cryptodev: change queue pair configure structure
[dpdk.git] / drivers / crypto / openssl / rte_openssl_pmd.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_common.h>
6 #include <rte_hexdump.h>
7 #include <rte_cryptodev.h>
8 #include <rte_cryptodev_pmd.h>
9 #include <rte_bus_vdev.h>
10 #include <rte_malloc.h>
11 #include <rte_cpuflags.h>
12
13 #include <openssl/hmac.h>
14 #include <openssl/evp.h>
15
16 #include "rte_openssl_pmd_private.h"
17 #include "compat.h"
18
19 #define DES_BLOCK_SIZE 8
20
21 static uint8_t cryptodev_driver_id;
22
23 #if (OPENSSL_VERSION_NUMBER < 0x10100000L)
24 static HMAC_CTX *HMAC_CTX_new(void)
25 {
26         HMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
27
28         if (ctx != NULL)
29                 HMAC_CTX_init(ctx);
30         return ctx;
31 }
32
33 static void HMAC_CTX_free(HMAC_CTX *ctx)
34 {
35         if (ctx != NULL) {
36                 HMAC_CTX_cleanup(ctx);
37                 OPENSSL_free(ctx);
38         }
39 }
40 #endif
41
42 static int cryptodev_openssl_remove(struct rte_vdev_device *vdev);
43
44 /*----------------------------------------------------------------------------*/
45
46 /**
47  * Increment counter by 1
48  * Counter is 64 bit array, big-endian
49  */
50 static void
51 ctr_inc(uint8_t *ctr)
52 {
53         uint64_t *ctr64 = (uint64_t *)ctr;
54
55         *ctr64 = __builtin_bswap64(*ctr64);
56         (*ctr64)++;
57         *ctr64 = __builtin_bswap64(*ctr64);
58 }
59
60 /*
61  *------------------------------------------------------------------------------
62  * Session Prepare
63  *------------------------------------------------------------------------------
64  */
65
66 /** Get xform chain order */
67 static enum openssl_chain_order
68 openssl_get_chain_order(const struct rte_crypto_sym_xform *xform)
69 {
70         enum openssl_chain_order res = OPENSSL_CHAIN_NOT_SUPPORTED;
71
72         if (xform != NULL) {
73                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
74                         if (xform->next == NULL)
75                                 res =  OPENSSL_CHAIN_ONLY_AUTH;
76                         else if (xform->next->type ==
77                                         RTE_CRYPTO_SYM_XFORM_CIPHER)
78                                 res =  OPENSSL_CHAIN_AUTH_CIPHER;
79                 }
80                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
81                         if (xform->next == NULL)
82                                 res =  OPENSSL_CHAIN_ONLY_CIPHER;
83                         else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
84                                 res =  OPENSSL_CHAIN_CIPHER_AUTH;
85                 }
86                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD)
87                         res = OPENSSL_CHAIN_COMBINED;
88         }
89
90         return res;
91 }
92
93 /** Get session cipher key from input cipher key */
94 static void
95 get_cipher_key(uint8_t *input_key, int keylen, uint8_t *session_key)
96 {
97         memcpy(session_key, input_key, keylen);
98 }
99
100 /** Get key ede 24 bytes standard from input key */
101 static int
102 get_cipher_key_ede(uint8_t *key, int keylen, uint8_t *key_ede)
103 {
104         int res = 0;
105
106         /* Initialize keys - 24 bytes: [key1-key2-key3] */
107         switch (keylen) {
108         case 24:
109                 memcpy(key_ede, key, 24);
110                 break;
111         case 16:
112                 /* K3 = K1 */
113                 memcpy(key_ede, key, 16);
114                 memcpy(key_ede + 16, key, 8);
115                 break;
116         case 8:
117                 /* K1 = K2 = K3 (DES compatibility) */
118                 memcpy(key_ede, key, 8);
119                 memcpy(key_ede + 8, key, 8);
120                 memcpy(key_ede + 16, key, 8);
121                 break;
122         default:
123                 OPENSSL_LOG(ERR, "Unsupported key size");
124                 res = -EINVAL;
125         }
126
127         return res;
128 }
129
130 /** Get adequate openssl function for input cipher algorithm */
131 static uint8_t
132 get_cipher_algo(enum rte_crypto_cipher_algorithm sess_algo, size_t keylen,
133                 const EVP_CIPHER **algo)
134 {
135         int res = 0;
136
137         if (algo != NULL) {
138                 switch (sess_algo) {
139                 case RTE_CRYPTO_CIPHER_3DES_CBC:
140                         switch (keylen) {
141                         case 8:
142                                 *algo = EVP_des_cbc();
143                                 break;
144                         case 16:
145                                 *algo = EVP_des_ede_cbc();
146                                 break;
147                         case 24:
148                                 *algo = EVP_des_ede3_cbc();
149                                 break;
150                         default:
151                                 res = -EINVAL;
152                         }
153                         break;
154                 case RTE_CRYPTO_CIPHER_3DES_CTR:
155                         break;
156                 case RTE_CRYPTO_CIPHER_AES_CBC:
157                         switch (keylen) {
158                         case 16:
159                                 *algo = EVP_aes_128_cbc();
160                                 break;
161                         case 24:
162                                 *algo = EVP_aes_192_cbc();
163                                 break;
164                         case 32:
165                                 *algo = EVP_aes_256_cbc();
166                                 break;
167                         default:
168                                 res = -EINVAL;
169                         }
170                         break;
171                 case RTE_CRYPTO_CIPHER_AES_CTR:
172                         switch (keylen) {
173                         case 16:
174                                 *algo = EVP_aes_128_ctr();
175                                 break;
176                         case 24:
177                                 *algo = EVP_aes_192_ctr();
178                                 break;
179                         case 32:
180                                 *algo = EVP_aes_256_ctr();
181                                 break;
182                         default:
183                                 res = -EINVAL;
184                         }
185                         break;
186                 default:
187                         res = -EINVAL;
188                         break;
189                 }
190         } else {
191                 res = -EINVAL;
192         }
193
194         return res;
195 }
196
197 /** Get adequate openssl function for input auth algorithm */
198 static uint8_t
199 get_auth_algo(enum rte_crypto_auth_algorithm sessalgo,
200                 const EVP_MD **algo)
201 {
202         int res = 0;
203
204         if (algo != NULL) {
205                 switch (sessalgo) {
206                 case RTE_CRYPTO_AUTH_MD5:
207                 case RTE_CRYPTO_AUTH_MD5_HMAC:
208                         *algo = EVP_md5();
209                         break;
210                 case RTE_CRYPTO_AUTH_SHA1:
211                 case RTE_CRYPTO_AUTH_SHA1_HMAC:
212                         *algo = EVP_sha1();
213                         break;
214                 case RTE_CRYPTO_AUTH_SHA224:
215                 case RTE_CRYPTO_AUTH_SHA224_HMAC:
216                         *algo = EVP_sha224();
217                         break;
218                 case RTE_CRYPTO_AUTH_SHA256:
219                 case RTE_CRYPTO_AUTH_SHA256_HMAC:
220                         *algo = EVP_sha256();
221                         break;
222                 case RTE_CRYPTO_AUTH_SHA384:
223                 case RTE_CRYPTO_AUTH_SHA384_HMAC:
224                         *algo = EVP_sha384();
225                         break;
226                 case RTE_CRYPTO_AUTH_SHA512:
227                 case RTE_CRYPTO_AUTH_SHA512_HMAC:
228                         *algo = EVP_sha512();
229                         break;
230                 default:
231                         res = -EINVAL;
232                         break;
233                 }
234         } else {
235                 res = -EINVAL;
236         }
237
238         return res;
239 }
240
241 /** Get adequate openssl function for input cipher algorithm */
242 static uint8_t
243 get_aead_algo(enum rte_crypto_aead_algorithm sess_algo, size_t keylen,
244                 const EVP_CIPHER **algo)
245 {
246         int res = 0;
247
248         if (algo != NULL) {
249                 switch (sess_algo) {
250                 case RTE_CRYPTO_AEAD_AES_GCM:
251                         switch (keylen) {
252                         case 16:
253                                 *algo = EVP_aes_128_gcm();
254                                 break;
255                         case 24:
256                                 *algo = EVP_aes_192_gcm();
257                                 break;
258                         case 32:
259                                 *algo = EVP_aes_256_gcm();
260                                 break;
261                         default:
262                                 res = -EINVAL;
263                         }
264                         break;
265                 case RTE_CRYPTO_AEAD_AES_CCM:
266                         switch (keylen) {
267                         case 16:
268                                 *algo = EVP_aes_128_ccm();
269                                 break;
270                         case 24:
271                                 *algo = EVP_aes_192_ccm();
272                                 break;
273                         case 32:
274                                 *algo = EVP_aes_256_ccm();
275                                 break;
276                         default:
277                                 res = -EINVAL;
278                         }
279                         break;
280                 default:
281                         res = -EINVAL;
282                         break;
283                 }
284         } else {
285                 res = -EINVAL;
286         }
287
288         return res;
289 }
290
291 /* Set session AEAD encryption parameters */
292 static int
293 openssl_set_sess_aead_enc_param(struct openssl_session *sess,
294                 enum rte_crypto_aead_algorithm algo,
295                 uint8_t tag_len, uint8_t *key)
296 {
297         int iv_type = 0;
298         unsigned int do_ccm;
299
300         sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
301         sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
302
303         /* Select AEAD algo */
304         switch (algo) {
305         case RTE_CRYPTO_AEAD_AES_GCM:
306                 iv_type = EVP_CTRL_GCM_SET_IVLEN;
307                 if (tag_len != 16)
308                         return -EINVAL;
309                 do_ccm = 0;
310                 break;
311         case RTE_CRYPTO_AEAD_AES_CCM:
312                 iv_type = EVP_CTRL_CCM_SET_IVLEN;
313                 /* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
314                 if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
315                         return -EINVAL;
316                 do_ccm = 1;
317                 break;
318         default:
319                 return -ENOTSUP;
320         }
321
322         sess->cipher.mode = OPENSSL_CIPHER_LIB;
323         sess->cipher.ctx = EVP_CIPHER_CTX_new();
324
325         if (get_aead_algo(algo, sess->cipher.key.length,
326                         &sess->cipher.evp_algo) != 0)
327                 return -EINVAL;
328
329         get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
330
331         sess->chain_order = OPENSSL_CHAIN_COMBINED;
332
333         if (EVP_EncryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
334                         NULL, NULL, NULL) <= 0)
335                 return -EINVAL;
336
337         if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, sess->iv.length,
338                         NULL) <= 0)
339                 return -EINVAL;
340
341         if (do_ccm)
342                 EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
343                                 tag_len, NULL);
344
345         if (EVP_EncryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
346                 return -EINVAL;
347
348         return 0;
349 }
350
351 /* Set session AEAD decryption parameters */
352 static int
353 openssl_set_sess_aead_dec_param(struct openssl_session *sess,
354                 enum rte_crypto_aead_algorithm algo,
355                 uint8_t tag_len, uint8_t *key)
356 {
357         int iv_type = 0;
358         unsigned int do_ccm = 0;
359
360         sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_DECRYPT;
361         sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
362
363         /* Select AEAD algo */
364         switch (algo) {
365         case RTE_CRYPTO_AEAD_AES_GCM:
366                 iv_type = EVP_CTRL_GCM_SET_IVLEN;
367                 if (tag_len != 16)
368                         return -EINVAL;
369                 break;
370         case RTE_CRYPTO_AEAD_AES_CCM:
371                 iv_type = EVP_CTRL_CCM_SET_IVLEN;
372                 /* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
373                 if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
374                         return -EINVAL;
375                 do_ccm = 1;
376                 break;
377         default:
378                 return -ENOTSUP;
379         }
380
381         sess->cipher.mode = OPENSSL_CIPHER_LIB;
382         sess->cipher.ctx = EVP_CIPHER_CTX_new();
383
384         if (get_aead_algo(algo, sess->cipher.key.length,
385                         &sess->cipher.evp_algo) != 0)
386                 return -EINVAL;
387
388         get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
389
390         sess->chain_order = OPENSSL_CHAIN_COMBINED;
391
392         if (EVP_DecryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
393                         NULL, NULL, NULL) <= 0)
394                 return -EINVAL;
395
396         if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type,
397                         sess->iv.length, NULL) <= 0)
398                 return -EINVAL;
399
400         if (do_ccm)
401                 EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
402                                 tag_len, NULL);
403
404         if (EVP_DecryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
405                 return -EINVAL;
406
407         return 0;
408 }
409
410 /** Set session cipher parameters */
411 static int
412 openssl_set_session_cipher_parameters(struct openssl_session *sess,
413                 const struct rte_crypto_sym_xform *xform)
414 {
415         /* Select cipher direction */
416         sess->cipher.direction = xform->cipher.op;
417         /* Select cipher key */
418         sess->cipher.key.length = xform->cipher.key.length;
419
420         /* Set IV parameters */
421         sess->iv.offset = xform->cipher.iv.offset;
422         sess->iv.length = xform->cipher.iv.length;
423
424         /* Select cipher algo */
425         switch (xform->cipher.algo) {
426         case RTE_CRYPTO_CIPHER_3DES_CBC:
427         case RTE_CRYPTO_CIPHER_AES_CBC:
428         case RTE_CRYPTO_CIPHER_AES_CTR:
429                 sess->cipher.mode = OPENSSL_CIPHER_LIB;
430                 sess->cipher.algo = xform->cipher.algo;
431                 sess->cipher.ctx = EVP_CIPHER_CTX_new();
432
433                 if (get_cipher_algo(sess->cipher.algo, sess->cipher.key.length,
434                                 &sess->cipher.evp_algo) != 0)
435                         return -EINVAL;
436
437                 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
438                         sess->cipher.key.data);
439                 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
440                         if (EVP_EncryptInit_ex(sess->cipher.ctx,
441                                         sess->cipher.evp_algo,
442                                         NULL, xform->cipher.key.data,
443                                         NULL) != 1) {
444                                 return -EINVAL;
445                         }
446                 } else if (sess->cipher.direction ==
447                                 RTE_CRYPTO_CIPHER_OP_DECRYPT) {
448                         if (EVP_DecryptInit_ex(sess->cipher.ctx,
449                                         sess->cipher.evp_algo,
450                                         NULL, xform->cipher.key.data,
451                                         NULL) != 1) {
452                                 return -EINVAL;
453                         }
454                 }
455
456                 break;
457
458         case RTE_CRYPTO_CIPHER_3DES_CTR:
459                 sess->cipher.mode = OPENSSL_CIPHER_DES3CTR;
460                 sess->cipher.ctx = EVP_CIPHER_CTX_new();
461
462                 if (get_cipher_key_ede(xform->cipher.key.data,
463                                 sess->cipher.key.length,
464                                 sess->cipher.key.data) != 0)
465                         return -EINVAL;
466                 break;
467
468         case RTE_CRYPTO_CIPHER_DES_CBC:
469                 sess->cipher.algo = xform->cipher.algo;
470                 sess->cipher.ctx = EVP_CIPHER_CTX_new();
471                 sess->cipher.evp_algo = EVP_des_cbc();
472
473                 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
474                         sess->cipher.key.data);
475                 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
476                         if (EVP_EncryptInit_ex(sess->cipher.ctx,
477                                         sess->cipher.evp_algo,
478                                         NULL, xform->cipher.key.data,
479                                         NULL) != 1) {
480                                 return -EINVAL;
481                         }
482                 } else if (sess->cipher.direction ==
483                                 RTE_CRYPTO_CIPHER_OP_DECRYPT) {
484                         if (EVP_DecryptInit_ex(sess->cipher.ctx,
485                                         sess->cipher.evp_algo,
486                                         NULL, xform->cipher.key.data,
487                                         NULL) != 1) {
488                                 return -EINVAL;
489                         }
490                 }
491
492                 break;
493
494         case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
495                 sess->cipher.algo = xform->cipher.algo;
496                 sess->chain_order = OPENSSL_CHAIN_CIPHER_BPI;
497                 sess->cipher.ctx = EVP_CIPHER_CTX_new();
498                 sess->cipher.evp_algo = EVP_des_cbc();
499
500                 sess->cipher.bpi_ctx = EVP_CIPHER_CTX_new();
501                 /* IV will be ECB encrypted whether direction is encrypt or decrypt */
502                 if (EVP_EncryptInit_ex(sess->cipher.bpi_ctx, EVP_des_ecb(),
503                                 NULL, xform->cipher.key.data, 0) != 1)
504                         return -EINVAL;
505
506                 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
507                         sess->cipher.key.data);
508                 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
509                         if (EVP_EncryptInit_ex(sess->cipher.ctx,
510                                         sess->cipher.evp_algo,
511                                         NULL, xform->cipher.key.data,
512                                         NULL) != 1) {
513                                 return -EINVAL;
514                         }
515                 } else if (sess->cipher.direction ==
516                                 RTE_CRYPTO_CIPHER_OP_DECRYPT) {
517                         if (EVP_DecryptInit_ex(sess->cipher.ctx,
518                                         sess->cipher.evp_algo,
519                                         NULL, xform->cipher.key.data,
520                                         NULL) != 1) {
521                                 return -EINVAL;
522                         }
523                 }
524
525                 break;
526         default:
527                 sess->cipher.algo = RTE_CRYPTO_CIPHER_NULL;
528                 return -ENOTSUP;
529         }
530
531         return 0;
532 }
533
534 /* Set session auth parameters */
535 static int
536 openssl_set_session_auth_parameters(struct openssl_session *sess,
537                 const struct rte_crypto_sym_xform *xform)
538 {
539         /* Select auth generate/verify */
540         sess->auth.operation = xform->auth.op;
541         sess->auth.algo = xform->auth.algo;
542
543         sess->auth.digest_length = xform->auth.digest_length;
544
545         /* Select auth algo */
546         switch (xform->auth.algo) {
547         case RTE_CRYPTO_AUTH_AES_GMAC:
548                 /*
549                  * OpenSSL requires GMAC to be a GCM operation
550                  * with no cipher data length
551                  */
552                 sess->cipher.key.length = xform->auth.key.length;
553
554                 /* Set IV parameters */
555                 sess->iv.offset = xform->auth.iv.offset;
556                 sess->iv.length = xform->auth.iv.length;
557
558                 if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE)
559                         return openssl_set_sess_aead_enc_param(sess,
560                                                 RTE_CRYPTO_AEAD_AES_GCM,
561                                                 xform->auth.digest_length,
562                                                 xform->auth.key.data);
563                 else
564                         return openssl_set_sess_aead_dec_param(sess,
565                                                 RTE_CRYPTO_AEAD_AES_GCM,
566                                                 xform->auth.digest_length,
567                                                 xform->auth.key.data);
568                 break;
569
570         case RTE_CRYPTO_AUTH_MD5:
571         case RTE_CRYPTO_AUTH_SHA1:
572         case RTE_CRYPTO_AUTH_SHA224:
573         case RTE_CRYPTO_AUTH_SHA256:
574         case RTE_CRYPTO_AUTH_SHA384:
575         case RTE_CRYPTO_AUTH_SHA512:
576                 sess->auth.mode = OPENSSL_AUTH_AS_AUTH;
577                 if (get_auth_algo(xform->auth.algo,
578                                 &sess->auth.auth.evp_algo) != 0)
579                         return -EINVAL;
580                 sess->auth.auth.ctx = EVP_MD_CTX_create();
581                 break;
582
583         case RTE_CRYPTO_AUTH_MD5_HMAC:
584         case RTE_CRYPTO_AUTH_SHA1_HMAC:
585         case RTE_CRYPTO_AUTH_SHA224_HMAC:
586         case RTE_CRYPTO_AUTH_SHA256_HMAC:
587         case RTE_CRYPTO_AUTH_SHA384_HMAC:
588         case RTE_CRYPTO_AUTH_SHA512_HMAC:
589                 sess->auth.mode = OPENSSL_AUTH_AS_HMAC;
590                 sess->auth.hmac.ctx = HMAC_CTX_new();
591                 if (get_auth_algo(xform->auth.algo,
592                                 &sess->auth.hmac.evp_algo) != 0)
593                         return -EINVAL;
594
595                 if (HMAC_Init_ex(sess->auth.hmac.ctx,
596                                 xform->auth.key.data,
597                                 xform->auth.key.length,
598                                 sess->auth.hmac.evp_algo, NULL) != 1)
599                         return -EINVAL;
600                 break;
601
602         default:
603                 return -ENOTSUP;
604         }
605
606         return 0;
607 }
608
609 /* Set session AEAD parameters */
610 static int
611 openssl_set_session_aead_parameters(struct openssl_session *sess,
612                 const struct rte_crypto_sym_xform *xform)
613 {
614         /* Select cipher key */
615         sess->cipher.key.length = xform->aead.key.length;
616
617         /* Set IV parameters */
618         if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM)
619                 /*
620                  * For AES-CCM, the actual IV is placed
621                  * one byte after the start of the IV field,
622                  * according to the API.
623                  */
624                 sess->iv.offset = xform->aead.iv.offset + 1;
625         else
626                 sess->iv.offset = xform->aead.iv.offset;
627
628         sess->iv.length = xform->aead.iv.length;
629
630         sess->auth.aad_length = xform->aead.aad_length;
631         sess->auth.digest_length = xform->aead.digest_length;
632
633         sess->aead_algo = xform->aead.algo;
634         /* Select cipher direction */
635         if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
636                 return openssl_set_sess_aead_enc_param(sess, xform->aead.algo,
637                                 xform->aead.digest_length, xform->aead.key.data);
638         else
639                 return openssl_set_sess_aead_dec_param(sess, xform->aead.algo,
640                                 xform->aead.digest_length, xform->aead.key.data);
641 }
642
643 /** Parse crypto xform chain and set private session parameters */
644 int
645 openssl_set_session_parameters(struct openssl_session *sess,
646                 const struct rte_crypto_sym_xform *xform)
647 {
648         const struct rte_crypto_sym_xform *cipher_xform = NULL;
649         const struct rte_crypto_sym_xform *auth_xform = NULL;
650         const struct rte_crypto_sym_xform *aead_xform = NULL;
651         int ret;
652
653         sess->chain_order = openssl_get_chain_order(xform);
654         switch (sess->chain_order) {
655         case OPENSSL_CHAIN_ONLY_CIPHER:
656                 cipher_xform = xform;
657                 break;
658         case OPENSSL_CHAIN_ONLY_AUTH:
659                 auth_xform = xform;
660                 break;
661         case OPENSSL_CHAIN_CIPHER_AUTH:
662                 cipher_xform = xform;
663                 auth_xform = xform->next;
664                 break;
665         case OPENSSL_CHAIN_AUTH_CIPHER:
666                 auth_xform = xform;
667                 cipher_xform = xform->next;
668                 break;
669         case OPENSSL_CHAIN_COMBINED:
670                 aead_xform = xform;
671                 break;
672         default:
673                 return -EINVAL;
674         }
675
676         /* Default IV length = 0 */
677         sess->iv.length = 0;
678
679         /* cipher_xform must be check before auth_xform */
680         if (cipher_xform) {
681                 ret = openssl_set_session_cipher_parameters(
682                                 sess, cipher_xform);
683                 if (ret != 0) {
684                         OPENSSL_LOG(ERR,
685                                 "Invalid/unsupported cipher parameters");
686                         return ret;
687                 }
688         }
689
690         if (auth_xform) {
691                 ret = openssl_set_session_auth_parameters(sess, auth_xform);
692                 if (ret != 0) {
693                         OPENSSL_LOG(ERR,
694                                 "Invalid/unsupported auth parameters");
695                         return ret;
696                 }
697         }
698
699         if (aead_xform) {
700                 ret = openssl_set_session_aead_parameters(sess, aead_xform);
701                 if (ret != 0) {
702                         OPENSSL_LOG(ERR,
703                                 "Invalid/unsupported AEAD parameters");
704                         return ret;
705                 }
706         }
707
708         return 0;
709 }
710
711 /** Reset private session parameters */
712 void
713 openssl_reset_session(struct openssl_session *sess)
714 {
715         EVP_CIPHER_CTX_free(sess->cipher.ctx);
716
717         if (sess->chain_order == OPENSSL_CHAIN_CIPHER_BPI)
718                 EVP_CIPHER_CTX_free(sess->cipher.bpi_ctx);
719
720         switch (sess->auth.mode) {
721         case OPENSSL_AUTH_AS_AUTH:
722                 EVP_MD_CTX_destroy(sess->auth.auth.ctx);
723                 break;
724         case OPENSSL_AUTH_AS_HMAC:
725                 EVP_PKEY_free(sess->auth.hmac.pkey);
726                 HMAC_CTX_free(sess->auth.hmac.ctx);
727                 break;
728         default:
729                 break;
730         }
731 }
732
733 /** Provide session for operation */
734 static void *
735 get_session(struct openssl_qp *qp, struct rte_crypto_op *op)
736 {
737         struct openssl_session *sess = NULL;
738         struct openssl_asym_session *asym_sess = NULL;
739
740         if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
741                 if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
742                         /* get existing session */
743                         if (likely(op->sym->session != NULL))
744                                 sess = (struct openssl_session *)
745                                                 get_sym_session_private_data(
746                                                 op->sym->session,
747                                                 cryptodev_driver_id);
748                 } else {
749                         if (likely(op->asym->session != NULL))
750                                 asym_sess = (struct openssl_asym_session *)
751                                                 get_asym_session_private_data(
752                                                 op->asym->session,
753                                                 cryptodev_driver_id);
754                         if (asym_sess == NULL)
755                                 op->status =
756                                         RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
757                         return asym_sess;
758                 }
759         } else {
760                 /* sessionless asymmetric not supported */
761                 if (op->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)
762                         return NULL;
763
764                 /* provide internal session */
765                 void *_sess = NULL;
766                 void *_sess_private_data = NULL;
767
768                 if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
769                         return NULL;
770
771                 if (rte_mempool_get(qp->sess_mp_priv,
772                                 (void **)&_sess_private_data))
773                         return NULL;
774
775                 sess = (struct openssl_session *)_sess_private_data;
776
777                 if (unlikely(openssl_set_session_parameters(sess,
778                                 op->sym->xform) != 0)) {
779                         rte_mempool_put(qp->sess_mp, _sess);
780                         rte_mempool_put(qp->sess_mp_priv, _sess_private_data);
781                         sess = NULL;
782                 }
783                 op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
784                 set_sym_session_private_data(op->sym->session,
785                                 cryptodev_driver_id, _sess_private_data);
786         }
787
788         if (sess == NULL)
789                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
790
791         return sess;
792 }
793
794 /*
795  *------------------------------------------------------------------------------
796  * Process Operations
797  *------------------------------------------------------------------------------
798  */
799 static inline int
800 process_openssl_encryption_update(struct rte_mbuf *mbuf_src, int offset,
801                 uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx)
802 {
803         struct rte_mbuf *m;
804         int dstlen;
805         int l, n = srclen;
806         uint8_t *src;
807
808         for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
809                         m = m->next)
810                 offset -= rte_pktmbuf_data_len(m);
811
812         if (m == 0)
813                 return -1;
814
815         src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
816
817         l = rte_pktmbuf_data_len(m) - offset;
818         if (srclen <= l) {
819                 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
820                         return -1;
821                 *dst += l;
822                 return 0;
823         }
824
825         if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
826                 return -1;
827
828         *dst += dstlen;
829         n -= l;
830
831         for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
832                 src = rte_pktmbuf_mtod(m, uint8_t *);
833                 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
834                 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
835                         return -1;
836                 *dst += dstlen;
837                 n -= l;
838         }
839
840         return 0;
841 }
842
843 static inline int
844 process_openssl_decryption_update(struct rte_mbuf *mbuf_src, int offset,
845                 uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx)
846 {
847         struct rte_mbuf *m;
848         int dstlen;
849         int l, n = srclen;
850         uint8_t *src;
851
852         for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
853                         m = m->next)
854                 offset -= rte_pktmbuf_data_len(m);
855
856         if (m == 0)
857                 return -1;
858
859         src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
860
861         l = rte_pktmbuf_data_len(m) - offset;
862         if (srclen <= l) {
863                 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
864                         return -1;
865                 *dst += l;
866                 return 0;
867         }
868
869         if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
870                 return -1;
871
872         *dst += dstlen;
873         n -= l;
874
875         for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
876                 src = rte_pktmbuf_mtod(m, uint8_t *);
877                 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
878                 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
879                         return -1;
880                 *dst += dstlen;
881                 n -= l;
882         }
883
884         return 0;
885 }
886
887 /** Process standard openssl cipher encryption */
888 static int
889 process_openssl_cipher_encrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
890                 int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx)
891 {
892         int totlen;
893
894         if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
895                 goto process_cipher_encrypt_err;
896
897         EVP_CIPHER_CTX_set_padding(ctx, 0);
898
899         if (process_openssl_encryption_update(mbuf_src, offset, &dst,
900                         srclen, ctx))
901                 goto process_cipher_encrypt_err;
902
903         if (EVP_EncryptFinal_ex(ctx, dst, &totlen) <= 0)
904                 goto process_cipher_encrypt_err;
905
906         return 0;
907
908 process_cipher_encrypt_err:
909         OPENSSL_LOG(ERR, "Process openssl cipher encrypt failed");
910         return -EINVAL;
911 }
912
913 /** Process standard openssl cipher encryption */
914 static int
915 process_openssl_cipher_bpi_encrypt(uint8_t *src, uint8_t *dst,
916                 uint8_t *iv, int srclen,
917                 EVP_CIPHER_CTX *ctx)
918 {
919         uint8_t i;
920         uint8_t encrypted_iv[DES_BLOCK_SIZE];
921         int encrypted_ivlen;
922
923         if (EVP_EncryptUpdate(ctx, encrypted_iv, &encrypted_ivlen,
924                         iv, DES_BLOCK_SIZE) <= 0)
925                 goto process_cipher_encrypt_err;
926
927         for (i = 0; i < srclen; i++)
928                 *(dst + i) = *(src + i) ^ (encrypted_iv[i]);
929
930         return 0;
931
932 process_cipher_encrypt_err:
933         OPENSSL_LOG(ERR, "Process openssl cipher bpi encrypt failed");
934         return -EINVAL;
935 }
936 /** Process standard openssl cipher decryption */
937 static int
938 process_openssl_cipher_decrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
939                 int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx)
940 {
941         int totlen;
942
943         if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
944                 goto process_cipher_decrypt_err;
945
946         EVP_CIPHER_CTX_set_padding(ctx, 0);
947
948         if (process_openssl_decryption_update(mbuf_src, offset, &dst,
949                         srclen, ctx))
950                 goto process_cipher_decrypt_err;
951
952         if (EVP_DecryptFinal_ex(ctx, dst, &totlen) <= 0)
953                 goto process_cipher_decrypt_err;
954         return 0;
955
956 process_cipher_decrypt_err:
957         OPENSSL_LOG(ERR, "Process openssl cipher decrypt failed");
958         return -EINVAL;
959 }
960
961 /** Process cipher des 3 ctr encryption, decryption algorithm */
962 static int
963 process_openssl_cipher_des3ctr(struct rte_mbuf *mbuf_src, uint8_t *dst,
964                 int offset, uint8_t *iv, uint8_t *key, int srclen,
965                 EVP_CIPHER_CTX *ctx)
966 {
967         uint8_t ebuf[8], ctr[8];
968         int unused, n;
969         struct rte_mbuf *m;
970         uint8_t *src;
971         int l;
972
973         for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
974                         m = m->next)
975                 offset -= rte_pktmbuf_data_len(m);
976
977         if (m == 0)
978                 goto process_cipher_des3ctr_err;
979
980         src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
981         l = rte_pktmbuf_data_len(m) - offset;
982
983         /* We use 3DES encryption also for decryption.
984          * IV is not important for 3DES ecb
985          */
986         if (EVP_EncryptInit_ex(ctx, EVP_des_ede3_ecb(), NULL, key, NULL) <= 0)
987                 goto process_cipher_des3ctr_err;
988
989         memcpy(ctr, iv, 8);
990
991         for (n = 0; n < srclen; n++) {
992                 if (n % 8 == 0) {
993                         if (EVP_EncryptUpdate(ctx,
994                                         (unsigned char *)&ebuf, &unused,
995                                         (const unsigned char *)&ctr, 8) <= 0)
996                                 goto process_cipher_des3ctr_err;
997                         ctr_inc(ctr);
998                 }
999                 dst[n] = *(src++) ^ ebuf[n % 8];
1000
1001                 l--;
1002                 if (!l) {
1003                         m = m->next;
1004                         if (m) {
1005                                 src = rte_pktmbuf_mtod(m, uint8_t *);
1006                                 l = rte_pktmbuf_data_len(m);
1007                         }
1008                 }
1009         }
1010
1011         return 0;
1012
1013 process_cipher_des3ctr_err:
1014         OPENSSL_LOG(ERR, "Process openssl cipher des 3 ede ctr failed");
1015         return -EINVAL;
1016 }
1017
1018 /** Process AES-GCM encrypt algorithm */
1019 static int
1020 process_openssl_auth_encryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1021                 int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1022                 uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1023 {
1024         int len = 0, unused = 0;
1025         uint8_t empty[] = {};
1026
1027         if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1028                 goto process_auth_encryption_gcm_err;
1029
1030         if (aadlen > 0)
1031                 if (EVP_EncryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1032                         goto process_auth_encryption_gcm_err;
1033
1034         if (srclen > 0)
1035                 if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1036                                 srclen, ctx))
1037                         goto process_auth_encryption_gcm_err;
1038
1039         /* Workaround open ssl bug in version less then 1.0.1f */
1040         if (EVP_EncryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1041                 goto process_auth_encryption_gcm_err;
1042
1043         if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1044                 goto process_auth_encryption_gcm_err;
1045
1046         if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag) <= 0)
1047                 goto process_auth_encryption_gcm_err;
1048
1049         return 0;
1050
1051 process_auth_encryption_gcm_err:
1052         OPENSSL_LOG(ERR, "Process openssl auth encryption gcm failed");
1053         return -EINVAL;
1054 }
1055
1056 /** Process AES-CCM encrypt algorithm */
1057 static int
1058 process_openssl_auth_encryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1059                 int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1060                 uint8_t *dst, uint8_t *tag, uint8_t taglen, EVP_CIPHER_CTX *ctx)
1061 {
1062         int len = 0;
1063
1064         if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1065                 goto process_auth_encryption_ccm_err;
1066
1067         if (EVP_EncryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1068                 goto process_auth_encryption_ccm_err;
1069
1070         if (aadlen > 0)
1071                 /*
1072                  * For AES-CCM, the actual AAD is placed
1073                  * 18 bytes after the start of the AAD field,
1074                  * according to the API.
1075                  */
1076                 if (EVP_EncryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1077                         goto process_auth_encryption_ccm_err;
1078
1079         if (srclen > 0)
1080                 if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1081                                 srclen, ctx))
1082                         goto process_auth_encryption_ccm_err;
1083
1084         if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1085                 goto process_auth_encryption_ccm_err;
1086
1087         if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_GET_TAG, taglen, tag) <= 0)
1088                 goto process_auth_encryption_ccm_err;
1089
1090         return 0;
1091
1092 process_auth_encryption_ccm_err:
1093         OPENSSL_LOG(ERR, "Process openssl auth encryption ccm failed");
1094         return -EINVAL;
1095 }
1096
1097 /** Process AES-GCM decrypt algorithm */
1098 static int
1099 process_openssl_auth_decryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1100                 int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1101                 uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1102 {
1103         int len = 0, unused = 0;
1104         uint8_t empty[] = {};
1105
1106         if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag) <= 0)
1107                 goto process_auth_decryption_gcm_err;
1108
1109         if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1110                 goto process_auth_decryption_gcm_err;
1111
1112         if (aadlen > 0)
1113                 if (EVP_DecryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1114                         goto process_auth_decryption_gcm_err;
1115
1116         if (srclen > 0)
1117                 if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1118                                 srclen, ctx))
1119                         goto process_auth_decryption_gcm_err;
1120
1121         /* Workaround open ssl bug in version less then 1.0.1f */
1122         if (EVP_DecryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1123                 goto process_auth_decryption_gcm_err;
1124
1125         if (EVP_DecryptFinal_ex(ctx, dst, &len) <= 0)
1126                 return -EFAULT;
1127
1128         return 0;
1129
1130 process_auth_decryption_gcm_err:
1131         OPENSSL_LOG(ERR, "Process openssl auth decryption gcm failed");
1132         return -EINVAL;
1133 }
1134
1135 /** Process AES-CCM decrypt algorithm */
1136 static int
1137 process_openssl_auth_decryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1138                 int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1139                 uint8_t *dst, uint8_t *tag, uint8_t tag_len,
1140                 EVP_CIPHER_CTX *ctx)
1141 {
1142         int len = 0;
1143
1144         if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, tag_len, tag) <= 0)
1145                 goto process_auth_decryption_ccm_err;
1146
1147         if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1148                 goto process_auth_decryption_ccm_err;
1149
1150         if (EVP_DecryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1151                 goto process_auth_decryption_ccm_err;
1152
1153         if (aadlen > 0)
1154                 /*
1155                  * For AES-CCM, the actual AAD is placed
1156                  * 18 bytes after the start of the AAD field,
1157                  * according to the API.
1158                  */
1159                 if (EVP_DecryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1160                         goto process_auth_decryption_ccm_err;
1161
1162         if (srclen > 0)
1163                 if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1164                                 srclen, ctx))
1165                         return -EFAULT;
1166
1167         return 0;
1168
1169 process_auth_decryption_ccm_err:
1170         OPENSSL_LOG(ERR, "Process openssl auth decryption ccm failed");
1171         return -EINVAL;
1172 }
1173
1174 /** Process standard openssl auth algorithms */
1175 static int
1176 process_openssl_auth(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1177                 __rte_unused uint8_t *iv, __rte_unused EVP_PKEY * pkey,
1178                 int srclen, EVP_MD_CTX *ctx, const EVP_MD *algo)
1179 {
1180         size_t dstlen;
1181         struct rte_mbuf *m;
1182         int l, n = srclen;
1183         uint8_t *src;
1184
1185         for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1186                         m = m->next)
1187                 offset -= rte_pktmbuf_data_len(m);
1188
1189         if (m == 0)
1190                 goto process_auth_err;
1191
1192         if (EVP_DigestInit_ex(ctx, algo, NULL) <= 0)
1193                 goto process_auth_err;
1194
1195         src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1196
1197         l = rte_pktmbuf_data_len(m) - offset;
1198         if (srclen <= l) {
1199                 if (EVP_DigestUpdate(ctx, (char *)src, srclen) <= 0)
1200                         goto process_auth_err;
1201                 goto process_auth_final;
1202         }
1203
1204         if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1205                 goto process_auth_err;
1206
1207         n -= l;
1208
1209         for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1210                 src = rte_pktmbuf_mtod(m, uint8_t *);
1211                 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1212                 if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1213                         goto process_auth_err;
1214                 n -= l;
1215         }
1216
1217 process_auth_final:
1218         if (EVP_DigestFinal_ex(ctx, dst, (unsigned int *)&dstlen) <= 0)
1219                 goto process_auth_err;
1220         return 0;
1221
1222 process_auth_err:
1223         OPENSSL_LOG(ERR, "Process openssl auth failed");
1224         return -EINVAL;
1225 }
1226
1227 /** Process standard openssl auth algorithms with hmac */
1228 static int
1229 process_openssl_auth_hmac(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1230                 int srclen, HMAC_CTX *ctx)
1231 {
1232         unsigned int dstlen;
1233         struct rte_mbuf *m;
1234         int l, n = srclen;
1235         uint8_t *src;
1236
1237         for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1238                         m = m->next)
1239                 offset -= rte_pktmbuf_data_len(m);
1240
1241         if (m == 0)
1242                 goto process_auth_err;
1243
1244         src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1245
1246         l = rte_pktmbuf_data_len(m) - offset;
1247         if (srclen <= l) {
1248                 if (HMAC_Update(ctx, (unsigned char *)src, srclen) != 1)
1249                         goto process_auth_err;
1250                 goto process_auth_final;
1251         }
1252
1253         if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1254                 goto process_auth_err;
1255
1256         n -= l;
1257
1258         for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1259                 src = rte_pktmbuf_mtod(m, uint8_t *);
1260                 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1261                 if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1262                         goto process_auth_err;
1263                 n -= l;
1264         }
1265
1266 process_auth_final:
1267         if (HMAC_Final(ctx, dst, &dstlen) != 1)
1268                 goto process_auth_err;
1269
1270         if (unlikely(HMAC_Init_ex(ctx, NULL, 0, NULL, NULL) != 1))
1271                 goto process_auth_err;
1272
1273         return 0;
1274
1275 process_auth_err:
1276         OPENSSL_LOG(ERR, "Process openssl auth failed");
1277         return -EINVAL;
1278 }
1279
1280 /*----------------------------------------------------------------------------*/
1281
1282 /** Process auth/cipher combined operation */
1283 static void
1284 process_openssl_combined_op
1285                 (struct rte_crypto_op *op, struct openssl_session *sess,
1286                 struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1287 {
1288         /* cipher */
1289         uint8_t *dst = NULL, *iv, *tag, *aad;
1290         int srclen, aadlen, status = -1;
1291         uint32_t offset;
1292         uint8_t taglen;
1293
1294         /*
1295          * Segmented destination buffer is not supported for
1296          * encryption/decryption
1297          */
1298         if (!rte_pktmbuf_is_contiguous(mbuf_dst)) {
1299                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1300                 return;
1301         }
1302
1303         iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1304                         sess->iv.offset);
1305         if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
1306                 srclen = 0;
1307                 offset = op->sym->auth.data.offset;
1308                 aadlen = op->sym->auth.data.length;
1309                 aad = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1310                                 op->sym->auth.data.offset);
1311                 tag = op->sym->auth.digest.data;
1312                 if (tag == NULL)
1313                         tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1314                                 offset + aadlen);
1315         } else {
1316                 srclen = op->sym->aead.data.length;
1317                 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1318                                 op->sym->aead.data.offset);
1319                 offset = op->sym->aead.data.offset;
1320                 aad = op->sym->aead.aad.data;
1321                 aadlen = sess->auth.aad_length;
1322                 tag = op->sym->aead.digest.data;
1323                 if (tag == NULL)
1324                         tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1325                                 offset + srclen);
1326         }
1327
1328         taglen = sess->auth.digest_length;
1329
1330         if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1331                 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1332                                 sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1333                         status = process_openssl_auth_encryption_gcm(
1334                                         mbuf_src, offset, srclen,
1335                                         aad, aadlen, iv,
1336                                         dst, tag, sess->cipher.ctx);
1337                 else
1338                         status = process_openssl_auth_encryption_ccm(
1339                                         mbuf_src, offset, srclen,
1340                                         aad, aadlen, iv,
1341                                         dst, tag, taglen, sess->cipher.ctx);
1342
1343         } else {
1344                 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1345                                 sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1346                         status = process_openssl_auth_decryption_gcm(
1347                                         mbuf_src, offset, srclen,
1348                                         aad, aadlen, iv,
1349                                         dst, tag, sess->cipher.ctx);
1350                 else
1351                         status = process_openssl_auth_decryption_ccm(
1352                                         mbuf_src, offset, srclen,
1353                                         aad, aadlen, iv,
1354                                         dst, tag, taglen, sess->cipher.ctx);
1355         }
1356
1357         if (status != 0) {
1358                 if (status == (-EFAULT) &&
1359                                 sess->auth.operation ==
1360                                                 RTE_CRYPTO_AUTH_OP_VERIFY)
1361                         op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1362                 else
1363                         op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1364         }
1365 }
1366
1367 /** Process cipher operation */
1368 static void
1369 process_openssl_cipher_op
1370                 (struct rte_crypto_op *op, struct openssl_session *sess,
1371                 struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1372 {
1373         uint8_t *dst, *iv;
1374         int srclen, status;
1375
1376         /*
1377          * Segmented destination buffer is not supported for
1378          * encryption/decryption
1379          */
1380         if (!rte_pktmbuf_is_contiguous(mbuf_dst)) {
1381                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1382                 return;
1383         }
1384
1385         srclen = op->sym->cipher.data.length;
1386         dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1387                         op->sym->cipher.data.offset);
1388
1389         iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1390                         sess->iv.offset);
1391
1392         if (sess->cipher.mode == OPENSSL_CIPHER_LIB)
1393                 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1394                         status = process_openssl_cipher_encrypt(mbuf_src, dst,
1395                                         op->sym->cipher.data.offset, iv,
1396                                         srclen, sess->cipher.ctx);
1397                 else
1398                         status = process_openssl_cipher_decrypt(mbuf_src, dst,
1399                                         op->sym->cipher.data.offset, iv,
1400                                         srclen, sess->cipher.ctx);
1401         else
1402                 status = process_openssl_cipher_des3ctr(mbuf_src, dst,
1403                                 op->sym->cipher.data.offset, iv,
1404                                 sess->cipher.key.data, srclen,
1405                                 sess->cipher.ctx);
1406
1407         if (status != 0)
1408                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1409 }
1410
1411 /** Process cipher operation */
1412 static void
1413 process_openssl_docsis_bpi_op(struct rte_crypto_op *op,
1414                 struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1415                 struct rte_mbuf *mbuf_dst)
1416 {
1417         uint8_t *src, *dst, *iv;
1418         uint8_t block_size, last_block_len;
1419         int srclen, status = 0;
1420
1421         srclen = op->sym->cipher.data.length;
1422         src = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1423                         op->sym->cipher.data.offset);
1424         dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1425                         op->sym->cipher.data.offset);
1426
1427         iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1428                         sess->iv.offset);
1429
1430         block_size = DES_BLOCK_SIZE;
1431
1432         last_block_len = srclen % block_size;
1433         if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1434                 /* Encrypt only with ECB mode XOR IV */
1435                 if (srclen < block_size) {
1436                         status = process_openssl_cipher_bpi_encrypt(src, dst,
1437                                         iv, srclen,
1438                                         sess->cipher.bpi_ctx);
1439                 } else {
1440                         srclen -= last_block_len;
1441                         /* Encrypt with the block aligned stream with CBC mode */
1442                         status = process_openssl_cipher_encrypt(mbuf_src, dst,
1443                                         op->sym->cipher.data.offset, iv,
1444                                         srclen, sess->cipher.ctx);
1445                         if (last_block_len) {
1446                                 /* Point at last block */
1447                                 dst += srclen;
1448                                 /*
1449                                  * IV is the last encrypted block from
1450                                  * the previous operation
1451                                  */
1452                                 iv = dst - block_size;
1453                                 src += srclen;
1454                                 srclen = last_block_len;
1455                                 /* Encrypt the last frame with ECB mode */
1456                                 status |= process_openssl_cipher_bpi_encrypt(src,
1457                                                 dst, iv,
1458                                                 srclen, sess->cipher.bpi_ctx);
1459                         }
1460                 }
1461         } else {
1462                 /* Decrypt only with ECB mode (encrypt, as it is same operation) */
1463                 if (srclen < block_size) {
1464                         status = process_openssl_cipher_bpi_encrypt(src, dst,
1465                                         iv,
1466                                         srclen,
1467                                         sess->cipher.bpi_ctx);
1468                 } else {
1469                         if (last_block_len) {
1470                                 /* Point at last block */
1471                                 dst += srclen - last_block_len;
1472                                 src += srclen - last_block_len;
1473                                 /*
1474                                  * IV is the last full block
1475                                  */
1476                                 iv = src - block_size;
1477                                 /*
1478                                  * Decrypt the last frame with ECB mode
1479                                  * (encrypt, as it is the same operation)
1480                                  */
1481                                 status = process_openssl_cipher_bpi_encrypt(src,
1482                                                 dst, iv,
1483                                                 last_block_len, sess->cipher.bpi_ctx);
1484                                 /* Prepare parameters for CBC mode op */
1485                                 iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1486                                                 sess->iv.offset);
1487                                 dst += last_block_len - srclen;
1488                                 srclen -= last_block_len;
1489                         }
1490
1491                         /* Decrypt with CBC mode */
1492                         status |= process_openssl_cipher_decrypt(mbuf_src, dst,
1493                                         op->sym->cipher.data.offset, iv,
1494                                         srclen, sess->cipher.ctx);
1495                 }
1496         }
1497
1498         if (status != 0)
1499                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1500 }
1501
1502 /** Process auth operation */
1503 static void
1504 process_openssl_auth_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1505                 struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1506                 struct rte_mbuf *mbuf_dst)
1507 {
1508         uint8_t *dst;
1509         int srclen, status;
1510
1511         srclen = op->sym->auth.data.length;
1512
1513         dst = qp->temp_digest;
1514
1515         switch (sess->auth.mode) {
1516         case OPENSSL_AUTH_AS_AUTH:
1517                 status = process_openssl_auth(mbuf_src, dst,
1518                                 op->sym->auth.data.offset, NULL, NULL, srclen,
1519                                 sess->auth.auth.ctx, sess->auth.auth.evp_algo);
1520                 break;
1521         case OPENSSL_AUTH_AS_HMAC:
1522                 status = process_openssl_auth_hmac(mbuf_src, dst,
1523                                 op->sym->auth.data.offset, srclen,
1524                                 sess->auth.hmac.ctx);
1525                 break;
1526         default:
1527                 status = -1;
1528                 break;
1529         }
1530
1531         if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1532                 if (memcmp(dst, op->sym->auth.digest.data,
1533                                 sess->auth.digest_length) != 0) {
1534                         op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1535                 }
1536         } else {
1537                 uint8_t *auth_dst;
1538
1539                 auth_dst = op->sym->auth.digest.data;
1540                 if (auth_dst == NULL)
1541                         auth_dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1542                                         op->sym->auth.data.offset +
1543                                         op->sym->auth.data.length);
1544                 memcpy(auth_dst, dst, sess->auth.digest_length);
1545         }
1546
1547         if (status != 0)
1548                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1549 }
1550
1551 /* process dsa sign operation */
1552 static int
1553 process_openssl_dsa_sign_op(struct rte_crypto_op *cop,
1554                 struct openssl_asym_session *sess)
1555 {
1556         struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1557         DSA *dsa = sess->u.s.dsa;
1558         DSA_SIG *sign = NULL;
1559
1560         sign = DSA_do_sign(op->message.data,
1561                         op->message.length,
1562                         dsa);
1563
1564         if (sign == NULL) {
1565                 OPENSSL_LOG(ERR, "%s:%d\n", __func__, __LINE__);
1566                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1567         } else {
1568                 const BIGNUM *r = NULL, *s = NULL;
1569                 get_dsa_sign(sign, &r, &s);
1570
1571                 op->r.length = BN_bn2bin(r, op->r.data);
1572                 op->s.length = BN_bn2bin(s, op->s.data);
1573                 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1574         }
1575
1576         DSA_SIG_free(sign);
1577
1578         return 0;
1579 }
1580
1581 /* process dsa verify operation */
1582 static int
1583 process_openssl_dsa_verify_op(struct rte_crypto_op *cop,
1584                 struct openssl_asym_session *sess)
1585 {
1586         struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1587         DSA *dsa = sess->u.s.dsa;
1588         int ret;
1589         DSA_SIG *sign = DSA_SIG_new();
1590         BIGNUM *r = NULL, *s = NULL;
1591         BIGNUM *pub_key = NULL;
1592
1593         if (sign == NULL) {
1594                 OPENSSL_LOG(ERR, " %s:%d\n", __func__, __LINE__);
1595                 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1596                 return -1;
1597         }
1598
1599         r = BN_bin2bn(op->r.data,
1600                         op->r.length,
1601                         r);
1602         s = BN_bin2bn(op->s.data,
1603                         op->s.length,
1604                         s);
1605         pub_key = BN_bin2bn(op->y.data,
1606                         op->y.length,
1607                         pub_key);
1608         if (!r || !s || !pub_key) {
1609                 BN_free(r);
1610                 BN_free(s);
1611                 BN_free(pub_key);
1612
1613                 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1614                 return -1;
1615         }
1616         set_dsa_sign(sign, r, s);
1617         set_dsa_pub_key(dsa, pub_key);
1618
1619         ret = DSA_do_verify(op->message.data,
1620                         op->message.length,
1621                         sign,
1622                         dsa);
1623
1624         if (ret != 1)
1625                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1626         else
1627                 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1628
1629         DSA_SIG_free(sign);
1630
1631         return 0;
1632 }
1633
1634 /* process dh operation */
1635 static int
1636 process_openssl_dh_op(struct rte_crypto_op *cop,
1637                 struct openssl_asym_session *sess)
1638 {
1639         struct rte_crypto_dh_op_param *op = &cop->asym->dh;
1640         DH *dh_key = sess->u.dh.dh_key;
1641         BIGNUM *priv_key = NULL;
1642         int ret = 0;
1643
1644         if (sess->u.dh.key_op &
1645                         (1 << RTE_CRYPTO_ASYM_OP_SHARED_SECRET_COMPUTE)) {
1646                 /* compute shared secret using peer public key
1647                  * and current private key
1648                  * shared secret = peer_key ^ priv_key mod p
1649                  */
1650                 BIGNUM *peer_key = NULL;
1651
1652                 /* copy private key and peer key and compute shared secret */
1653                 peer_key = BN_bin2bn(op->pub_key.data,
1654                                 op->pub_key.length,
1655                                 peer_key);
1656                 if (peer_key == NULL) {
1657                         cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1658                         return -1;
1659                 }
1660                 priv_key = BN_bin2bn(op->priv_key.data,
1661                                 op->priv_key.length,
1662                                 priv_key);
1663                 if (priv_key == NULL) {
1664                         BN_free(peer_key);
1665                         cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1666                         return -1;
1667                 }
1668                 ret = set_dh_priv_key(dh_key, priv_key);
1669                 if (ret) {
1670                         OPENSSL_LOG(ERR, "Failed to set private key\n");
1671                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1672                         BN_free(peer_key);
1673                         BN_free(priv_key);
1674                         return 0;
1675                 }
1676
1677                 ret = DH_compute_key(
1678                                 op->shared_secret.data,
1679                                 peer_key, dh_key);
1680                 if (ret < 0) {
1681                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1682                         BN_free(peer_key);
1683                         /* priv key is already loaded into dh,
1684                          * let's not free that directly here.
1685                          * DH_free() will auto free it later.
1686                          */
1687                         return 0;
1688                 }
1689                 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1690                 op->shared_secret.length = ret;
1691                 BN_free(peer_key);
1692                 return 0;
1693         }
1694
1695         /*
1696          * other options are public and private key generations.
1697          *
1698          * if user provides private key,
1699          * then first set DH with user provided private key
1700          */
1701         if ((sess->u.dh.key_op &
1702                         (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) &&
1703                         !(sess->u.dh.key_op &
1704                         (1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE))) {
1705                 /* generate public key using user-provided private key
1706                  * pub_key = g ^ priv_key mod p
1707                  */
1708
1709                 /* load private key into DH */
1710                 priv_key = BN_bin2bn(op->priv_key.data,
1711                                 op->priv_key.length,
1712                                 priv_key);
1713                 if (priv_key == NULL) {
1714                         cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1715                         return -1;
1716                 }
1717                 ret = set_dh_priv_key(dh_key, priv_key);
1718                 if (ret) {
1719                         OPENSSL_LOG(ERR, "Failed to set private key\n");
1720                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1721                         BN_free(priv_key);
1722                         return 0;
1723                 }
1724         }
1725
1726         /* generate public and private key pair.
1727          *
1728          * if private key already set, generates only public key.
1729          *
1730          * if private key is not already set, then set it to random value
1731          * and update internal private key.
1732          */
1733         if (!DH_generate_key(dh_key)) {
1734                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1735                 return 0;
1736         }
1737
1738         if (sess->u.dh.key_op & (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) {
1739                 const BIGNUM *pub_key = NULL;
1740
1741                 OPENSSL_LOG(DEBUG, "%s:%d update public key\n",
1742                                 __func__, __LINE__);
1743
1744                 /* get the generated keys */
1745                 get_dh_pub_key(dh_key, &pub_key);
1746
1747                 /* output public key */
1748                 op->pub_key.length = BN_bn2bin(pub_key,
1749                                 op->pub_key.data);
1750         }
1751
1752         if (sess->u.dh.key_op &
1753                         (1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE)) {
1754                 const BIGNUM *priv_key = NULL;
1755
1756                 OPENSSL_LOG(DEBUG, "%s:%d updated priv key\n",
1757                                 __func__, __LINE__);
1758
1759                 /* get the generated keys */
1760                 get_dh_priv_key(dh_key, &priv_key);
1761
1762                 /* provide generated private key back to user */
1763                 op->priv_key.length = BN_bn2bin(priv_key,
1764                                 op->priv_key.data);
1765         }
1766
1767         cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1768
1769         return 0;
1770 }
1771
1772 /* process modinv operation */
1773 static int
1774 process_openssl_modinv_op(struct rte_crypto_op *cop,
1775                 struct openssl_asym_session *sess)
1776 {
1777         struct rte_crypto_asym_op *op = cop->asym;
1778         BIGNUM *base = BN_CTX_get(sess->u.m.ctx);
1779         BIGNUM *res = BN_CTX_get(sess->u.m.ctx);
1780
1781         if (unlikely(base == NULL || res == NULL)) {
1782                 BN_free(base);
1783                 BN_free(res);
1784                 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1785                 return -1;
1786         }
1787
1788         base = BN_bin2bn((const unsigned char *)op->modinv.base.data,
1789                         op->modinv.base.length, base);
1790
1791         if (BN_mod_inverse(res, base, sess->u.m.modulus, sess->u.m.ctx)) {
1792                 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1793                 op->modinv.base.length = BN_bn2bin(res, op->modinv.base.data);
1794         } else {
1795                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1796         }
1797
1798         return 0;
1799 }
1800
1801 /* process modexp operation */
1802 static int
1803 process_openssl_modexp_op(struct rte_crypto_op *cop,
1804                 struct openssl_asym_session *sess)
1805 {
1806         struct rte_crypto_asym_op *op = cop->asym;
1807         BIGNUM *base = BN_CTX_get(sess->u.e.ctx);
1808         BIGNUM *res = BN_CTX_get(sess->u.e.ctx);
1809
1810         if (unlikely(base == NULL || res == NULL)) {
1811                 BN_free(base);
1812                 BN_free(res);
1813                 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1814                 return -1;
1815         }
1816
1817         base = BN_bin2bn((const unsigned char *)op->modinv.base.data,
1818                         op->modinv.base.length, base);
1819
1820         if (BN_mod_exp(res, base, sess->u.e.exp,
1821                                 sess->u.e.mod, sess->u.e.ctx)) {
1822                 op->modinv.base.length = BN_bn2bin(res, op->modinv.base.data);
1823                 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1824         } else {
1825                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1826         }
1827
1828         return 0;
1829 }
1830
1831 /* process rsa operations */
1832 static int
1833 process_openssl_rsa_op(struct rte_crypto_op *cop,
1834                 struct openssl_asym_session *sess)
1835 {
1836         int ret = 0;
1837         struct rte_crypto_asym_op *op = cop->asym;
1838         RSA *rsa = sess->u.r.rsa;
1839         uint32_t pad = (op->rsa.pad);
1840         uint8_t *tmp;
1841
1842         cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1843
1844         switch (pad) {
1845         case RTE_CRYPTO_RSA_PKCS1_V1_5_BT0:
1846         case RTE_CRYPTO_RSA_PKCS1_V1_5_BT1:
1847         case RTE_CRYPTO_RSA_PKCS1_V1_5_BT2:
1848                 pad = RSA_PKCS1_PADDING;
1849                 break;
1850         case RTE_CRYPTO_RSA_PADDING_NONE:
1851                 pad = RSA_NO_PADDING;
1852                 break;
1853         default:
1854                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1855                 OPENSSL_LOG(ERR,
1856                                 "rsa pad type not supported %d\n", pad);
1857                 return 0;
1858         }
1859
1860         switch (op->rsa.op_type) {
1861         case RTE_CRYPTO_ASYM_OP_ENCRYPT:
1862                 ret = RSA_public_encrypt(op->rsa.message.length,
1863                                 op->rsa.message.data,
1864                                 op->rsa.message.data,
1865                                 rsa,
1866                                 pad);
1867
1868                 if (ret > 0)
1869                         op->rsa.message.length = ret;
1870                 OPENSSL_LOG(DEBUG,
1871                                 "length of encrypted text %d\n", ret);
1872                 break;
1873
1874         case RTE_CRYPTO_ASYM_OP_DECRYPT:
1875                 ret = RSA_private_decrypt(op->rsa.message.length,
1876                                 op->rsa.message.data,
1877                                 op->rsa.message.data,
1878                                 rsa,
1879                                 pad);
1880                 if (ret > 0)
1881                         op->rsa.message.length = ret;
1882                 break;
1883
1884         case RTE_CRYPTO_ASYM_OP_SIGN:
1885                 ret = RSA_private_encrypt(op->rsa.message.length,
1886                                 op->rsa.message.data,
1887                                 op->rsa.sign.data,
1888                                 rsa,
1889                                 pad);
1890                 if (ret > 0)
1891                         op->rsa.sign.length = ret;
1892                 break;
1893
1894         case RTE_CRYPTO_ASYM_OP_VERIFY:
1895                 tmp = rte_malloc(NULL, op->rsa.sign.length, 0);
1896                 if (tmp == NULL) {
1897                         OPENSSL_LOG(ERR, "Memory allocation failed");
1898                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1899                         break;
1900                 }
1901                 ret = RSA_public_decrypt(op->rsa.sign.length,
1902                                 op->rsa.sign.data,
1903                                 tmp,
1904                                 rsa,
1905                                 pad);
1906
1907                 OPENSSL_LOG(DEBUG,
1908                                 "Length of public_decrypt %d "
1909                                 "length of message %zd\n",
1910                                 ret, op->rsa.message.length);
1911                 if ((ret <= 0) || (memcmp(tmp, op->rsa.message.data,
1912                                 op->rsa.message.length))) {
1913                         OPENSSL_LOG(ERR, "RSA sign Verification failed");
1914                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1915                 }
1916                 rte_free(tmp);
1917                 break;
1918
1919         default:
1920                 /* allow ops with invalid args to be pushed to
1921                  * completion queue
1922                  */
1923                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1924                 break;
1925         }
1926
1927         if (ret < 0)
1928                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1929
1930         return 0;
1931 }
1932
1933 static int
1934 process_asym_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1935                 struct openssl_asym_session *sess)
1936 {
1937         int retval = 0;
1938
1939         op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1940
1941         switch (sess->xfrm_type) {
1942         case RTE_CRYPTO_ASYM_XFORM_RSA:
1943                 retval = process_openssl_rsa_op(op, sess);
1944                 break;
1945         case RTE_CRYPTO_ASYM_XFORM_MODEX:
1946                 retval = process_openssl_modexp_op(op, sess);
1947                 break;
1948         case RTE_CRYPTO_ASYM_XFORM_MODINV:
1949                 retval = process_openssl_modinv_op(op, sess);
1950                 break;
1951         case RTE_CRYPTO_ASYM_XFORM_DH:
1952                 retval = process_openssl_dh_op(op, sess);
1953                 break;
1954         case RTE_CRYPTO_ASYM_XFORM_DSA:
1955                 if (op->asym->dsa.op_type == RTE_CRYPTO_ASYM_OP_SIGN)
1956                         retval = process_openssl_dsa_sign_op(op, sess);
1957                 else if (op->asym->dsa.op_type ==
1958                                 RTE_CRYPTO_ASYM_OP_VERIFY)
1959                         retval =
1960                                 process_openssl_dsa_verify_op(op, sess);
1961                 else
1962                         op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1963                 break;
1964         default:
1965                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1966                 break;
1967         }
1968         if (!retval) {
1969                 /* op processed so push to completion queue as processed */
1970                 retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
1971                 if (retval)
1972                         /* return error if failed to put in completion queue */
1973                         retval = -1;
1974         }
1975
1976         return retval;
1977 }
1978
1979 /** Process crypto operation for mbuf */
1980 static int
1981 process_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1982                 struct openssl_session *sess)
1983 {
1984         struct rte_mbuf *msrc, *mdst;
1985         int retval;
1986
1987         msrc = op->sym->m_src;
1988         mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
1989
1990         op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1991
1992         switch (sess->chain_order) {
1993         case OPENSSL_CHAIN_ONLY_CIPHER:
1994                 process_openssl_cipher_op(op, sess, msrc, mdst);
1995                 break;
1996         case OPENSSL_CHAIN_ONLY_AUTH:
1997                 process_openssl_auth_op(qp, op, sess, msrc, mdst);
1998                 break;
1999         case OPENSSL_CHAIN_CIPHER_AUTH:
2000                 process_openssl_cipher_op(op, sess, msrc, mdst);
2001                 process_openssl_auth_op(qp, op, sess, mdst, mdst);
2002                 break;
2003         case OPENSSL_CHAIN_AUTH_CIPHER:
2004                 process_openssl_auth_op(qp, op, sess, msrc, mdst);
2005                 process_openssl_cipher_op(op, sess, msrc, mdst);
2006                 break;
2007         case OPENSSL_CHAIN_COMBINED:
2008                 process_openssl_combined_op(op, sess, msrc, mdst);
2009                 break;
2010         case OPENSSL_CHAIN_CIPHER_BPI:
2011                 process_openssl_docsis_bpi_op(op, sess, msrc, mdst);
2012                 break;
2013         default:
2014                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
2015                 break;
2016         }
2017
2018         /* Free session if a session-less crypto op */
2019         if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
2020                 openssl_reset_session(sess);
2021                 memset(sess, 0, sizeof(struct openssl_session));
2022                 memset(op->sym->session, 0,
2023                                 rte_cryptodev_sym_get_header_session_size());
2024                 rte_mempool_put(qp->sess_mp_priv, sess);
2025                 rte_mempool_put(qp->sess_mp, op->sym->session);
2026                 op->sym->session = NULL;
2027         }
2028
2029         if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
2030                 op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
2031
2032         if (op->status != RTE_CRYPTO_OP_STATUS_ERROR)
2033                 retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
2034         else
2035                 retval = -1;
2036
2037         return retval;
2038 }
2039
2040 /*
2041  *------------------------------------------------------------------------------
2042  * PMD Framework
2043  *------------------------------------------------------------------------------
2044  */
2045
2046 /** Enqueue burst */
2047 static uint16_t
2048 openssl_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
2049                 uint16_t nb_ops)
2050 {
2051         void *sess;
2052         struct openssl_qp *qp = queue_pair;
2053         int i, retval;
2054
2055         for (i = 0; i < nb_ops; i++) {
2056                 sess = get_session(qp, ops[i]);
2057                 if (unlikely(sess == NULL))
2058                         goto enqueue_err;
2059
2060                 if (ops[i]->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2061                         retval = process_op(qp, ops[i],
2062                                         (struct openssl_session *) sess);
2063                 else
2064                         retval = process_asym_op(qp, ops[i],
2065                                         (struct openssl_asym_session *) sess);
2066                 if (unlikely(retval < 0))
2067                         goto enqueue_err;
2068         }
2069
2070         qp->stats.enqueued_count += i;
2071         return i;
2072
2073 enqueue_err:
2074         qp->stats.enqueue_err_count++;
2075         return i;
2076 }
2077
2078 /** Dequeue burst */
2079 static uint16_t
2080 openssl_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
2081                 uint16_t nb_ops)
2082 {
2083         struct openssl_qp *qp = queue_pair;
2084
2085         unsigned int nb_dequeued = 0;
2086
2087         nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
2088                         (void **)ops, nb_ops, NULL);
2089         qp->stats.dequeued_count += nb_dequeued;
2090
2091         return nb_dequeued;
2092 }
2093
2094 /** Create OPENSSL crypto device */
2095 static int
2096 cryptodev_openssl_create(const char *name,
2097                         struct rte_vdev_device *vdev,
2098                         struct rte_cryptodev_pmd_init_params *init_params)
2099 {
2100         struct rte_cryptodev *dev;
2101         struct openssl_private *internals;
2102
2103         dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
2104         if (dev == NULL) {
2105                 OPENSSL_LOG(ERR, "failed to create cryptodev vdev");
2106                 goto init_error;
2107         }
2108
2109         dev->driver_id = cryptodev_driver_id;
2110         dev->dev_ops = rte_openssl_pmd_ops;
2111
2112         /* register rx/tx burst functions for data path */
2113         dev->dequeue_burst = openssl_pmd_dequeue_burst;
2114         dev->enqueue_burst = openssl_pmd_enqueue_burst;
2115
2116         dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
2117                         RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
2118                         RTE_CRYPTODEV_FF_CPU_AESNI |
2119                         RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
2120                         RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
2121                         RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
2122
2123         /* Set vector instructions mode supported */
2124         internals = dev->data->dev_private;
2125
2126         internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
2127
2128         return 0;
2129
2130 init_error:
2131         OPENSSL_LOG(ERR, "driver %s: create failed",
2132                         init_params->name);
2133
2134         cryptodev_openssl_remove(vdev);
2135         return -EFAULT;
2136 }
2137
2138 /** Initialise OPENSSL crypto device */
2139 static int
2140 cryptodev_openssl_probe(struct rte_vdev_device *vdev)
2141 {
2142         struct rte_cryptodev_pmd_init_params init_params = {
2143                 "",
2144                 sizeof(struct openssl_private),
2145                 rte_socket_id(),
2146                 RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
2147         };
2148         const char *name;
2149         const char *input_args;
2150
2151         name = rte_vdev_device_name(vdev);
2152         if (name == NULL)
2153                 return -EINVAL;
2154         input_args = rte_vdev_device_args(vdev);
2155
2156         rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
2157
2158         return cryptodev_openssl_create(name, vdev, &init_params);
2159 }
2160
2161 /** Uninitialise OPENSSL crypto device */
2162 static int
2163 cryptodev_openssl_remove(struct rte_vdev_device *vdev)
2164 {
2165         struct rte_cryptodev *cryptodev;
2166         const char *name;
2167
2168         name = rte_vdev_device_name(vdev);
2169         if (name == NULL)
2170                 return -EINVAL;
2171
2172         cryptodev = rte_cryptodev_pmd_get_named_dev(name);
2173         if (cryptodev == NULL)
2174                 return -ENODEV;
2175
2176         return rte_cryptodev_pmd_destroy(cryptodev);
2177 }
2178
2179 static struct rte_vdev_driver cryptodev_openssl_pmd_drv = {
2180         .probe = cryptodev_openssl_probe,
2181         .remove = cryptodev_openssl_remove
2182 };
2183
2184 static struct cryptodev_driver openssl_crypto_drv;
2185
2186 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_OPENSSL_PMD,
2187         cryptodev_openssl_pmd_drv);
2188 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_OPENSSL_PMD,
2189         "max_nb_queue_pairs=<int> "
2190         "socket_id=<int>");
2191 RTE_PMD_REGISTER_CRYPTO_DRIVER(openssl_crypto_drv,
2192                 cryptodev_openssl_pmd_drv.driver, cryptodev_driver_id);
2193
2194 RTE_INIT(openssl_init_log)
2195 {
2196         openssl_logtype_driver = rte_log_register("pmd.crypto.openssl");
2197 }