2484                 case KASUMI_F9_ECB:
2485                         /* Kasumi ECB mode */
2486                         cpt_ctx->k_ecb = 1;
2487                         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2488                         cpt_ctx->fc_type = KASUMI;
2489                         cpt_ctx->zsk_flags = 0x1;
2490                         break;
2491                 case KASUMI_F9_CBC:
2492                         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2493                         cpt_ctx->fc_type = KASUMI;
2494                         cpt_ctx->zsk_flags = 0x1;
2495                         break;
2496                 default:
2497                         return -1;
2498                 }
2499                 cpt_ctx->mac_len = 4;
2500                 cpt_ctx->hash_type = type;
2501                 return 0;
2502         }
2503
2504         if (!(cpt_ctx->fc_type == FC_GEN && !type)) {
2505                 if (!cpt_ctx->fc_type || !cpt_ctx->enc_cipher)
2506                         cpt_ctx->fc_type = HASH_HMAC;
2507         }
2508
2509         if (cpt_ctx->fc_type == FC_GEN && key_len > 64)
2510                 return -1;
2511
2512         /* For GMAC auth, cipher must be NULL */
2513         if (type == GMAC_TYPE)
2514                 fctx->enc.enc_cipher = 0;
2515
2516         fctx->enc.hash_type = cpt_ctx->hash_type = type;
2517         fctx->enc.mac_len = cpt_ctx->mac_len = mac_len;
2518
2519         if (key_len) {
2520                 cpt_ctx->hmac = 1;
2521                 memset(cpt_ctx->auth_key, 0, sizeof(cpt_ctx->auth_key));
2522                 memcpy(cpt_ctx->auth_key, key, key_len);
2523                 cpt_ctx->auth_key_len = key_len;
2524                 memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
2525                 memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
2526
2527                 if (key_len <= 64)
2528                         memcpy(fctx->hmac.opad, key, key_len);
2529                 fctx->enc.auth_input_type = 1;
2530         }
2531         return 0;
2532 }
2533
2534 static __rte_always_inline int
2535 fill_sess_aead(struct rte_crypto_sym_xform *xform,
2536                  struct cpt_sess_misc *sess)
2537 {
2538         struct rte_crypto_aead_xform *aead_form;
2539         cipher_type_t enc_type = 0; /* NULL Cipher type */
2540         auth_type_t auth_type = 0; /* NULL Auth type */
2541         uint32_t cipher_key_len = 0;
2542         uint8_t aes_gcm = 0;
2543         aead_form = &xform->aead;
2544         void *ctx = SESS_PRIV(sess);
2545
2546         if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT) {
2547                 sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2548                 sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2549         } else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT) {
2550                 sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2551                 sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2552         } else {
2553                 CPT_LOG_DP_ERR("Unknown aead operation\n");
2554                 return -1;
2555         }
2556         switch (aead_form->algo) {
2557         case RTE_CRYPTO_AEAD_AES_GCM:
2558                 enc_type = AES_GCM;
2559                 cipher_key_len = 16;
2560                 aes_gcm = 1;
2561                 break;
2562         case RTE_CRYPTO_AEAD_AES_CCM:
2563                 CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2564                                aead_form->algo);
2565                 return -1;
2566         case RTE_CRYPTO_AEAD_CHACHA20_POLY1305:
2567                 enc_type = CHACHA20;
2568                 auth_type = POLY1305;
2569                 cipher_key_len = 32;
2570                 sess->chacha_poly = 1;
2571                 break;
2572         default:
2573                 CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2574                                aead_form->algo);
2575                 return -1;
2576         }
2577         if (aead_form->key.length < cipher_key_len) {
2578                 CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2579                                (unsigned int long)aead_form->key.length);
2580                 return -1;
2581         }
2582         sess->zsk_flag = 0;
2583         sess->aes_gcm = aes_gcm;
2584         sess->mac_len = aead_form->digest_length;
2585         sess->iv_offset = aead_form->iv.offset;
2586         sess->iv_length = aead_form->iv.length;
2587         sess->aad_length = aead_form->aad_length;
2588
2589         if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, aead_form->key.data,
2590                         aead_form->key.length, NULL)))
2591                 return -1;
2592
2593         if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2594                         aead_form->digest_length)))
2595                 return -1;
2596
2597         return 0;
2598 }
2599
2600 static __rte_always_inline int
2601 fill_sess_cipher(struct rte_crypto_sym_xform *xform,
2602                  struct cpt_sess_misc *sess)
2603 {
2604         struct rte_crypto_cipher_xform *c_form;
2605         cipher_type_t enc_type = 0; /* NULL Cipher type */
2606         uint32_t cipher_key_len = 0;
2607         uint8_t zsk_flag = 0, aes_ctr = 0, is_null = 0;
2608
2609         c_form = &xform->cipher;
2610
2611         if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
2612                 sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2613         else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT)
2614                 sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2615         else {
2616                 CPT_LOG_DP_ERR("Unknown cipher operation\n");
2617                 return -1;
2618         }
2619
2620         switch (c_form->algo) {
2621         case RTE_CRYPTO_CIPHER_AES_CBC:
2622                 enc_type = AES_CBC;
2623                 cipher_key_len = 16;
2624                 break;
2625         case RTE_CRYPTO_CIPHER_3DES_CBC:
2626                 enc_type = DES3_CBC;
2627                 cipher_key_len = 24;
2628                 break;
2629         case RTE_CRYPTO_CIPHER_DES_CBC:
2630                 /* DES is implemented using 3DES in hardware */
2631                 enc_type = DES3_CBC;
2632                 cipher_key_len = 8;
2633                 break;
2634         case RTE_CRYPTO_CIPHER_AES_CTR:
2635                 enc_type = AES_CTR;
2636                 cipher_key_len = 16;
2637                 aes_ctr = 1;
2638                 break;
2639         case RTE_CRYPTO_CIPHER_NULL:
2640                 enc_type = 0;
2641                 is_null = 1;
2642                 break;
2643         case RTE_CRYPTO_CIPHER_KASUMI_F8:
2644                 enc_type = KASUMI_F8_ECB;
2645                 cipher_key_len = 16;
2646                 zsk_flag = K_F8;
2647                 break;
2648         case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
2649                 enc_type = SNOW3G_UEA2;
2650                 cipher_key_len = 16;
2651                 zsk_flag = ZS_EA;
2652                 break;
2653         case RTE_CRYPTO_CIPHER_ZUC_EEA3:
2654                 enc_type = ZUC_EEA3;
2655                 cipher_key_len = 16;
2656                 zsk_flag = ZS_EA;
2657                 break;
2658         case RTE_CRYPTO_CIPHER_AES_XTS:
2659                 enc_type = AES_XTS;
2660                 cipher_key_len = 16;
2661                 break;
2662         case RTE_CRYPTO_CIPHER_3DES_ECB:
2663                 enc_type = DES3_ECB;
2664                 cipher_key_len = 24;
2665                 break;
2666         case RTE_CRYPTO_CIPHER_AES_ECB:
2667                 enc_type = AES_ECB;
2668                 cipher_key_len = 16;
2669                 break;
2670         case RTE_CRYPTO_CIPHER_3DES_CTR:
2671         case RTE_CRYPTO_CIPHER_AES_F8:
2672         case RTE_CRYPTO_CIPHER_ARC4:
2673                 CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2674                                c_form->algo);
2675                 return -1;
2676         default:
2677                 CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2678                                c_form->algo);
2679                 return -1;
2680         }
2681
2682         if (c_form->key.length < cipher_key_len) {
2683                 CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2684                                (unsigned long) c_form->key.length);
2685                 return -1;
2686         }
2687
2688         sess->zsk_flag = zsk_flag;
2689         sess->aes_gcm = 0;
2690         sess->aes_ctr = aes_ctr;
2691         sess->iv_offset = c_form->iv.offset;
2692         sess->iv_length = c_form->iv.length;
2693         sess->is_null = is_null;
2694
2695         if (unlikely(cpt_fc_ciph_set_key(SESS_PRIV(sess), enc_type,
2696                         c_form->key.data, c_form->key.length, NULL)))
2697                 return -1;
2698
2699         return 0;
2700 }
2701
2702 static __rte_always_inline int
2703 fill_sess_auth(struct rte_crypto_sym_xform *xform,
2704                struct cpt_sess_misc *sess)
2705 {
2706         struct rte_crypto_auth_xform *a_form;
2707         auth_type_t auth_type = 0; /* NULL Auth type */
2708         uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0;
2709
2710         a_form = &xform->auth;
2711
2712         if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2713                 sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2714         else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2715                 sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2716         else {
2717                 CPT_LOG_DP_ERR("Unknown auth operation");
2718                 return -1;
2719         }
2720
2721         switch (a_form->algo) {
2722         case RTE_CRYPTO_AUTH_SHA1_HMAC:
2723                 /* Fall through */
2724         case RTE_CRYPTO_AUTH_SHA1:
2725                 auth_type = SHA1_TYPE;
2726                 break;
2727         case RTE_CRYPTO_AUTH_SHA256_HMAC:
2728         case RTE_CRYPTO_AUTH_SHA256:
2729                 auth_type = SHA2_SHA256;
2730                 break;
2731         case RTE_CRYPTO_AUTH_SHA512_HMAC:
2732         case RTE_CRYPTO_AUTH_SHA512:
2733                 auth_type = SHA2_SHA512;
2734                 break;
2735         case RTE_CRYPTO_AUTH_AES_GMAC:
2736                 auth_type = GMAC_TYPE;
2737                 aes_gcm = 1;
2738                 break;
2739         case RTE_CRYPTO_AUTH_SHA224_HMAC:
2740         case RTE_CRYPTO_AUTH_SHA224:
2741                 auth_type = SHA2_SHA224;
2742                 break;
2743         case RTE_CRYPTO_AUTH_SHA384_HMAC:
2744         case RTE_CRYPTO_AUTH_SHA384:
2745                 auth_type = SHA2_SHA384;
2746                 break;
2747         case RTE_CRYPTO_AUTH_MD5_HMAC:
2748         case RTE_CRYPTO_AUTH_MD5:
2749                 auth_type = MD5_TYPE;
2750                 break;
2751         case RTE_CRYPTO_AUTH_KASUMI_F9:
2752                 auth_type = KASUMI_F9_ECB;
2753                 /*
2754                  * Indicate that direction needs to be taken out
2755                  * from end of src
2756                  */
2757                 zsk_flag = K_F9;
2758                 break;
2759         case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
2760                 auth_type = SNOW3G_UIA2;
2761                 zsk_flag = ZS_IA;
2762                 break;
2763         case RTE_CRYPTO_AUTH_ZUC_EIA3:
2764                 auth_type = ZUC_EIA3;
2765                 zsk_flag = ZS_IA;
2766                 break;
2767         case RTE_CRYPTO_AUTH_NULL:
2768                 auth_type = 0;
2769                 is_null = 1;
2770                 break;
2771         case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
2772         case RTE_CRYPTO_AUTH_AES_CMAC:
2773         case RTE_CRYPTO_AUTH_AES_CBC_MAC:
2774                 CPT_LOG_DP_ERR("Crypto: Unsupported hash algo %u",
2775                                a_form->algo);
2776                 return -1;
2777         default:
2778                 CPT_LOG_DP_ERR("Crypto: Undefined Hash algo %u specified",
2779                                a_form->algo);
2780                 return -1;
2781         }
2782
2783         sess->zsk_flag = zsk_flag;
2784         sess->aes_gcm = aes_gcm;
2785         sess->mac_len = a_form->digest_length;
2786         sess->is_null = is_null;
2787         if (zsk_flag) {
2788                 sess->auth_iv_offset = a_form->iv.offset;
2789                 sess->auth_iv_length = a_form->iv.length;
2790         }
2791         if (unlikely(cpt_fc_auth_set_key(SESS_PRIV(sess), auth_type,
2792                         a_form->key.data, a_form->key.length,
2793                         a_form->digest_length)))
2794                 return -1;
2795
2796         return 0;
2797 }
2798
2799 static __rte_always_inline int
2800 fill_sess_gmac(struct rte_crypto_sym_xform *xform,
2801                  struct cpt_sess_misc *sess)
2802 {
2803         struct rte_crypto_auth_xform *a_form;
2804         cipher_type_t enc_type = 0; /* NULL Cipher type */
2805         auth_type_t auth_type = 0; /* NULL Auth type */
2806         void *ctx = SESS_PRIV(sess);
2807
2808         a_form = &xform->auth;
2809
2810         if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2811                 sess->cpt_op |= CPT_OP_ENCODE;
2812         else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2813                 sess->cpt_op |= CPT_OP_DECODE;
2814         else {
2815                 CPT_LOG_DP_ERR("Unknown auth operation");
2816                 return -1;
2817         }
2818
2819         switch (a_form->algo) {
2820         case RTE_CRYPTO_AUTH_AES_GMAC:
2821                 enc_type = AES_GCM;
2822                 auth_type = GMAC_TYPE;
2823                 break;
2824         default:
2825                 CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2826                                a_form->algo);
2827                 return -1;
2828         }
2829
2830         sess->zsk_flag = 0;
2831         sess->aes_gcm = 0;
2832         sess->is_gmac = 1;
2833         sess->iv_offset = a_form->iv.offset;
2834         sess->iv_length = a_form->iv.length;
2835         sess->mac_len = a_form->digest_length;
2836
2837         if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, a_form->key.data,
2838                         a_form->key.length, NULL)))
2839                 return -1;
2840
2841         if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2842                         a_form->digest_length)))
2843                 return -1;
2844
2845         return 0;
2846 }
2847
2848 static __rte_always_inline void *
2849 alloc_op_meta(struct rte_mbuf *m_src,
2850               buf_ptr_t *buf,
2851               int32_t len,
2852               struct rte_mempool *cpt_meta_pool)
2853 {
2854         uint8_t *mdata;
2855
2856 #ifndef CPT_ALWAYS_USE_SEPARATE_BUF
2857         if (likely(m_src && (m_src->nb_segs == 1))) {
2858                 int32_t tailroom;
2859                 phys_addr_t mphys;
2860
2861                 /* Check if tailroom is sufficient to hold meta data */
2862                 tailroom = rte_pktmbuf_tailroom(m_src);
2863                 if (likely(tailroom > len + 8)) {
2864                         mdata = (uint8_t *)m_src->buf_addr + m_src->buf_len;
2865                         mphys = m_src->buf_physaddr + m_src->buf_len;
2866                         mdata -= len;
2867                         mphys -= len;
2868                         buf->vaddr = mdata;
2869                         buf->dma_addr = mphys;
2870                         buf->size = len;
2871                         /* Indicate that this is a mbuf allocated mdata */
2872                         mdata = (uint8_t *)((uint64_t)mdata | 1ull);
2873                         return mdata;
2874                 }
2875         }
2876 #else
2877         RTE_SET_USED(m_src);
2878 #endif
2879
2880         if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
2881                 return NULL;
2882
2883         buf->vaddr = mdata;
2884         buf->dma_addr = rte_mempool_virt2iova(mdata);
2885         buf->size = len;
2886
2887         return mdata;
2888 }
2889
2890 /**
2891  * cpt_free_metabuf - free metabuf to mempool.
2892  * @param instance: pointer to instance.
2893  * @param objp: pointer to the metabuf.
2894  */
2895 static __rte_always_inline void
2896 free_op_meta(void *mdata, struct rte_mempool *cpt_meta_pool)
2897 {
2898         bool nofree = ((uintptr_t)mdata & 1ull);
2899
2900         if (likely(nofree))
2901                 return;
2902         rte_mempool_put(cpt_meta_pool, mdata);
2903 }
2904
2905 static __rte_always_inline uint32_t
2906 prepare_iov_from_pkt(struct rte_mbuf *pkt,
2907                      iov_ptr_t *iovec, uint32_t start_offset)
2908 {
2909         uint16_t index = 0;
2910         void *seg_data = NULL;
2911         phys_addr_t seg_phys;
2912         int32_t seg_size = 0;
2913
2914         if (!pkt) {
2915                 iovec->buf_cnt = 0;
2916                 return 0;
2917         }
2918
2919         if (!start_offset) {
2920                 seg_data = rte_pktmbuf_mtod(pkt, void *);
2921                 seg_phys = rte_pktmbuf_mtophys(pkt);
2922                 seg_size = pkt->data_len;
2923         } else {
2924                 while (start_offset >= pkt->data_len) {
2925                         start_offset -= pkt->data_len;
2926                         pkt = pkt->next;
2927                 }
2928
2929                 seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
2930                 seg_phys = rte_pktmbuf_mtophys_offset(pkt, start_offset);
2931                 seg_size = pkt->data_len - start_offset;
2932                 if (!seg_size)
2933                         return 1;
2934         }
2935
2936         /* first seg */
2937         iovec->bufs[index].vaddr = seg_data;
2938         iovec->bufs[index].dma_addr = seg_phys;
2939         iovec->bufs[index].size = seg_size;
2940         index++;
2941         pkt = pkt->next;
2942
2943         while (unlikely(pkt != NULL)) {
2944                 seg_data = rte_pktmbuf_mtod(pkt, void *);
2945                 seg_phys = rte_pktmbuf_mtophys(pkt);
2946                 seg_size = pkt->data_len;
2947                 if (!seg_size)
2948                         break;
2949
2950                 iovec->bufs[index].vaddr = seg_data;
2951                 iovec->bufs[index].dma_addr = seg_phys;
2952                 iovec->bufs[index].size = seg_size;
2953
2954                 index++;
2955
2956                 pkt = pkt->next;
2957         }
2958
2959         iovec->buf_cnt = index;
2960         return 0;
2961 }
2962
2963 static __rte_always_inline uint32_t
2964 prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
2965                              fc_params_t *param,
2966                              uint32_t *flags)
2967 {
2968         uint16_t index = 0;
2969         void *seg_data = NULL;
2970         phys_addr_t seg_phys;
2971         uint32_t seg_size = 0;
2972         iov_ptr_t *iovec;
2973
2974         seg_data = rte_pktmbuf_mtod(pkt, void *);
2975         seg_phys = rte_pktmbuf_mtophys(pkt);
2976         seg_size = pkt->data_len;
2977
2978         /* first seg */
2979         if (likely(!pkt->next)) {
2980                 uint32_t headroom, tailroom;
2981
2982                 *flags |= SINGLE_BUF_INPLACE;
2983                 headroom = rte_pktmbuf_headroom(pkt);
2984                 tailroom = rte_pktmbuf_tailroom(pkt);
2985                 if (likely((headroom >= 24) &&
2986                     (tailroom >= 8))) {
2987                         /* In 83XX this is prerequivisit for Direct mode */
2988                         *flags |= SINGLE_BUF_HEADTAILROOM;
2989                 }
2990                 param->bufs[0].vaddr = seg_data;
2991                 param->bufs[0].dma_addr = seg_phys;
2992                 param->bufs[0].size = seg_size;
2993                 return 0;
2994         }
2995         iovec = param->src_iov;
2996         iovec->bufs[index].vaddr = seg_data;
2997         iovec->bufs[index].dma_addr = seg_phys;
2998         iovec->bufs[index].size = seg_size;
2999         index++;
3000         pkt = pkt->next;
3001
3002         while (unlikely(pkt != NULL)) {
3003                 seg_data = rte_pktmbuf_mtod(pkt, void *);
3004                 seg_phys = rte_pktmbuf_mtophys(pkt);
3005                 seg_size = pkt->data_len;
3006
3007                 if (!seg_size)
3008                         break;
3009
3010                 iovec->bufs[index].vaddr = seg_data;
3011                 iovec->bufs[index].dma_addr = seg_phys;
3012                 iovec->bufs[index].size = seg_size;
3013
3014                 index++;
3015
3016                 pkt = pkt->next;
3017         }
3018
3019         iovec->buf_cnt = index;
3020         return 0;
3021 }
3022
3023 static __rte_always_inline int
3024 fill_fc_params(struct rte_crypto_op *cop,
3025                struct cpt_sess_misc *sess_misc,
3026                struct cpt_qp_meta_info *m_info,
3027                void **mdata_ptr,
3028                void **prep_req)
3029 {
3030         uint32_t space = 0;
3031         struct rte_crypto_sym_op *sym_op = cop->sym;
3032         void *mdata = NULL;
3033         uintptr_t *op;
3034         uint32_t mc_hash_off;
3035         uint32_t flags = 0;
3036         uint64_t d_offs, d_lens;
3037         struct rte_mbuf *m_src, *m_dst;
3038         uint8_t cpt_op = sess_misc->cpt_op;
3039 #ifdef CPT_ALWAYS_USE_SG_MODE
3040         uint8_t inplace = 0;
3041 #else
3042         uint8_t inplace = 1;
3043 #endif
3044         fc_params_t fc_params;
3045         char src[SRC_IOV_SIZE];
3046         char dst[SRC_IOV_SIZE];
3047         uint32_t iv_buf[4];
3048         int ret;
3049
3050         if (likely(sess_misc->iv_length)) {
3051                 flags |= VALID_IV_BUF;
3052                 fc_params.iv_buf = rte_crypto_op_ctod_offset(cop,
3053                                    uint8_t *, sess_misc->iv_offset);
3054                 if (sess_misc->aes_ctr &&
3055                     unlikely(sess_misc->iv_length != 16)) {
3056                         memcpy((uint8_t *)iv_buf,
3057                                 rte_crypto_op_ctod_offset(cop,
3058                                 uint8_t *, sess_misc->iv_offset), 12);
3059                         iv_buf[3] = rte_cpu_to_be_32(0x1);
3060                         fc_params.iv_buf = iv_buf;
3061                 }
3062         }
3063
3064         if (sess_misc->zsk_flag) {
3065                 fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3066                                         uint8_t *,
3067                                         sess_misc->auth_iv_offset);
3068                 if (sess_misc->zsk_flag != ZS_EA)
3069                         inplace = 0;
3070         }
3071         m_src = sym_op->m_src;
3072         m_dst = sym_op->m_dst;
3073
3074         if (sess_misc->aes_gcm || sess_misc->chacha_poly) {
3075                 uint8_t *salt;
3076                 uint8_t *aad_data;
3077                 uint16_t aad_len;
3078
3079                 d_offs = sym_op->aead.data.offset;
3080                 d_lens = sym_op->aead.data.length;
3081                 mc_hash_off = sym_op->aead.data.offset +
3082                               sym_op->aead.data.length;
3083
3084                 aad_data = sym_op->aead.aad.data;
3085                 aad_len = sess_misc->aad_length;
3086                 if (likely((aad_data + aad_len) ==
3087                            rte_pktmbuf_mtod_offset(m_src,
3088                                 uint8_t *,
3089                                 sym_op->aead.data.offset))) {
3090                         d_offs = (d_offs - aad_len) | (d_offs << 16);
3091                         d_lens = (d_lens + aad_len) | (d_lens << 32);
3092                 } else {
3093                         fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
3094                         fc_params.aad_buf.dma_addr = sym_op->aead.aad.phys_addr;
3095                         fc_params.aad_buf.size = aad_len;
3096                         flags |= VALID_AAD_BUF;
3097                         inplace = 0;
3098                         d_offs = d_offs << 16;
3099                         d_lens = d_lens << 32;
3100                 }
3101
3102                 salt = fc_params.iv_buf;
3103                 if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3104                         cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3105                         sess_misc->salt = *(uint32_t *)salt;
3106                 }
3107                 fc_params.iv_buf = salt + 4;
3108                 if (likely(sess_misc->mac_len)) {
3109                         struct rte_mbuf *m = (cpt_op & CPT_OP_ENCODE) ? m_dst :
3110                                              m_src;
3111
3112                         if (!m)
3113                                 m = m_src;
3114
3115                         /* hmac immediately following data is best case */
3116                         if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3117                             mc_hash_off !=
3118                             (uint8_t *)sym_op->aead.digest.data)) {
3119                                 flags |= VALID_MAC_BUF;
3120                                 fc_params.mac_buf.size = sess_misc->mac_len;
3121                                 fc_params.mac_buf.vaddr =
3122                                   sym_op->aead.digest.data;
3123                                 fc_params.mac_buf.dma_addr =
3124                                  sym_op->aead.digest.phys_addr;
3125                                 inplace = 0;
3126                         }
3127                 }
3128         } else {
3129                 d_offs = sym_op->cipher.data.offset;
3130                 d_lens = sym_op->cipher.data.length;
3131                 mc_hash_off = sym_op->cipher.data.offset +
3132                               sym_op->cipher.data.length;
3133                 d_offs = (d_offs << 16) | sym_op->auth.data.offset;
3134                 d_lens = (d_lens << 32) | sym_op->auth.data.length;
3135
3136                 if (mc_hash_off < (sym_op->auth.data.offset +
3137                                    sym_op->auth.data.length)){
3138                         mc_hash_off = (sym_op->auth.data.offset +
3139                                        sym_op->auth.data.length);
3140                 }
3141                 /* for gmac, salt should be updated like in gcm */
3142                 if (unlikely(sess_misc->is_gmac)) {
3143                         uint8_t *salt;
3144                         salt = fc_params.iv_buf;
3145                         if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3146                                 cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3147                                 sess_misc->salt = *(uint32_t *)salt;
3148                         }
3149                         fc_params.iv_buf = salt + 4;
3150                 }
3151                 if (likely(sess_misc->mac_len)) {
3152                         struct rte_mbuf *m;
3153
3154                         m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src;
3155                         if (!m)
3156                                 m = m_src;
3157
3158                         /* hmac immediately following data is best case */
3159                         if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3160                             mc_hash_off !=
3161                              (uint8_t *)sym_op->auth.digest.data)) {
3162                                 flags |= VALID_MAC_BUF;
3163                                 fc_params.mac_buf.size =
3164                                         sess_misc->mac_len;
3165                                 fc_params.mac_buf.vaddr =
3166                                         sym_op->auth.digest.data;
3167                                 fc_params.mac_buf.dma_addr =
3168                                 sym_op->auth.digest.phys_addr;
3169                                 inplace = 0;
3170                         }
3171                 }
3172         }
3173         fc_params.ctx_buf.vaddr = SESS_PRIV(sess_misc);
3174         fc_params.ctx_buf.dma_addr = sess_misc->ctx_dma_addr;
3175
3176         if (unlikely(sess_misc->is_null || sess_misc->cpt_op == CPT_OP_DECODE))
3177                 inplace = 0;
3178
3179         if (likely(!m_dst && inplace)) {
3180                 /* Case of single buffer without AAD buf or
3181                  * separate mac buf in place and
3182                  * not air crypto
3183                  */
3184                 fc_params.dst_iov = fc_params.src_iov = (void *)src;
3185
3186                 if (unlikely(prepare_iov_from_pkt_inplace(m_src,
3187                                                           &fc_params,
3188                                                           &flags))) {
3189                         CPT_LOG_DP_ERR("Prepare inplace src iov failed");
3190                         ret = -EINVAL;
3191                         goto err_exit;
3192                 }
3193
3194         } else {
3195                 /* Out of place processing */
3196                 fc_params.src_iov = (void *)src;
3197                 fc_params.dst_iov = (void *)dst;
3198
3199                 /* Store SG I/O in the api for reuse */
3200                 if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
3201                         CPT_LOG_DP_ERR("Prepare src iov failed");
3202                         ret = -EINVAL;
3203                         goto err_exit;
3204                 }
3205
3206                 if (unlikely(m_dst != NULL)) {
3207                         uint32_t pkt_len;
3208
3209                         /* Try to make room as much as src has */
3210                         pkt_len = rte_pktmbuf_pkt_len(m_dst);
3211
3212                         if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
3213                                 pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
3214                                 if (!rte_pktmbuf_append(m_dst, pkt_len)) {
3215                                         CPT_LOG_DP_ERR("Not enough space in "
3216                                                        "m_dst %p, need %u"
3217                                                        " more",
3218                                                        m_dst, pkt_len);
3219                                         ret = -EINVAL;
3220                                         goto err_exit;
3221                                 }
3222                         }
3223
3224                         if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
3225                                 CPT_LOG_DP_ERR("Prepare dst iov failed for "
3226                                                "m_dst %p", m_dst);
3227                                 ret = -EINVAL;
3228                                 goto err_exit;
3229                         }
3230                 } else {
3231                         fc_params.dst_iov = (void *)src;
3232                 }
3233         }
3234
3235         if (likely(flags & SINGLE_BUF_HEADTAILROOM))
3236                 mdata = alloc_op_meta(m_src, &fc_params.meta_buf,
3237                                       m_info->lb_mlen, m_info->pool);
3238         else
3239                 mdata = alloc_op_meta(NULL, &fc_params.meta_buf,
3240                                       m_info->sg_mlen, m_info->pool);
3241
3242         if (unlikely(mdata == NULL)) {
3243                 CPT_LOG_DP_ERR("Error allocating meta buffer for request");
3244                 ret = -ENOMEM;
3245                 goto err_exit;
3246         }
3247
3248         op = (uintptr_t *)((uintptr_t)mdata & (uintptr_t)~1ull);
3249         op[0] = (uintptr_t)mdata;
3250         op[1] = (uintptr_t)cop;
3251         op[2] = op[3] = 0; /* Used to indicate auth verify */
3252         space += 4 * sizeof(uint64_t);
3253
3254         fc_params.meta_buf.vaddr = (uint8_t *)op + space;
3255         fc_params.meta_buf.dma_addr += space;
3256         fc_params.meta_buf.size -= space;
3257
3258         /* Finally prepare the instruction */
3259         if (cpt_op & CPT_OP_ENCODE)
3260                 *prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
3261                                                  &fc_params, op);
3262         else
3263                 *prep_req = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens,
3264                                                  &fc_params, op);
3265
3266         if (unlikely(*prep_req == NULL)) {
3267                 CPT_LOG_DP_ERR("Preparing request failed due to bad input arg");
3268                 ret = -EINVAL;
3269                 goto free_mdata_and_exit;
3270         }
3271
3272         *mdata_ptr = mdata;
3273
3274         return 0;
3275
3276 free_mdata_and_exit:
3277         free_op_meta(mdata, m_info->pool);
3278 err_exit:
3279         return ret;
3280 }
3281
3282 static __rte_always_inline void
3283 compl_auth_verify(struct rte_crypto_op *op,
3284                       uint8_t *gen_mac,
3285                       uint64_t mac_len)
3286 {
3287         uint8_t *mac;
3288         struct rte_crypto_sym_op *sym_op = op->sym;
3289
3290         if (sym_op->auth.digest.data)
3291                 mac = sym_op->auth.digest.data;
3292         else
3293                 mac = rte_pktmbuf_mtod_offset(sym_op->m_src,
3294                                               uint8_t *,
3295                                               sym_op->auth.data.length +
3296                                               sym_op->auth.data.offset);
3297         if (!mac) {
3298                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
3299                 return;
3300         }
3301
3302         if (memcmp(mac, gen_mac, mac_len))
3303                 op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
3304         else
3305                 op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
3306 }
3307
3308 static __rte_always_inline void
3309 find_kasumif9_direction_and_length(uint8_t *src,
3310                                    uint32_t counter_num_bytes,
3311                                    uint32_t *addr_length_in_bits,
3312                                    uint8_t *addr_direction)
3313 {
3314         uint8_t found = 0;
3315         uint32_t pos;
3316         uint8_t last_byte;
3317         while (!found && counter_num_bytes > 0) {
3318                 counter_num_bytes--;
3319                 if (src[counter_num_bytes] == 0x00)
3320                         continue;
3321                 pos = rte_bsf32(src[counter_num_bytes]);
3322                 if (pos == 7) {
3323                         if (likely(counter_num_bytes > 0)) {
3324                                 last_byte = src[counter_num_bytes - 1];
3325                                 *addr_direction  =  last_byte & 0x1;
3326                                 *addr_length_in_bits = counter_num_bytes * 8
3327                                                         - 1;
3328                         }
3329                 } else {
3330                         last_byte = src[counter_num_bytes];
3331                         *addr_direction = (last_byte >> (pos + 1)) & 0x1;
3332                         *addr_length_in_bits = counter_num_bytes * 8
3333                                                 + (8 - (pos + 2));
3334                 }
3335                 found = 1;
3336         }
3337 }
3338
3339 /*
3340  * This handles all auth only except AES_GMAC
3341  */
3342 static __rte_always_inline int
3343 fill_digest_params(struct rte_crypto_op *cop,
3344                    struct cpt_sess_misc *sess,
3345                    struct cpt_qp_meta_info *m_info,
3346                    void **mdata_ptr,
3347                    void **prep_req)
3348 {
3349         uint32_t space = 0;
3350         struct rte_crypto_sym_op *sym_op = cop->sym;
3351         void *mdata;
3352         phys_addr_t mphys;
3353         uint64_t *op;
3354         uint32_t auth_range_off;
3355         uint32_t flags = 0;
3356         uint64_t d_offs = 0, d_lens;
3357         struct rte_mbuf *m_src, *m_dst;
3358         uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK;
3359         uint16_t mac_len = sess->mac_len;
3360         fc_params_t params;
3361         char src[SRC_IOV_SIZE];
3362         uint8_t iv_buf[16];
3363         int ret;
3364
3365         memset(&params, 0, sizeof(fc_params_t));
3366
3367         m_src = sym_op->m_src;
3368
3369         /* For just digest lets force mempool alloc */
3370         mdata = alloc_op_meta(NULL, &params.meta_buf, m_info->sg_mlen,
3371                               m_info->pool);
3372         if (mdata == NULL) {
3373                 ret = -ENOMEM;
3374                 goto err_exit;
3375         }
3376
3377         mphys = params.meta_buf.dma_addr;
3378
3379         op = mdata;
3380         op[0] = (uintptr_t)mdata;
3381         op[1] = (uintptr_t)cop;
3382         op[2] = op[3] = 0; /* Used to indicate auth verify */
3383         space += 4 * sizeof(uint64_t);
3384
3385         auth_range_off = sym_op->auth.data.offset;
3386
3387         flags = VALID_MAC_BUF;
3388         params.src_iov = (void *)src;
3389         if (unlikely(sess->zsk_flag)) {
3390                 /*
3391                  * Since for Zuc, Kasumi, Snow3g offsets are in bits
3392                  * we will send pass through even for auth only case,
3393                  * let MC handle it
3394                  */
3395                 d_offs = auth_range_off;
3396                 auth_range_off = 0;
3397                 params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3398                                         uint8_t *, sess->auth_iv_offset);
3399                 if (sess->zsk_flag == K_F9) {
3400                         uint32_t length_in_bits, num_bytes;
3401                         uint8_t *src, direction = 0;
3402
3403                         memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src,
3404                                                         uint8_t *), 8);
3405                         /*
3406                          * This is kasumi f9, take direction from
3407                          * source buffer
3408                          */
3409                         length_in_bits = cop->sym->auth.data.length;
3410                         num_bytes = (length_in_bits >> 3);
3411                         src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
3412                         find_kasumif9_direction_and_length(src,
3413                                                 num_bytes,
3414                                                 &length_in_bits,
3415                                                 &direction);
3416                         length_in_bits -= 64;
3417                         cop->sym->auth.data.offset += 64;
3418                         d_offs = cop->sym->auth.data.offset;
3419                         auth_range_off = d_offs / 8;
3420                         cop->sym->auth.data.length = length_in_bits;
3421
3422                         /* Store it at end of auth iv */
3423                         iv_buf[8] = direction;
3424                         params.auth_iv_buf = iv_buf;
3425                 }
3426         }
3427
3428         d_lens = sym_op->auth.data.length;
3429
3430         params.ctx_buf.vaddr = SESS_PRIV(sess);
3431         params.ctx_buf.dma_addr = sess->ctx_dma_addr;
3432
3433         if (auth_op == CPT_OP_AUTH_GENERATE) {
3434                 if (sym_op->auth.digest.data) {
3435                         /*
3436                          * Digest to be generated
3437                          * in separate buffer
3438                          */
3439                         params.mac_buf.size =
3440                                 sess->mac_len;
3441                         params.mac_buf.vaddr =
3442                                 sym_op->auth.digest.data;
3443                         params.mac_buf.dma_addr =
3444                                 sym_op->auth.digest.phys_addr;
3445                 } else {
3446                         uint32_t off = sym_op->auth.data.offset +
3447                                 sym_op->auth.data.length;
3448                         int32_t dlen, space;
3449
3450                         m_dst = sym_op->m_dst ?
3451                                 sym_op->m_dst : sym_op->m_src;
3452                         dlen = rte_pktmbuf_pkt_len(m_dst);
3453
3454                         space = off + mac_len - dlen;
3455                         if (space > 0)
3456                                 if (!rte_pktmbuf_append(m_dst, space)) {
3457                                         CPT_LOG_DP_ERR("Failed to extend "
3458                                                        "mbuf by %uB", space);
3459                                         ret = -EINVAL;
3460                                         goto free_mdata_and_exit;
3461                                 }
3462
3463                         params.mac_buf.vaddr =
3464                                 rte_pktmbuf_mtod_offset(m_dst, void *, off);
3465                         params.mac_buf.dma_addr =
3466                                 rte_pktmbuf_mtophys_offset(m_dst, off);
3467                         params.mac_buf.size = mac_len;
3468                 }
3469         } else {
3470                 /* Need space for storing generated mac */
3471                 params.mac_buf.vaddr = (uint8_t *)mdata + space;
3472                 params.mac_buf.dma_addr = mphys + space;
3473                 params.mac_buf.size = mac_len;
3474                 space += RTE_ALIGN_CEIL(mac_len, 8);
3475                 op[2] = (uintptr_t)params.mac_buf.vaddr;
3476                 op[3] = mac_len;
3477         }
3478
3479         params.meta_buf.vaddr = (uint8_t *)mdata + space;
3480         params.meta_buf.dma_addr = mphys + space;
3481         params.meta_buf.size -= space;
3482
3483         /* Out of place processing */
3484         params.src_iov = (void *)src;
3485
3486         /*Store SG I/O in the api for reuse */
3487         if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
3488                 CPT_LOG_DP_ERR("Prepare src iov failed");
3489                 ret = -EINVAL;
3490                 goto free_mdata_and_exit;
3491         }
3492
3493         *prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &params, op);
3494         if (unlikely(*prep_req == NULL)) {
3495                 ret = -EINVAL;
3496                 goto free_mdata_and_exit;
3497         }
3498
3499         *mdata_ptr = mdata;
3500
3501         return 0;
3502
3503 free_mdata_and_exit:
3504         free_op_meta(mdata, m_info->pool);
3505 err_exit:
3506         return ret;
3507 }
3508
3509 #endif /*_CPT_UCODE_H_ */