crypto/qat: add asymmetric crypto PMD
[dpdk.git] / drivers / common / qat / qat_qp.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2018 Intel Corporation
3  */
4
5 #include <rte_common.h>
6 #include <rte_dev.h>
7 #include <rte_malloc.h>
8 #include <rte_memzone.h>
9 #include <rte_pci.h>
10 #include <rte_bus_pci.h>
11 #include <rte_atomic.h>
12 #include <rte_prefetch.h>
13
14 #include "qat_logs.h"
15 #include "qat_device.h"
16 #include "qat_qp.h"
17 #include "qat_sym.h"
18 #include "qat_asym.h"
19 #include "qat_comp.h"
20 #include "adf_transport_access_macros.h"
21
22
23 #define ADF_MAX_DESC                            4096
24 #define ADF_MIN_DESC                            128
25
26 #define ADF_ARB_REG_SLOT                        0x1000
27 #define ADF_ARB_RINGSRVARBEN_OFFSET             0x19C
28
29 #define WRITE_CSR_ARB_RINGSRVARBEN(csr_addr, index, value) \
30         ADF_CSR_WR(csr_addr, ADF_ARB_RINGSRVARBEN_OFFSET + \
31         (ADF_ARB_REG_SLOT * index), value)
32
33 __extension__
34 const struct qat_qp_hw_data qat_gen1_qps[QAT_MAX_SERVICES]
35                                          [ADF_MAX_QPS_ON_ANY_SERVICE] = {
36         /* queue pairs which provide an asymmetric crypto service */
37         [QAT_SERVICE_ASYMMETRIC] = {
38                 {
39                         .service_type = QAT_SERVICE_ASYMMETRIC,
40                         .hw_bundle_num = 0,
41                         .tx_ring_num = 0,
42                         .rx_ring_num = 8,
43                         .tx_msg_size = 64,
44                         .rx_msg_size = 32,
45
46                 }, {
47                         .service_type = QAT_SERVICE_ASYMMETRIC,
48                         .hw_bundle_num = 0,
49                         .tx_ring_num = 1,
50                         .rx_ring_num = 9,
51                         .tx_msg_size = 64,
52                         .rx_msg_size = 32,
53                 }
54         },
55         /* queue pairs which provide a symmetric crypto service */
56         [QAT_SERVICE_SYMMETRIC] = {
57                 {
58                         .service_type = QAT_SERVICE_SYMMETRIC,
59                         .hw_bundle_num = 0,
60                         .tx_ring_num = 2,
61                         .rx_ring_num = 10,
62                         .tx_msg_size = 128,
63                         .rx_msg_size = 32,
64                 },
65                 {
66                         .service_type = QAT_SERVICE_SYMMETRIC,
67                         .hw_bundle_num = 0,
68                         .tx_ring_num = 3,
69                         .rx_ring_num = 11,
70                         .tx_msg_size = 128,
71                         .rx_msg_size = 32,
72                 }
73         },
74         /* queue pairs which provide a compression service */
75         [QAT_SERVICE_COMPRESSION] = {
76                 {
77                         .service_type = QAT_SERVICE_COMPRESSION,
78                         .hw_bundle_num = 0,
79                         .tx_ring_num = 6,
80                         .rx_ring_num = 14,
81                         .tx_msg_size = 128,
82                         .rx_msg_size = 32,
83                 }, {
84                         .service_type = QAT_SERVICE_COMPRESSION,
85                         .hw_bundle_num = 0,
86                         .tx_ring_num = 7,
87                         .rx_ring_num = 15,
88                         .tx_msg_size = 128,
89                         .rx_msg_size = 32,
90                 }
91         }
92 };
93
94 __extension__
95 const struct qat_qp_hw_data qat_gen3_qps[QAT_MAX_SERVICES]
96                                          [ADF_MAX_QPS_ON_ANY_SERVICE] = {
97         /* queue pairs which provide an asymmetric crypto service */
98         [QAT_SERVICE_ASYMMETRIC] = {
99                 {
100                         .service_type = QAT_SERVICE_ASYMMETRIC,
101                         .hw_bundle_num = 0,
102                         .tx_ring_num = 0,
103                         .rx_ring_num = 4,
104                         .tx_msg_size = 64,
105                         .rx_msg_size = 32,
106                 }
107         },
108         /* queue pairs which provide a symmetric crypto service */
109         [QAT_SERVICE_SYMMETRIC] = {
110                 {
111                         .service_type = QAT_SERVICE_SYMMETRIC,
112                         .hw_bundle_num = 0,
113                         .tx_ring_num = 1,
114                         .rx_ring_num = 5,
115                         .tx_msg_size = 128,
116                         .rx_msg_size = 32,
117                 }
118         },
119         /* queue pairs which provide a compression service */
120         [QAT_SERVICE_COMPRESSION] = {
121                 {
122                         .service_type = QAT_SERVICE_COMPRESSION,
123                         .hw_bundle_num = 0,
124                         .tx_ring_num = 3,
125                         .rx_ring_num = 7,
126                         .tx_msg_size = 128,
127                         .rx_msg_size = 32,
128                 }
129         }
130 };
131
132 static int qat_qp_check_queue_alignment(uint64_t phys_addr,
133         uint32_t queue_size_bytes);
134 static void qat_queue_delete(struct qat_queue *queue);
135 static int qat_queue_create(struct qat_pci_device *qat_dev,
136         struct qat_queue *queue, struct qat_qp_config *, uint8_t dir);
137 static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
138         uint32_t *queue_size_for_csr);
139 static void adf_configure_queues(struct qat_qp *queue);
140 static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
141         rte_spinlock_t *lock);
142 static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
143         rte_spinlock_t *lock);
144
145
146 int qat_qps_per_service(const struct qat_qp_hw_data *qp_hw_data,
147                 enum qat_service_type service)
148 {
149         int i, count;
150
151         for (i = 0, count = 0; i < ADF_MAX_QPS_ON_ANY_SERVICE; i++)
152                 if (qp_hw_data[i].service_type == service)
153                         count++;
154         return count;
155 }
156
157 static const struct rte_memzone *
158 queue_dma_zone_reserve(const char *queue_name, uint32_t queue_size,
159                         int socket_id)
160 {
161         const struct rte_memzone *mz;
162
163         mz = rte_memzone_lookup(queue_name);
164         if (mz != 0) {
165                 if (((size_t)queue_size <= mz->len) &&
166                                 ((socket_id == SOCKET_ID_ANY) ||
167                                         (socket_id == mz->socket_id))) {
168                         QAT_LOG(DEBUG, "re-use memzone already "
169                                         "allocated for %s", queue_name);
170                         return mz;
171                 }
172
173                 QAT_LOG(ERR, "Incompatible memzone already "
174                                 "allocated %s, size %u, socket %d. "
175                                 "Requested size %u, socket %u",
176                                 queue_name, (uint32_t)mz->len,
177                                 mz->socket_id, queue_size, socket_id);
178                 return NULL;
179         }
180
181         QAT_LOG(DEBUG, "Allocate memzone for %s, size %u on socket %u",
182                                         queue_name, queue_size, socket_id);
183         return rte_memzone_reserve_aligned(queue_name, queue_size,
184                 socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
185 }
186
187 int qat_qp_setup(struct qat_pci_device *qat_dev,
188                 struct qat_qp **qp_addr,
189                 uint16_t queue_pair_id,
190                 struct qat_qp_config *qat_qp_conf)
191
192 {
193         struct qat_qp *qp;
194         struct rte_pci_device *pci_dev = qat_dev->pci_dev;
195         char op_cookie_pool_name[RTE_RING_NAMESIZE];
196         uint32_t i;
197
198         QAT_LOG(DEBUG, "Setup qp %u on qat pci device %d gen %d",
199                 queue_pair_id, qat_dev->qat_dev_id, qat_dev->qat_dev_gen);
200
201         if ((qat_qp_conf->nb_descriptors > ADF_MAX_DESC) ||
202                 (qat_qp_conf->nb_descriptors < ADF_MIN_DESC)) {
203                 QAT_LOG(ERR, "Can't create qp for %u descriptors",
204                                 qat_qp_conf->nb_descriptors);
205                 return -EINVAL;
206         }
207
208         if (pci_dev->mem_resource[0].addr == NULL) {
209                 QAT_LOG(ERR, "Could not find VF config space "
210                                 "(UIO driver attached?).");
211                 return -EINVAL;
212         }
213
214         /* Allocate the queue pair data structure. */
215         qp = rte_zmalloc("qat PMD qp metadata",
216                         sizeof(*qp), RTE_CACHE_LINE_SIZE);
217         if (qp == NULL) {
218                 QAT_LOG(ERR, "Failed to alloc mem for qp struct");
219                 return -ENOMEM;
220         }
221         qp->nb_descriptors = qat_qp_conf->nb_descriptors;
222         qp->op_cookies = rte_zmalloc("qat PMD op cookie pointer",
223                         qat_qp_conf->nb_descriptors * sizeof(*qp->op_cookies),
224                         RTE_CACHE_LINE_SIZE);
225         if (qp->op_cookies == NULL) {
226                 QAT_LOG(ERR, "Failed to alloc mem for cookie");
227                 rte_free(qp);
228                 return -ENOMEM;
229         }
230
231         qp->mmap_bar_addr = pci_dev->mem_resource[0].addr;
232         qp->inflights16 = 0;
233
234         if (qat_queue_create(qat_dev, &(qp->tx_q), qat_qp_conf,
235                                         ADF_RING_DIR_TX) != 0) {
236                 QAT_LOG(ERR, "Tx queue create failed "
237                                 "queue_pair_id=%u", queue_pair_id);
238                 goto create_err;
239         }
240
241         if (qat_queue_create(qat_dev, &(qp->rx_q), qat_qp_conf,
242                                         ADF_RING_DIR_RX) != 0) {
243                 QAT_LOG(ERR, "Rx queue create failed "
244                                 "queue_pair_id=%hu", queue_pair_id);
245                 qat_queue_delete(&(qp->tx_q));
246                 goto create_err;
247         }
248
249         adf_configure_queues(qp);
250         adf_queue_arb_enable(&qp->tx_q, qp->mmap_bar_addr,
251                                         &qat_dev->arb_csr_lock);
252
253         snprintf(op_cookie_pool_name, RTE_RING_NAMESIZE,
254                                         "%s%d_cookies_%s_qp%hu",
255                 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
256                 qat_qp_conf->service_str, queue_pair_id);
257
258         QAT_LOG(DEBUG, "cookiepool: %s", op_cookie_pool_name);
259         qp->op_cookie_pool = rte_mempool_lookup(op_cookie_pool_name);
260         if (qp->op_cookie_pool == NULL)
261                 qp->op_cookie_pool = rte_mempool_create(op_cookie_pool_name,
262                                 qp->nb_descriptors,
263                                 qat_qp_conf->cookie_size, 64, 0,
264                                 NULL, NULL, NULL, NULL, qat_qp_conf->socket_id,
265                                 0);
266         if (!qp->op_cookie_pool) {
267                 QAT_LOG(ERR, "QAT PMD Cannot create"
268                                 " op mempool");
269                 goto create_err;
270         }
271
272         for (i = 0; i < qp->nb_descriptors; i++) {
273                 if (rte_mempool_get(qp->op_cookie_pool, &qp->op_cookies[i])) {
274                         QAT_LOG(ERR, "QAT PMD Cannot get op_cookie");
275                         goto create_err;
276                 }
277                 memset(qp->op_cookies[i], 0, qat_qp_conf->cookie_size);
278         }
279
280         qp->qat_dev_gen = qat_dev->qat_dev_gen;
281         qp->build_request = qat_qp_conf->build_request;
282         qp->service_type = qat_qp_conf->hw->service_type;
283         qp->qat_dev = qat_dev;
284
285         QAT_LOG(DEBUG, "QP setup complete: id: %d, cookiepool: %s",
286                         queue_pair_id, op_cookie_pool_name);
287
288         *qp_addr = qp;
289         return 0;
290
291 create_err:
292         if (qp->op_cookie_pool)
293                 rte_mempool_free(qp->op_cookie_pool);
294         rte_free(qp->op_cookies);
295         rte_free(qp);
296         return -EFAULT;
297 }
298
299 int qat_qp_release(struct qat_qp **qp_addr)
300 {
301         struct qat_qp *qp = *qp_addr;
302         uint32_t i;
303
304         if (qp == NULL) {
305                 QAT_LOG(DEBUG, "qp already freed");
306                 return 0;
307         }
308
309         QAT_LOG(DEBUG, "Free qp on qat_pci device %d",
310                                 qp->qat_dev->qat_dev_id);
311
312         /* Don't free memory if there are still responses to be processed */
313         if (qp->inflights16 == 0) {
314                 qat_queue_delete(&(qp->tx_q));
315                 qat_queue_delete(&(qp->rx_q));
316         } else {
317                 return -EAGAIN;
318         }
319
320         adf_queue_arb_disable(&(qp->tx_q), qp->mmap_bar_addr,
321                                         &qp->qat_dev->arb_csr_lock);
322
323         for (i = 0; i < qp->nb_descriptors; i++)
324                 rte_mempool_put(qp->op_cookie_pool, qp->op_cookies[i]);
325
326         if (qp->op_cookie_pool)
327                 rte_mempool_free(qp->op_cookie_pool);
328
329         rte_free(qp->op_cookies);
330         rte_free(qp);
331         *qp_addr = NULL;
332         return 0;
333 }
334
335
336 static void qat_queue_delete(struct qat_queue *queue)
337 {
338         const struct rte_memzone *mz;
339         int status = 0;
340
341         if (queue == NULL) {
342                 QAT_LOG(DEBUG, "Invalid queue");
343                 return;
344         }
345         QAT_LOG(DEBUG, "Free ring %d, memzone: %s",
346                         queue->hw_queue_number, queue->memz_name);
347
348         mz = rte_memzone_lookup(queue->memz_name);
349         if (mz != NULL) {
350                 /* Write an unused pattern to the queue memory. */
351                 memset(queue->base_addr, 0x7F, queue->queue_size);
352                 status = rte_memzone_free(mz);
353                 if (status != 0)
354                         QAT_LOG(ERR, "Error %d on freeing queue %s",
355                                         status, queue->memz_name);
356         } else {
357                 QAT_LOG(DEBUG, "queue %s doesn't exist",
358                                 queue->memz_name);
359         }
360 }
361
362 static int
363 qat_queue_create(struct qat_pci_device *qat_dev, struct qat_queue *queue,
364                 struct qat_qp_config *qp_conf, uint8_t dir)
365 {
366         uint64_t queue_base;
367         void *io_addr;
368         const struct rte_memzone *qp_mz;
369         struct rte_pci_device *pci_dev = qat_dev->pci_dev;
370         int ret = 0;
371         uint16_t desc_size = (dir == ADF_RING_DIR_TX ?
372                         qp_conf->hw->tx_msg_size : qp_conf->hw->rx_msg_size);
373         uint32_t queue_size_bytes = (qp_conf->nb_descriptors)*(desc_size);
374
375         queue->hw_bundle_number = qp_conf->hw->hw_bundle_num;
376         queue->hw_queue_number = (dir == ADF_RING_DIR_TX ?
377                         qp_conf->hw->tx_ring_num : qp_conf->hw->rx_ring_num);
378
379         if (desc_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) {
380                 QAT_LOG(ERR, "Invalid descriptor size %d", desc_size);
381                 return -EINVAL;
382         }
383
384         /*
385          * Allocate a memzone for the queue - create a unique name.
386          */
387         snprintf(queue->memz_name, sizeof(queue->memz_name),
388                         "%s_%d_%s_%s_%d_%d",
389                 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
390                 qp_conf->service_str, "qp_mem",
391                 queue->hw_bundle_number, queue->hw_queue_number);
392         qp_mz = queue_dma_zone_reserve(queue->memz_name, queue_size_bytes,
393                         qp_conf->socket_id);
394         if (qp_mz == NULL) {
395                 QAT_LOG(ERR, "Failed to allocate ring memzone");
396                 return -ENOMEM;
397         }
398
399         queue->base_addr = (char *)qp_mz->addr;
400         queue->base_phys_addr = qp_mz->iova;
401         if (qat_qp_check_queue_alignment(queue->base_phys_addr,
402                         queue_size_bytes)) {
403                 QAT_LOG(ERR, "Invalid alignment on queue create "
404                                         " 0x%"PRIx64"\n",
405                                         queue->base_phys_addr);
406                 ret = -EFAULT;
407                 goto queue_create_err;
408         }
409
410         if (adf_verify_queue_size(desc_size, qp_conf->nb_descriptors,
411                         &(queue->queue_size)) != 0) {
412                 QAT_LOG(ERR, "Invalid num inflights");
413                 ret = -EINVAL;
414                 goto queue_create_err;
415         }
416
417         queue->max_inflights = ADF_MAX_INFLIGHTS(queue->queue_size,
418                                         ADF_BYTES_TO_MSG_SIZE(desc_size));
419         queue->modulo_mask = (1 << ADF_RING_SIZE_MODULO(queue->queue_size)) - 1;
420
421         if (queue->max_inflights < 2) {
422                 QAT_LOG(ERR, "Invalid num inflights");
423                 ret = -EINVAL;
424                 goto queue_create_err;
425         }
426         queue->head = 0;
427         queue->tail = 0;
428         queue->msg_size = desc_size;
429
430         /*
431          * Write an unused pattern to the queue memory.
432          */
433         memset(queue->base_addr, 0x7F, queue_size_bytes);
434
435         queue_base = BUILD_RING_BASE_ADDR(queue->base_phys_addr,
436                                         queue->queue_size);
437
438         io_addr = pci_dev->mem_resource[0].addr;
439
440         WRITE_CSR_RING_BASE(io_addr, queue->hw_bundle_number,
441                         queue->hw_queue_number, queue_base);
442
443         QAT_LOG(DEBUG, "RING: Name:%s, size in CSR: %u, in bytes %u,"
444                 " nb msgs %u, msg_size %u, max_inflights %u modulo mask %u",
445                         queue->memz_name,
446                         queue->queue_size, queue_size_bytes,
447                         qp_conf->nb_descriptors, desc_size,
448                         queue->max_inflights, queue->modulo_mask);
449
450         return 0;
451
452 queue_create_err:
453         rte_memzone_free(qp_mz);
454         return ret;
455 }
456
457 static int qat_qp_check_queue_alignment(uint64_t phys_addr,
458                                         uint32_t queue_size_bytes)
459 {
460         if (((queue_size_bytes - 1) & phys_addr) != 0)
461                 return -EINVAL;
462         return 0;
463 }
464
465 static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
466         uint32_t *p_queue_size_for_csr)
467 {
468         uint8_t i = ADF_MIN_RING_SIZE;
469
470         for (; i <= ADF_MAX_RING_SIZE; i++)
471                 if ((msg_size * msg_num) ==
472                                 (uint32_t)ADF_SIZE_TO_RING_SIZE_IN_BYTES(i)) {
473                         *p_queue_size_for_csr = i;
474                         return 0;
475                 }
476         QAT_LOG(ERR, "Invalid ring size %d", msg_size * msg_num);
477         return -EINVAL;
478 }
479
480 static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
481                                         rte_spinlock_t *lock)
482 {
483         uint32_t arb_csr_offset =  ADF_ARB_RINGSRVARBEN_OFFSET +
484                                         (ADF_ARB_REG_SLOT *
485                                                         txq->hw_bundle_number);
486         uint32_t value;
487
488         rte_spinlock_lock(lock);
489         value = ADF_CSR_RD(base_addr, arb_csr_offset);
490         value |= (0x01 << txq->hw_queue_number);
491         ADF_CSR_WR(base_addr, arb_csr_offset, value);
492         rte_spinlock_unlock(lock);
493 }
494
495 static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
496                                         rte_spinlock_t *lock)
497 {
498         uint32_t arb_csr_offset =  ADF_ARB_RINGSRVARBEN_OFFSET +
499                                         (ADF_ARB_REG_SLOT *
500                                                         txq->hw_bundle_number);
501         uint32_t value;
502
503         rte_spinlock_lock(lock);
504         value = ADF_CSR_RD(base_addr, arb_csr_offset);
505         value &= ~(0x01 << txq->hw_queue_number);
506         ADF_CSR_WR(base_addr, arb_csr_offset, value);
507         rte_spinlock_unlock(lock);
508 }
509
510 static void adf_configure_queues(struct qat_qp *qp)
511 {
512         uint32_t queue_config;
513         struct qat_queue *queue = &qp->tx_q;
514
515         queue_config = BUILD_RING_CONFIG(queue->queue_size);
516
517         WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
518                         queue->hw_queue_number, queue_config);
519
520         queue = &qp->rx_q;
521         queue_config =
522                         BUILD_RESP_RING_CONFIG(queue->queue_size,
523                                         ADF_RING_NEAR_WATERMARK_512,
524                                         ADF_RING_NEAR_WATERMARK_0);
525
526         WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
527                         queue->hw_queue_number, queue_config);
528 }
529
530 static inline uint32_t adf_modulo(uint32_t data, uint32_t modulo_mask)
531 {
532         return data & modulo_mask;
533 }
534
535 static inline void
536 txq_write_tail(struct qat_qp *qp, struct qat_queue *q) {
537         WRITE_CSR_RING_TAIL(qp->mmap_bar_addr, q->hw_bundle_number,
538                         q->hw_queue_number, q->tail);
539         q->nb_pending_requests = 0;
540         q->csr_tail = q->tail;
541 }
542
543 static inline
544 void rxq_free_desc(struct qat_qp *qp, struct qat_queue *q)
545 {
546         uint32_t old_head, new_head;
547         uint32_t max_head;
548
549         old_head = q->csr_head;
550         new_head = q->head;
551         max_head = qp->nb_descriptors * q->msg_size;
552
553         /* write out free descriptors */
554         void *cur_desc = (uint8_t *)q->base_addr + old_head;
555
556         if (new_head < old_head) {
557                 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, max_head - old_head);
558                 memset(q->base_addr, ADF_RING_EMPTY_SIG_BYTE, new_head);
559         } else {
560                 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, new_head - old_head);
561         }
562         q->nb_processed_responses = 0;
563         q->csr_head = new_head;
564
565         /* write current head to CSR */
566         WRITE_CSR_RING_HEAD(qp->mmap_bar_addr, q->hw_bundle_number,
567                             q->hw_queue_number, new_head);
568 }
569
570 uint16_t
571 qat_enqueue_op_burst(void *qp, void **ops, uint16_t nb_ops)
572 {
573         register struct qat_queue *queue;
574         struct qat_qp *tmp_qp = (struct qat_qp *)qp;
575         register uint32_t nb_ops_sent = 0;
576         register int ret;
577         uint16_t nb_ops_possible = nb_ops;
578         register uint8_t *base_addr;
579         register uint32_t tail;
580         int overflow;
581
582         if (unlikely(nb_ops == 0))
583                 return 0;
584
585         /* read params used a lot in main loop into registers */
586         queue = &(tmp_qp->tx_q);
587         base_addr = (uint8_t *)queue->base_addr;
588         tail = queue->tail;
589
590         /* Find how many can actually fit on the ring */
591         tmp_qp->inflights16 += nb_ops;
592         overflow = tmp_qp->inflights16 - queue->max_inflights;
593         if (overflow > 0) {
594                 tmp_qp->inflights16 -= overflow;
595                 nb_ops_possible = nb_ops - overflow;
596                 if (nb_ops_possible == 0)
597                         return 0;
598         }
599
600         while (nb_ops_sent != nb_ops_possible) {
601                 ret = tmp_qp->build_request(*ops, base_addr + tail,
602                                 tmp_qp->op_cookies[tail / queue->msg_size],
603                                 tmp_qp->qat_dev_gen);
604                 if (ret != 0) {
605                         tmp_qp->stats.enqueue_err_count++;
606                         /*
607                          * This message cannot be enqueued,
608                          * decrease number of ops that wasn't sent
609                          */
610                         tmp_qp->inflights16 -= nb_ops_possible - nb_ops_sent;
611                         if (nb_ops_sent == 0)
612                                 return 0;
613                         goto kick_tail;
614                 }
615
616                 tail = adf_modulo(tail + queue->msg_size, queue->modulo_mask);
617                 ops++;
618                 nb_ops_sent++;
619         }
620 kick_tail:
621         queue->tail = tail;
622         tmp_qp->stats.enqueued_count += nb_ops_sent;
623         queue->nb_pending_requests += nb_ops_sent;
624         if (tmp_qp->inflights16 < QAT_CSR_TAIL_FORCE_WRITE_THRESH ||
625                     queue->nb_pending_requests > QAT_CSR_TAIL_WRITE_THRESH) {
626                 txq_write_tail(tmp_qp, queue);
627         }
628         return nb_ops_sent;
629 }
630
631 uint16_t
632 qat_dequeue_op_burst(void *qp, void **ops, uint16_t nb_ops)
633 {
634         struct qat_queue *rx_queue, *tx_queue;
635         struct qat_qp *tmp_qp = (struct qat_qp *)qp;
636         uint32_t head;
637         uint32_t resp_counter = 0;
638         uint8_t *resp_msg;
639
640         rx_queue = &(tmp_qp->rx_q);
641         tx_queue = &(tmp_qp->tx_q);
642         head = rx_queue->head;
643         resp_msg = (uint8_t *)rx_queue->base_addr + rx_queue->head;
644
645         while (*(uint32_t *)resp_msg != ADF_RING_EMPTY_SIG &&
646                         resp_counter != nb_ops) {
647
648                 if (tmp_qp->service_type == QAT_SERVICE_SYMMETRIC)
649                         qat_sym_process_response(ops, resp_msg);
650                 else if (tmp_qp->service_type == QAT_SERVICE_COMPRESSION)
651                         qat_comp_process_response(ops, resp_msg,
652                                         &tmp_qp->stats.dequeue_err_count);
653                 else if (tmp_qp->service_type == QAT_SERVICE_ASYMMETRIC) {
654 #ifdef BUILD_QAT_ASYM
655                         qat_asym_process_response(ops, resp_msg,
656                                 tmp_qp->op_cookies[head / rx_queue->msg_size]);
657 #endif
658                 }
659
660                 head = adf_modulo(head + rx_queue->msg_size,
661                                   rx_queue->modulo_mask);
662
663                 resp_msg = (uint8_t *)rx_queue->base_addr + head;
664                 ops++;
665                 resp_counter++;
666         }
667         if (resp_counter > 0) {
668                 rx_queue->head = head;
669                 tmp_qp->stats.dequeued_count += resp_counter;
670                 rx_queue->nb_processed_responses += resp_counter;
671                 tmp_qp->inflights16 -= resp_counter;
672
673                 if (rx_queue->nb_processed_responses >
674                                                 QAT_CSR_HEAD_WRITE_THRESH)
675                         rxq_free_desc(tmp_qp, rx_queue);
676         }
677         /* also check if tail needs to be advanced */
678         if (tmp_qp->inflights16 <= QAT_CSR_TAIL_FORCE_WRITE_THRESH &&
679                 tx_queue->tail != tx_queue->csr_tail) {
680                 txq_write_tail(tmp_qp, tx_queue);
681         }
682         return resp_counter;
683 }
684
685 __rte_weak int
686 qat_comp_process_response(void **op __rte_unused, uint8_t *resp __rte_unused,
687                           uint64_t *dequeue_err_count __rte_unused)
688 {
689         return  0;
690 }