cryptodev: expose driver interface as internal
[dpdk.git] / drivers / crypto / octeontx / otx_cryptodev_ops.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_cryptodev.h>
8 #include <cryptodev_pmd.h>
9 #include <rte_eventdev.h>
10 #include <rte_event_crypto_adapter.h>
11 #include <rte_errno.h>
12 #include <rte_malloc.h>
13 #include <rte_mempool.h>
14
15 #include "otx_cryptodev.h"
16 #include "otx_cryptodev_capabilities.h"
17 #include "otx_cryptodev_hw_access.h"
18 #include "otx_cryptodev_mbox.h"
19 #include "otx_cryptodev_ops.h"
20
21 #include "cpt_pmd_logs.h"
22 #include "cpt_pmd_ops_helper.h"
23 #include "cpt_ucode.h"
24 #include "cpt_ucode_asym.h"
25
26 #include "ssovf_worker.h"
27
28 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
29
30 /* Forward declarations */
31
32 static int
33 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
34
35 /* Alarm routines */
36
37 static void
38 otx_cpt_alarm_cb(void *arg)
39 {
40         struct cpt_vf *cptvf = arg;
41         otx_cpt_poll_misc(cptvf);
42         rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
43                           otx_cpt_alarm_cb, cptvf);
44 }
45
46 static int
47 otx_cpt_periodic_alarm_start(void *arg)
48 {
49         return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
50                                  otx_cpt_alarm_cb, arg);
51 }
52
53 static int
54 otx_cpt_periodic_alarm_stop(void *arg)
55 {
56         return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
57 }
58
59 /* PMD ops */
60
61 static int
62 otx_cpt_dev_config(struct rte_cryptodev *dev,
63                    struct rte_cryptodev_config *config __rte_unused)
64 {
65         int ret = 0;
66
67         CPT_PMD_INIT_FUNC_TRACE();
68
69         if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
70                 /* Initialize shared FPM table */
71                 ret = cpt_fpm_init(otx_fpm_iova);
72
73         return ret;
74 }
75
76 static int
77 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
78 {
79         void *cptvf = c_dev->data->dev_private;
80
81         CPT_PMD_INIT_FUNC_TRACE();
82
83         return otx_cpt_start_device(cptvf);
84 }
85
86 static void
87 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
88 {
89         void *cptvf = c_dev->data->dev_private;
90
91         CPT_PMD_INIT_FUNC_TRACE();
92
93         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
94                 cpt_fpm_clear();
95
96         otx_cpt_stop_device(cptvf);
97 }
98
99 static int
100 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
101 {
102         void *cptvf = c_dev->data->dev_private;
103         int i, ret;
104
105         CPT_PMD_INIT_FUNC_TRACE();
106
107         for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
108                 ret = otx_cpt_que_pair_release(c_dev, i);
109                 if (ret)
110                         return ret;
111         }
112
113         otx_cpt_periodic_alarm_stop(cptvf);
114         otx_cpt_deinit_device(cptvf);
115
116         return 0;
117 }
118
119 static void
120 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
121 {
122         CPT_PMD_INIT_FUNC_TRACE();
123         if (info != NULL) {
124                 info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
125                 info->feature_flags = dev->feature_flags;
126                 info->capabilities = otx_get_capabilities(info->feature_flags);
127                 info->sym.max_nb_sessions = 0;
128                 info->driver_id = otx_cryptodev_driver_id;
129                 info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
130                 info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
131         }
132 }
133
134 static int
135 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
136                        uint16_t que_pair_id,
137                        const struct rte_cryptodev_qp_conf *qp_conf,
138                        int socket_id __rte_unused)
139 {
140         struct cpt_instance *instance = NULL;
141         struct rte_pci_device *pci_dev;
142         int ret = -1;
143
144         CPT_PMD_INIT_FUNC_TRACE();
145
146         if (dev->data->queue_pairs[que_pair_id] != NULL) {
147                 ret = otx_cpt_que_pair_release(dev, que_pair_id);
148                 if (ret)
149                         return ret;
150         }
151
152         if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
153                 CPT_LOG_INFO("Number of descriptors too big %d, using default "
154                              "queue length of %d", qp_conf->nb_descriptors,
155                              DEFAULT_CMD_QLEN);
156         }
157
158         pci_dev = RTE_DEV_TO_PCI(dev->device);
159
160         if (pci_dev->mem_resource[0].addr == NULL) {
161                 CPT_LOG_ERR("PCI mem address null");
162                 return -EIO;
163         }
164
165         ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
166         if (ret != 0 || instance == NULL) {
167                 CPT_LOG_ERR("Error getting instance handle from device %s : "
168                             "ret = %d", dev->data->name, ret);
169                 return ret;
170         }
171
172         instance->queue_id = que_pair_id;
173         instance->sess_mp = qp_conf->mp_session;
174         instance->sess_mp_priv = qp_conf->mp_session_private;
175         dev->data->queue_pairs[que_pair_id] = instance;
176
177         return 0;
178 }
179
180 static int
181 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
182 {
183         struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
184         int ret;
185
186         CPT_PMD_INIT_FUNC_TRACE();
187
188         ret = otx_cpt_put_resource(instance);
189         if (ret != 0) {
190                 CPT_LOG_ERR("Error putting instance handle of device %s : "
191                             "ret = %d", dev->data->name, ret);
192                 return ret;
193         }
194
195         dev->data->queue_pairs[que_pair_id] = NULL;
196
197         return 0;
198 }
199
200 static unsigned int
201 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
202 {
203         return cpt_get_session_size();
204 }
205
206 static int
207 sym_xform_verify(struct rte_crypto_sym_xform *xform)
208 {
209         if (xform->next) {
210                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
211                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
212                     xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
213                     (xform->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC ||
214                      xform->next->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC))
215                         return -ENOTSUP;
216
217                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
218                     xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
219                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
220                     (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC ||
221                      xform->next->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC))
222                         return -ENOTSUP;
223
224                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
225                     xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
226                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
227                     xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
228                         return -ENOTSUP;
229
230                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
231                     xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
232                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
233                     xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
234                         return -ENOTSUP;
235
236         } else {
237                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
238                     xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
239                     xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
240                         return -ENOTSUP;
241         }
242         return 0;
243 }
244
245 static int
246 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
247                       struct rte_cryptodev_sym_session *sess,
248                       struct rte_mempool *pool)
249 {
250         struct rte_crypto_sym_xform *temp_xform = xform;
251         struct cpt_sess_misc *misc;
252         vq_cmd_word3_t vq_cmd_w3;
253         void *priv;
254         int ret;
255
256         ret = sym_xform_verify(xform);
257         if (unlikely(ret))
258                 return ret;
259
260         if (unlikely(rte_mempool_get(pool, &priv))) {
261                 CPT_LOG_ERR("Could not allocate session private data");
262                 return -ENOMEM;
263         }
264
265         memset(priv, 0, sizeof(struct cpt_sess_misc) +
266                         offsetof(struct cpt_ctx, mc_ctx));
267
268         misc = priv;
269
270         for ( ; xform != NULL; xform = xform->next) {
271                 switch (xform->type) {
272                 case RTE_CRYPTO_SYM_XFORM_AEAD:
273                         ret = fill_sess_aead(xform, misc);
274                         break;
275                 case RTE_CRYPTO_SYM_XFORM_CIPHER:
276                         ret = fill_sess_cipher(xform, misc);
277                         break;
278                 case RTE_CRYPTO_SYM_XFORM_AUTH:
279                         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
280                                 ret = fill_sess_gmac(xform, misc);
281                         else
282                                 ret = fill_sess_auth(xform, misc);
283                         break;
284                 default:
285                         ret = -1;
286                 }
287
288                 if (ret)
289                         goto priv_put;
290         }
291
292         if ((GET_SESS_FC_TYPE(misc) == HASH_HMAC) &&
293                         cpt_mac_len_verify(&temp_xform->auth)) {
294                 CPT_LOG_ERR("MAC length is not supported");
295                 struct cpt_ctx *ctx = SESS_PRIV(misc);
296                 if (ctx->auth_key != NULL) {
297                         rte_free(ctx->auth_key);
298                         ctx->auth_key = NULL;
299                 }
300                 ret = -ENOTSUP;
301                 goto priv_put;
302         }
303
304         set_sym_session_private_data(sess, driver_id, priv);
305
306         misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
307                              sizeof(struct cpt_sess_misc);
308
309         vq_cmd_w3.u64 = 0;
310         vq_cmd_w3.s.grp = 0;
311         vq_cmd_w3.s.cptr = misc->ctx_dma_addr + offsetof(struct cpt_ctx,
312                                                          mc_ctx);
313
314         misc->cpt_inst_w7 = vq_cmd_w3.u64;
315
316         return 0;
317
318 priv_put:
319         if (priv)
320                 rte_mempool_put(pool, priv);
321         return -ENOTSUP;
322 }
323
324 static void
325 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
326 {
327         void *priv = get_sym_session_private_data(sess, driver_id);
328         struct cpt_sess_misc *misc;
329         struct rte_mempool *pool;
330         struct cpt_ctx *ctx;
331
332         if (priv == NULL)
333                 return;
334
335         misc = priv;
336         ctx = SESS_PRIV(misc);
337
338         if (ctx->auth_key != NULL)
339                 rte_free(ctx->auth_key);
340
341         memset(priv, 0, cpt_get_session_size());
342
343         pool = rte_mempool_from_obj(priv);
344
345         set_sym_session_private_data(sess, driver_id, NULL);
346
347         rte_mempool_put(pool, priv);
348 }
349
350 static int
351 otx_cpt_session_cfg(struct rte_cryptodev *dev,
352                     struct rte_crypto_sym_xform *xform,
353                     struct rte_cryptodev_sym_session *sess,
354                     struct rte_mempool *pool)
355 {
356         CPT_PMD_INIT_FUNC_TRACE();
357
358         return sym_session_configure(dev->driver_id, xform, sess, pool);
359 }
360
361
362 static void
363 otx_cpt_session_clear(struct rte_cryptodev *dev,
364                   struct rte_cryptodev_sym_session *sess)
365 {
366         CPT_PMD_INIT_FUNC_TRACE();
367
368         return sym_session_clear(dev->driver_id, sess);
369 }
370
371 static unsigned int
372 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
373 {
374         return sizeof(struct cpt_asym_sess_misc);
375 }
376
377 static int
378 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev,
379                          struct rte_crypto_asym_xform *xform __rte_unused,
380                          struct rte_cryptodev_asym_session *sess,
381                          struct rte_mempool *pool)
382 {
383         struct cpt_asym_sess_misc *priv;
384         int ret;
385
386         CPT_PMD_INIT_FUNC_TRACE();
387
388         if (rte_mempool_get(pool, (void **)&priv)) {
389                 CPT_LOG_ERR("Could not allocate session private data");
390                 return -ENOMEM;
391         }
392
393         memset(priv, 0, sizeof(struct cpt_asym_sess_misc));
394
395         ret = cpt_fill_asym_session_parameters(priv, xform);
396         if (ret) {
397                 CPT_LOG_ERR("Could not configure session parameters");
398
399                 /* Return session to mempool */
400                 rte_mempool_put(pool, priv);
401                 return ret;
402         }
403
404         priv->cpt_inst_w7 = 0;
405
406         set_asym_session_private_data(sess, dev->driver_id, priv);
407         return 0;
408 }
409
410 static void
411 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
412                            struct rte_cryptodev_asym_session *sess)
413 {
414         struct cpt_asym_sess_misc *priv;
415         struct rte_mempool *sess_mp;
416
417         CPT_PMD_INIT_FUNC_TRACE();
418
419         priv = get_asym_session_private_data(sess, dev->driver_id);
420
421         if (priv == NULL)
422                 return;
423
424         /* Free resources allocated during session configure */
425         cpt_free_asym_session_parameters(priv);
426         memset(priv, 0, otx_cpt_asym_session_size_get(dev));
427         sess_mp = rte_mempool_from_obj(priv);
428         set_asym_session_private_data(sess, dev->driver_id, NULL);
429         rte_mempool_put(sess_mp, priv);
430 }
431
432 static __rte_always_inline void * __rte_hot
433 otx_cpt_request_enqueue(struct cpt_instance *instance,
434                         struct pending_queue *pqueue,
435                         void *req, uint64_t cpt_inst_w7)
436 {
437         struct cpt_request_info *user_req = (struct cpt_request_info *)req;
438
439         if (unlikely(pqueue->pending_count >= DEFAULT_CMD_QLEN)) {
440                 rte_errno = EAGAIN;
441                 return NULL;
442         }
443
444         fill_cpt_inst(instance, req, cpt_inst_w7);
445
446         CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
447
448         /* Fill time_out cycles */
449         user_req->time_out = rte_get_timer_cycles() +
450                         DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
451         user_req->extra_time = 0;
452
453         /* Default mode of software queue */
454         mark_cpt_inst(instance);
455
456         CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
457                          "op: %p", user_req, user_req->op);
458         return req;
459 }
460
461 static __rte_always_inline void * __rte_hot
462 otx_cpt_enq_single_asym(struct cpt_instance *instance,
463                         struct rte_crypto_op *op,
464                         struct pending_queue *pqueue)
465 {
466         struct cpt_qp_meta_info *minfo = &instance->meta_info;
467         struct rte_crypto_asym_op *asym_op = op->asym;
468         struct asym_op_params params = {0};
469         struct cpt_asym_sess_misc *sess;
470         uintptr_t *cop;
471         void *mdata;
472         void *req;
473         int ret;
474
475         if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
476                 CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
477                 rte_errno = ENOMEM;
478                 return NULL;
479         }
480
481         sess = get_asym_session_private_data(asym_op->session,
482                                              otx_cryptodev_driver_id);
483
484         /* Store phys_addr of the mdata to meta_buf */
485         params.meta_buf = rte_mempool_virt2iova(mdata);
486
487         cop = mdata;
488         cop[0] = (uintptr_t)mdata;
489         cop[1] = (uintptr_t)op;
490         cop[2] = cop[3] = 0ULL;
491
492         params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
493         params.req->op = cop;
494
495         /* Adjust meta_buf by crypto_op data  and request_info struct */
496         params.meta_buf += (4 * sizeof(uintptr_t)) +
497                            sizeof(struct cpt_request_info);
498
499         switch (sess->xfrm_type) {
500         case RTE_CRYPTO_ASYM_XFORM_MODEX:
501                 ret = cpt_modex_prep(&params, &sess->mod_ctx);
502                 if (unlikely(ret))
503                         goto req_fail;
504                 break;
505         case RTE_CRYPTO_ASYM_XFORM_RSA:
506                 ret = cpt_enqueue_rsa_op(op, &params, sess);
507                 if (unlikely(ret))
508                         goto req_fail;
509                 break;
510         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
511                 ret = cpt_enqueue_ecdsa_op(op, &params, sess, otx_fpm_iova);
512                 if (unlikely(ret))
513                         goto req_fail;
514                 break;
515         case RTE_CRYPTO_ASYM_XFORM_ECPM:
516                 ret = cpt_ecpm_prep(&asym_op->ecpm, &params,
517                                     sess->ec_ctx.curveid);
518                 if (unlikely(ret))
519                         goto req_fail;
520                 break;
521
522         default:
523                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
524                 rte_errno = EINVAL;
525                 goto req_fail;
526         }
527
528         req = otx_cpt_request_enqueue(instance, pqueue, params.req,
529                                       sess->cpt_inst_w7);
530         if (unlikely(req == NULL)) {
531                 CPT_LOG_DP_ERR("Could not enqueue crypto req");
532                 goto req_fail;
533         }
534
535         return req;
536
537 req_fail:
538         free_op_meta(mdata, minfo->pool);
539
540         return NULL;
541 }
542
543 static __rte_always_inline void * __rte_hot
544 otx_cpt_enq_single_sym(struct cpt_instance *instance,
545                        struct rte_crypto_op *op,
546                        struct pending_queue *pqueue)
547 {
548         struct cpt_sess_misc *sess;
549         struct rte_crypto_sym_op *sym_op = op->sym;
550         struct cpt_request_info *prep_req;
551         void *mdata = NULL;
552         int ret = 0;
553         void *req;
554         uint64_t cpt_op;
555
556         sess = (struct cpt_sess_misc *)
557                         get_sym_session_private_data(sym_op->session,
558                                                      otx_cryptodev_driver_id);
559
560         cpt_op = sess->cpt_op;
561
562         if (likely(cpt_op & CPT_OP_CIPHER_MASK))
563                 ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
564                                      (void **)&prep_req);
565         else
566                 ret = fill_digest_params(op, sess, &instance->meta_info,
567                                          &mdata, (void **)&prep_req);
568
569         if (unlikely(ret)) {
570                 CPT_LOG_DP_ERR("prep cryto req : op %p, cpt_op 0x%x "
571                                "ret 0x%x", op, (unsigned int)cpt_op, ret);
572                 return NULL;
573         }
574
575         /* Enqueue prepared instruction to h/w */
576         req = otx_cpt_request_enqueue(instance, pqueue, prep_req,
577                                       sess->cpt_inst_w7);
578         if (unlikely(req == NULL))
579                 /* Buffer allocated for request preparation need to be freed */
580                 free_op_meta(mdata, instance->meta_info.pool);
581
582         return req;
583 }
584
585 static __rte_always_inline void * __rte_hot
586 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
587                                 struct rte_crypto_op *op,
588                                 struct pending_queue *pend_q)
589 {
590         const int driver_id = otx_cryptodev_driver_id;
591         struct rte_crypto_sym_op *sym_op = op->sym;
592         struct rte_cryptodev_sym_session *sess;
593         void *req;
594         int ret;
595
596         /* Create temporary session */
597         sess = rte_cryptodev_sym_session_create(instance->sess_mp);
598         if (sess == NULL) {
599                 rte_errno = ENOMEM;
600                 return NULL;
601         }
602
603         ret = sym_session_configure(driver_id, sym_op->xform, sess,
604                                     instance->sess_mp_priv);
605         if (ret)
606                 goto sess_put;
607
608         sym_op->session = sess;
609
610         req = otx_cpt_enq_single_sym(instance, op, pend_q);
611
612         if (unlikely(req == NULL))
613                 goto priv_put;
614
615         return req;
616
617 priv_put:
618         sym_session_clear(driver_id, sess);
619 sess_put:
620         rte_mempool_put(instance->sess_mp, sess);
621         return NULL;
622 }
623
624 #define OP_TYPE_SYM             0
625 #define OP_TYPE_ASYM            1
626
627 static __rte_always_inline void *__rte_hot
628 otx_cpt_enq_single(struct cpt_instance *inst,
629                    struct rte_crypto_op *op,
630                    struct pending_queue *pqueue,
631                    const uint8_t op_type)
632 {
633         /* Check for the type */
634
635         if (op_type == OP_TYPE_SYM) {
636                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
637                         return otx_cpt_enq_single_sym(inst, op, pqueue);
638                 else
639                         return otx_cpt_enq_single_sym_sessless(inst, op,
640                                                                pqueue);
641         }
642
643         if (op_type == OP_TYPE_ASYM) {
644                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
645                         return otx_cpt_enq_single_asym(inst, op, pqueue);
646         }
647
648         /* Should not reach here */
649         rte_errno = ENOTSUP;
650         return NULL;
651 }
652
653 static  __rte_always_inline uint16_t __rte_hot
654 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
655                     const uint8_t op_type)
656 {
657         struct cpt_instance *instance = (struct cpt_instance *)qptr;
658         uint16_t count;
659         void *req;
660         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
661         struct pending_queue *pqueue = &cptvf->pqueue;
662
663         count = DEFAULT_CMD_QLEN - pqueue->pending_count;
664         if (nb_ops > count)
665                 nb_ops = count;
666
667         count = 0;
668         while (likely(count < nb_ops)) {
669
670                 /* Enqueue single op */
671                 req = otx_cpt_enq_single(instance, ops[count], pqueue, op_type);
672
673                 if (unlikely(req == NULL))
674                         break;
675
676                 pqueue->req_queue[pqueue->enq_tail] = (uintptr_t)req;
677                 MOD_INC(pqueue->enq_tail, DEFAULT_CMD_QLEN);
678                 pqueue->pending_count += 1;
679                 count++;
680         }
681         otx_cpt_ring_dbell(instance, count);
682         return count;
683 }
684
685 static uint16_t
686 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
687 {
688         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
689 }
690
691 static uint16_t
692 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
693 {
694         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
695 }
696
697 static __rte_always_inline void
698 submit_request_to_sso(struct ssows *ws, uintptr_t req,
699                       struct rte_event *rsp_info)
700 {
701         uint64_t add_work;
702
703         add_work = rsp_info->flow_id | (RTE_EVENT_TYPE_CRYPTODEV << 28) |
704                    ((uint64_t)(rsp_info->sched_type) << 32);
705
706         if (!rsp_info->sched_type)
707                 ssows_head_wait(ws);
708
709         rte_atomic_thread_fence(__ATOMIC_RELEASE);
710         ssovf_store_pair(add_work, req, ws->grps[rsp_info->queue_id]);
711 }
712
713 static inline union rte_event_crypto_metadata *
714 get_event_crypto_mdata(struct rte_crypto_op *op)
715 {
716         union rte_event_crypto_metadata *ec_mdata;
717
718         if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
719                 ec_mdata = rte_cryptodev_sym_session_get_user_data(
720                                                            op->sym->session);
721         else if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS &&
722                  op->private_data_offset)
723                 ec_mdata = (union rte_event_crypto_metadata *)
724                         ((uint8_t *)op + op->private_data_offset);
725         else
726                 return NULL;
727
728         return ec_mdata;
729 }
730
731 uint16_t __rte_hot
732 otx_crypto_adapter_enqueue(void *port, struct rte_crypto_op *op)
733 {
734         union rte_event_crypto_metadata *ec_mdata;
735         struct cpt_instance *instance;
736         struct cpt_request_info *req;
737         struct rte_event *rsp_info;
738         uint8_t op_type, cdev_id;
739         uint16_t qp_id;
740
741         ec_mdata = get_event_crypto_mdata(op);
742         if (unlikely(ec_mdata == NULL)) {
743                 rte_errno = EINVAL;
744                 return 0;
745         }
746
747         cdev_id = ec_mdata->request_info.cdev_id;
748         qp_id = ec_mdata->request_info.queue_pair_id;
749         rsp_info = &ec_mdata->response_info;
750         instance = rte_cryptodevs[cdev_id].data->queue_pairs[qp_id];
751
752         if (unlikely(!instance->ca_enabled)) {
753                 rte_errno = EINVAL;
754                 return 0;
755         }
756
757         op_type = op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
758                                                              OP_TYPE_ASYM;
759         req = otx_cpt_enq_single(instance, op,
760                                  &((struct cpt_vf *)instance)->pqueue, op_type);
761         if (unlikely(req == NULL))
762                 return 0;
763
764         otx_cpt_ring_dbell(instance, 1);
765         req->qp = instance;
766         submit_request_to_sso(port, (uintptr_t)req, rsp_info);
767
768         return 1;
769 }
770
771 static inline void
772 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
773                     struct rte_crypto_rsa_xform *rsa_ctx)
774
775 {
776         struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
777
778         switch (rsa->op_type) {
779         case RTE_CRYPTO_ASYM_OP_ENCRYPT:
780                 rsa->cipher.length = rsa_ctx->n.length;
781                 memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
782                 break;
783         case RTE_CRYPTO_ASYM_OP_DECRYPT:
784                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
785                         rsa->message.length = rsa_ctx->n.length;
786                 else {
787                         /* Get length of decrypted output */
788                         rsa->message.length = rte_cpu_to_be_16
789                                         (*((uint16_t *)req->rptr));
790
791                         /* Offset data pointer by length fields */
792                         req->rptr += 2;
793                 }
794                 memcpy(rsa->message.data, req->rptr, rsa->message.length);
795                 break;
796         case RTE_CRYPTO_ASYM_OP_SIGN:
797                 rsa->sign.length = rsa_ctx->n.length;
798                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
799                 break;
800         case RTE_CRYPTO_ASYM_OP_VERIFY:
801                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
802                         rsa->sign.length = rsa_ctx->n.length;
803                 else {
804                         /* Get length of decrypted output */
805                         rsa->sign.length = rte_cpu_to_be_16
806                                         (*((uint16_t *)req->rptr));
807
808                         /* Offset data pointer by length fields */
809                         req->rptr += 2;
810                 }
811                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
812
813                 if (memcmp(rsa->sign.data, rsa->message.data,
814                            rsa->message.length)) {
815                         CPT_LOG_DP_ERR("RSA verification failed");
816                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
817                 }
818                 break;
819         default:
820                 CPT_LOG_DP_DEBUG("Invalid RSA operation type");
821                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
822                 break;
823         }
824 }
825
826 static __rte_always_inline void
827 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
828                             struct cpt_request_info *req,
829                             struct cpt_asym_ec_ctx *ec)
830
831 {
832         int prime_len = ec_grp[ec->curveid].prime.length;
833
834         if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
835                 return;
836
837         /* Separate out sign r and s components */
838         memcpy(ecdsa->r.data, req->rptr, prime_len);
839         memcpy(ecdsa->s.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
840                prime_len);
841         ecdsa->r.length = prime_len;
842         ecdsa->s.length = prime_len;
843 }
844
845 static __rte_always_inline void
846 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
847                              struct cpt_request_info *req,
848                              struct cpt_asym_ec_ctx *ec)
849 {
850         int prime_len = ec_grp[ec->curveid].prime.length;
851
852         memcpy(ecpm->r.x.data, req->rptr, prime_len);
853         memcpy(ecpm->r.y.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
854                prime_len);
855         ecpm->r.x.length = prime_len;
856         ecpm->r.y.length = prime_len;
857 }
858
859 static __rte_always_inline void __rte_hot
860 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
861                           struct cpt_request_info *req)
862 {
863         struct rte_crypto_asym_op *op = cop->asym;
864         struct cpt_asym_sess_misc *sess;
865
866         sess = get_asym_session_private_data(op->session,
867                                              otx_cryptodev_driver_id);
868
869         switch (sess->xfrm_type) {
870         case RTE_CRYPTO_ASYM_XFORM_RSA:
871                 otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
872                 break;
873         case RTE_CRYPTO_ASYM_XFORM_MODEX:
874                 op->modex.result.length = sess->mod_ctx.modulus.length;
875                 memcpy(op->modex.result.data, req->rptr,
876                        op->modex.result.length);
877                 break;
878         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
879                 otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
880                 break;
881         case RTE_CRYPTO_ASYM_XFORM_ECPM:
882                 otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
883                 break;
884         default:
885                 CPT_LOG_DP_DEBUG("Invalid crypto xform type");
886                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
887                 break;
888         }
889 }
890
891 static __rte_always_inline void __rte_hot
892 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
893                              const uint8_t op_type)
894 {
895         /* H/w has returned success */
896         cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
897
898         /* Perform further post processing */
899
900         if ((op_type == OP_TYPE_SYM) &&
901             (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
902                 /* Check if auth verify need to be completed */
903                 if (unlikely(rsp[2]))
904                         compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
905                 return;
906         }
907
908         if ((op_type == OP_TYPE_ASYM) &&
909             (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
910                 rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
911                 otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
912         }
913
914         return;
915 }
916
917 static inline void
918 free_sym_session_data(const struct cpt_instance *instance,
919                       struct rte_crypto_op *cop)
920 {
921         void *sess_private_data_t = get_sym_session_private_data(
922                 cop->sym->session, otx_cryptodev_driver_id);
923         memset(sess_private_data_t, 0, cpt_get_session_size());
924         memset(cop->sym->session, 0,
925                rte_cryptodev_sym_get_existing_header_session_size(
926                        cop->sym->session));
927         rte_mempool_put(instance->sess_mp_priv, sess_private_data_t);
928         rte_mempool_put(instance->sess_mp, cop->sym->session);
929         cop->sym->session = NULL;
930 }
931
932 static __rte_always_inline struct rte_crypto_op *
933 otx_cpt_process_response(const struct cpt_instance *instance, uintptr_t *rsp,
934                          uint8_t cc, const uint8_t op_type)
935 {
936         struct rte_crypto_op *cop;
937         void *metabuf;
938
939         metabuf = (void *)rsp[0];
940         cop = (void *)rsp[1];
941
942         /* Check completion code */
943         if (likely(cc == 0)) {
944                 /* H/w success pkt. Post process */
945                 otx_cpt_dequeue_post_process(cop, rsp, op_type);
946         } else if (cc == ERR_GC_ICV_MISCOMPARE) {
947                 /* auth data mismatch */
948                 cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
949         } else {
950                 /* Error */
951                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
952         }
953
954         if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS))
955                 free_sym_session_data(instance, cop);
956         free_op_meta(metabuf, instance->meta_info.pool);
957
958         return cop;
959 }
960
961 static __rte_always_inline uint16_t __rte_hot
962 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
963                     const uint8_t op_type)
964 {
965         struct cpt_instance *instance = (struct cpt_instance *)qptr;
966         struct cpt_request_info *user_req;
967         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
968         uint8_t cc[nb_ops];
969         int i, count, pcount;
970         uint8_t ret;
971         int nb_completed;
972         struct pending_queue *pqueue = &cptvf->pqueue;
973
974         pcount = pqueue->pending_count;
975         count = (nb_ops > pcount) ? pcount : nb_ops;
976
977         for (i = 0; i < count; i++) {
978                 user_req = (struct cpt_request_info *)
979                                 pqueue->req_queue[pqueue->deq_head];
980
981                 if (likely((i+1) < count)) {
982                         rte_prefetch_non_temporal(
983                                 (void *)pqueue->req_queue[i+1]);
984                 }
985
986                 ret = check_nb_command_id(user_req, instance);
987
988                 if (unlikely(ret == ERR_REQ_PENDING)) {
989                         /* Stop checking for completions */
990                         break;
991                 }
992
993                 /* Return completion code and op handle */
994                 cc[i] = ret;
995                 ops[i] = user_req->op;
996
997                 CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
998                                  user_req, user_req->op, ret);
999
1000                 MOD_INC(pqueue->deq_head, DEFAULT_CMD_QLEN);
1001                 pqueue->pending_count -= 1;
1002         }
1003
1004         nb_completed = i;
1005
1006         for (i = 0; i < nb_completed; i++) {
1007                 if (likely((i + 1) < nb_completed))
1008                         rte_prefetch0(ops[i+1]);
1009
1010                 ops[i] = otx_cpt_process_response(instance, (void *)ops[i],
1011                                                   cc[i], op_type);
1012         }
1013
1014         return nb_completed;
1015 }
1016
1017 static uint16_t
1018 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
1019 {
1020         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
1021 }
1022
1023 static uint16_t
1024 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
1025 {
1026         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
1027 }
1028
1029 uintptr_t __rte_hot
1030 otx_crypto_adapter_dequeue(uintptr_t get_work1)
1031 {
1032         const struct cpt_instance *instance;
1033         struct cpt_request_info *req;
1034         struct rte_crypto_op *cop;
1035         uint8_t cc, op_type;
1036         uintptr_t *rsp;
1037
1038         req = (struct cpt_request_info *)get_work1;
1039         instance = req->qp;
1040         rsp = req->op;
1041         cop = (void *)rsp[1];
1042         op_type = cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
1043                                                               OP_TYPE_ASYM;
1044
1045         do {
1046                 cc = check_nb_command_id(
1047                         req, (struct cpt_instance *)(uintptr_t)instance);
1048         } while (cc == ERR_REQ_PENDING);
1049
1050         cop = otx_cpt_process_response(instance, (void *)req->op, cc, op_type);
1051
1052         return (uintptr_t)(cop);
1053 }
1054
1055 static struct rte_cryptodev_ops cptvf_ops = {
1056         /* Device related operations */
1057         .dev_configure = otx_cpt_dev_config,
1058         .dev_start = otx_cpt_dev_start,
1059         .dev_stop = otx_cpt_dev_stop,
1060         .dev_close = otx_cpt_dev_close,
1061         .dev_infos_get = otx_cpt_dev_info_get,
1062
1063         .stats_get = NULL,
1064         .stats_reset = NULL,
1065         .queue_pair_setup = otx_cpt_que_pair_setup,
1066         .queue_pair_release = otx_cpt_que_pair_release,
1067
1068         /* Crypto related operations */
1069         .sym_session_get_size = otx_cpt_get_session_size,
1070         .sym_session_configure = otx_cpt_session_cfg,
1071         .sym_session_clear = otx_cpt_session_clear,
1072
1073         .asym_session_get_size = otx_cpt_asym_session_size_get,
1074         .asym_session_configure = otx_cpt_asym_session_cfg,
1075         .asym_session_clear = otx_cpt_asym_session_clear,
1076 };
1077
1078 int
1079 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
1080 {
1081         struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
1082         struct cpt_vf *cptvf = NULL;
1083         void *reg_base;
1084         char dev_name[32];
1085         int ret;
1086
1087         if (pdev->mem_resource[0].phys_addr == 0ULL)
1088                 return -EIO;
1089
1090         /* for secondary processes, we don't initialise any further as primary
1091          * has already done this work.
1092          */
1093         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1094                 return 0;
1095
1096         cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
1097                         sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
1098                         rte_socket_id());
1099
1100         if (cptvf == NULL) {
1101                 CPT_LOG_ERR("Cannot allocate memory for device private data");
1102                 return -ENOMEM;
1103         }
1104
1105         snprintf(dev_name, 32, "%02x:%02x.%x",
1106                         pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
1107
1108         reg_base = pdev->mem_resource[0].addr;
1109         if (!reg_base) {
1110                 CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
1111                 ret = -ENODEV;
1112                 goto fail;
1113         }
1114
1115         ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
1116         if (ret) {
1117                 CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
1118                 ret = -EIO;
1119                 goto fail;
1120         }
1121
1122         switch (cptvf->vftype) {
1123         case OTX_CPT_VF_TYPE_AE:
1124                 /* Set asymmetric cpt feature flags */
1125                 c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
1126                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
1127                                 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
1128                 break;
1129         case OTX_CPT_VF_TYPE_SE:
1130                 /* Set symmetric cpt feature flags */
1131                 c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
1132                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
1133                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
1134                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL |
1135                                 RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
1136                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
1137                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
1138                                 RTE_CRYPTODEV_FF_SYM_SESSIONLESS |
1139                                 RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED;
1140                 break;
1141         default:
1142                 /* Feature not supported. Abort */
1143                 CPT_LOG_ERR("VF type not supported by %s", dev_name);
1144                 ret = -EIO;
1145                 goto deinit_dev;
1146         }
1147
1148         /* Start off timer for mailbox interrupts */
1149         otx_cpt_periodic_alarm_start(cptvf);
1150
1151         c_dev->dev_ops = &cptvf_ops;
1152
1153         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
1154                 c_dev->enqueue_burst = otx_cpt_enqueue_sym;
1155                 c_dev->dequeue_burst = otx_cpt_dequeue_sym;
1156         } else {
1157                 c_dev->enqueue_burst = otx_cpt_enqueue_asym;
1158                 c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1159         }
1160
1161         /* Save dev private data */
1162         c_dev->data->dev_private = cptvf;
1163
1164         return 0;
1165
1166 deinit_dev:
1167         otx_cpt_deinit_device(cptvf);
1168
1169 fail:
1170         if (cptvf) {
1171                 /* Free private data allocated */
1172                 rte_free(cptvf);
1173         }
1174
1175         return ret;
1176 }