fe1551706103048de739969b3d75d9732463a5fa
[dpdk.git] / drivers / event / sw / sw_evdev_scheduler.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <rte_ring.h>
34 #include <rte_hash_crc.h>
35 #include "sw_evdev.h"
36 #include "iq_ring.h"
37 #include "event_ring.h"
38
39 #define SW_IQS_MASK (SW_IQS_MAX-1)
40
41 /* Retrieve the highest priority IQ or -1 if no pkts available. Doing the
42  * CLZ twice is faster than caching the value due to data dependencies
43  */
44 #define PKT_MASK_TO_IQ(pkts) \
45         (__builtin_ctz(pkts | (1 << SW_IQS_MAX)))
46
47 #if SW_IQS_MAX != 4
48 #error Misconfigured PRIO_TO_IQ caused by SW_IQS_MAX value change
49 #endif
50 #define PRIO_TO_IQ(prio) (prio >> 6)
51
52 #define MAX_PER_IQ_DEQUEUE 48
53 #define FLOWID_MASK (SW_QID_NUM_FIDS-1)
54 /* use cheap bit mixing, we only need to lose a few bits */
55 #define SW_HASH_FLOWID(f) (((f) ^ (f >> 10)) & FLOWID_MASK)
56
57 static inline uint32_t
58 sw_schedule_atomic_to_cq(struct sw_evdev *sw, struct sw_qid * const qid,
59                 uint32_t iq_num, unsigned int count)
60 {
61         struct rte_event qes[MAX_PER_IQ_DEQUEUE]; /* count <= MAX */
62         struct rte_event blocked_qes[MAX_PER_IQ_DEQUEUE];
63         uint32_t nb_blocked = 0;
64         uint32_t i;
65
66         if (count > MAX_PER_IQ_DEQUEUE)
67                 count = MAX_PER_IQ_DEQUEUE;
68
69         /* This is the QID ID. The QID ID is static, hence it can be
70          * used to identify the stage of processing in history lists etc
71          */
72         uint32_t qid_id = qid->id;
73
74         iq_ring_dequeue_burst(qid->iq[iq_num], qes, count);
75         for (i = 0; i < count; i++) {
76                 const struct rte_event *qe = &qes[i];
77                 const uint16_t flow_id = SW_HASH_FLOWID(qes[i].flow_id);
78                 struct sw_fid_t *fid = &qid->fids[flow_id];
79                 int cq = fid->cq;
80
81                 if (cq < 0) {
82                         uint32_t cq_idx = qid->cq_next_tx++;
83                         if (qid->cq_next_tx == qid->cq_num_mapped_cqs)
84                                 qid->cq_next_tx = 0;
85                         cq = qid->cq_map[cq_idx];
86
87                         /* find least used */
88                         int cq_free_cnt = sw->cq_ring_space[cq];
89                         for (cq_idx = 0; cq_idx < qid->cq_num_mapped_cqs;
90                                         cq_idx++) {
91                                 int test_cq = qid->cq_map[cq_idx];
92                                 int test_cq_free = sw->cq_ring_space[test_cq];
93                                 if (test_cq_free > cq_free_cnt) {
94                                         cq = test_cq;
95                                         cq_free_cnt = test_cq_free;
96                                 }
97                         }
98
99                         fid->cq = cq; /* this pins early */
100                 }
101
102                 if (sw->cq_ring_space[cq] == 0 ||
103                                 sw->ports[cq].inflights == SW_PORT_HIST_LIST) {
104                         blocked_qes[nb_blocked++] = *qe;
105                         continue;
106                 }
107
108                 struct sw_port *p = &sw->ports[cq];
109
110                 /* at this point we can queue up the packet on the cq_buf */
111                 fid->pcount++;
112                 p->cq_buf[p->cq_buf_count++] = *qe;
113                 p->inflights++;
114                 sw->cq_ring_space[cq]--;
115
116                 int head = (p->hist_head++ & (SW_PORT_HIST_LIST-1));
117                 p->hist_list[head].fid = flow_id;
118                 p->hist_list[head].qid = qid_id;
119
120                 p->stats.tx_pkts++;
121                 qid->stats.tx_pkts++;
122                 qid->to_port[cq]++;
123
124                 /* if we just filled in the last slot, flush the buffer */
125                 if (sw->cq_ring_space[cq] == 0) {
126                         struct qe_ring *worker = p->cq_worker_ring;
127                         qe_ring_enqueue_burst(worker, p->cq_buf,
128                                         p->cq_buf_count,
129                                         &sw->cq_ring_space[cq]);
130                         p->cq_buf_count = 0;
131                 }
132         }
133         iq_ring_put_back(qid->iq[iq_num], blocked_qes, nb_blocked);
134
135         return count - nb_blocked;
136 }
137
138 static inline uint32_t
139 sw_schedule_parallel_to_cq(struct sw_evdev *sw, struct sw_qid * const qid,
140                 uint32_t iq_num, unsigned int count, int keep_order)
141 {
142         uint32_t i;
143         uint32_t cq_idx = qid->cq_next_tx;
144
145         /* This is the QID ID. The QID ID is static, hence it can be
146          * used to identify the stage of processing in history lists etc
147          */
148         uint32_t qid_id = qid->id;
149
150         if (count > MAX_PER_IQ_DEQUEUE)
151                 count = MAX_PER_IQ_DEQUEUE;
152
153         if (keep_order)
154                 /* only schedule as many as we have reorder buffer entries */
155                 count = RTE_MIN(count,
156                                 rte_ring_count(qid->reorder_buffer_freelist));
157
158         for (i = 0; i < count; i++) {
159                 const struct rte_event *qe = iq_ring_peek(qid->iq[iq_num]);
160                 uint32_t cq_check_count = 0;
161                 uint32_t cq;
162
163                 /*
164                  *  for parallel, just send to next available CQ in round-robin
165                  * fashion. So scan for an available CQ. If all CQs are full
166                  * just return and move on to next QID
167                  */
168                 do {
169                         if (++cq_check_count > qid->cq_num_mapped_cqs)
170                                 goto exit;
171                         cq = qid->cq_map[cq_idx];
172                         if (++cq_idx == qid->cq_num_mapped_cqs)
173                                 cq_idx = 0;
174                 } while (qe_ring_free_count(sw->ports[cq].cq_worker_ring) == 0 ||
175                                 sw->ports[cq].inflights == SW_PORT_HIST_LIST);
176
177                 struct sw_port *p = &sw->ports[cq];
178                 if (sw->cq_ring_space[cq] == 0 ||
179                                 p->inflights == SW_PORT_HIST_LIST)
180                         break;
181
182                 sw->cq_ring_space[cq]--;
183
184                 qid->stats.tx_pkts++;
185
186                 const int head = (p->hist_head & (SW_PORT_HIST_LIST-1));
187                 p->hist_list[head].fid = SW_HASH_FLOWID(qe->flow_id);
188                 p->hist_list[head].qid = qid_id;
189
190                 if (keep_order)
191                         rte_ring_sc_dequeue(qid->reorder_buffer_freelist,
192                                         (void *)&p->hist_list[head].rob_entry);
193
194                 sw->ports[cq].cq_buf[sw->ports[cq].cq_buf_count++] = *qe;
195                 iq_ring_pop(qid->iq[iq_num]);
196
197                 rte_compiler_barrier();
198                 p->inflights++;
199                 p->stats.tx_pkts++;
200                 p->hist_head++;
201         }
202 exit:
203         qid->cq_next_tx = cq_idx;
204         return i;
205 }
206
207 static uint32_t
208 sw_schedule_dir_to_cq(struct sw_evdev *sw, struct sw_qid * const qid,
209                 uint32_t iq_num, unsigned int count __rte_unused)
210 {
211         uint32_t cq_id = qid->cq_map[0];
212         struct sw_port *port = &sw->ports[cq_id];
213
214         /* get max burst enq size for cq_ring */
215         uint32_t count_free = sw->cq_ring_space[cq_id];
216         if (count_free == 0)
217                 return 0;
218
219         /* burst dequeue from the QID IQ ring */
220         struct iq_ring *ring = qid->iq[iq_num];
221         uint32_t ret = iq_ring_dequeue_burst(ring,
222                         &port->cq_buf[port->cq_buf_count], count_free);
223         port->cq_buf_count += ret;
224
225         /* Update QID, Port and Total TX stats */
226         qid->stats.tx_pkts += ret;
227         port->stats.tx_pkts += ret;
228
229         /* Subtract credits from cached value */
230         sw->cq_ring_space[cq_id] -= ret;
231
232         return ret;
233 }
234
235 static uint32_t
236 sw_schedule_qid_to_cq(struct sw_evdev *sw)
237 {
238         uint32_t pkts = 0;
239         uint32_t qid_idx;
240
241         sw->sched_cq_qid_called++;
242
243         for (qid_idx = 0; qid_idx < sw->qid_count; qid_idx++) {
244                 struct sw_qid *qid = sw->qids_prioritized[qid_idx];
245
246                 int type = qid->type;
247                 int iq_num = PKT_MASK_TO_IQ(qid->iq_pkt_mask);
248
249                 /* zero mapped CQs indicates directed */
250                 if (iq_num >= SW_IQS_MAX)
251                         continue;
252
253                 uint32_t pkts_done = 0;
254                 uint32_t count = iq_ring_count(qid->iq[iq_num]);
255
256                 if (count > 0) {
257                         if (type == SW_SCHED_TYPE_DIRECT)
258                                 pkts_done += sw_schedule_dir_to_cq(sw, qid,
259                                                 iq_num, count);
260                         else if (type == RTE_SCHED_TYPE_ATOMIC)
261                                 pkts_done += sw_schedule_atomic_to_cq(sw, qid,
262                                                 iq_num, count);
263                         else
264                                 pkts_done += sw_schedule_parallel_to_cq(sw, qid,
265                                                 iq_num, count,
266                                                 type == RTE_SCHED_TYPE_ORDERED);
267                 }
268
269                 /* Check if the IQ that was polled is now empty, and unset it
270                  * in the IQ mask if its empty.
271                  */
272                 int all_done = (pkts_done == count);
273
274                 qid->iq_pkt_mask &= ~(all_done << (iq_num));
275                 pkts += pkts_done;
276         }
277
278         return pkts;
279 }
280
281 /* This function will perform re-ordering of packets, and injecting into
282  * the appropriate QID IQ. As LB and DIR QIDs are in the same array, but *NOT*
283  * contiguous in that array, this function accepts a "range" of QIDs to scan.
284  */
285 static uint16_t
286 sw_schedule_reorder(struct sw_evdev *sw, int qid_start, int qid_end)
287 {
288         /* Perform egress reordering */
289         struct rte_event *qe;
290         uint32_t pkts_iter = 0;
291
292         for (; qid_start < qid_end; qid_start++) {
293                 struct sw_qid *qid = &sw->qids[qid_start];
294                 int i, num_entries_in_use;
295
296                 if (qid->type != RTE_SCHED_TYPE_ORDERED)
297                         continue;
298
299                 num_entries_in_use = rte_ring_free_count(
300                                         qid->reorder_buffer_freelist);
301
302                 for (i = 0; i < num_entries_in_use; i++) {
303                         struct reorder_buffer_entry *entry;
304                         int j;
305
306                         entry = &qid->reorder_buffer[qid->reorder_buffer_index];
307
308                         if (!entry->ready)
309                                 break;
310
311                         for (j = 0; j < entry->num_fragments; j++) {
312                                 uint16_t dest_qid;
313                                 uint16_t dest_iq;
314
315                                 int idx = entry->fragment_index + j;
316                                 qe = &entry->fragments[idx];
317
318                                 dest_qid = qe->queue_id;
319                                 dest_iq  = PRIO_TO_IQ(qe->priority);
320
321                                 if (dest_qid >= sw->qid_count) {
322                                         sw->stats.rx_dropped++;
323                                         continue;
324                                 }
325
326                                 struct sw_qid *dest_qid_ptr =
327                                         &sw->qids[dest_qid];
328                                 const struct iq_ring *dest_iq_ptr =
329                                         dest_qid_ptr->iq[dest_iq];
330                                 if (iq_ring_free_count(dest_iq_ptr) == 0)
331                                         break;
332
333                                 pkts_iter++;
334
335                                 struct sw_qid *q = &sw->qids[dest_qid];
336                                 struct iq_ring *r = q->iq[dest_iq];
337
338                                 /* we checked for space above, so enqueue must
339                                  * succeed
340                                  */
341                                 iq_ring_enqueue(r, qe);
342                                 q->iq_pkt_mask |= (1 << (dest_iq));
343                                 q->iq_pkt_count[dest_iq]++;
344                                 q->stats.rx_pkts++;
345                         }
346
347                         entry->ready = (j != entry->num_fragments);
348                         entry->num_fragments -= j;
349                         entry->fragment_index += j;
350
351                         if (!entry->ready) {
352                                 entry->fragment_index = 0;
353
354                                 rte_ring_sp_enqueue(
355                                                 qid->reorder_buffer_freelist,
356                                                 entry);
357
358                                 qid->reorder_buffer_index++;
359                                 qid->reorder_buffer_index %= qid->window_size;
360                         }
361                 }
362         }
363         return pkts_iter;
364 }
365
366 static __rte_always_inline void
367 sw_refill_pp_buf(struct sw_evdev *sw, struct sw_port *port)
368 {
369         RTE_SET_USED(sw);
370         struct qe_ring *worker = port->rx_worker_ring;
371         port->pp_buf_start = 0;
372         port->pp_buf_count = qe_ring_dequeue_burst(worker, port->pp_buf,
373                         RTE_DIM(port->pp_buf));
374 }
375
376 static __rte_always_inline uint32_t
377 __pull_port_lb(struct sw_evdev *sw, uint32_t port_id, int allow_reorder)
378 {
379         static struct reorder_buffer_entry dummy_rob;
380         uint32_t pkts_iter = 0;
381         struct sw_port *port = &sw->ports[port_id];
382
383         /* If shadow ring has 0 pkts, pull from worker ring */
384         if (port->pp_buf_count == 0)
385                 sw_refill_pp_buf(sw, port);
386
387         while (port->pp_buf_count) {
388                 const struct rte_event *qe = &port->pp_buf[port->pp_buf_start];
389                 struct sw_hist_list_entry *hist_entry = NULL;
390                 uint8_t flags = qe->op;
391                 const uint16_t eop = !(flags & QE_FLAG_NOT_EOP);
392                 int needs_reorder = 0;
393                 /* if no-reordering, having PARTIAL == NEW */
394                 if (!allow_reorder && !eop)
395                         flags = QE_FLAG_VALID;
396
397                 /*
398                  * if we don't have space for this packet in an IQ,
399                  * then move on to next queue. Technically, for a
400                  * packet that needs reordering, we don't need to check
401                  * here, but it simplifies things not to special-case
402                  */
403                 uint32_t iq_num = PRIO_TO_IQ(qe->priority);
404                 struct sw_qid *qid = &sw->qids[qe->queue_id];
405
406                 if ((flags & QE_FLAG_VALID) &&
407                                 iq_ring_free_count(qid->iq[iq_num]) == 0)
408                         break;
409
410                 /* now process based on flags. Note that for directed
411                  * queues, the enqueue_flush masks off all but the
412                  * valid flag. This makes FWD and PARTIAL enqueues just
413                  * NEW type, and makes DROPS no-op calls.
414                  */
415                 if ((flags & QE_FLAG_COMPLETE) && port->inflights > 0) {
416                         const uint32_t hist_tail = port->hist_tail &
417                                         (SW_PORT_HIST_LIST - 1);
418
419                         hist_entry = &port->hist_list[hist_tail];
420                         const uint32_t hist_qid = hist_entry->qid;
421                         const uint32_t hist_fid = hist_entry->fid;
422
423                         struct sw_fid_t *fid =
424                                 &sw->qids[hist_qid].fids[hist_fid];
425                         fid->pcount -= eop;
426                         if (fid->pcount == 0)
427                                 fid->cq = -1;
428
429                         if (allow_reorder) {
430                                 /* set reorder ready if an ordered QID */
431                                 uintptr_t rob_ptr =
432                                         (uintptr_t)hist_entry->rob_entry;
433                                 const uintptr_t valid = (rob_ptr != 0);
434                                 needs_reorder = valid;
435                                 rob_ptr |=
436                                         ((valid - 1) & (uintptr_t)&dummy_rob);
437                                 struct reorder_buffer_entry *tmp_rob_ptr =
438                                         (struct reorder_buffer_entry *)rob_ptr;
439                                 tmp_rob_ptr->ready = eop * needs_reorder;
440                         }
441
442                         port->inflights -= eop;
443                         port->hist_tail += eop;
444                 }
445                 if (flags & QE_FLAG_VALID) {
446                         port->stats.rx_pkts++;
447
448                         if (allow_reorder && needs_reorder) {
449                                 struct reorder_buffer_entry *rob_entry =
450                                                 hist_entry->rob_entry;
451
452                                 hist_entry->rob_entry = NULL;
453                                 /* Although fragmentation not currently
454                                  * supported by eventdev API, we support it
455                                  * here. Open: How do we alert the user that
456                                  * they've exceeded max frags?
457                                  */
458                                 int num_frag = rob_entry->num_fragments;
459                                 if (num_frag == SW_FRAGMENTS_MAX)
460                                         sw->stats.rx_dropped++;
461                                 else {
462                                         int idx = rob_entry->num_fragments++;
463                                         rob_entry->fragments[idx] = *qe;
464                                 }
465                                 goto end_qe;
466                         }
467
468                         /* Use the iq_num from above to push the QE
469                          * into the qid at the right priority
470                          */
471
472                         qid->iq_pkt_mask |= (1 << (iq_num));
473                         iq_ring_enqueue(qid->iq[iq_num], qe);
474                         qid->iq_pkt_count[iq_num]++;
475                         qid->stats.rx_pkts++;
476                         pkts_iter++;
477                 }
478
479 end_qe:
480                 port->pp_buf_start++;
481                 port->pp_buf_count--;
482         } /* while (avail_qes) */
483
484         return pkts_iter;
485 }
486
487 static uint32_t
488 sw_schedule_pull_port_lb(struct sw_evdev *sw, uint32_t port_id)
489 {
490         return __pull_port_lb(sw, port_id, 1);
491 }
492
493 static uint32_t
494 sw_schedule_pull_port_no_reorder(struct sw_evdev *sw, uint32_t port_id)
495 {
496         return __pull_port_lb(sw, port_id, 0);
497 }
498
499 static uint32_t
500 sw_schedule_pull_port_dir(struct sw_evdev *sw, uint32_t port_id)
501 {
502         uint32_t pkts_iter = 0;
503         struct sw_port *port = &sw->ports[port_id];
504
505         /* If shadow ring has 0 pkts, pull from worker ring */
506         if (port->pp_buf_count == 0)
507                 sw_refill_pp_buf(sw, port);
508
509         while (port->pp_buf_count) {
510                 const struct rte_event *qe = &port->pp_buf[port->pp_buf_start];
511                 uint8_t flags = qe->op;
512
513                 if ((flags & QE_FLAG_VALID) == 0)
514                         goto end_qe;
515
516                 uint32_t iq_num = PRIO_TO_IQ(qe->priority);
517                 struct sw_qid *qid = &sw->qids[qe->queue_id];
518                 struct iq_ring *iq_ring = qid->iq[iq_num];
519
520                 if (iq_ring_free_count(iq_ring) == 0)
521                         break; /* move to next port */
522
523                 port->stats.rx_pkts++;
524
525                 /* Use the iq_num from above to push the QE
526                  * into the qid at the right priority
527                  */
528                 qid->iq_pkt_mask |= (1 << (iq_num));
529                 iq_ring_enqueue(iq_ring, qe);
530                 qid->iq_pkt_count[iq_num]++;
531                 qid->stats.rx_pkts++;
532                 pkts_iter++;
533
534 end_qe:
535                 port->pp_buf_start++;
536                 port->pp_buf_count--;
537         } /* while port->pp_buf_count */
538
539         return pkts_iter;
540 }
541
542 void
543 sw_event_schedule(struct rte_eventdev *dev)
544 {
545         struct sw_evdev *sw = sw_pmd_priv(dev);
546         uint32_t in_pkts, out_pkts;
547         uint32_t out_pkts_total = 0, in_pkts_total = 0;
548         int32_t sched_quanta = sw->sched_quanta;
549         uint32_t i;
550
551         sw->sched_called++;
552         if (!sw->started)
553                 return;
554
555         do {
556                 uint32_t in_pkts_this_iteration = 0;
557
558                 /* Pull from rx_ring for ports */
559                 do {
560                         in_pkts = 0;
561                         for (i = 0; i < sw->port_count; i++)
562                                 if (sw->ports[i].is_directed)
563                                         in_pkts += sw_schedule_pull_port_dir(sw, i);
564                                 else if (sw->ports[i].num_ordered_qids > 0)
565                                         in_pkts += sw_schedule_pull_port_lb(sw, i);
566                                 else
567                                         in_pkts += sw_schedule_pull_port_no_reorder(sw, i);
568
569                         /* QID scan for re-ordered */
570                         in_pkts += sw_schedule_reorder(sw, 0,
571                                         sw->qid_count);
572                         in_pkts_this_iteration += in_pkts;
573                 } while (in_pkts > 4 &&
574                                 (int)in_pkts_this_iteration < sched_quanta);
575
576                 out_pkts = 0;
577                 out_pkts += sw_schedule_qid_to_cq(sw);
578                 out_pkts_total += out_pkts;
579                 in_pkts_total += in_pkts_this_iteration;
580
581                 if (in_pkts == 0 && out_pkts == 0)
582                         break;
583         } while ((int)out_pkts_total < sched_quanta);
584
585         /* push all the internal buffered QEs in port->cq_ring to the
586          * worker cores: aka, do the ring transfers batched.
587          */
588         for (i = 0; i < sw->port_count; i++) {
589                 struct qe_ring *worker = sw->ports[i].cq_worker_ring;
590                 qe_ring_enqueue_burst(worker, sw->ports[i].cq_buf,
591                                 sw->ports[i].cq_buf_count,
592                                 &sw->cq_ring_space[i]);
593                 sw->ports[i].cq_buf_count = 0;
594         }
595
596         sw->stats.tx_pkts += out_pkts_total;
597         sw->stats.rx_pkts += in_pkts_total;
598
599         sw->sched_no_iq_enqueues += (in_pkts_total == 0);
600         sw->sched_no_cq_enqueues += (out_pkts_total == 0);
601
602 }