9d0d9f4d737123f51d4a4f8cf209f27f1f7692ed
[dpdk.git] / drivers / crypto / aesni_mb / rte_aesni_mb_pmd.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2017 Intel Corporation
3  */
4
5 #include <intel-ipsec-mb.h>
6
7 #include <rte_common.h>
8 #include <rte_hexdump.h>
9 #include <rte_cryptodev.h>
10 #include <rte_cryptodev_pmd.h>
11 #include <rte_bus_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_cpuflags.h>
14 #include <rte_per_lcore.h>
15
16 #include "aesni_mb_pmd_private.h"
17
18 #define AES_CCM_DIGEST_MIN_LEN 4
19 #define AES_CCM_DIGEST_MAX_LEN 16
20 #define HMAC_MAX_BLOCK_SIZE 128
21 static uint8_t cryptodev_driver_id;
22
23 /*
24  * Needed to support CPU-CRYPTO API (rte_cryptodev_sym_cpu_crypto_process),
25  * as we still use JOB based API even for synchronous processing.
26  */
27 static RTE_DEFINE_PER_LCORE(MB_MGR *, sync_mb_mgr);
28
29 typedef void (*hash_one_block_t)(const void *data, void *digest);
30 typedef void (*aes_keyexp_t)(const void *key, void *enc_exp_keys, void *dec_exp_keys);
31
32 /**
33  * Calculate the authentication pre-computes
34  *
35  * @param one_block_hash        Function pointer to calculate digest on ipad/opad
36  * @param ipad                  Inner pad output byte array
37  * @param opad                  Outer pad output byte array
38  * @param hkey                  Authentication key
39  * @param hkey_len              Authentication key length
40  * @param blocksize             Block size of selected hash algo
41  */
42 static void
43 calculate_auth_precomputes(hash_one_block_t one_block_hash,
44                 uint8_t *ipad, uint8_t *opad,
45                 const uint8_t *hkey, uint16_t hkey_len,
46                 uint16_t blocksize)
47 {
48         unsigned i, length;
49
50         uint8_t ipad_buf[blocksize] __rte_aligned(16);
51         uint8_t opad_buf[blocksize] __rte_aligned(16);
52
53         /* Setup inner and outer pads */
54         memset(ipad_buf, HMAC_IPAD_VALUE, blocksize);
55         memset(opad_buf, HMAC_OPAD_VALUE, blocksize);
56
57         /* XOR hash key with inner and outer pads */
58         length = hkey_len > blocksize ? blocksize : hkey_len;
59
60         for (i = 0; i < length; i++) {
61                 ipad_buf[i] ^= hkey[i];
62                 opad_buf[i] ^= hkey[i];
63         }
64
65         /* Compute partial hashes */
66         (*one_block_hash)(ipad_buf, ipad);
67         (*one_block_hash)(opad_buf, opad);
68
69         /* Clean up stack */
70         memset(ipad_buf, 0, blocksize);
71         memset(opad_buf, 0, blocksize);
72 }
73
74 /** Get xform chain order */
75 static enum aesni_mb_operation
76 aesni_mb_get_chain_order(const struct rte_crypto_sym_xform *xform)
77 {
78         if (xform == NULL)
79                 return AESNI_MB_OP_NOT_SUPPORTED;
80
81         if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
82                 if (xform->next == NULL)
83                         return AESNI_MB_OP_CIPHER_ONLY;
84                 if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
85                         return AESNI_MB_OP_CIPHER_HASH;
86         }
87
88         if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
89                 if (xform->next == NULL)
90                         return AESNI_MB_OP_HASH_ONLY;
91                 if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
92                         return AESNI_MB_OP_HASH_CIPHER;
93         }
94 #if IMB_VERSION_NUM > IMB_VERSION(0, 52, 0)
95         if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
96                 if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) {
97                         /*
98                          * CCM requires to hash first and cipher later
99                          * when encrypting
100                          */
101                         if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM)
102                                 return AESNI_MB_OP_AEAD_HASH_CIPHER;
103                         else
104                                 return AESNI_MB_OP_AEAD_CIPHER_HASH;
105                 } else {
106                         if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM)
107                                 return AESNI_MB_OP_AEAD_CIPHER_HASH;
108                         else
109                                 return AESNI_MB_OP_AEAD_HASH_CIPHER;
110                 }
111         }
112 #else
113         if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
114                 if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM ||
115                                 xform->aead.algo == RTE_CRYPTO_AEAD_AES_GCM) {
116                         if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
117                                 return AESNI_MB_OP_AEAD_CIPHER_HASH;
118                         else
119                                 return AESNI_MB_OP_AEAD_HASH_CIPHER;
120                 }
121         }
122 #endif
123
124         return AESNI_MB_OP_NOT_SUPPORTED;
125 }
126
127 /** Set session authentication parameters */
128 static int
129 aesni_mb_set_session_auth_parameters(const MB_MGR *mb_mgr,
130                 struct aesni_mb_session *sess,
131                 const struct rte_crypto_sym_xform *xform)
132 {
133         hash_one_block_t hash_oneblock_fn = NULL;
134         unsigned int key_larger_block_size = 0;
135         uint8_t hashed_key[HMAC_MAX_BLOCK_SIZE] = { 0 };
136         uint32_t auth_precompute = 1;
137
138         if (xform == NULL) {
139                 sess->auth.algo = NULL_HASH;
140                 return 0;
141         }
142
143         if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) {
144                 AESNI_MB_LOG(ERR, "Crypto xform struct not of type auth");
145                 return -1;
146         }
147
148         /* Set the request digest size */
149         sess->auth.req_digest_len = xform->auth.digest_length;
150
151         /* Select auth generate/verify */
152         sess->auth.operation = xform->auth.op;
153
154         /* Set Authentication Parameters */
155         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) {
156                 sess->auth.algo = AES_XCBC;
157
158                 uint16_t xcbc_mac_digest_len =
159                         get_truncated_digest_byte_length(AES_XCBC);
160                 if (sess->auth.req_digest_len != xcbc_mac_digest_len) {
161                         AESNI_MB_LOG(ERR, "Invalid digest size\n");
162                         return -EINVAL;
163                 }
164                 sess->auth.gen_digest_len = sess->auth.req_digest_len;
165
166                 IMB_AES_XCBC_KEYEXP(mb_mgr, xform->auth.key.data,
167                                 sess->auth.xcbc.k1_expanded,
168                                 sess->auth.xcbc.k2, sess->auth.xcbc.k3);
169                 return 0;
170         }
171
172         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) {
173                 uint32_t dust[4*15];
174
175                 sess->auth.algo = AES_CMAC;
176
177                 uint16_t cmac_digest_len = get_digest_byte_length(AES_CMAC);
178
179                 if (sess->auth.req_digest_len > cmac_digest_len) {
180                         AESNI_MB_LOG(ERR, "Invalid digest size\n");
181                         return -EINVAL;
182                 }
183                 /*
184                  * Multi-buffer lib supports digest sizes from 4 to 16 bytes
185                  * in version 0.50 and sizes of 12 and 16 bytes,
186                  * in version 0.49.
187                  * If size requested is different, generate the full digest
188                  * (16 bytes) in a temporary location and then memcpy
189                  * the requested number of bytes.
190                  */
191                 if (sess->auth.req_digest_len < 4)
192                         sess->auth.gen_digest_len = cmac_digest_len;
193                 else
194                         sess->auth.gen_digest_len = sess->auth.req_digest_len;
195
196                 IMB_AES_KEYEXP_128(mb_mgr, xform->auth.key.data,
197                                 sess->auth.cmac.expkey, dust);
198                 IMB_AES_CMAC_SUBKEY_GEN_128(mb_mgr, sess->auth.cmac.expkey,
199                                 sess->auth.cmac.skey1, sess->auth.cmac.skey2);
200                 return 0;
201         }
202
203         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
204                 if (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) {
205                         sess->cipher.direction = ENCRYPT;
206                         sess->chain_order = CIPHER_HASH;
207                 } else
208                         sess->cipher.direction = DECRYPT;
209
210                 sess->auth.algo = AES_GMAC;
211                 /*
212                  * Multi-buffer lib supports 8, 12 and 16 bytes of digest.
213                  * If size requested is different, generate the full digest
214                  * (16 bytes) in a temporary location and then memcpy
215                  * the requested number of bytes.
216                  */
217                 if (sess->auth.req_digest_len != 16 &&
218                                 sess->auth.req_digest_len != 12 &&
219                                 sess->auth.req_digest_len != 8) {
220                         sess->auth.gen_digest_len = 16;
221                 } else {
222                         sess->auth.gen_digest_len = sess->auth.req_digest_len;
223                 }
224                 sess->iv.length = xform->auth.iv.length;
225                 sess->iv.offset = xform->auth.iv.offset;
226
227                 switch (xform->auth.key.length) {
228                 case AES_128_BYTES:
229                         IMB_AES128_GCM_PRE(mb_mgr, xform->auth.key.data,
230                                 &sess->cipher.gcm_key);
231                         sess->cipher.key_length_in_bytes = AES_128_BYTES;
232                         break;
233                 case AES_192_BYTES:
234                         IMB_AES192_GCM_PRE(mb_mgr, xform->auth.key.data,
235                                 &sess->cipher.gcm_key);
236                         sess->cipher.key_length_in_bytes = AES_192_BYTES;
237                         break;
238                 case AES_256_BYTES:
239                         IMB_AES256_GCM_PRE(mb_mgr, xform->auth.key.data,
240                                 &sess->cipher.gcm_key);
241                         sess->cipher.key_length_in_bytes = AES_256_BYTES;
242                         break;
243                 default:
244                         RTE_LOG(ERR, PMD, "failed to parse test type\n");
245                         return -EINVAL;
246                 }
247
248                 return 0;
249         }
250
251         switch (xform->auth.algo) {
252         case RTE_CRYPTO_AUTH_MD5_HMAC:
253                 sess->auth.algo = MD5;
254                 hash_oneblock_fn = mb_mgr->md5_one_block;
255                 break;
256         case RTE_CRYPTO_AUTH_SHA1_HMAC:
257                 sess->auth.algo = SHA1;
258                 hash_oneblock_fn = mb_mgr->sha1_one_block;
259                 if (xform->auth.key.length > get_auth_algo_blocksize(SHA1)) {
260                         IMB_SHA1(mb_mgr,
261                                 xform->auth.key.data,
262                                 xform->auth.key.length,
263                                 hashed_key);
264                         key_larger_block_size = 1;
265                 }
266                 break;
267         case RTE_CRYPTO_AUTH_SHA1:
268                 sess->auth.algo = PLAIN_SHA1;
269                 auth_precompute = 0;
270                 break;
271         case RTE_CRYPTO_AUTH_SHA224_HMAC:
272                 sess->auth.algo = SHA_224;
273                 hash_oneblock_fn = mb_mgr->sha224_one_block;
274                 if (xform->auth.key.length > get_auth_algo_blocksize(SHA_224)) {
275                         IMB_SHA224(mb_mgr,
276                                 xform->auth.key.data,
277                                 xform->auth.key.length,
278                                 hashed_key);
279                         key_larger_block_size = 1;
280                 }
281                 break;
282         case RTE_CRYPTO_AUTH_SHA224:
283                 sess->auth.algo = PLAIN_SHA_224;
284                 auth_precompute = 0;
285                 break;
286         case RTE_CRYPTO_AUTH_SHA256_HMAC:
287                 sess->auth.algo = SHA_256;
288                 hash_oneblock_fn = mb_mgr->sha256_one_block;
289                 if (xform->auth.key.length > get_auth_algo_blocksize(SHA_256)) {
290                         IMB_SHA256(mb_mgr,
291                                 xform->auth.key.data,
292                                 xform->auth.key.length,
293                                 hashed_key);
294                         key_larger_block_size = 1;
295                 }
296                 break;
297         case RTE_CRYPTO_AUTH_SHA256:
298                 sess->auth.algo = PLAIN_SHA_256;
299                 auth_precompute = 0;
300                 break;
301         case RTE_CRYPTO_AUTH_SHA384_HMAC:
302                 sess->auth.algo = SHA_384;
303                 hash_oneblock_fn = mb_mgr->sha384_one_block;
304                 if (xform->auth.key.length > get_auth_algo_blocksize(SHA_384)) {
305                         IMB_SHA384(mb_mgr,
306                                 xform->auth.key.data,
307                                 xform->auth.key.length,
308                                 hashed_key);
309                         key_larger_block_size = 1;
310                 }
311                 break;
312         case RTE_CRYPTO_AUTH_SHA384:
313                 sess->auth.algo = PLAIN_SHA_384;
314                 auth_precompute = 0;
315                 break;
316         case RTE_CRYPTO_AUTH_SHA512_HMAC:
317                 sess->auth.algo = SHA_512;
318                 hash_oneblock_fn = mb_mgr->sha512_one_block;
319                 if (xform->auth.key.length > get_auth_algo_blocksize(SHA_512)) {
320                         IMB_SHA512(mb_mgr,
321                                 xform->auth.key.data,
322                                 xform->auth.key.length,
323                                 hashed_key);
324                         key_larger_block_size = 1;
325                 }
326                 break;
327         case RTE_CRYPTO_AUTH_SHA512:
328                 sess->auth.algo = PLAIN_SHA_512;
329                 auth_precompute = 0;
330                 break;
331         default:
332                 AESNI_MB_LOG(ERR, "Unsupported authentication algorithm selection");
333                 return -ENOTSUP;
334         }
335         uint16_t trunc_digest_size =
336                         get_truncated_digest_byte_length(sess->auth.algo);
337         uint16_t full_digest_size =
338                         get_digest_byte_length(sess->auth.algo);
339
340         if (sess->auth.req_digest_len > full_digest_size ||
341                         sess->auth.req_digest_len == 0) {
342                 AESNI_MB_LOG(ERR, "Invalid digest size\n");
343                 return -EINVAL;
344         }
345
346         if (sess->auth.req_digest_len != trunc_digest_size &&
347                         sess->auth.req_digest_len != full_digest_size)
348                 sess->auth.gen_digest_len = full_digest_size;
349         else
350                 sess->auth.gen_digest_len = sess->auth.req_digest_len;
351
352         /* Plain SHA does not require precompute key */
353         if (auth_precompute == 0)
354                 return 0;
355
356         /* Calculate Authentication precomputes */
357         if (key_larger_block_size) {
358                 calculate_auth_precomputes(hash_oneblock_fn,
359                         sess->auth.pads.inner, sess->auth.pads.outer,
360                         hashed_key,
361                         xform->auth.key.length,
362                         get_auth_algo_blocksize(sess->auth.algo));
363         } else {
364                 calculate_auth_precomputes(hash_oneblock_fn,
365                         sess->auth.pads.inner, sess->auth.pads.outer,
366                         xform->auth.key.data,
367                         xform->auth.key.length,
368                         get_auth_algo_blocksize(sess->auth.algo));
369         }
370
371         return 0;
372 }
373
374 /** Set session cipher parameters */
375 static int
376 aesni_mb_set_session_cipher_parameters(const MB_MGR *mb_mgr,
377                 struct aesni_mb_session *sess,
378                 const struct rte_crypto_sym_xform *xform)
379 {
380         uint8_t is_aes = 0;
381         uint8_t is_3DES = 0;
382         uint8_t is_docsis = 0;
383
384         if (xform == NULL) {
385                 sess->cipher.mode = NULL_CIPHER;
386                 return 0;
387         }
388
389         if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) {
390                 AESNI_MB_LOG(ERR, "Crypto xform struct not of type cipher");
391                 return -EINVAL;
392         }
393
394         /* Select cipher direction */
395         switch (xform->cipher.op) {
396         case RTE_CRYPTO_CIPHER_OP_ENCRYPT:
397                 sess->cipher.direction = ENCRYPT;
398                 break;
399         case RTE_CRYPTO_CIPHER_OP_DECRYPT:
400                 sess->cipher.direction = DECRYPT;
401                 break;
402         default:
403                 AESNI_MB_LOG(ERR, "Invalid cipher operation parameter");
404                 return -EINVAL;
405         }
406
407         /* Select cipher mode */
408         switch (xform->cipher.algo) {
409         case RTE_CRYPTO_CIPHER_AES_CBC:
410                 sess->cipher.mode = CBC;
411                 is_aes = 1;
412                 break;
413         case RTE_CRYPTO_CIPHER_AES_CTR:
414                 sess->cipher.mode = CNTR;
415                 is_aes = 1;
416                 break;
417         case RTE_CRYPTO_CIPHER_AES_DOCSISBPI:
418                 sess->cipher.mode = DOCSIS_SEC_BPI;
419                 is_docsis = 1;
420                 break;
421         case RTE_CRYPTO_CIPHER_DES_CBC:
422                 sess->cipher.mode = DES;
423                 break;
424         case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
425                 sess->cipher.mode = DOCSIS_DES;
426                 break;
427         case RTE_CRYPTO_CIPHER_3DES_CBC:
428                 sess->cipher.mode = DES3;
429                 is_3DES = 1;
430                 break;
431         default:
432                 AESNI_MB_LOG(ERR, "Unsupported cipher mode parameter");
433                 return -ENOTSUP;
434         }
435
436         /* Set IV parameters */
437         sess->iv.offset = xform->cipher.iv.offset;
438         sess->iv.length = xform->cipher.iv.length;
439
440         /* Check key length and choose key expansion function for AES */
441         if (is_aes) {
442                 switch (xform->cipher.key.length) {
443                 case AES_128_BYTES:
444                         sess->cipher.key_length_in_bytes = AES_128_BYTES;
445                         IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data,
446                                         sess->cipher.expanded_aes_keys.encode,
447                                         sess->cipher.expanded_aes_keys.decode);
448                         break;
449                 case AES_192_BYTES:
450                         sess->cipher.key_length_in_bytes = AES_192_BYTES;
451                         IMB_AES_KEYEXP_192(mb_mgr, xform->cipher.key.data,
452                                         sess->cipher.expanded_aes_keys.encode,
453                                         sess->cipher.expanded_aes_keys.decode);
454                         break;
455                 case AES_256_BYTES:
456                         sess->cipher.key_length_in_bytes = AES_256_BYTES;
457                         IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data,
458                                         sess->cipher.expanded_aes_keys.encode,
459                                         sess->cipher.expanded_aes_keys.decode);
460                         break;
461                 default:
462                         AESNI_MB_LOG(ERR, "Invalid cipher key length");
463                         return -EINVAL;
464                 }
465         } else if (is_docsis) {
466                 switch (xform->cipher.key.length) {
467                 case AES_128_BYTES:
468                         sess->cipher.key_length_in_bytes = AES_128_BYTES;
469                         IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data,
470                                         sess->cipher.expanded_aes_keys.encode,
471                                         sess->cipher.expanded_aes_keys.decode);
472                         break;
473 #if IMB_VERSION_NUM >= IMB_VERSION(0, 53, 3)
474                 case AES_256_BYTES:
475                         sess->cipher.key_length_in_bytes = AES_256_BYTES;
476                         IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data,
477                                         sess->cipher.expanded_aes_keys.encode,
478                                         sess->cipher.expanded_aes_keys.decode);
479                         break;
480 #endif
481                 default:
482                         AESNI_MB_LOG(ERR, "Invalid cipher key length");
483                         return -EINVAL;
484                 }
485         } else if (is_3DES) {
486                 uint64_t *keys[3] = {sess->cipher.exp_3des_keys.key[0],
487                                 sess->cipher.exp_3des_keys.key[1],
488                                 sess->cipher.exp_3des_keys.key[2]};
489
490                 switch (xform->cipher.key.length) {
491                 case  24:
492                         IMB_DES_KEYSCHED(mb_mgr, keys[0],
493                                         xform->cipher.key.data);
494                         IMB_DES_KEYSCHED(mb_mgr, keys[1],
495                                         xform->cipher.key.data + 8);
496                         IMB_DES_KEYSCHED(mb_mgr, keys[2],
497                                         xform->cipher.key.data + 16);
498
499                         /* Initialize keys - 24 bytes: [K1-K2-K3] */
500                         sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
501                         sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
502                         sess->cipher.exp_3des_keys.ks_ptr[2] = keys[2];
503                         break;
504                 case 16:
505                         IMB_DES_KEYSCHED(mb_mgr, keys[0],
506                                         xform->cipher.key.data);
507                         IMB_DES_KEYSCHED(mb_mgr, keys[1],
508                                         xform->cipher.key.data + 8);
509                         /* Initialize keys - 16 bytes: [K1=K1,K2=K2,K3=K1] */
510                         sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
511                         sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
512                         sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
513                         break;
514                 case 8:
515                         IMB_DES_KEYSCHED(mb_mgr, keys[0],
516                                         xform->cipher.key.data);
517
518                         /* Initialize keys - 8 bytes: [K1 = K2 = K3] */
519                         sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
520                         sess->cipher.exp_3des_keys.ks_ptr[1] = keys[0];
521                         sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
522                         break;
523                 default:
524                         AESNI_MB_LOG(ERR, "Invalid cipher key length");
525                         return -EINVAL;
526                 }
527
528                 sess->cipher.key_length_in_bytes = 24;
529         } else {
530                 if (xform->cipher.key.length != 8) {
531                         AESNI_MB_LOG(ERR, "Invalid cipher key length");
532                         return -EINVAL;
533                 }
534                 sess->cipher.key_length_in_bytes = 8;
535
536                 IMB_DES_KEYSCHED(mb_mgr,
537                         (uint64_t *)sess->cipher.expanded_aes_keys.encode,
538                                 xform->cipher.key.data);
539                 IMB_DES_KEYSCHED(mb_mgr,
540                         (uint64_t *)sess->cipher.expanded_aes_keys.decode,
541                                 xform->cipher.key.data);
542         }
543
544         return 0;
545 }
546
547 static int
548 aesni_mb_set_session_aead_parameters(const MB_MGR *mb_mgr,
549                 struct aesni_mb_session *sess,
550                 const struct rte_crypto_sym_xform *xform)
551 {
552         switch (xform->aead.op) {
553         case RTE_CRYPTO_AEAD_OP_ENCRYPT:
554                 sess->cipher.direction = ENCRYPT;
555                 sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
556                 break;
557         case RTE_CRYPTO_AEAD_OP_DECRYPT:
558                 sess->cipher.direction = DECRYPT;
559                 sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
560                 break;
561         default:
562                 AESNI_MB_LOG(ERR, "Invalid aead operation parameter");
563                 return -EINVAL;
564         }
565
566         switch (xform->aead.algo) {
567         case RTE_CRYPTO_AEAD_AES_CCM:
568                 sess->cipher.mode = CCM;
569                 sess->auth.algo = AES_CCM;
570
571                 /* Check key length and choose key expansion function for AES */
572                 switch (xform->aead.key.length) {
573                 case AES_128_BYTES:
574                         sess->cipher.key_length_in_bytes = AES_128_BYTES;
575                         IMB_AES_KEYEXP_128(mb_mgr, xform->aead.key.data,
576                                         sess->cipher.expanded_aes_keys.encode,
577                                         sess->cipher.expanded_aes_keys.decode);
578                         break;
579                 default:
580                         AESNI_MB_LOG(ERR, "Invalid cipher key length");
581                         return -EINVAL;
582                 }
583
584                 break;
585
586         case RTE_CRYPTO_AEAD_AES_GCM:
587                 sess->cipher.mode = GCM;
588                 sess->auth.algo = AES_GMAC;
589
590                 switch (xform->aead.key.length) {
591                 case AES_128_BYTES:
592                         sess->cipher.key_length_in_bytes = AES_128_BYTES;
593                         IMB_AES128_GCM_PRE(mb_mgr, xform->aead.key.data,
594                                 &sess->cipher.gcm_key);
595                         break;
596                 case AES_192_BYTES:
597                         sess->cipher.key_length_in_bytes = AES_192_BYTES;
598                         IMB_AES192_GCM_PRE(mb_mgr, xform->aead.key.data,
599                                 &sess->cipher.gcm_key);
600                         break;
601                 case AES_256_BYTES:
602                         sess->cipher.key_length_in_bytes = AES_256_BYTES;
603                         IMB_AES256_GCM_PRE(mb_mgr, xform->aead.key.data,
604                                 &sess->cipher.gcm_key);
605                         break;
606                 default:
607                         AESNI_MB_LOG(ERR, "Invalid cipher key length");
608                         return -EINVAL;
609                 }
610
611                 break;
612
613         default:
614                 AESNI_MB_LOG(ERR, "Unsupported aead mode parameter");
615                 return -ENOTSUP;
616         }
617
618         /* Set IV parameters */
619         sess->iv.offset = xform->aead.iv.offset;
620         sess->iv.length = xform->aead.iv.length;
621
622         sess->auth.req_digest_len = xform->aead.digest_length;
623         /* CCM digests must be between 4 and 16 and an even number */
624         if (sess->auth.req_digest_len < AES_CCM_DIGEST_MIN_LEN ||
625                         sess->auth.req_digest_len > AES_CCM_DIGEST_MAX_LEN ||
626                         (sess->auth.req_digest_len & 1) == 1) {
627                 AESNI_MB_LOG(ERR, "Invalid digest size\n");
628                 return -EINVAL;
629         }
630         sess->auth.gen_digest_len = sess->auth.req_digest_len;
631
632         return 0;
633 }
634
635 /** Parse crypto xform chain and set private session parameters */
636 int
637 aesni_mb_set_session_parameters(const MB_MGR *mb_mgr,
638                 struct aesni_mb_session *sess,
639                 const struct rte_crypto_sym_xform *xform)
640 {
641         const struct rte_crypto_sym_xform *auth_xform = NULL;
642         const struct rte_crypto_sym_xform *cipher_xform = NULL;
643         const struct rte_crypto_sym_xform *aead_xform = NULL;
644         int ret;
645
646         /* Select Crypto operation - hash then cipher / cipher then hash */
647         switch (aesni_mb_get_chain_order(xform)) {
648         case AESNI_MB_OP_HASH_CIPHER:
649                 sess->chain_order = HASH_CIPHER;
650                 auth_xform = xform;
651                 cipher_xform = xform->next;
652                 break;
653         case AESNI_MB_OP_CIPHER_HASH:
654                 sess->chain_order = CIPHER_HASH;
655                 auth_xform = xform->next;
656                 cipher_xform = xform;
657                 break;
658         case AESNI_MB_OP_HASH_ONLY:
659                 sess->chain_order = HASH_CIPHER;
660                 auth_xform = xform;
661                 cipher_xform = NULL;
662                 break;
663         case AESNI_MB_OP_CIPHER_ONLY:
664                 /*
665                  * Multi buffer library operates only at two modes,
666                  * CIPHER_HASH and HASH_CIPHER. When doing ciphering only,
667                  * chain order depends on cipher operation: encryption is always
668                  * the first operation and decryption the last one.
669                  */
670                 if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
671                         sess->chain_order = CIPHER_HASH;
672                 else
673                         sess->chain_order = HASH_CIPHER;
674                 auth_xform = NULL;
675                 cipher_xform = xform;
676                 break;
677         case AESNI_MB_OP_AEAD_CIPHER_HASH:
678                 sess->chain_order = CIPHER_HASH;
679                 sess->aead.aad_len = xform->aead.aad_length;
680                 aead_xform = xform;
681                 break;
682         case AESNI_MB_OP_AEAD_HASH_CIPHER:
683                 sess->chain_order = HASH_CIPHER;
684                 sess->aead.aad_len = xform->aead.aad_length;
685                 aead_xform = xform;
686                 break;
687         case AESNI_MB_OP_NOT_SUPPORTED:
688         default:
689                 AESNI_MB_LOG(ERR, "Unsupported operation chain order parameter");
690                 return -ENOTSUP;
691         }
692
693         /* Default IV length = 0 */
694         sess->iv.length = 0;
695
696         ret = aesni_mb_set_session_auth_parameters(mb_mgr, sess, auth_xform);
697         if (ret != 0) {
698                 AESNI_MB_LOG(ERR, "Invalid/unsupported authentication parameters");
699                 return ret;
700         }
701
702         ret = aesni_mb_set_session_cipher_parameters(mb_mgr, sess,
703                         cipher_xform);
704         if (ret != 0) {
705                 AESNI_MB_LOG(ERR, "Invalid/unsupported cipher parameters");
706                 return ret;
707         }
708
709         if (aead_xform) {
710                 ret = aesni_mb_set_session_aead_parameters(mb_mgr, sess,
711                                 aead_xform);
712                 if (ret != 0) {
713                         AESNI_MB_LOG(ERR, "Invalid/unsupported aead parameters");
714                         return ret;
715                 }
716         }
717
718         return 0;
719 }
720
721 /**
722  * burst enqueue, place crypto operations on ingress queue for processing.
723  *
724  * @param __qp         Queue Pair to process
725  * @param ops          Crypto operations for processing
726  * @param nb_ops       Number of crypto operations for processing
727  *
728  * @return
729  * - Number of crypto operations enqueued
730  */
731 static uint16_t
732 aesni_mb_pmd_enqueue_burst(void *__qp, struct rte_crypto_op **ops,
733                 uint16_t nb_ops)
734 {
735         struct aesni_mb_qp *qp = __qp;
736
737         unsigned int nb_enqueued;
738
739         nb_enqueued = rte_ring_enqueue_burst(qp->ingress_queue,
740                         (void **)ops, nb_ops, NULL);
741
742         qp->stats.enqueued_count += nb_enqueued;
743
744         return nb_enqueued;
745 }
746
747 /** Get multi buffer session */
748 static inline struct aesni_mb_session *
749 get_session(struct aesni_mb_qp *qp, struct rte_crypto_op *op)
750 {
751         struct aesni_mb_session *sess = NULL;
752
753         if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
754                 if (likely(op->sym->session != NULL))
755                         sess = (struct aesni_mb_session *)
756                                         get_sym_session_private_data(
757                                         op->sym->session,
758                                         cryptodev_driver_id);
759         } else {
760                 void *_sess = rte_cryptodev_sym_session_create(qp->sess_mp);
761                 void *_sess_private_data = NULL;
762
763                 if (_sess == NULL)
764                         return NULL;
765
766                 if (rte_mempool_get(qp->sess_mp_priv,
767                                 (void **)&_sess_private_data))
768                         return NULL;
769
770                 sess = (struct aesni_mb_session *)_sess_private_data;
771
772                 if (unlikely(aesni_mb_set_session_parameters(qp->mb_mgr,
773                                 sess, op->sym->xform) != 0)) {
774                         rte_mempool_put(qp->sess_mp, _sess);
775                         rte_mempool_put(qp->sess_mp_priv, _sess_private_data);
776                         sess = NULL;
777                 }
778                 op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
779                 set_sym_session_private_data(op->sym->session,
780                                 cryptodev_driver_id, _sess_private_data);
781         }
782
783         if (unlikely(sess == NULL))
784                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
785
786         return sess;
787 }
788
789 static inline uint64_t
790 auth_start_offset(struct rte_crypto_op *op, struct aesni_mb_session *session,
791                 uint32_t oop)
792 {
793         struct rte_mbuf *m_src, *m_dst;
794         uint8_t *p_src, *p_dst;
795         uintptr_t u_src, u_dst;
796         uint32_t cipher_end, auth_end;
797
798         /* Only cipher then hash needs special calculation. */
799         if (!oop || session->chain_order != CIPHER_HASH)
800                 return op->sym->auth.data.offset;
801
802         m_src = op->sym->m_src;
803         m_dst = op->sym->m_dst;
804
805         p_src = rte_pktmbuf_mtod(m_src, uint8_t *);
806         p_dst = rte_pktmbuf_mtod(m_dst, uint8_t *);
807         u_src = (uintptr_t)p_src;
808         u_dst = (uintptr_t)p_dst + op->sym->auth.data.offset;
809
810         /**
811          * Copy the content between cipher offset and auth offset for generating
812          * correct digest.
813          */
814         if (op->sym->cipher.data.offset > op->sym->auth.data.offset)
815                 memcpy(p_dst + op->sym->auth.data.offset,
816                                 p_src + op->sym->auth.data.offset,
817                                 op->sym->cipher.data.offset -
818                                 op->sym->auth.data.offset);
819
820         /**
821          * Copy the content between (cipher offset + length) and (auth offset +
822          * length) for generating correct digest
823          */
824         cipher_end = op->sym->cipher.data.offset + op->sym->cipher.data.length;
825         auth_end = op->sym->auth.data.offset + op->sym->auth.data.length;
826         if (cipher_end < auth_end)
827                 memcpy(p_dst + cipher_end, p_src + cipher_end,
828                                 auth_end - cipher_end);
829
830         /**
831          * Since intel-ipsec-mb only supports positive values,
832          * we need to deduct the correct offset between src and dst.
833          */
834
835         return u_src < u_dst ? (u_dst - u_src) :
836                         (UINT64_MAX - u_src + u_dst + 1);
837 }
838
839 static inline void
840 set_cpu_mb_job_params(JOB_AES_HMAC *job, struct aesni_mb_session *session,
841                 union rte_crypto_sym_ofs sofs, void *buf, uint32_t len,
842                 void *iv, void *aad, void *digest, void *udata)
843 {
844         /* Set crypto operation */
845         job->chain_order = session->chain_order;
846
847         /* Set cipher parameters */
848         job->cipher_direction = session->cipher.direction;
849         job->cipher_mode = session->cipher.mode;
850
851         job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes;
852
853         /* Set authentication parameters */
854         job->hash_alg = session->auth.algo;
855         job->iv = iv;
856
857         switch (job->hash_alg) {
858         case AES_XCBC:
859                 job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded;
860                 job->u.XCBC._k2 = session->auth.xcbc.k2;
861                 job->u.XCBC._k3 = session->auth.xcbc.k3;
862
863                 job->aes_enc_key_expanded =
864                                 session->cipher.expanded_aes_keys.encode;
865                 job->aes_dec_key_expanded =
866                                 session->cipher.expanded_aes_keys.decode;
867                 break;
868
869         case AES_CCM:
870                 job->u.CCM.aad = (uint8_t *)aad + 18;
871                 job->u.CCM.aad_len_in_bytes = session->aead.aad_len;
872                 job->aes_enc_key_expanded =
873                                 session->cipher.expanded_aes_keys.encode;
874                 job->aes_dec_key_expanded =
875                                 session->cipher.expanded_aes_keys.decode;
876                 job->iv++;
877                 break;
878
879         case AES_CMAC:
880                 job->u.CMAC._key_expanded = session->auth.cmac.expkey;
881                 job->u.CMAC._skey1 = session->auth.cmac.skey1;
882                 job->u.CMAC._skey2 = session->auth.cmac.skey2;
883                 job->aes_enc_key_expanded =
884                                 session->cipher.expanded_aes_keys.encode;
885                 job->aes_dec_key_expanded =
886                                 session->cipher.expanded_aes_keys.decode;
887                 break;
888
889         case AES_GMAC:
890                 if (session->cipher.mode == GCM) {
891                         job->u.GCM.aad = aad;
892                         job->u.GCM.aad_len_in_bytes = session->aead.aad_len;
893                 } else {
894                         /* For GMAC */
895                         job->u.GCM.aad = buf;
896                         job->u.GCM.aad_len_in_bytes = len;
897                         job->cipher_mode = GCM;
898                 }
899                 job->aes_enc_key_expanded = &session->cipher.gcm_key;
900                 job->aes_dec_key_expanded = &session->cipher.gcm_key;
901                 break;
902
903         default:
904                 job->u.HMAC._hashed_auth_key_xor_ipad =
905                                 session->auth.pads.inner;
906                 job->u.HMAC._hashed_auth_key_xor_opad =
907                                 session->auth.pads.outer;
908
909                 if (job->cipher_mode == DES3) {
910                         job->aes_enc_key_expanded =
911                                 session->cipher.exp_3des_keys.ks_ptr;
912                         job->aes_dec_key_expanded =
913                                 session->cipher.exp_3des_keys.ks_ptr;
914                 } else {
915                         job->aes_enc_key_expanded =
916                                 session->cipher.expanded_aes_keys.encode;
917                         job->aes_dec_key_expanded =
918                                 session->cipher.expanded_aes_keys.decode;
919                 }
920         }
921
922         /*
923          * Multi-buffer library current only support returning a truncated
924          * digest length as specified in the relevant IPsec RFCs
925          */
926
927         /* Set digest location and length */
928         job->auth_tag_output = digest;
929         job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len;
930
931         /* Set IV parameters */
932         job->iv_len_in_bytes = session->iv.length;
933
934         /* Data Parameters */
935         job->src = buf;
936         job->dst = (uint8_t *)buf + sofs.ofs.cipher.head;
937         job->cipher_start_src_offset_in_bytes = sofs.ofs.cipher.head;
938         job->hash_start_src_offset_in_bytes = sofs.ofs.auth.head;
939         if (job->hash_alg == AES_GMAC && session->cipher.mode != GCM) {
940                 job->msg_len_to_hash_in_bytes = 0;
941                 job->msg_len_to_cipher_in_bytes = 0;
942         } else {
943                 job->msg_len_to_hash_in_bytes = len - sofs.ofs.auth.head -
944                         sofs.ofs.auth.tail;
945                 job->msg_len_to_cipher_in_bytes = len - sofs.ofs.cipher.head -
946                         sofs.ofs.cipher.tail;
947         }
948
949         job->user_data = udata;
950 }
951
952 /**
953  * Process a crypto operation and complete a JOB_AES_HMAC job structure for
954  * submission to the multi buffer library for processing.
955  *
956  * @param       qp      queue pair
957  * @param       job     JOB_AES_HMAC structure to fill
958  * @param       m       mbuf to process
959  *
960  * @return
961  * - Completed JOB_AES_HMAC structure pointer on success
962  * - NULL pointer if completion of JOB_AES_HMAC structure isn't possible
963  */
964 static inline int
965 set_mb_job_params(JOB_AES_HMAC *job, struct aesni_mb_qp *qp,
966                 struct rte_crypto_op *op, uint8_t *digest_idx)
967 {
968         struct rte_mbuf *m_src = op->sym->m_src, *m_dst;
969         struct aesni_mb_session *session;
970         uint32_t m_offset, oop;
971
972         session = get_session(qp, op);
973         if (session == NULL) {
974                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
975                 return -1;
976         }
977
978         /* Set crypto operation */
979         job->chain_order = session->chain_order;
980
981         /* Set cipher parameters */
982         job->cipher_direction = session->cipher.direction;
983         job->cipher_mode = session->cipher.mode;
984
985         job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes;
986
987         /* Set authentication parameters */
988         job->hash_alg = session->auth.algo;
989
990         switch (job->hash_alg) {
991         case AES_XCBC:
992                 job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded;
993                 job->u.XCBC._k2 = session->auth.xcbc.k2;
994                 job->u.XCBC._k3 = session->auth.xcbc.k3;
995
996                 job->aes_enc_key_expanded =
997                                 session->cipher.expanded_aes_keys.encode;
998                 job->aes_dec_key_expanded =
999                                 session->cipher.expanded_aes_keys.decode;
1000                 break;
1001
1002         case AES_CCM:
1003                 job->u.CCM.aad = op->sym->aead.aad.data + 18;
1004                 job->u.CCM.aad_len_in_bytes = session->aead.aad_len;
1005                 job->aes_enc_key_expanded =
1006                                 session->cipher.expanded_aes_keys.encode;
1007                 job->aes_dec_key_expanded =
1008                                 session->cipher.expanded_aes_keys.decode;
1009                 break;
1010
1011         case AES_CMAC:
1012                 job->u.CMAC._key_expanded = session->auth.cmac.expkey;
1013                 job->u.CMAC._skey1 = session->auth.cmac.skey1;
1014                 job->u.CMAC._skey2 = session->auth.cmac.skey2;
1015                 job->aes_enc_key_expanded =
1016                                 session->cipher.expanded_aes_keys.encode;
1017                 job->aes_dec_key_expanded =
1018                                 session->cipher.expanded_aes_keys.decode;
1019                 break;
1020
1021         case AES_GMAC:
1022                 if (session->cipher.mode == GCM) {
1023                         job->u.GCM.aad = op->sym->aead.aad.data;
1024                         job->u.GCM.aad_len_in_bytes = session->aead.aad_len;
1025                 } else {
1026                         /* For GMAC */
1027                         job->u.GCM.aad = rte_pktmbuf_mtod_offset(m_src,
1028                                         uint8_t *, op->sym->auth.data.offset);
1029                         job->u.GCM.aad_len_in_bytes = op->sym->auth.data.length;
1030                         job->cipher_mode = GCM;
1031                 }
1032                 job->aes_enc_key_expanded = &session->cipher.gcm_key;
1033                 job->aes_dec_key_expanded = &session->cipher.gcm_key;
1034                 break;
1035
1036         default:
1037                 job->u.HMAC._hashed_auth_key_xor_ipad = session->auth.pads.inner;
1038                 job->u.HMAC._hashed_auth_key_xor_opad = session->auth.pads.outer;
1039
1040                 if (job->cipher_mode == DES3) {
1041                         job->aes_enc_key_expanded =
1042                                 session->cipher.exp_3des_keys.ks_ptr;
1043                         job->aes_dec_key_expanded =
1044                                 session->cipher.exp_3des_keys.ks_ptr;
1045                 } else {
1046                         job->aes_enc_key_expanded =
1047                                 session->cipher.expanded_aes_keys.encode;
1048                         job->aes_dec_key_expanded =
1049                                 session->cipher.expanded_aes_keys.decode;
1050                 }
1051         }
1052
1053         if (!op->sym->m_dst) {
1054                 /* in-place operation */
1055                 m_dst = m_src;
1056                 oop = 0;
1057         } else if (op->sym->m_dst == op->sym->m_src) {
1058                 /* in-place operation */
1059                 m_dst = m_src;
1060                 oop = 0;
1061         } else {
1062                 /* out-of-place operation */
1063                 m_dst = op->sym->m_dst;
1064                 oop = 1;
1065         }
1066
1067         if (job->hash_alg == AES_CCM || (job->hash_alg == AES_GMAC &&
1068                         session->cipher.mode == GCM))
1069                 m_offset = op->sym->aead.data.offset;
1070         else
1071                 m_offset = op->sym->cipher.data.offset;
1072
1073         /* Set digest output location */
1074         if (job->hash_alg != NULL_HASH &&
1075                         session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1076                 job->auth_tag_output = qp->temp_digests[*digest_idx];
1077                 *digest_idx = (*digest_idx + 1) % MAX_JOBS;
1078         } else {
1079                 if (job->hash_alg == AES_CCM || (job->hash_alg == AES_GMAC &&
1080                                 session->cipher.mode == GCM))
1081                         job->auth_tag_output = op->sym->aead.digest.data;
1082                 else
1083                         job->auth_tag_output = op->sym->auth.digest.data;
1084
1085                 if (session->auth.req_digest_len != session->auth.gen_digest_len) {
1086                         job->auth_tag_output = qp->temp_digests[*digest_idx];
1087                         *digest_idx = (*digest_idx + 1) % MAX_JOBS;
1088                 }
1089         }
1090         /*
1091          * Multi-buffer library current only support returning a truncated
1092          * digest length as specified in the relevant IPsec RFCs
1093          */
1094
1095         /* Set digest length */
1096         job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len;
1097
1098         /* Set IV parameters */
1099         job->iv_len_in_bytes = session->iv.length;
1100
1101         /* Data Parameters */
1102         job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
1103         job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset);
1104
1105         switch (job->hash_alg) {
1106         case AES_CCM:
1107                 job->cipher_start_src_offset_in_bytes =
1108                                 op->sym->aead.data.offset;
1109                 job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
1110                 job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset;
1111                 job->msg_len_to_hash_in_bytes = op->sym->aead.data.length;
1112
1113                 job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1114                         session->iv.offset + 1);
1115                 break;
1116
1117         case AES_GMAC:
1118                 if (session->cipher.mode == GCM) {
1119                         job->cipher_start_src_offset_in_bytes =
1120                                         op->sym->aead.data.offset;
1121                         job->hash_start_src_offset_in_bytes =
1122                                         op->sym->aead.data.offset;
1123                         job->msg_len_to_cipher_in_bytes =
1124                                         op->sym->aead.data.length;
1125                         job->msg_len_to_hash_in_bytes =
1126                                         op->sym->aead.data.length;
1127                 } else {
1128                         job->cipher_start_src_offset_in_bytes =
1129                                         op->sym->auth.data.offset;
1130                         job->hash_start_src_offset_in_bytes =
1131                                         op->sym->auth.data.offset;
1132                         job->msg_len_to_cipher_in_bytes = 0;
1133                         job->msg_len_to_hash_in_bytes = 0;
1134                 }
1135
1136                 job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1137                                 session->iv.offset);
1138                 break;
1139
1140         default:
1141                 job->cipher_start_src_offset_in_bytes =
1142                                 op->sym->cipher.data.offset;
1143                 job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length;
1144
1145                 job->hash_start_src_offset_in_bytes = auth_start_offset(op,
1146                                 session, oop);
1147                 job->msg_len_to_hash_in_bytes = op->sym->auth.data.length;
1148
1149                 job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1150                         session->iv.offset);
1151         }
1152
1153         /* Set user data to be crypto operation data struct */
1154         job->user_data = op;
1155
1156         return 0;
1157 }
1158
1159 static inline void
1160 verify_digest(JOB_AES_HMAC *job, void *digest, uint16_t len, uint8_t *status)
1161 {
1162         /* Verify digest if required */
1163         if (memcmp(job->auth_tag_output, digest, len) != 0)
1164                 *status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1165 }
1166
1167 static inline void
1168 generate_digest(JOB_AES_HMAC *job, struct rte_crypto_op *op,
1169                 struct aesni_mb_session *sess)
1170 {
1171         /* No extra copy needed */
1172         if (likely(sess->auth.req_digest_len == sess->auth.gen_digest_len))
1173                 return;
1174
1175         /*
1176          * This can only happen for HMAC, so only digest
1177          * for authentication algos is required
1178          */
1179         memcpy(op->sym->auth.digest.data, job->auth_tag_output,
1180                         sess->auth.req_digest_len);
1181 }
1182
1183 /**
1184  * Process a completed job and return rte_mbuf which job processed
1185  *
1186  * @param qp            Queue Pair to process
1187  * @param job   JOB_AES_HMAC job to process
1188  *
1189  * @return
1190  * - Returns processed crypto operation.
1191  * - Returns NULL on invalid job
1192  */
1193 static inline struct rte_crypto_op *
1194 post_process_mb_job(struct aesni_mb_qp *qp, JOB_AES_HMAC *job)
1195 {
1196         struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data;
1197         struct aesni_mb_session *sess = get_sym_session_private_data(
1198                                                         op->sym->session,
1199                                                         cryptodev_driver_id);
1200         if (unlikely(sess == NULL)) {
1201                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
1202                 return op;
1203         }
1204
1205         if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) {
1206                 switch (job->status) {
1207                 case STS_COMPLETED:
1208                         op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1209
1210                         if (job->hash_alg == NULL_HASH)
1211                                 break;
1212
1213                         if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1214                                 if (job->hash_alg == AES_CCM ||
1215                                         (job->hash_alg == AES_GMAC &&
1216                                                 sess->cipher.mode == GCM))
1217                                         verify_digest(job,
1218                                                 op->sym->aead.digest.data,
1219                                                 sess->auth.req_digest_len,
1220                                                 &op->status);
1221                                 else
1222                                         verify_digest(job,
1223                                                 op->sym->auth.digest.data,
1224                                                 sess->auth.req_digest_len,
1225                                                 &op->status);
1226                         } else
1227                                 generate_digest(job, op, sess);
1228                         break;
1229                 default:
1230                         op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1231                 }
1232         }
1233
1234         /* Free session if a session-less crypto op */
1235         if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
1236                 memset(sess, 0, sizeof(struct aesni_mb_session));
1237                 memset(op->sym->session, 0,
1238                         rte_cryptodev_sym_get_existing_header_session_size(
1239                                 op->sym->session));
1240                 rte_mempool_put(qp->sess_mp_priv, sess);
1241                 rte_mempool_put(qp->sess_mp, op->sym->session);
1242                 op->sym->session = NULL;
1243         }
1244
1245         return op;
1246 }
1247
1248 static inline void
1249 post_process_mb_sync_job(JOB_AES_HMAC *job)
1250 {
1251         uint32_t *st;
1252
1253         st = job->user_data;
1254         st[0] = (job->status == STS_COMPLETED) ? 0 : EBADMSG;
1255 }
1256
1257 /**
1258  * Process a completed JOB_AES_HMAC job and keep processing jobs until
1259  * get_completed_job return NULL
1260  *
1261  * @param qp            Queue Pair to process
1262  * @param job           JOB_AES_HMAC job
1263  *
1264  * @return
1265  * - Number of processed jobs
1266  */
1267 static unsigned
1268 handle_completed_jobs(struct aesni_mb_qp *qp, JOB_AES_HMAC *job,
1269                 struct rte_crypto_op **ops, uint16_t nb_ops)
1270 {
1271         struct rte_crypto_op *op = NULL;
1272         unsigned processed_jobs = 0;
1273
1274         while (job != NULL) {
1275                 op = post_process_mb_job(qp, job);
1276
1277                 if (op) {
1278                         ops[processed_jobs++] = op;
1279                         qp->stats.dequeued_count++;
1280                 } else {
1281                         qp->stats.dequeue_err_count++;
1282                         break;
1283                 }
1284                 if (processed_jobs == nb_ops)
1285                         break;
1286
1287                 job = IMB_GET_COMPLETED_JOB(qp->mb_mgr);
1288         }
1289
1290         return processed_jobs;
1291 }
1292
1293 static inline uint32_t
1294 handle_completed_sync_jobs(JOB_AES_HMAC *job, MB_MGR *mb_mgr)
1295 {
1296         uint32_t i;
1297
1298         for (i = 0; job != NULL; i++, job = IMB_GET_COMPLETED_JOB(mb_mgr))
1299                 post_process_mb_sync_job(job);
1300
1301         return i;
1302 }
1303
1304 static inline uint32_t
1305 flush_mb_sync_mgr(MB_MGR *mb_mgr)
1306 {
1307         JOB_AES_HMAC *job;
1308
1309         job = IMB_FLUSH_JOB(mb_mgr);
1310         return handle_completed_sync_jobs(job, mb_mgr);
1311 }
1312
1313 static inline uint16_t
1314 flush_mb_mgr(struct aesni_mb_qp *qp, struct rte_crypto_op **ops,
1315                 uint16_t nb_ops)
1316 {
1317         int processed_ops = 0;
1318
1319         /* Flush the remaining jobs */
1320         JOB_AES_HMAC *job = IMB_FLUSH_JOB(qp->mb_mgr);
1321
1322         if (job)
1323                 processed_ops += handle_completed_jobs(qp, job,
1324                                 &ops[processed_ops], nb_ops - processed_ops);
1325
1326         return processed_ops;
1327 }
1328
1329 static inline JOB_AES_HMAC *
1330 set_job_null_op(JOB_AES_HMAC *job, struct rte_crypto_op *op)
1331 {
1332         job->chain_order = HASH_CIPHER;
1333         job->cipher_mode = NULL_CIPHER;
1334         job->hash_alg = NULL_HASH;
1335         job->cipher_direction = DECRYPT;
1336
1337         /* Set user data to be crypto operation data struct */
1338         job->user_data = op;
1339
1340         return job;
1341 }
1342
1343 static uint16_t
1344 aesni_mb_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
1345                 uint16_t nb_ops)
1346 {
1347         struct aesni_mb_qp *qp = queue_pair;
1348
1349         struct rte_crypto_op *op;
1350         JOB_AES_HMAC *job;
1351
1352         int retval, processed_jobs = 0;
1353
1354         if (unlikely(nb_ops == 0))
1355                 return 0;
1356
1357         uint8_t digest_idx = qp->digest_idx;
1358         do {
1359                 /* Get next free mb job struct from mb manager */
1360                 job = IMB_GET_NEXT_JOB(qp->mb_mgr);
1361                 if (unlikely(job == NULL)) {
1362                         /* if no free mb job structs we need to flush mb_mgr */
1363                         processed_jobs += flush_mb_mgr(qp,
1364                                         &ops[processed_jobs],
1365                                         nb_ops - processed_jobs);
1366
1367                         if (nb_ops == processed_jobs)
1368                                 break;
1369
1370                         job = IMB_GET_NEXT_JOB(qp->mb_mgr);
1371                 }
1372
1373                 /*
1374                  * Get next operation to process from ingress queue.
1375                  * There is no need to return the job to the MB_MGR
1376                  * if there are no more operations to process, since the MB_MGR
1377                  * can use that pointer again in next get_next calls.
1378                  */
1379                 retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op);
1380                 if (retval < 0)
1381                         break;
1382
1383                 retval = set_mb_job_params(job, qp, op, &digest_idx);
1384                 if (unlikely(retval != 0)) {
1385                         qp->stats.dequeue_err_count++;
1386                         set_job_null_op(job, op);
1387                 }
1388
1389                 /* Submit job to multi-buffer for processing */
1390 #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG
1391                 job = IMB_SUBMIT_JOB(qp->mb_mgr);
1392 #else
1393                 job = IMB_SUBMIT_JOB_NOCHECK(qp->mb_mgr);
1394 #endif
1395                 /*
1396                  * If submit returns a processed job then handle it,
1397                  * before submitting subsequent jobs
1398                  */
1399                 if (job)
1400                         processed_jobs += handle_completed_jobs(qp, job,
1401                                         &ops[processed_jobs],
1402                                         nb_ops - processed_jobs);
1403
1404         } while (processed_jobs < nb_ops);
1405
1406         qp->digest_idx = digest_idx;
1407
1408         if (processed_jobs < 1)
1409                 processed_jobs += flush_mb_mgr(qp,
1410                                 &ops[processed_jobs],
1411                                 nb_ops - processed_jobs);
1412
1413         return processed_jobs;
1414 }
1415
1416 static MB_MGR *
1417 alloc_init_mb_mgr(enum aesni_mb_vector_mode vector_mode)
1418 {
1419         MB_MGR *mb_mgr = alloc_mb_mgr(0);
1420         if (mb_mgr == NULL)
1421                 return NULL;
1422
1423         switch (vector_mode) {
1424         case RTE_AESNI_MB_SSE:
1425                 init_mb_mgr_sse(mb_mgr);
1426                 break;
1427         case RTE_AESNI_MB_AVX:
1428                 init_mb_mgr_avx(mb_mgr);
1429                 break;
1430         case RTE_AESNI_MB_AVX2:
1431                 init_mb_mgr_avx2(mb_mgr);
1432                 break;
1433         case RTE_AESNI_MB_AVX512:
1434                 init_mb_mgr_avx512(mb_mgr);
1435                 break;
1436         default:
1437                 AESNI_MB_LOG(ERR, "Unsupported vector mode %u\n", vector_mode);
1438                 free_mb_mgr(mb_mgr);
1439                 return NULL;
1440         }
1441
1442         return mb_mgr;
1443 }
1444
1445 static inline void
1446 aesni_mb_fill_error_code(struct rte_crypto_sym_vec *vec, int32_t err)
1447 {
1448         uint32_t i;
1449
1450         for (i = 0; i != vec->num; ++i)
1451                 vec->status[i] = err;
1452 }
1453
1454 static inline int
1455 check_crypto_sgl(union rte_crypto_sym_ofs so, const struct rte_crypto_sgl *sgl)
1456 {
1457         /* no multi-seg support with current AESNI-MB PMD */
1458         if (sgl->num != 1)
1459                 return ENOTSUP;
1460         else if (so.ofs.cipher.head + so.ofs.cipher.tail > sgl->vec[0].len)
1461                 return EINVAL;
1462         return 0;
1463 }
1464
1465 static inline JOB_AES_HMAC *
1466 submit_sync_job(MB_MGR *mb_mgr)
1467 {
1468 #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG
1469         return IMB_SUBMIT_JOB(mb_mgr);
1470 #else
1471         return IMB_SUBMIT_JOB_NOCHECK(mb_mgr);
1472 #endif
1473 }
1474
1475 static inline uint32_t
1476 generate_sync_dgst(struct rte_crypto_sym_vec *vec,
1477         const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len)
1478 {
1479         uint32_t i, k;
1480
1481         for (i = 0, k = 0; i != vec->num; i++) {
1482                 if (vec->status[i] == 0) {
1483                         memcpy(vec->digest[i], dgst[i], len);
1484                         k++;
1485                 }
1486         }
1487
1488         return k;
1489 }
1490
1491 static inline uint32_t
1492 verify_sync_dgst(struct rte_crypto_sym_vec *vec,
1493         const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len)
1494 {
1495         uint32_t i, k;
1496
1497         for (i = 0, k = 0; i != vec->num; i++) {
1498                 if (vec->status[i] == 0) {
1499                         if (memcmp(vec->digest[i], dgst[i], len) != 0)
1500                                 vec->status[i] = EBADMSG;
1501                         else
1502                                 k++;
1503                 }
1504         }
1505
1506         return k;
1507 }
1508
1509 uint32_t
1510 aesni_mb_cpu_crypto_process_bulk(struct rte_cryptodev *dev,
1511         struct rte_cryptodev_sym_session *sess, union rte_crypto_sym_ofs sofs,
1512         struct rte_crypto_sym_vec *vec)
1513 {
1514         int32_t ret;
1515         uint32_t i, j, k, len;
1516         void *buf;
1517         JOB_AES_HMAC *job;
1518         MB_MGR *mb_mgr;
1519         struct aesni_mb_private *priv;
1520         struct aesni_mb_session *s;
1521         uint8_t tmp_dgst[vec->num][DIGEST_LENGTH_MAX];
1522
1523         s = get_sym_session_private_data(sess, dev->driver_id);
1524         if (s == NULL) {
1525                 aesni_mb_fill_error_code(vec, EINVAL);
1526                 return 0;
1527         }
1528
1529         /* get per-thread MB MGR, create one if needed */
1530         mb_mgr = RTE_PER_LCORE(sync_mb_mgr);
1531         if (mb_mgr == NULL) {
1532
1533                 priv = dev->data->dev_private;
1534                 mb_mgr = alloc_init_mb_mgr(priv->vector_mode);
1535                 if (mb_mgr == NULL) {
1536                         aesni_mb_fill_error_code(vec, ENOMEM);
1537                         return 0;
1538                 }
1539                 RTE_PER_LCORE(sync_mb_mgr) = mb_mgr;
1540         }
1541
1542         for (i = 0, j = 0, k = 0; i != vec->num; i++) {
1543
1544
1545                 ret = check_crypto_sgl(sofs, vec->sgl + i);
1546                 if (ret != 0) {
1547                         vec->status[i] = ret;
1548                         continue;
1549                 }
1550
1551                 buf = vec->sgl[i].vec[0].base;
1552                 len = vec->sgl[i].vec[0].len;
1553
1554                 job = IMB_GET_NEXT_JOB(mb_mgr);
1555                 if (job == NULL) {
1556                         k += flush_mb_sync_mgr(mb_mgr);
1557                         job = IMB_GET_NEXT_JOB(mb_mgr);
1558                         RTE_ASSERT(job != NULL);
1559                 }
1560
1561                 /* Submit job for processing */
1562                 set_cpu_mb_job_params(job, s, sofs, buf, len,
1563                         vec->iv[i], vec->aad[i], tmp_dgst[i],
1564                         &vec->status[i]);
1565                 job = submit_sync_job(mb_mgr);
1566                 j++;
1567
1568                 /* handle completed jobs */
1569                 k += handle_completed_sync_jobs(job, mb_mgr);
1570         }
1571
1572         /* flush remaining jobs */
1573         while (k != j)
1574                 k += flush_mb_sync_mgr(mb_mgr);
1575
1576         /* finish processing for successful jobs: check/update digest */
1577         if (k != 0) {
1578                 if (s->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY)
1579                         k = verify_sync_dgst(vec,
1580                                 (const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst,
1581                                 s->auth.req_digest_len);
1582                 else
1583                         k = generate_sync_dgst(vec,
1584                                 (const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst,
1585                                 s->auth.req_digest_len);
1586         }
1587
1588         return k;
1589 }
1590
1591 static int cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev);
1592
1593 static uint64_t
1594 vec_mode_to_flags(enum aesni_mb_vector_mode mode)
1595 {
1596         switch (mode) {
1597         case RTE_AESNI_MB_SSE:
1598                 return RTE_CRYPTODEV_FF_CPU_SSE;
1599         case RTE_AESNI_MB_AVX:
1600                 return RTE_CRYPTODEV_FF_CPU_AVX;
1601         case RTE_AESNI_MB_AVX2:
1602                 return RTE_CRYPTODEV_FF_CPU_AVX2;
1603         case RTE_AESNI_MB_AVX512:
1604                 return RTE_CRYPTODEV_FF_CPU_AVX512;
1605         default:
1606                 AESNI_MB_LOG(ERR, "Unsupported vector mode %u\n", mode);
1607                 return 0;
1608         }
1609 }
1610
1611 static int
1612 cryptodev_aesni_mb_create(const char *name,
1613                         struct rte_vdev_device *vdev,
1614                         struct rte_cryptodev_pmd_init_params *init_params)
1615 {
1616         struct rte_cryptodev *dev;
1617         struct aesni_mb_private *internals;
1618         enum aesni_mb_vector_mode vector_mode;
1619         MB_MGR *mb_mgr;
1620
1621         dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
1622         if (dev == NULL) {
1623                 AESNI_MB_LOG(ERR, "failed to create cryptodev vdev");
1624                 return -ENODEV;
1625         }
1626
1627         /* Check CPU for supported vector instruction set */
1628         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
1629                 vector_mode = RTE_AESNI_MB_AVX512;
1630         else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
1631                 vector_mode = RTE_AESNI_MB_AVX2;
1632         else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
1633                 vector_mode = RTE_AESNI_MB_AVX;
1634         else
1635                 vector_mode = RTE_AESNI_MB_SSE;
1636
1637         dev->driver_id = cryptodev_driver_id;
1638         dev->dev_ops = rte_aesni_mb_pmd_ops;
1639
1640         /* register rx/tx burst functions for data path */
1641         dev->dequeue_burst = aesni_mb_pmd_dequeue_burst;
1642         dev->enqueue_burst = aesni_mb_pmd_enqueue_burst;
1643
1644         dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
1645                         RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
1646                         RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
1647                         RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO |
1648                         RTE_CRYPTODEV_FF_SYM_SESSIONLESS;
1649
1650         /* Check CPU for support for AES instruction set */
1651         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES))
1652                 dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AESNI;
1653         else
1654                 AESNI_MB_LOG(WARNING, "AES instructions not supported by CPU");
1655
1656         dev->feature_flags |= vec_mode_to_flags(vector_mode);
1657
1658         mb_mgr = alloc_init_mb_mgr(vector_mode);
1659         if (mb_mgr == NULL) {
1660                 rte_cryptodev_pmd_destroy(dev);
1661                 return -ENOMEM;
1662         }
1663
1664         /* Set vector instructions mode supported */
1665         internals = dev->data->dev_private;
1666
1667         internals->vector_mode = vector_mode;
1668         internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
1669         internals->mb_mgr = mb_mgr;
1670
1671         AESNI_MB_LOG(INFO, "IPSec Multi-buffer library version used: %s\n",
1672                         imb_get_version_str());
1673         return 0;
1674 }
1675
1676 static int
1677 cryptodev_aesni_mb_probe(struct rte_vdev_device *vdev)
1678 {
1679         struct rte_cryptodev_pmd_init_params init_params = {
1680                 "",
1681                 sizeof(struct aesni_mb_private),
1682                 rte_socket_id(),
1683                 RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
1684         };
1685         const char *name, *args;
1686         int retval;
1687
1688         name = rte_vdev_device_name(vdev);
1689         if (name == NULL)
1690                 return -EINVAL;
1691
1692         args = rte_vdev_device_args(vdev);
1693
1694         retval = rte_cryptodev_pmd_parse_input_args(&init_params, args);
1695         if (retval) {
1696                 AESNI_MB_LOG(ERR, "Failed to parse initialisation arguments[%s]",
1697                                 args);
1698                 return -EINVAL;
1699         }
1700
1701         return cryptodev_aesni_mb_create(name, vdev, &init_params);
1702 }
1703
1704 static int
1705 cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev)
1706 {
1707         struct rte_cryptodev *cryptodev;
1708         struct aesni_mb_private *internals;
1709         const char *name;
1710
1711         name = rte_vdev_device_name(vdev);
1712         if (name == NULL)
1713                 return -EINVAL;
1714
1715         cryptodev = rte_cryptodev_pmd_get_named_dev(name);
1716         if (cryptodev == NULL)
1717                 return -ENODEV;
1718
1719         internals = cryptodev->data->dev_private;
1720
1721         free_mb_mgr(internals->mb_mgr);
1722         if (RTE_PER_LCORE(sync_mb_mgr)) {
1723                 free_mb_mgr(RTE_PER_LCORE(sync_mb_mgr));
1724                 RTE_PER_LCORE(sync_mb_mgr) = NULL;
1725         }
1726
1727         return rte_cryptodev_pmd_destroy(cryptodev);
1728 }
1729
1730 static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = {
1731         .probe = cryptodev_aesni_mb_probe,
1732         .remove = cryptodev_aesni_mb_remove
1733 };
1734
1735 static struct cryptodev_driver aesni_mb_crypto_drv;
1736
1737 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd_drv);
1738 RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd);
1739 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD,
1740         "max_nb_queue_pairs=<int> "
1741         "socket_id=<int>");
1742 RTE_PMD_REGISTER_CRYPTO_DRIVER(aesni_mb_crypto_drv,
1743                 cryptodev_aesni_mb_pmd_drv.driver,
1744                 cryptodev_driver_id);
1745 RTE_LOG_REGISTER(aesni_mb_logtype_driver, pmd.crypto.aesni_mb, NOTICE);