4e31735caa0cfad13a126b9965683237d6bfa27d
[dpdk.git] / drivers / crypto / aesni_mb / rte_aesni_mb_pmd.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2017 Intel Corporation
3  */
4
5 #include <intel-ipsec-mb.h>
6
7 #include <rte_common.h>
8 #include <rte_hexdump.h>
9 #include <rte_cryptodev.h>
10 #include <rte_cryptodev_pmd.h>
11 #include <rte_bus_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_cpuflags.h>
14
15 #include "rte_aesni_mb_pmd_private.h"
16
17 #define AES_CCM_DIGEST_MIN_LEN 4
18 #define AES_CCM_DIGEST_MAX_LEN 16
19 #define HMAC_MAX_BLOCK_SIZE 128
20 static uint8_t cryptodev_driver_id;
21
22 typedef void (*hash_one_block_t)(const void *data, void *digest);
23 typedef void (*aes_keyexp_t)(const void *key, void *enc_exp_keys, void *dec_exp_keys);
24
25 /**
26  * Calculate the authentication pre-computes
27  *
28  * @param one_block_hash        Function pointer to calculate digest on ipad/opad
29  * @param ipad                  Inner pad output byte array
30  * @param opad                  Outer pad output byte array
31  * @param hkey                  Authentication key
32  * @param hkey_len              Authentication key length
33  * @param blocksize             Block size of selected hash algo
34  */
35 static void
36 calculate_auth_precomputes(hash_one_block_t one_block_hash,
37                 uint8_t *ipad, uint8_t *opad,
38                 uint8_t *hkey, uint16_t hkey_len,
39                 uint16_t blocksize)
40 {
41         unsigned i, length;
42
43         uint8_t ipad_buf[blocksize] __rte_aligned(16);
44         uint8_t opad_buf[blocksize] __rte_aligned(16);
45
46         /* Setup inner and outer pads */
47         memset(ipad_buf, HMAC_IPAD_VALUE, blocksize);
48         memset(opad_buf, HMAC_OPAD_VALUE, blocksize);
49
50         /* XOR hash key with inner and outer pads */
51         length = hkey_len > blocksize ? blocksize : hkey_len;
52
53         for (i = 0; i < length; i++) {
54                 ipad_buf[i] ^= hkey[i];
55                 opad_buf[i] ^= hkey[i];
56         }
57
58         /* Compute partial hashes */
59         (*one_block_hash)(ipad_buf, ipad);
60         (*one_block_hash)(opad_buf, opad);
61
62         /* Clean up stack */
63         memset(ipad_buf, 0, blocksize);
64         memset(opad_buf, 0, blocksize);
65 }
66
67 /** Get xform chain order */
68 static enum aesni_mb_operation
69 aesni_mb_get_chain_order(const struct rte_crypto_sym_xform *xform)
70 {
71         if (xform == NULL)
72                 return AESNI_MB_OP_NOT_SUPPORTED;
73
74         if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
75                 if (xform->next == NULL)
76                         return AESNI_MB_OP_CIPHER_ONLY;
77                 if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
78                         return AESNI_MB_OP_CIPHER_HASH;
79         }
80
81         if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
82                 if (xform->next == NULL)
83                         return AESNI_MB_OP_HASH_ONLY;
84                 if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
85                         return AESNI_MB_OP_HASH_CIPHER;
86         }
87
88         if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
89                 if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM ||
90                                 xform->aead.algo == RTE_CRYPTO_AEAD_AES_GCM) {
91                         if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
92                                 return AESNI_MB_OP_AEAD_CIPHER_HASH;
93                         else
94                                 return AESNI_MB_OP_AEAD_HASH_CIPHER;
95                 }
96         }
97
98         return AESNI_MB_OP_NOT_SUPPORTED;
99 }
100
101 /** Set session authentication parameters */
102 static int
103 aesni_mb_set_session_auth_parameters(const MB_MGR *mb_mgr,
104                 struct aesni_mb_session *sess,
105                 const struct rte_crypto_sym_xform *xform)
106 {
107         hash_one_block_t hash_oneblock_fn;
108         unsigned int key_larger_block_size = 0;
109         uint8_t hashed_key[HMAC_MAX_BLOCK_SIZE] = { 0 };
110         uint32_t auth_precompute = 1;
111
112         if (xform == NULL) {
113                 sess->auth.algo = NULL_HASH;
114                 return 0;
115         }
116
117         if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) {
118                 AESNI_MB_LOG(ERR, "Crypto xform struct not of type auth");
119                 return -1;
120         }
121
122         /* Set the request digest size */
123         sess->auth.req_digest_len = xform->auth.digest_length;
124
125         /* Select auth generate/verify */
126         sess->auth.operation = xform->auth.op;
127
128         /* Set Authentication Parameters */
129         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) {
130                 sess->auth.algo = AES_XCBC;
131
132                 uint16_t xcbc_mac_digest_len =
133                         get_truncated_digest_byte_length(AES_XCBC);
134                 if (sess->auth.req_digest_len != xcbc_mac_digest_len) {
135                         AESNI_MB_LOG(ERR, "Invalid digest size\n");
136                         return -EINVAL;
137                 }
138                 sess->auth.gen_digest_len = sess->auth.req_digest_len;
139
140                 IMB_AES_XCBC_KEYEXP(mb_mgr, xform->auth.key.data,
141                                 sess->auth.xcbc.k1_expanded,
142                                 sess->auth.xcbc.k2, sess->auth.xcbc.k3);
143                 return 0;
144         }
145
146         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) {
147                 uint32_t dust[4*15];
148
149                 sess->auth.algo = AES_CMAC;
150
151                 uint16_t cmac_digest_len = get_digest_byte_length(AES_CMAC);
152
153                 if (sess->auth.req_digest_len > cmac_digest_len) {
154                         AESNI_MB_LOG(ERR, "Invalid digest size\n");
155                         return -EINVAL;
156                 }
157                 /*
158                  * Multi-buffer lib supports digest sizes from 4 to 16 bytes
159                  * in version 0.50 and sizes of 12 and 16 bytes,
160                  * in version 0.49.
161                  * If size requested is different, generate the full digest
162                  * (16 bytes) in a temporary location and then memcpy
163                  * the requested number of bytes.
164                  */
165                 if (sess->auth.req_digest_len < 4)
166                         sess->auth.gen_digest_len = cmac_digest_len;
167                 else
168                         sess->auth.gen_digest_len = sess->auth.req_digest_len;
169
170                 IMB_AES_KEYEXP_128(mb_mgr, xform->auth.key.data,
171                                 sess->auth.cmac.expkey, dust);
172                 IMB_AES_CMAC_SUBKEY_GEN_128(mb_mgr, sess->auth.cmac.expkey,
173                                 sess->auth.cmac.skey1, sess->auth.cmac.skey2);
174                 return 0;
175         }
176
177         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
178                 if (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) {
179                         sess->cipher.direction = ENCRYPT;
180                         sess->chain_order = CIPHER_HASH;
181                 } else
182                         sess->cipher.direction = DECRYPT;
183
184                 sess->auth.algo = AES_GMAC;
185                 /*
186                  * Multi-buffer lib supports 8, 12 and 16 bytes of digest.
187                  * If size requested is different, generate the full digest
188                  * (16 bytes) in a temporary location and then memcpy
189                  * the requested number of bytes.
190                  */
191                 if (sess->auth.req_digest_len != 16 &&
192                                 sess->auth.req_digest_len != 12 &&
193                                 sess->auth.req_digest_len != 8) {
194                         sess->auth.gen_digest_len = 16;
195                 } else {
196                         sess->auth.gen_digest_len = sess->auth.req_digest_len;
197                 }
198                 sess->iv.length = xform->auth.iv.length;
199                 sess->iv.offset = xform->auth.iv.offset;
200
201                 switch (xform->auth.key.length) {
202                 case AES_128_BYTES:
203                         IMB_AES128_GCM_PRE(mb_mgr, xform->auth.key.data,
204                                 &sess->cipher.gcm_key);
205                         sess->cipher.key_length_in_bytes = AES_128_BYTES;
206                         break;
207                 case AES_192_BYTES:
208                         IMB_AES192_GCM_PRE(mb_mgr, xform->auth.key.data,
209                                 &sess->cipher.gcm_key);
210                         sess->cipher.key_length_in_bytes = AES_192_BYTES;
211                         break;
212                 case AES_256_BYTES:
213                         IMB_AES256_GCM_PRE(mb_mgr, xform->auth.key.data,
214                                 &sess->cipher.gcm_key);
215                         sess->cipher.key_length_in_bytes = AES_256_BYTES;
216                         break;
217                 default:
218                         RTE_LOG(ERR, PMD, "failed to parse test type\n");
219                         return -EINVAL;
220                 }
221
222                 return 0;
223         }
224
225         switch (xform->auth.algo) {
226         case RTE_CRYPTO_AUTH_MD5_HMAC:
227                 sess->auth.algo = MD5;
228                 hash_oneblock_fn = mb_mgr->md5_one_block;
229                 break;
230         case RTE_CRYPTO_AUTH_SHA1_HMAC:
231                 sess->auth.algo = SHA1;
232                 hash_oneblock_fn = mb_mgr->sha1_one_block;
233                 if (xform->auth.key.length > get_auth_algo_blocksize(SHA1)) {
234                         IMB_SHA1(mb_mgr,
235                                 xform->auth.key.data,
236                                 xform->auth.key.length,
237                                 hashed_key);
238                         key_larger_block_size = 1;
239                 }
240                 break;
241         case RTE_CRYPTO_AUTH_SHA1:
242                 sess->auth.algo = PLAIN_SHA1;
243                 auth_precompute = 0;
244                 break;
245         case RTE_CRYPTO_AUTH_SHA224_HMAC:
246                 sess->auth.algo = SHA_224;
247                 hash_oneblock_fn = mb_mgr->sha224_one_block;
248                 if (xform->auth.key.length > get_auth_algo_blocksize(SHA_224)) {
249                         IMB_SHA224(mb_mgr,
250                                 xform->auth.key.data,
251                                 xform->auth.key.length,
252                                 hashed_key);
253                         key_larger_block_size = 1;
254                 }
255                 break;
256         case RTE_CRYPTO_AUTH_SHA224:
257                 sess->auth.algo = PLAIN_SHA_224;
258                 auth_precompute = 0;
259                 break;
260         case RTE_CRYPTO_AUTH_SHA256_HMAC:
261                 sess->auth.algo = SHA_256;
262                 hash_oneblock_fn = mb_mgr->sha256_one_block;
263                 if (xform->auth.key.length > get_auth_algo_blocksize(SHA_256)) {
264                         IMB_SHA256(mb_mgr,
265                                 xform->auth.key.data,
266                                 xform->auth.key.length,
267                                 hashed_key);
268                         key_larger_block_size = 1;
269                 }
270                 break;
271         case RTE_CRYPTO_AUTH_SHA256:
272                 sess->auth.algo = PLAIN_SHA_256;
273                 auth_precompute = 0;
274                 break;
275         case RTE_CRYPTO_AUTH_SHA384_HMAC:
276                 sess->auth.algo = SHA_384;
277                 hash_oneblock_fn = mb_mgr->sha384_one_block;
278                 if (xform->auth.key.length > get_auth_algo_blocksize(SHA_384)) {
279                         IMB_SHA384(mb_mgr,
280                                 xform->auth.key.data,
281                                 xform->auth.key.length,
282                                 hashed_key);
283                         key_larger_block_size = 1;
284                 }
285                 break;
286         case RTE_CRYPTO_AUTH_SHA384:
287                 sess->auth.algo = PLAIN_SHA_384;
288                 auth_precompute = 0;
289                 break;
290         case RTE_CRYPTO_AUTH_SHA512_HMAC:
291                 sess->auth.algo = SHA_512;
292                 hash_oneblock_fn = mb_mgr->sha512_one_block;
293                 if (xform->auth.key.length > get_auth_algo_blocksize(SHA_512)) {
294                         IMB_SHA512(mb_mgr,
295                                 xform->auth.key.data,
296                                 xform->auth.key.length,
297                                 hashed_key);
298                         key_larger_block_size = 1;
299                 }
300                 break;
301         case RTE_CRYPTO_AUTH_SHA512:
302                 sess->auth.algo = PLAIN_SHA_512;
303                 auth_precompute = 0;
304                 break;
305         default:
306                 AESNI_MB_LOG(ERR, "Unsupported authentication algorithm selection");
307                 return -ENOTSUP;
308         }
309         uint16_t trunc_digest_size =
310                         get_truncated_digest_byte_length(sess->auth.algo);
311         uint16_t full_digest_size =
312                         get_digest_byte_length(sess->auth.algo);
313
314         if (sess->auth.req_digest_len > full_digest_size ||
315                         sess->auth.req_digest_len == 0) {
316                 AESNI_MB_LOG(ERR, "Invalid digest size\n");
317                 return -EINVAL;
318         }
319
320         if (sess->auth.req_digest_len != trunc_digest_size &&
321                         sess->auth.req_digest_len != full_digest_size)
322                 sess->auth.gen_digest_len = full_digest_size;
323         else
324                 sess->auth.gen_digest_len = sess->auth.req_digest_len;
325
326         /* Plain SHA does not require precompute key */
327         if (auth_precompute == 0)
328                 return 0;
329
330         /* Calculate Authentication precomputes */
331         if (key_larger_block_size) {
332                 calculate_auth_precomputes(hash_oneblock_fn,
333                         sess->auth.pads.inner, sess->auth.pads.outer,
334                         hashed_key,
335                         xform->auth.key.length,
336                         get_auth_algo_blocksize(sess->auth.algo));
337         } else {
338                 calculate_auth_precomputes(hash_oneblock_fn,
339                         sess->auth.pads.inner, sess->auth.pads.outer,
340                         xform->auth.key.data,
341                         xform->auth.key.length,
342                         get_auth_algo_blocksize(sess->auth.algo));
343         }
344
345         return 0;
346 }
347
348 /** Set session cipher parameters */
349 static int
350 aesni_mb_set_session_cipher_parameters(const MB_MGR *mb_mgr,
351                 struct aesni_mb_session *sess,
352                 const struct rte_crypto_sym_xform *xform)
353 {
354         uint8_t is_aes = 0;
355         uint8_t is_3DES = 0;
356
357         if (xform == NULL) {
358                 sess->cipher.mode = NULL_CIPHER;
359                 return 0;
360         }
361
362         if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) {
363                 AESNI_MB_LOG(ERR, "Crypto xform struct not of type cipher");
364                 return -EINVAL;
365         }
366
367         /* Select cipher direction */
368         switch (xform->cipher.op) {
369         case RTE_CRYPTO_CIPHER_OP_ENCRYPT:
370                 sess->cipher.direction = ENCRYPT;
371                 break;
372         case RTE_CRYPTO_CIPHER_OP_DECRYPT:
373                 sess->cipher.direction = DECRYPT;
374                 break;
375         default:
376                 AESNI_MB_LOG(ERR, "Invalid cipher operation parameter");
377                 return -EINVAL;
378         }
379
380         /* Select cipher mode */
381         switch (xform->cipher.algo) {
382         case RTE_CRYPTO_CIPHER_AES_CBC:
383                 sess->cipher.mode = CBC;
384                 is_aes = 1;
385                 break;
386         case RTE_CRYPTO_CIPHER_AES_CTR:
387                 sess->cipher.mode = CNTR;
388                 is_aes = 1;
389                 break;
390         case RTE_CRYPTO_CIPHER_AES_DOCSISBPI:
391                 sess->cipher.mode = DOCSIS_SEC_BPI;
392                 is_aes = 1;
393                 break;
394         case RTE_CRYPTO_CIPHER_DES_CBC:
395                 sess->cipher.mode = DES;
396                 break;
397         case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
398                 sess->cipher.mode = DOCSIS_DES;
399                 break;
400         case RTE_CRYPTO_CIPHER_3DES_CBC:
401                 sess->cipher.mode = DES3;
402                 is_3DES = 1;
403                 break;
404         default:
405                 AESNI_MB_LOG(ERR, "Unsupported cipher mode parameter");
406                 return -ENOTSUP;
407         }
408
409         /* Set IV parameters */
410         sess->iv.offset = xform->cipher.iv.offset;
411         sess->iv.length = xform->cipher.iv.length;
412
413         /* Check key length and choose key expansion function for AES */
414         if (is_aes) {
415                 switch (xform->cipher.key.length) {
416                 case AES_128_BYTES:
417                         sess->cipher.key_length_in_bytes = AES_128_BYTES;
418                         IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data,
419                                         sess->cipher.expanded_aes_keys.encode,
420                                         sess->cipher.expanded_aes_keys.decode);
421                         break;
422                 case AES_192_BYTES:
423                         sess->cipher.key_length_in_bytes = AES_192_BYTES;
424                         IMB_AES_KEYEXP_192(mb_mgr, xform->cipher.key.data,
425                                         sess->cipher.expanded_aes_keys.encode,
426                                         sess->cipher.expanded_aes_keys.decode);
427                         break;
428                 case AES_256_BYTES:
429                         sess->cipher.key_length_in_bytes = AES_256_BYTES;
430                         IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data,
431                                         sess->cipher.expanded_aes_keys.encode,
432                                         sess->cipher.expanded_aes_keys.decode);
433                         break;
434                 default:
435                         AESNI_MB_LOG(ERR, "Invalid cipher key length");
436                         return -EINVAL;
437                 }
438         } else if (is_3DES) {
439                 uint64_t *keys[3] = {sess->cipher.exp_3des_keys.key[0],
440                                 sess->cipher.exp_3des_keys.key[1],
441                                 sess->cipher.exp_3des_keys.key[2]};
442
443                 switch (xform->cipher.key.length) {
444                 case  24:
445                         IMB_DES_KEYSCHED(mb_mgr, keys[0],
446                                         xform->cipher.key.data);
447                         IMB_DES_KEYSCHED(mb_mgr, keys[1],
448                                         xform->cipher.key.data + 8);
449                         IMB_DES_KEYSCHED(mb_mgr, keys[2],
450                                         xform->cipher.key.data + 16);
451
452                         /* Initialize keys - 24 bytes: [K1-K2-K3] */
453                         sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
454                         sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
455                         sess->cipher.exp_3des_keys.ks_ptr[2] = keys[2];
456                         break;
457                 case 16:
458                         IMB_DES_KEYSCHED(mb_mgr, keys[0],
459                                         xform->cipher.key.data);
460                         IMB_DES_KEYSCHED(mb_mgr, keys[1],
461                                         xform->cipher.key.data + 8);
462                         /* Initialize keys - 16 bytes: [K1=K1,K2=K2,K3=K1] */
463                         sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
464                         sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
465                         sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
466                         break;
467                 case 8:
468                         IMB_DES_KEYSCHED(mb_mgr, keys[0],
469                                         xform->cipher.key.data);
470
471                         /* Initialize keys - 8 bytes: [K1 = K2 = K3] */
472                         sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
473                         sess->cipher.exp_3des_keys.ks_ptr[1] = keys[0];
474                         sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
475                         break;
476                 default:
477                         AESNI_MB_LOG(ERR, "Invalid cipher key length");
478                         return -EINVAL;
479                 }
480
481                 sess->cipher.key_length_in_bytes = 24;
482         } else {
483                 if (xform->cipher.key.length != 8) {
484                         AESNI_MB_LOG(ERR, "Invalid cipher key length");
485                         return -EINVAL;
486                 }
487                 sess->cipher.key_length_in_bytes = 8;
488
489                 IMB_DES_KEYSCHED(mb_mgr,
490                         (uint64_t *)sess->cipher.expanded_aes_keys.encode,
491                                 xform->cipher.key.data);
492                 IMB_DES_KEYSCHED(mb_mgr,
493                         (uint64_t *)sess->cipher.expanded_aes_keys.decode,
494                                 xform->cipher.key.data);
495         }
496
497         return 0;
498 }
499
500 static int
501 aesni_mb_set_session_aead_parameters(const MB_MGR *mb_mgr,
502                 struct aesni_mb_session *sess,
503                 const struct rte_crypto_sym_xform *xform)
504 {
505         switch (xform->aead.op) {
506         case RTE_CRYPTO_AEAD_OP_ENCRYPT:
507                 sess->cipher.direction = ENCRYPT;
508                 sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
509                 break;
510         case RTE_CRYPTO_AEAD_OP_DECRYPT:
511                 sess->cipher.direction = DECRYPT;
512                 sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
513                 break;
514         default:
515                 AESNI_MB_LOG(ERR, "Invalid aead operation parameter");
516                 return -EINVAL;
517         }
518
519         switch (xform->aead.algo) {
520         case RTE_CRYPTO_AEAD_AES_CCM:
521                 sess->cipher.mode = CCM;
522                 sess->auth.algo = AES_CCM;
523
524                 /* Check key length and choose key expansion function for AES */
525                 switch (xform->aead.key.length) {
526                 case AES_128_BYTES:
527                         sess->cipher.key_length_in_bytes = AES_128_BYTES;
528                         IMB_AES_KEYEXP_128(mb_mgr, xform->aead.key.data,
529                                         sess->cipher.expanded_aes_keys.encode,
530                                         sess->cipher.expanded_aes_keys.decode);
531                         break;
532                 default:
533                         AESNI_MB_LOG(ERR, "Invalid cipher key length");
534                         return -EINVAL;
535                 }
536
537                 break;
538
539         case RTE_CRYPTO_AEAD_AES_GCM:
540                 sess->cipher.mode = GCM;
541                 sess->auth.algo = AES_GMAC;
542
543                 switch (xform->aead.key.length) {
544                 case AES_128_BYTES:
545                         sess->cipher.key_length_in_bytes = AES_128_BYTES;
546                         IMB_AES128_GCM_PRE(mb_mgr, xform->aead.key.data,
547                                 &sess->cipher.gcm_key);
548                         break;
549                 case AES_192_BYTES:
550                         sess->cipher.key_length_in_bytes = AES_192_BYTES;
551                         IMB_AES192_GCM_PRE(mb_mgr, xform->aead.key.data,
552                                 &sess->cipher.gcm_key);
553                         break;
554                 case AES_256_BYTES:
555                         sess->cipher.key_length_in_bytes = AES_256_BYTES;
556                         IMB_AES256_GCM_PRE(mb_mgr, xform->aead.key.data,
557                                 &sess->cipher.gcm_key);
558                         break;
559                 default:
560                         AESNI_MB_LOG(ERR, "Invalid cipher key length");
561                         return -EINVAL;
562                 }
563
564                 break;
565
566         default:
567                 AESNI_MB_LOG(ERR, "Unsupported aead mode parameter");
568                 return -ENOTSUP;
569         }
570
571         /* Set IV parameters */
572         sess->iv.offset = xform->aead.iv.offset;
573         sess->iv.length = xform->aead.iv.length;
574
575         sess->auth.req_digest_len = xform->aead.digest_length;
576         /* CCM digests must be between 4 and 16 and an even number */
577         if (sess->auth.req_digest_len < AES_CCM_DIGEST_MIN_LEN ||
578                         sess->auth.req_digest_len > AES_CCM_DIGEST_MAX_LEN ||
579                         (sess->auth.req_digest_len & 1) == 1) {
580                 AESNI_MB_LOG(ERR, "Invalid digest size\n");
581                 return -EINVAL;
582         }
583         sess->auth.gen_digest_len = sess->auth.req_digest_len;
584
585         return 0;
586 }
587
588 /** Parse crypto xform chain and set private session parameters */
589 int
590 aesni_mb_set_session_parameters(const MB_MGR *mb_mgr,
591                 struct aesni_mb_session *sess,
592                 const struct rte_crypto_sym_xform *xform)
593 {
594         const struct rte_crypto_sym_xform *auth_xform = NULL;
595         const struct rte_crypto_sym_xform *cipher_xform = NULL;
596         const struct rte_crypto_sym_xform *aead_xform = NULL;
597         int ret;
598
599         /* Select Crypto operation - hash then cipher / cipher then hash */
600         switch (aesni_mb_get_chain_order(xform)) {
601         case AESNI_MB_OP_HASH_CIPHER:
602                 sess->chain_order = HASH_CIPHER;
603                 auth_xform = xform;
604                 cipher_xform = xform->next;
605                 break;
606         case AESNI_MB_OP_CIPHER_HASH:
607                 sess->chain_order = CIPHER_HASH;
608                 auth_xform = xform->next;
609                 cipher_xform = xform;
610                 break;
611         case AESNI_MB_OP_HASH_ONLY:
612                 sess->chain_order = HASH_CIPHER;
613                 auth_xform = xform;
614                 cipher_xform = NULL;
615                 break;
616         case AESNI_MB_OP_CIPHER_ONLY:
617                 /*
618                  * Multi buffer library operates only at two modes,
619                  * CIPHER_HASH and HASH_CIPHER. When doing ciphering only,
620                  * chain order depends on cipher operation: encryption is always
621                  * the first operation and decryption the last one.
622                  */
623                 if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
624                         sess->chain_order = CIPHER_HASH;
625                 else
626                         sess->chain_order = HASH_CIPHER;
627                 auth_xform = NULL;
628                 cipher_xform = xform;
629                 break;
630         case AESNI_MB_OP_AEAD_CIPHER_HASH:
631                 sess->chain_order = CIPHER_HASH;
632                 sess->aead.aad_len = xform->aead.aad_length;
633                 aead_xform = xform;
634                 break;
635         case AESNI_MB_OP_AEAD_HASH_CIPHER:
636                 sess->chain_order = HASH_CIPHER;
637                 sess->aead.aad_len = xform->aead.aad_length;
638                 aead_xform = xform;
639                 break;
640         case AESNI_MB_OP_NOT_SUPPORTED:
641         default:
642                 AESNI_MB_LOG(ERR, "Unsupported operation chain order parameter");
643                 return -ENOTSUP;
644         }
645
646         /* Default IV length = 0 */
647         sess->iv.length = 0;
648
649         ret = aesni_mb_set_session_auth_parameters(mb_mgr, sess, auth_xform);
650         if (ret != 0) {
651                 AESNI_MB_LOG(ERR, "Invalid/unsupported authentication parameters");
652                 return ret;
653         }
654
655         ret = aesni_mb_set_session_cipher_parameters(mb_mgr, sess,
656                         cipher_xform);
657         if (ret != 0) {
658                 AESNI_MB_LOG(ERR, "Invalid/unsupported cipher parameters");
659                 return ret;
660         }
661
662         if (aead_xform) {
663                 ret = aesni_mb_set_session_aead_parameters(mb_mgr, sess,
664                                 aead_xform);
665                 if (ret != 0) {
666                         AESNI_MB_LOG(ERR, "Invalid/unsupported aead parameters");
667                         return ret;
668                 }
669         }
670
671         return 0;
672 }
673
674 /**
675  * burst enqueue, place crypto operations on ingress queue for processing.
676  *
677  * @param __qp         Queue Pair to process
678  * @param ops          Crypto operations for processing
679  * @param nb_ops       Number of crypto operations for processing
680  *
681  * @return
682  * - Number of crypto operations enqueued
683  */
684 static uint16_t
685 aesni_mb_pmd_enqueue_burst(void *__qp, struct rte_crypto_op **ops,
686                 uint16_t nb_ops)
687 {
688         struct aesni_mb_qp *qp = __qp;
689
690         unsigned int nb_enqueued;
691
692         nb_enqueued = rte_ring_enqueue_burst(qp->ingress_queue,
693                         (void **)ops, nb_ops, NULL);
694
695         qp->stats.enqueued_count += nb_enqueued;
696
697         return nb_enqueued;
698 }
699
700 /** Get multi buffer session */
701 static inline struct aesni_mb_session *
702 get_session(struct aesni_mb_qp *qp, struct rte_crypto_op *op)
703 {
704         struct aesni_mb_session *sess = NULL;
705
706         if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
707                 if (likely(op->sym->session != NULL))
708                         sess = (struct aesni_mb_session *)
709                                         get_sym_session_private_data(
710                                         op->sym->session,
711                                         cryptodev_driver_id);
712         } else {
713                 void *_sess = NULL;
714                 void *_sess_private_data = NULL;
715
716                 if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
717                         return NULL;
718
719                 if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data))
720                         return NULL;
721
722                 sess = (struct aesni_mb_session *)_sess_private_data;
723
724                 if (unlikely(aesni_mb_set_session_parameters(qp->mb_mgr,
725                                 sess, op->sym->xform) != 0)) {
726                         rte_mempool_put(qp->sess_mp, _sess);
727                         rte_mempool_put(qp->sess_mp, _sess_private_data);
728                         sess = NULL;
729                 }
730                 op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
731                 set_sym_session_private_data(op->sym->session,
732                                 cryptodev_driver_id, _sess_private_data);
733         }
734
735         if (unlikely(sess == NULL))
736                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
737
738         return sess;
739 }
740
741 /**
742  * Process a crypto operation and complete a JOB_AES_HMAC job structure for
743  * submission to the multi buffer library for processing.
744  *
745  * @param       qp      queue pair
746  * @param       job     JOB_AES_HMAC structure to fill
747  * @param       m       mbuf to process
748  *
749  * @return
750  * - Completed JOB_AES_HMAC structure pointer on success
751  * - NULL pointer if completion of JOB_AES_HMAC structure isn't possible
752  */
753 static inline int
754 set_mb_job_params(JOB_AES_HMAC *job, struct aesni_mb_qp *qp,
755                 struct rte_crypto_op *op, uint8_t *digest_idx)
756 {
757         struct rte_mbuf *m_src = op->sym->m_src, *m_dst;
758         struct aesni_mb_session *session;
759         uint16_t m_offset = 0;
760
761         session = get_session(qp, op);
762         if (session == NULL) {
763                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
764                 return -1;
765         }
766
767         /* Set crypto operation */
768         job->chain_order = session->chain_order;
769
770         /* Set cipher parameters */
771         job->cipher_direction = session->cipher.direction;
772         job->cipher_mode = session->cipher.mode;
773
774         job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes;
775
776         /* Set authentication parameters */
777         job->hash_alg = session->auth.algo;
778
779         switch (job->hash_alg) {
780         case AES_XCBC:
781                 job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded;
782                 job->u.XCBC._k2 = session->auth.xcbc.k2;
783                 job->u.XCBC._k3 = session->auth.xcbc.k3;
784
785                 job->aes_enc_key_expanded =
786                                 session->cipher.expanded_aes_keys.encode;
787                 job->aes_dec_key_expanded =
788                                 session->cipher.expanded_aes_keys.decode;
789                 break;
790
791         case AES_CCM:
792                 job->u.CCM.aad = op->sym->aead.aad.data + 18;
793                 job->u.CCM.aad_len_in_bytes = session->aead.aad_len;
794                 job->aes_enc_key_expanded =
795                                 session->cipher.expanded_aes_keys.encode;
796                 job->aes_dec_key_expanded =
797                                 session->cipher.expanded_aes_keys.decode;
798                 break;
799
800         case AES_CMAC:
801                 job->u.CMAC._key_expanded = session->auth.cmac.expkey;
802                 job->u.CMAC._skey1 = session->auth.cmac.skey1;
803                 job->u.CMAC._skey2 = session->auth.cmac.skey2;
804                 job->aes_enc_key_expanded =
805                                 session->cipher.expanded_aes_keys.encode;
806                 job->aes_dec_key_expanded =
807                                 session->cipher.expanded_aes_keys.decode;
808                 break;
809
810         case AES_GMAC:
811                 if (session->cipher.mode == GCM) {
812                         job->u.GCM.aad = op->sym->aead.aad.data;
813                         job->u.GCM.aad_len_in_bytes = session->aead.aad_len;
814                 } else {
815                         /* For GMAC */
816                         job->u.GCM.aad = rte_pktmbuf_mtod_offset(m_src,
817                                         uint8_t *, op->sym->auth.data.offset);
818                         job->u.GCM.aad_len_in_bytes = op->sym->auth.data.length;
819                         job->cipher_mode = GCM;
820                 }
821                 job->aes_enc_key_expanded = &session->cipher.gcm_key;
822                 job->aes_dec_key_expanded = &session->cipher.gcm_key;
823                 break;
824
825         default:
826                 job->u.HMAC._hashed_auth_key_xor_ipad = session->auth.pads.inner;
827                 job->u.HMAC._hashed_auth_key_xor_opad = session->auth.pads.outer;
828
829                 if (job->cipher_mode == DES3) {
830                         job->aes_enc_key_expanded =
831                                 session->cipher.exp_3des_keys.ks_ptr;
832                         job->aes_dec_key_expanded =
833                                 session->cipher.exp_3des_keys.ks_ptr;
834                 } else {
835                         job->aes_enc_key_expanded =
836                                 session->cipher.expanded_aes_keys.encode;
837                         job->aes_dec_key_expanded =
838                                 session->cipher.expanded_aes_keys.decode;
839                 }
840         }
841
842         /* Mutable crypto operation parameters */
843         if (op->sym->m_dst) {
844                 m_src = m_dst = op->sym->m_dst;
845
846                 /* append space for output data to mbuf */
847                 char *odata = rte_pktmbuf_append(m_dst,
848                                 rte_pktmbuf_data_len(op->sym->m_src));
849                 if (odata == NULL) {
850                         AESNI_MB_LOG(ERR, "failed to allocate space in destination "
851                                         "mbuf for source data");
852                         op->status = RTE_CRYPTO_OP_STATUS_ERROR;
853                         return -1;
854                 }
855
856                 memcpy(odata, rte_pktmbuf_mtod(op->sym->m_src, void*),
857                                 rte_pktmbuf_data_len(op->sym->m_src));
858         } else {
859                 m_dst = m_src;
860                 if (job->hash_alg == AES_CCM || (job->hash_alg == AES_GMAC &&
861                                 session->cipher.mode == GCM))
862                         m_offset = op->sym->aead.data.offset;
863                 else
864                         m_offset = op->sym->cipher.data.offset;
865         }
866
867         /* Set digest output location */
868         if (job->hash_alg != NULL_HASH &&
869                         session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
870                 job->auth_tag_output = qp->temp_digests[*digest_idx];
871                 *digest_idx = (*digest_idx + 1) % MAX_JOBS;
872         } else {
873                 if (job->hash_alg == AES_CCM || (job->hash_alg == AES_GMAC &&
874                                 session->cipher.mode == GCM))
875                         job->auth_tag_output = op->sym->aead.digest.data;
876                 else
877                         job->auth_tag_output = op->sym->auth.digest.data;
878
879                 if (session->auth.req_digest_len != session->auth.gen_digest_len) {
880                         job->auth_tag_output = qp->temp_digests[*digest_idx];
881                         *digest_idx = (*digest_idx + 1) % MAX_JOBS;
882                 }
883         }
884         /*
885          * Multi-buffer library current only support returning a truncated
886          * digest length as specified in the relevant IPsec RFCs
887          */
888
889         /* Set digest length */
890         job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len;
891
892         /* Set IV parameters */
893         job->iv_len_in_bytes = session->iv.length;
894
895         /* Data  Parameter */
896         job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
897         job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset);
898
899         switch (job->hash_alg) {
900         case AES_CCM:
901                 job->cipher_start_src_offset_in_bytes =
902                                 op->sym->aead.data.offset;
903                 job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
904                 job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset;
905                 job->msg_len_to_hash_in_bytes = op->sym->aead.data.length;
906
907                 job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
908                         session->iv.offset + 1);
909                 break;
910
911         case AES_GMAC:
912                 if (session->cipher.mode == GCM) {
913                         job->cipher_start_src_offset_in_bytes =
914                                         op->sym->aead.data.offset;
915                         job->hash_start_src_offset_in_bytes =
916                                         op->sym->aead.data.offset;
917                         job->msg_len_to_cipher_in_bytes =
918                                         op->sym->aead.data.length;
919                         job->msg_len_to_hash_in_bytes =
920                                         op->sym->aead.data.length;
921                 } else {
922                         job->cipher_start_src_offset_in_bytes =
923                                         op->sym->auth.data.offset;
924                         job->hash_start_src_offset_in_bytes =
925                                         op->sym->auth.data.offset;
926                         job->msg_len_to_cipher_in_bytes = 0;
927                         job->msg_len_to_hash_in_bytes = 0;
928                 }
929
930                 job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
931                                 session->iv.offset);
932                 break;
933
934         default:
935                 job->cipher_start_src_offset_in_bytes =
936                                 op->sym->cipher.data.offset;
937                 job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length;
938
939                 job->hash_start_src_offset_in_bytes = op->sym->auth.data.offset;
940                 job->msg_len_to_hash_in_bytes = op->sym->auth.data.length;
941
942                 job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
943                         session->iv.offset);
944         }
945
946         /* Set user data to be crypto operation data struct */
947         job->user_data = op;
948
949         return 0;
950 }
951
952 static inline void
953 verify_digest(JOB_AES_HMAC *job, void *digest, uint16_t len, uint8_t *status)
954 {
955         /* Verify digest if required */
956         if (memcmp(job->auth_tag_output, digest, len) != 0)
957                 *status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
958 }
959
960 static inline void
961 generate_digest(JOB_AES_HMAC *job, struct rte_crypto_op *op,
962                 struct aesni_mb_session *sess)
963 {
964         /* No extra copy neeed */
965         if (likely(sess->auth.req_digest_len == sess->auth.gen_digest_len))
966                 return;
967
968         /*
969          * This can only happen for HMAC, so only digest
970          * for authentication algos is required
971          */
972         memcpy(op->sym->auth.digest.data, job->auth_tag_output,
973                         sess->auth.req_digest_len);
974 }
975
976 /**
977  * Process a completed job and return rte_mbuf which job processed
978  *
979  * @param qp            Queue Pair to process
980  * @param job   JOB_AES_HMAC job to process
981  *
982  * @return
983  * - Returns processed crypto operation.
984  * - Returns NULL on invalid job
985  */
986 static inline struct rte_crypto_op *
987 post_process_mb_job(struct aesni_mb_qp *qp, JOB_AES_HMAC *job)
988 {
989         struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data;
990         struct aesni_mb_session *sess = get_sym_session_private_data(
991                                                         op->sym->session,
992                                                         cryptodev_driver_id);
993
994         if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) {
995                 switch (job->status) {
996                 case STS_COMPLETED:
997                         op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
998
999                         if (job->hash_alg == NULL_HASH)
1000                                 break;
1001
1002                         if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1003                                 if (job->hash_alg == AES_CCM ||
1004                                         (job->hash_alg == AES_GMAC &&
1005                                                 sess->cipher.mode == GCM))
1006                                         verify_digest(job,
1007                                                 op->sym->aead.digest.data,
1008                                                 sess->auth.req_digest_len,
1009                                                 &op->status);
1010                                 else
1011                                         verify_digest(job,
1012                                                 op->sym->auth.digest.data,
1013                                                 sess->auth.req_digest_len,
1014                                                 &op->status);
1015                         } else
1016                                 generate_digest(job, op, sess);
1017                         break;
1018                 default:
1019                         op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1020                 }
1021         }
1022
1023         /* Free session if a session-less crypto op */
1024         if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
1025                 memset(sess, 0, sizeof(struct aesni_mb_session));
1026                 memset(op->sym->session, 0,
1027                                 rte_cryptodev_sym_get_header_session_size());
1028                 rte_mempool_put(qp->sess_mp, sess);
1029                 rte_mempool_put(qp->sess_mp, op->sym->session);
1030                 op->sym->session = NULL;
1031         }
1032
1033         return op;
1034 }
1035
1036 /**
1037  * Process a completed JOB_AES_HMAC job and keep processing jobs until
1038  * get_completed_job return NULL
1039  *
1040  * @param qp            Queue Pair to process
1041  * @param job           JOB_AES_HMAC job
1042  *
1043  * @return
1044  * - Number of processed jobs
1045  */
1046 static unsigned
1047 handle_completed_jobs(struct aesni_mb_qp *qp, JOB_AES_HMAC *job,
1048                 struct rte_crypto_op **ops, uint16_t nb_ops)
1049 {
1050         struct rte_crypto_op *op = NULL;
1051         unsigned processed_jobs = 0;
1052
1053         while (job != NULL) {
1054                 op = post_process_mb_job(qp, job);
1055
1056                 if (op) {
1057                         ops[processed_jobs++] = op;
1058                         qp->stats.dequeued_count++;
1059                 } else {
1060                         qp->stats.dequeue_err_count++;
1061                         break;
1062                 }
1063                 if (processed_jobs == nb_ops)
1064                         break;
1065
1066                 job = IMB_GET_COMPLETED_JOB(qp->mb_mgr);
1067         }
1068
1069         return processed_jobs;
1070 }
1071
1072 static inline uint16_t
1073 flush_mb_mgr(struct aesni_mb_qp *qp, struct rte_crypto_op **ops,
1074                 uint16_t nb_ops)
1075 {
1076         int processed_ops = 0;
1077
1078         /* Flush the remaining jobs */
1079         JOB_AES_HMAC *job = IMB_FLUSH_JOB(qp->mb_mgr);
1080
1081         if (job)
1082                 processed_ops += handle_completed_jobs(qp, job,
1083                                 &ops[processed_ops], nb_ops - processed_ops);
1084
1085         return processed_ops;
1086 }
1087
1088 static inline JOB_AES_HMAC *
1089 set_job_null_op(JOB_AES_HMAC *job, struct rte_crypto_op *op)
1090 {
1091         job->chain_order = HASH_CIPHER;
1092         job->cipher_mode = NULL_CIPHER;
1093         job->hash_alg = NULL_HASH;
1094         job->cipher_direction = DECRYPT;
1095
1096         /* Set user data to be crypto operation data struct */
1097         job->user_data = op;
1098
1099         return job;
1100 }
1101
1102 static uint16_t
1103 aesni_mb_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
1104                 uint16_t nb_ops)
1105 {
1106         struct aesni_mb_qp *qp = queue_pair;
1107
1108         struct rte_crypto_op *op;
1109         JOB_AES_HMAC *job;
1110
1111         int retval, processed_jobs = 0;
1112
1113         if (unlikely(nb_ops == 0))
1114                 return 0;
1115
1116         uint8_t digest_idx = qp->digest_idx;
1117         do {
1118                 /* Get next free mb job struct from mb manager */
1119                 job = IMB_GET_NEXT_JOB(qp->mb_mgr);
1120                 if (unlikely(job == NULL)) {
1121                         /* if no free mb job structs we need to flush mb_mgr */
1122                         processed_jobs += flush_mb_mgr(qp,
1123                                         &ops[processed_jobs],
1124                                         nb_ops - processed_jobs);
1125
1126                         if (nb_ops == processed_jobs)
1127                                 break;
1128
1129                         job = IMB_GET_NEXT_JOB(qp->mb_mgr);
1130                 }
1131
1132                 /*
1133                  * Get next operation to process from ingress queue.
1134                  * There is no need to return the job to the MB_MGR
1135                  * if there are no more operations to process, since the MB_MGR
1136                  * can use that pointer again in next get_next calls.
1137                  */
1138                 retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op);
1139                 if (retval < 0)
1140                         break;
1141
1142                 retval = set_mb_job_params(job, qp, op, &digest_idx);
1143                 if (unlikely(retval != 0)) {
1144                         qp->stats.dequeue_err_count++;
1145                         set_job_null_op(job, op);
1146                 }
1147
1148                 /* Submit job to multi-buffer for processing */
1149 #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG
1150                 job = IMB_SUBMIT_JOB(qp->mb_mgr);
1151 #else
1152                 job = IMB_SUBMIT_JOB_NOCHECK(qp->mb_mgr);
1153 #endif
1154                 /*
1155                  * If submit returns a processed job then handle it,
1156                  * before submitting subsequent jobs
1157                  */
1158                 if (job)
1159                         processed_jobs += handle_completed_jobs(qp, job,
1160                                         &ops[processed_jobs],
1161                                         nb_ops - processed_jobs);
1162
1163         } while (processed_jobs < nb_ops);
1164
1165         qp->digest_idx = digest_idx;
1166
1167         if (processed_jobs < 1)
1168                 processed_jobs += flush_mb_mgr(qp,
1169                                 &ops[processed_jobs],
1170                                 nb_ops - processed_jobs);
1171
1172         return processed_jobs;
1173 }
1174
1175 static int cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev);
1176
1177 static int
1178 cryptodev_aesni_mb_create(const char *name,
1179                         struct rte_vdev_device *vdev,
1180                         struct rte_cryptodev_pmd_init_params *init_params)
1181 {
1182         struct rte_cryptodev *dev;
1183         struct aesni_mb_private *internals;
1184         enum aesni_mb_vector_mode vector_mode;
1185         MB_MGR *mb_mgr;
1186
1187         /* Check CPU for support for AES instruction set */
1188         if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
1189                 AESNI_MB_LOG(ERR, "AES instructions not supported by CPU");
1190                 return -EFAULT;
1191         }
1192
1193         dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
1194         if (dev == NULL) {
1195                 AESNI_MB_LOG(ERR, "failed to create cryptodev vdev");
1196                 return -ENODEV;
1197         }
1198
1199         /* Check CPU for supported vector instruction set */
1200         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
1201                 vector_mode = RTE_AESNI_MB_AVX512;
1202         else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
1203                 vector_mode = RTE_AESNI_MB_AVX2;
1204         else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
1205                 vector_mode = RTE_AESNI_MB_AVX;
1206         else
1207                 vector_mode = RTE_AESNI_MB_SSE;
1208
1209         dev->driver_id = cryptodev_driver_id;
1210         dev->dev_ops = rte_aesni_mb_pmd_ops;
1211
1212         /* register rx/tx burst functions for data path */
1213         dev->dequeue_burst = aesni_mb_pmd_dequeue_burst;
1214         dev->enqueue_burst = aesni_mb_pmd_enqueue_burst;
1215
1216         dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
1217                         RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
1218                         RTE_CRYPTODEV_FF_CPU_AESNI;
1219
1220         mb_mgr = alloc_mb_mgr(0);
1221         if (mb_mgr == NULL)
1222                 return -ENOMEM;
1223
1224         switch (vector_mode) {
1225         case RTE_AESNI_MB_SSE:
1226                 dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
1227                 init_mb_mgr_sse(mb_mgr);
1228                 break;
1229         case RTE_AESNI_MB_AVX:
1230                 dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
1231                 init_mb_mgr_avx(mb_mgr);
1232                 break;
1233         case RTE_AESNI_MB_AVX2:
1234                 dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2;
1235                 init_mb_mgr_avx2(mb_mgr);
1236                 break;
1237         case RTE_AESNI_MB_AVX512:
1238                 dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX512;
1239                 init_mb_mgr_avx512(mb_mgr);
1240                 break;
1241         default:
1242                 AESNI_MB_LOG(ERR, "Unsupported vector mode %u\n", vector_mode);
1243                 goto error_exit;
1244         }
1245
1246         /* Set vector instructions mode supported */
1247         internals = dev->data->dev_private;
1248
1249         internals->vector_mode = vector_mode;
1250         internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
1251         internals->mb_mgr = mb_mgr;
1252
1253         AESNI_MB_LOG(INFO, "IPSec Multi-buffer library version used: %s\n",
1254                         imb_get_version_str());
1255
1256         return 0;
1257
1258 error_exit:
1259         if (mb_mgr)
1260                 free_mb_mgr(mb_mgr);
1261
1262         rte_cryptodev_pmd_destroy(dev);
1263
1264         return -1;
1265 }
1266
1267 static int
1268 cryptodev_aesni_mb_probe(struct rte_vdev_device *vdev)
1269 {
1270         struct rte_cryptodev_pmd_init_params init_params = {
1271                 "",
1272                 sizeof(struct aesni_mb_private),
1273                 rte_socket_id(),
1274                 RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
1275         };
1276         const char *name, *args;
1277         int retval;
1278
1279         name = rte_vdev_device_name(vdev);
1280         if (name == NULL)
1281                 return -EINVAL;
1282
1283         args = rte_vdev_device_args(vdev);
1284
1285         retval = rte_cryptodev_pmd_parse_input_args(&init_params, args);
1286         if (retval) {
1287                 AESNI_MB_LOG(ERR, "Failed to parse initialisation arguments[%s]",
1288                                 args);
1289                 return -EINVAL;
1290         }
1291
1292         return cryptodev_aesni_mb_create(name, vdev, &init_params);
1293 }
1294
1295 static int
1296 cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev)
1297 {
1298         struct rte_cryptodev *cryptodev;
1299         struct aesni_mb_private *internals;
1300         const char *name;
1301
1302         name = rte_vdev_device_name(vdev);
1303         if (name == NULL)
1304                 return -EINVAL;
1305
1306         cryptodev = rte_cryptodev_pmd_get_named_dev(name);
1307         if (cryptodev == NULL)
1308                 return -ENODEV;
1309
1310         internals = cryptodev->data->dev_private;
1311
1312         free_mb_mgr(internals->mb_mgr);
1313
1314         return rte_cryptodev_pmd_destroy(cryptodev);
1315 }
1316
1317 static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = {
1318         .probe = cryptodev_aesni_mb_probe,
1319         .remove = cryptodev_aesni_mb_remove
1320 };
1321
1322 static struct cryptodev_driver aesni_mb_crypto_drv;
1323
1324 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd_drv);
1325 RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd);
1326 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD,
1327         "max_nb_queue_pairs=<int> "
1328         "socket_id=<int>");
1329 RTE_PMD_REGISTER_CRYPTO_DRIVER(aesni_mb_crypto_drv,
1330                 cryptodev_aesni_mb_pmd_drv.driver,
1331                 cryptodev_driver_id);
1332
1333 RTE_INIT(aesni_mb_init_log)
1334 {
1335         aesni_mb_logtype_driver = rte_log_register("pmd.crypto.aesni_mb");
1336 }