cryptodev: move device-specific structures
[dpdk.git] / drivers / crypto / scheduler / scheduler_multicore.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 #include <unistd.h>
5
6 #include <cryptodev_pmd.h>
7 #include <rte_malloc.h>
8
9 #include "rte_cryptodev_scheduler_operations.h"
10 #include "scheduler_pmd_private.h"
11
12 #define MC_SCHED_ENQ_RING_NAME_PREFIX   "MCS_ENQR_"
13 #define MC_SCHED_DEQ_RING_NAME_PREFIX   "MCS_DEQR_"
14
15 #define MC_SCHED_BUFFER_SIZE 32
16
17 #define CRYPTO_OP_STATUS_BIT_COMPLETE   0x80
18
19 /** multi-core scheduler context */
20 struct mc_scheduler_ctx {
21         uint32_t num_workers;             /**< Number of workers polling */
22         uint32_t stop_signal;
23
24         struct rte_ring *sched_enq_ring[RTE_MAX_LCORE];
25         struct rte_ring *sched_deq_ring[RTE_MAX_LCORE];
26 };
27
28 struct mc_scheduler_qp_ctx {
29         struct scheduler_worker workers[RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKERS];
30         uint32_t nb_workers;
31
32         uint32_t last_enq_worker_idx;
33         uint32_t last_deq_worker_idx;
34
35         struct mc_scheduler_ctx *mc_private_ctx;
36 };
37
38 static uint16_t
39 schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
40 {
41         struct mc_scheduler_qp_ctx *mc_qp_ctx =
42                         ((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
43         struct mc_scheduler_ctx *mc_ctx = mc_qp_ctx->mc_private_ctx;
44         uint32_t worker_idx = mc_qp_ctx->last_enq_worker_idx;
45         uint16_t i, processed_ops = 0;
46
47         if (unlikely(nb_ops == 0))
48                 return 0;
49
50         for (i = 0; i <  mc_ctx->num_workers && nb_ops != 0; i++) {
51                 struct rte_ring *enq_ring = mc_ctx->sched_enq_ring[worker_idx];
52                 uint16_t nb_queue_ops = rte_ring_enqueue_burst(enq_ring,
53                         (void *)(&ops[processed_ops]), nb_ops, NULL);
54
55                 nb_ops -= nb_queue_ops;
56                 processed_ops += nb_queue_ops;
57
58                 if (++worker_idx == mc_ctx->num_workers)
59                         worker_idx = 0;
60         }
61         mc_qp_ctx->last_enq_worker_idx = worker_idx;
62
63         return processed_ops;
64 }
65
66 static uint16_t
67 schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
68                 uint16_t nb_ops)
69 {
70         struct rte_ring *order_ring =
71                         ((struct scheduler_qp_ctx *)qp)->order_ring;
72         uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
73                         nb_ops);
74         uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
75                         nb_ops_to_enq);
76
77         scheduler_order_insert(order_ring, ops, nb_ops_enqd);
78
79         return nb_ops_enqd;
80 }
81
82
83 static uint16_t
84 schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
85 {
86         struct mc_scheduler_qp_ctx *mc_qp_ctx =
87                         ((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
88         struct mc_scheduler_ctx *mc_ctx = mc_qp_ctx->mc_private_ctx;
89         uint32_t worker_idx = mc_qp_ctx->last_deq_worker_idx;
90         uint16_t i, processed_ops = 0;
91
92         for (i = 0; i < mc_ctx->num_workers && nb_ops != 0; i++) {
93                 struct rte_ring *deq_ring = mc_ctx->sched_deq_ring[worker_idx];
94                 uint16_t nb_deq_ops = rte_ring_dequeue_burst(deq_ring,
95                         (void *)(&ops[processed_ops]), nb_ops, NULL);
96
97                 nb_ops -= nb_deq_ops;
98                 processed_ops += nb_deq_ops;
99                 if (++worker_idx == mc_ctx->num_workers)
100                         worker_idx = 0;
101         }
102
103         mc_qp_ctx->last_deq_worker_idx = worker_idx;
104
105         return processed_ops;
106
107 }
108
109 static uint16_t
110 schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
111                 uint16_t nb_ops)
112 {
113         struct rte_ring *order_ring =
114                 ((struct scheduler_qp_ctx *)qp)->order_ring;
115         struct rte_crypto_op *op;
116         uint32_t nb_objs, nb_ops_to_deq;
117
118         nb_objs = rte_ring_dequeue_burst_start(order_ring, (void **)ops,
119                 nb_ops, NULL);
120         if (nb_objs == 0)
121                 return 0;
122
123         for (nb_ops_to_deq = 0; nb_ops_to_deq != nb_objs; nb_ops_to_deq++) {
124                 op = ops[nb_ops_to_deq];
125                 if (!(op->status & CRYPTO_OP_STATUS_BIT_COMPLETE))
126                         break;
127                 op->status &= ~CRYPTO_OP_STATUS_BIT_COMPLETE;
128         }
129
130         rte_ring_dequeue_finish(order_ring, nb_ops_to_deq);
131         return nb_ops_to_deq;
132 }
133
134 static int
135 worker_attach(__rte_unused struct rte_cryptodev *dev,
136                 __rte_unused uint8_t worker_id)
137 {
138         return 0;
139 }
140
141 static int
142 worker_detach(__rte_unused struct rte_cryptodev *dev,
143                 __rte_unused uint8_t worker_id)
144 {
145         return 0;
146 }
147
148 static int
149 mc_scheduler_worker(struct rte_cryptodev *dev)
150 {
151         struct scheduler_ctx *sched_ctx = dev->data->dev_private;
152         struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
153         struct rte_ring *enq_ring;
154         struct rte_ring *deq_ring;
155         uint32_t core_id = rte_lcore_id();
156         int i, worker_idx = -1;
157         struct scheduler_worker *worker;
158         struct rte_crypto_op *enq_ops[MC_SCHED_BUFFER_SIZE];
159         struct rte_crypto_op *deq_ops[MC_SCHED_BUFFER_SIZE];
160         uint16_t processed_ops;
161         uint16_t pending_enq_ops = 0;
162         uint16_t pending_enq_ops_idx = 0;
163         uint16_t pending_deq_ops = 0;
164         uint16_t pending_deq_ops_idx = 0;
165         uint16_t inflight_ops = 0;
166         const uint8_t reordering_enabled = sched_ctx->reordering_enabled;
167
168         for (i = 0; i < (int)sched_ctx->nb_wc; i++) {
169                 if (sched_ctx->wc_pool[i] == core_id) {
170                         worker_idx = i;
171                         break;
172                 }
173         }
174         if (worker_idx == -1) {
175                 CR_SCHED_LOG(ERR, "worker on core %u:cannot find worker index!",
176                         core_id);
177                 return -1;
178         }
179
180         worker = &sched_ctx->workers[worker_idx];
181         enq_ring = mc_ctx->sched_enq_ring[worker_idx];
182         deq_ring = mc_ctx->sched_deq_ring[worker_idx];
183
184         while (!mc_ctx->stop_signal) {
185                 if (pending_enq_ops) {
186                         processed_ops =
187                                 rte_cryptodev_enqueue_burst(worker->dev_id,
188                                         worker->qp_id,
189                                         &enq_ops[pending_enq_ops_idx],
190                                         pending_enq_ops);
191                         pending_enq_ops -= processed_ops;
192                         pending_enq_ops_idx += processed_ops;
193                         inflight_ops += processed_ops;
194                 } else {
195                         processed_ops = rte_ring_dequeue_burst(enq_ring, (void *)enq_ops,
196                                                         MC_SCHED_BUFFER_SIZE, NULL);
197                         if (processed_ops) {
198                                 pending_enq_ops_idx = rte_cryptodev_enqueue_burst(
199                                                 worker->dev_id, worker->qp_id,
200                                                 enq_ops, processed_ops);
201                                 pending_enq_ops = processed_ops - pending_enq_ops_idx;
202                                 inflight_ops += pending_enq_ops_idx;
203                         }
204                 }
205
206                 if (pending_deq_ops) {
207                         processed_ops = rte_ring_enqueue_burst(
208                                         deq_ring, (void *)&deq_ops[pending_deq_ops_idx],
209                                                         pending_deq_ops, NULL);
210                         pending_deq_ops -= processed_ops;
211                         pending_deq_ops_idx += processed_ops;
212                 } else if (inflight_ops) {
213                         processed_ops = rte_cryptodev_dequeue_burst(
214                                         worker->dev_id, worker->qp_id, deq_ops,
215                                         MC_SCHED_BUFFER_SIZE);
216                         if (processed_ops) {
217                                 inflight_ops -= processed_ops;
218                                 if (reordering_enabled) {
219                                         uint16_t j;
220
221                                         for (j = 0; j < processed_ops; j++) {
222                                                 deq_ops[j]->status |=
223                                                         CRYPTO_OP_STATUS_BIT_COMPLETE;
224                                         }
225                                 } else {
226                                         pending_deq_ops_idx = rte_ring_enqueue_burst(
227                                                 deq_ring, (void *)deq_ops, processed_ops,
228                                                 NULL);
229                                         pending_deq_ops = processed_ops -
230                                                                 pending_deq_ops_idx;
231                                 }
232                         }
233                 }
234
235                 rte_pause();
236         }
237
238         return 0;
239 }
240
241 static int
242 scheduler_start(struct rte_cryptodev *dev)
243 {
244         struct scheduler_ctx *sched_ctx = dev->data->dev_private;
245         struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
246         uint16_t i;
247
248         mc_ctx->stop_signal = 0;
249
250         for (i = 0; i < sched_ctx->nb_wc; i++)
251                 rte_eal_remote_launch(
252                         (lcore_function_t *)mc_scheduler_worker, dev,
253                                         sched_ctx->wc_pool[i]);
254
255         if (sched_ctx->reordering_enabled) {
256                 dev->enqueue_burst = &schedule_enqueue_ordering;
257                 dev->dequeue_burst = &schedule_dequeue_ordering;
258         } else {
259                 dev->enqueue_burst = &schedule_enqueue;
260                 dev->dequeue_burst = &schedule_dequeue;
261         }
262
263         for (i = 0; i < dev->data->nb_queue_pairs; i++) {
264                 struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
265                 struct mc_scheduler_qp_ctx *mc_qp_ctx =
266                                 qp_ctx->private_qp_ctx;
267                 uint32_t j;
268
269                 memset(mc_qp_ctx->workers, 0,
270                                 RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKERS *
271                                 sizeof(struct scheduler_worker));
272                 for (j = 0; j < sched_ctx->nb_workers; j++) {
273                         mc_qp_ctx->workers[j].dev_id =
274                                         sched_ctx->workers[j].dev_id;
275                         mc_qp_ctx->workers[j].qp_id = i;
276                 }
277
278                 mc_qp_ctx->nb_workers = sched_ctx->nb_workers;
279
280                 mc_qp_ctx->last_enq_worker_idx = 0;
281                 mc_qp_ctx->last_deq_worker_idx = 0;
282         }
283
284         return 0;
285 }
286
287 static int
288 scheduler_stop(struct rte_cryptodev *dev)
289 {
290         struct scheduler_ctx *sched_ctx = dev->data->dev_private;
291         struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
292         uint16_t i;
293
294         mc_ctx->stop_signal = 1;
295
296         for (i = 0; i < sched_ctx->nb_wc; i++)
297                 rte_eal_wait_lcore(sched_ctx->wc_pool[i]);
298
299         return 0;
300 }
301
302 static int
303 scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
304 {
305         struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
306         struct mc_scheduler_qp_ctx *mc_qp_ctx;
307         struct scheduler_ctx *sched_ctx = dev->data->dev_private;
308         struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
309
310         mc_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*mc_qp_ctx), 0,
311                         rte_socket_id());
312         if (!mc_qp_ctx) {
313                 CR_SCHED_LOG(ERR, "failed allocate memory for private queue pair");
314                 return -ENOMEM;
315         }
316
317         mc_qp_ctx->mc_private_ctx = mc_ctx;
318         qp_ctx->private_qp_ctx = (void *)mc_qp_ctx;
319
320
321         return 0;
322 }
323
324 static int
325 scheduler_create_private_ctx(struct rte_cryptodev *dev)
326 {
327         struct scheduler_ctx *sched_ctx = dev->data->dev_private;
328         struct mc_scheduler_ctx *mc_ctx = NULL;
329         uint16_t i;
330
331         if (sched_ctx->private_ctx) {
332                 rte_free(sched_ctx->private_ctx);
333                 sched_ctx->private_ctx = NULL;
334         }
335
336         mc_ctx = rte_zmalloc_socket(NULL, sizeof(struct mc_scheduler_ctx), 0,
337                         rte_socket_id());
338         if (!mc_ctx) {
339                 CR_SCHED_LOG(ERR, "failed allocate memory");
340                 return -ENOMEM;
341         }
342
343         mc_ctx->num_workers = sched_ctx->nb_wc;
344         for (i = 0; i < sched_ctx->nb_wc; i++) {
345                 char r_name[16];
346
347                 snprintf(r_name, sizeof(r_name), MC_SCHED_ENQ_RING_NAME_PREFIX
348                                 "%u_%u", dev->data->dev_id, i);
349                 mc_ctx->sched_enq_ring[i] = rte_ring_lookup(r_name);
350                 if (!mc_ctx->sched_enq_ring[i]) {
351                         mc_ctx->sched_enq_ring[i] = rte_ring_create(r_name,
352                                                 PER_WORKER_BUFF_SIZE,
353                                                 rte_socket_id(),
354                                                 RING_F_SC_DEQ | RING_F_SP_ENQ);
355                         if (!mc_ctx->sched_enq_ring[i]) {
356                                 CR_SCHED_LOG(ERR, "Cannot create ring for worker %u",
357                                            i);
358                                 goto exit;
359                         }
360                 }
361                 snprintf(r_name, sizeof(r_name), MC_SCHED_DEQ_RING_NAME_PREFIX
362                                 "%u_%u", dev->data->dev_id, i);
363                 mc_ctx->sched_deq_ring[i] = rte_ring_lookup(r_name);
364                 if (!mc_ctx->sched_deq_ring[i]) {
365                         mc_ctx->sched_deq_ring[i] = rte_ring_create(r_name,
366                                                 PER_WORKER_BUFF_SIZE,
367                                                 rte_socket_id(),
368                                                 RING_F_SC_DEQ | RING_F_SP_ENQ);
369                         if (!mc_ctx->sched_deq_ring[i]) {
370                                 CR_SCHED_LOG(ERR, "Cannot create ring for worker %u",
371                                            i);
372                                 goto exit;
373                         }
374                 }
375         }
376
377         sched_ctx->private_ctx = (void *)mc_ctx;
378
379         return 0;
380
381 exit:
382         for (i = 0; i < sched_ctx->nb_wc; i++) {
383                 rte_ring_free(mc_ctx->sched_enq_ring[i]);
384                 rte_ring_free(mc_ctx->sched_deq_ring[i]);
385         }
386         rte_free(mc_ctx);
387
388         return -1;
389 }
390
391 static struct rte_cryptodev_scheduler_ops scheduler_mc_ops = {
392         worker_attach,
393         worker_detach,
394         scheduler_start,
395         scheduler_stop,
396         scheduler_config_qp,
397         scheduler_create_private_ctx,
398         NULL,   /* option_set */
399         NULL    /* option_get */
400 };
401
402 static struct rte_cryptodev_scheduler mc_scheduler = {
403                 .name = "multicore-scheduler",
404                 .description = "scheduler which will run burst across multiple cpu cores",
405                 .mode = CDEV_SCHED_MODE_MULTICORE,
406                 .ops = &scheduler_mc_ops
407 };
408
409 struct rte_cryptodev_scheduler *crypto_scheduler_multicore = &mc_scheduler;