crypto/octeontx: move device specific code to driver
[dpdk.git] / drivers / crypto / octeontx / otx_cryptodev_hw_access.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 #ifndef _OTX_CRYPTODEV_HW_ACCESS_H_
5 #define _OTX_CRYPTODEV_HW_ACCESS_H_
6
7 #include <stdbool.h>
8
9 #include <rte_branch_prediction.h>
10 #include <rte_cycles.h>
11 #include <rte_io.h>
12 #include <rte_memory.h>
13 #include <rte_prefetch.h>
14
15 #include "cpt_common.h"
16 #include "cpt_hw_types.h"
17 #include "cpt_mcode_defines.h"
18 #include "cpt_pmd_logs.h"
19
20 #define CPT_INTR_POLL_INTERVAL_MS       (50)
21
22 /* Default command queue length */
23 #define DEFAULT_CMD_QCHUNKS             2
24 #define DEFAULT_CMD_QCHUNK_SIZE         1023
25 #define DEFAULT_CMD_QLEN \
26                 (DEFAULT_CMD_QCHUNK_SIZE * DEFAULT_CMD_QCHUNKS)
27
28 #define CPT_CSR_REG_BASE(cpt)           ((cpt)->reg_base)
29
30 /* Read hw register */
31 #define CPT_READ_CSR(__hw_addr, __offset) \
32         rte_read64_relaxed((uint8_t *)__hw_addr + __offset)
33
34 /* Write hw register */
35 #define CPT_WRITE_CSR(__hw_addr, __offset, __val) \
36         rte_write64_relaxed((__val), ((uint8_t *)__hw_addr + __offset))
37
38 /* cpt instance */
39 struct cpt_instance {
40         uint32_t queue_id;
41         uintptr_t rsvd;
42         struct rte_mempool *sess_mp;
43         struct rte_mempool *sess_mp_priv;
44 };
45
46 struct command_chunk {
47         /** 128-byte aligned real_vaddr */
48         uint8_t *head;
49         /** 128-byte aligned real_dma_addr */
50         phys_addr_t dma_addr;
51 };
52
53 /**
54  * Command queue structure
55  */
56 struct command_queue {
57         /** Command queue host write idx */
58         uint32_t idx;
59         /** Command queue chunk */
60         uint32_t cchunk;
61         /** Command queue head; instructions are inserted here */
62         uint8_t *qhead;
63         /** Command chunk list head */
64         struct command_chunk chead[DEFAULT_CMD_QCHUNKS];
65 };
66
67 /**
68  * CPT VF device structure
69  */
70 struct cpt_vf {
71         /** CPT instance */
72         struct cpt_instance instance;
73         /** Register start address */
74         uint8_t *reg_base;
75         /** Command queue information */
76         struct command_queue cqueue;
77         /** Pending queue information */
78         struct pending_queue pqueue;
79         /** Meta information per vf */
80         struct cptvf_meta_info meta_info;
81
82         /** Below fields are accessed only in control path */
83
84         /** Env specific pdev representing the pci dev */
85         void *pdev;
86         /** Calculated queue size */
87         uint32_t qsize;
88         /** Device index (0...CPT_MAX_VQ_NUM)*/
89         uint8_t  vfid;
90         /** VF type of cpt_vf_type_t (SE_TYPE(2) or AE_TYPE(1) */
91         uint8_t  vftype;
92         /** VF group (0 - 8) */
93         uint8_t  vfgrp;
94         /** Operating node: Bits (46:44) in BAR0 address */
95         uint8_t  node;
96
97         /** VF-PF mailbox communication */
98
99         /** Flag if acked */
100         bool pf_acked;
101         /** Flag if not acked */
102         bool pf_nacked;
103
104         /** Device name */
105         char dev_name[32];
106 } __rte_cache_aligned;
107
108 /*
109  * CPT Registers map for 81xx
110  */
111
112 /* VF registers */
113 #define CPTX_VQX_CTL(a, b)              (0x0000100ll + 0x1000000000ll * \
114                                          ((a) & 0x0) + 0x100000ll * (b))
115 #define CPTX_VQX_SADDR(a, b)            (0x0000200ll + 0x1000000000ll * \
116                                          ((a) & 0x0) + 0x100000ll * (b))
117 #define CPTX_VQX_DONE_WAIT(a, b)        (0x0000400ll + 0x1000000000ll * \
118                                          ((a) & 0x0) + 0x100000ll * (b))
119 #define CPTX_VQX_INPROG(a, b)           (0x0000410ll + 0x1000000000ll * \
120                                          ((a) & 0x0) + 0x100000ll * (b))
121 #define CPTX_VQX_DONE(a, b)             (0x0000420ll + 0x1000000000ll * \
122                                          ((a) & 0x1) + 0x100000ll * (b))
123 #define CPTX_VQX_DONE_ACK(a, b)         (0x0000440ll + 0x1000000000ll * \
124                                          ((a) & 0x1) + 0x100000ll * (b))
125 #define CPTX_VQX_DONE_INT_W1S(a, b)     (0x0000460ll + 0x1000000000ll * \
126                                          ((a) & 0x1) + 0x100000ll * (b))
127 #define CPTX_VQX_DONE_INT_W1C(a, b)     (0x0000468ll + 0x1000000000ll * \
128                                          ((a) & 0x1) + 0x100000ll * (b))
129 #define CPTX_VQX_DONE_ENA_W1S(a, b)     (0x0000470ll + 0x1000000000ll * \
130                                          ((a) & 0x1) + 0x100000ll * (b))
131 #define CPTX_VQX_DONE_ENA_W1C(a, b)     (0x0000478ll + 0x1000000000ll * \
132                                          ((a) & 0x1) + 0x100000ll * (b))
133 #define CPTX_VQX_MISC_INT(a, b)         (0x0000500ll + 0x1000000000ll * \
134                                          ((a) & 0x1) + 0x100000ll * (b))
135 #define CPTX_VQX_MISC_INT_W1S(a, b)     (0x0000508ll + 0x1000000000ll * \
136                                          ((a) & 0x1) + 0x100000ll * (b))
137 #define CPTX_VQX_MISC_ENA_W1S(a, b)     (0x0000510ll + 0x1000000000ll * \
138                                          ((a) & 0x1) + 0x100000ll * (b))
139 #define CPTX_VQX_MISC_ENA_W1C(a, b)     (0x0000518ll + 0x1000000000ll * \
140                                          ((a) & 0x1) + 0x100000ll * (b))
141 #define CPTX_VQX_DOORBELL(a, b)         (0x0000600ll + 0x1000000000ll * \
142                                          ((a) & 0x1) + 0x100000ll * (b))
143 #define CPTX_VFX_PF_MBOXX(a, b, c)      (0x0001000ll + 0x1000000000ll * \
144                                          ((a) & 0x1) + 0x100000ll * (b) + \
145                                          8ll * ((c) & 0x1))
146
147 /* VF HAL functions */
148
149 void
150 otx_cpt_poll_misc(struct cpt_vf *cptvf);
151
152 int
153 otx_cpt_hw_init(struct cpt_vf *cptvf, void *pdev, void *reg_base, char *name);
154
155 int
156 otx_cpt_deinit_device(void *dev);
157
158 int
159 otx_cpt_get_resource(void *dev, uint8_t group, struct cpt_instance **instance);
160
161 int
162 otx_cpt_put_resource(struct cpt_instance *instance);
163
164 int
165 otx_cpt_start_device(void *cptvf);
166
167 void
168 otx_cpt_stop_device(void *cptvf);
169
170 /* Write to VQX_DOORBELL register
171  */
172 static __rte_always_inline void
173 otx_cpt_write_vq_doorbell(struct cpt_vf *cptvf, uint32_t val)
174 {
175         cptx_vqx_doorbell_t vqx_dbell;
176
177         vqx_dbell.u = 0;
178         vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
179         CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
180                       CPTX_VQX_DOORBELL(0, 0), vqx_dbell.u);
181 }
182
183 static __rte_always_inline uint32_t
184 otx_cpt_read_vq_doorbell(struct cpt_vf *cptvf)
185 {
186         cptx_vqx_doorbell_t vqx_dbell;
187
188         vqx_dbell.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
189                                    CPTX_VQX_DOORBELL(0, 0));
190         return vqx_dbell.s.dbell_cnt;
191 }
192
193 static __rte_always_inline void
194 otx_cpt_ring_dbell(struct cpt_instance *instance, uint16_t count)
195 {
196         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
197         /* Memory barrier to flush pending writes */
198         rte_smp_wmb();
199         otx_cpt_write_vq_doorbell(cptvf, count);
200 }
201
202 static __rte_always_inline void *
203 get_cpt_inst(struct command_queue *cqueue)
204 {
205         CPT_LOG_DP_DEBUG("CPT queue idx %u\n", cqueue->idx);
206         return &cqueue->qhead[cqueue->idx * CPT_INST_SIZE];
207 }
208
209 static __rte_always_inline void
210 fill_cpt_inst(struct cpt_instance *instance, void *req)
211 {
212         struct command_queue *cqueue;
213         cpt_inst_s_t *cpt_ist_p;
214         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
215         struct cpt_request_info *user_req = (struct cpt_request_info *)req;
216         cqueue = &cptvf->cqueue;
217         cpt_ist_p = get_cpt_inst(cqueue);
218         rte_prefetch_non_temporal(cpt_ist_p);
219
220         /* EI0, EI1, EI2, EI3 are already prepared */
221         /* HW W0 */
222         cpt_ist_p->u[0] = 0;
223         /* HW W1 */
224         cpt_ist_p->s8x.res_addr = user_req->comp_baddr;
225         /* HW W2 */
226         cpt_ist_p->u[2] = 0;
227         /* HW W3 */
228         cpt_ist_p->s8x.wq_ptr = 0;
229
230         /* MC EI0 */
231         cpt_ist_p->s8x.ei0 = user_req->ist.ei0;
232         /* MC EI1 */
233         cpt_ist_p->s8x.ei1 = user_req->ist.ei1;
234         /* MC EI2 */
235         cpt_ist_p->s8x.ei2 = user_req->ist.ei2;
236         /* MC EI3 */
237         cpt_ist_p->s8x.ei3 = user_req->ist.ei3;
238 }
239
240 static __rte_always_inline void
241 mark_cpt_inst(struct cpt_instance *instance)
242 {
243         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
244         struct command_queue *queue = &cptvf->cqueue;
245         if (unlikely(++queue->idx >= DEFAULT_CMD_QCHUNK_SIZE)) {
246                 uint32_t cchunk = queue->cchunk;
247                 MOD_INC(cchunk, DEFAULT_CMD_QCHUNKS);
248                 queue->qhead = queue->chead[cchunk].head;
249                 queue->idx = 0;
250                 queue->cchunk = cchunk;
251         }
252 }
253
254 static __rte_always_inline uint8_t
255 check_nb_command_id(struct cpt_request_info *user_req,
256                 struct cpt_instance *instance)
257 {
258         uint8_t ret = ERR_REQ_PENDING;
259         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
260         volatile cpt_res_s_t *cptres;
261
262         cptres = (volatile cpt_res_s_t *)user_req->completion_addr;
263
264         if (unlikely(cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE)) {
265                 /*
266                  * Wait for some time for this command to get completed
267                  * before timing out
268                  */
269                 if (rte_get_timer_cycles() < user_req->time_out)
270                         return ret;
271                 /*
272                  * TODO: See if alternate caddr can be used to not loop
273                  * longer than needed.
274                  */
275                 if ((cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE) &&
276                     (user_req->extra_time < TIME_IN_RESET_COUNT)) {
277                         user_req->extra_time++;
278                         return ret;
279                 }
280
281                 if (cptres->s8x.compcode != CPT_8X_COMP_E_NOTDONE)
282                         goto complete;
283
284                 ret = ERR_REQ_TIMEOUT;
285                 CPT_LOG_DP_ERR("Request %p timedout", user_req);
286                 otx_cpt_poll_misc(cptvf);
287                 goto exit;
288         }
289
290 complete:
291         if (likely(cptres->s8x.compcode == CPT_8X_COMP_E_GOOD)) {
292                 ret = 0; /* success */
293                 if (unlikely((uint8_t)*user_req->alternate_caddr)) {
294                         ret = (uint8_t)*user_req->alternate_caddr;
295                         CPT_LOG_DP_ERR("Request %p : failed with microcode"
296                                 " error, MC completion code : 0x%x", user_req,
297                                 ret);
298                 }
299                 CPT_LOG_DP_DEBUG("MC status %.8x\n",
300                            *((volatile uint32_t *)user_req->alternate_caddr));
301                 CPT_LOG_DP_DEBUG("HW status %.8x\n",
302                            *((volatile uint32_t *)user_req->completion_addr));
303         } else if ((cptres->s8x.compcode == CPT_8X_COMP_E_SWERR) ||
304                    (cptres->s8x.compcode == CPT_8X_COMP_E_FAULT)) {
305                 ret = (uint8_t)*user_req->alternate_caddr;
306                 if (!ret)
307                         ret = ERR_BAD_ALT_CCODE;
308                 CPT_LOG_DP_DEBUG("Request %p : failed with %s : err code :%x",
309                            user_req,
310                            (cptres->s8x.compcode == CPT_8X_COMP_E_FAULT) ?
311                            "DMA Fault" : "Software error", ret);
312         } else {
313                 CPT_LOG_DP_ERR("Request %p : unexpected completion code %d",
314                            user_req, cptres->s8x.compcode);
315                 ret = (uint8_t)*user_req->alternate_caddr;
316         }
317
318 exit:
319         return ret;
320 }
321
322 #endif /* _OTX_CRYPTODEV_HW_ACCESS_H_ */