net/avf: enable ops to check queue info and status
[dpdk.git] / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50                                 struct ether_addr *addr,
51                                 uint32_t index,
52                                 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55                                    uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
58                                    struct rte_eth_rss_reta_entry64 *reta_conf,
59                                    uint16_t reta_size);
60 static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
61                                   struct rte_eth_rss_reta_entry64 *reta_conf,
62                                   uint16_t reta_size);
63 static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
64                                    struct rte_eth_rss_conf *rss_conf);
65 static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
66                                      struct rte_eth_rss_conf *rss_conf);
67 static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68 static void avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
69                                          struct ether_addr *mac_addr);
70
71 int avf_logtype_init;
72 int avf_logtype_driver;
73 static const struct rte_pci_id pci_id_avf_map[] = {
74         { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
75         { .vendor_id = 0, /* sentinel */ },
76 };
77
78 static const struct eth_dev_ops avf_eth_dev_ops = {
79         .dev_configure              = avf_dev_configure,
80         .dev_start                  = avf_dev_start,
81         .dev_stop                   = avf_dev_stop,
82         .dev_close                  = avf_dev_close,
83         .dev_infos_get              = avf_dev_info_get,
84         .dev_supported_ptypes_get   = avf_dev_supported_ptypes_get,
85         .link_update                = avf_dev_link_update,
86         .stats_get                  = avf_dev_stats_get,
87         .promiscuous_enable         = avf_dev_promiscuous_enable,
88         .promiscuous_disable        = avf_dev_promiscuous_disable,
89         .allmulticast_enable        = avf_dev_allmulticast_enable,
90         .allmulticast_disable       = avf_dev_allmulticast_disable,
91         .mac_addr_add               = avf_dev_add_mac_addr,
92         .mac_addr_remove            = avf_dev_del_mac_addr,
93         .vlan_filter_set            = avf_dev_vlan_filter_set,
94         .vlan_offload_set           = avf_dev_vlan_offload_set,
95         .rx_queue_start             = avf_dev_rx_queue_start,
96         .rx_queue_stop              = avf_dev_rx_queue_stop,
97         .tx_queue_start             = avf_dev_tx_queue_start,
98         .tx_queue_stop              = avf_dev_tx_queue_stop,
99         .rx_queue_setup             = avf_dev_rx_queue_setup,
100         .rx_queue_release           = avf_dev_rx_queue_release,
101         .tx_queue_setup             = avf_dev_tx_queue_setup,
102         .tx_queue_release           = avf_dev_tx_queue_release,
103         .mac_addr_set               = avf_dev_set_default_mac_addr,
104         .reta_update                = avf_dev_rss_reta_update,
105         .reta_query                 = avf_dev_rss_reta_query,
106         .rss_hash_update            = avf_dev_rss_hash_update,
107         .rss_hash_conf_get          = avf_dev_rss_hash_conf_get,
108         .rxq_info_get               = avf_dev_rxq_info_get,
109         .txq_info_get               = avf_dev_txq_info_get,
110         .rx_queue_count             = avf_dev_rxq_count,
111         .rx_descriptor_status       = avf_dev_rx_desc_status,
112         .tx_descriptor_status       = avf_dev_tx_desc_status,
113         .mtu_set                    = avf_dev_mtu_set,
114 };
115
116 static int
117 avf_dev_configure(struct rte_eth_dev *dev)
118 {
119         struct avf_adapter *ad =
120                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
121         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(ad);
122         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
123
124         /* Vlan stripping setting */
125         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
126                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
127                         avf_enable_vlan_strip(ad);
128                 else
129                         avf_disable_vlan_strip(ad);
130         }
131         return 0;
132 }
133
134 static int
135 avf_init_rss(struct avf_adapter *adapter)
136 {
137         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(adapter);
138         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
139         struct rte_eth_rss_conf *rss_conf;
140         uint8_t i, j, nb_q;
141         int ret;
142
143         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
144         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
145                        AVF_MAX_NUM_QUEUES);
146
147         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
148                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
149                 return -ENOTSUP;
150         }
151         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
152                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
153                 /* set all lut items to default queue */
154                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
155                         vf->rss_lut[i] = 0;
156                 ret = avf_configure_rss_lut(adapter);
157                 return ret;
158         }
159
160         /* In AVF, RSS enablement is set by PF driver. It is not supported
161          * to set based on rss_conf->rss_hf.
162          */
163
164         /* configure RSS key */
165         if (!rss_conf->rss_key) {
166                 /* Calculate the default hash key */
167                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
168                         vf->rss_key[i] = (uint8_t)rte_rand();
169         } else
170                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
171                            RTE_MIN(rss_conf->rss_key_len,
172                                    vf->vf_res->rss_key_size));
173
174         /* init RSS LUT table */
175         for (i = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
176                 if (j >= nb_q)
177                         j = 0;
178                 vf->rss_lut[i] = j;
179         }
180         /* send virtchnnl ops to configure rss*/
181         ret = avf_configure_rss_lut(adapter);
182         if (ret)
183                 return ret;
184         ret = avf_configure_rss_key(adapter);
185         if (ret)
186                 return ret;
187
188         return 0;
189 }
190
191 static int
192 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
193 {
194         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
195         struct rte_eth_dev_data *dev_data = dev->data;
196         uint16_t buf_size, max_pkt_len, len;
197
198         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
199
200         /* Calculate the maximum packet length allowed */
201         len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
202         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
203
204         /* Check if the jumbo frame and maximum packet length are set
205          * correctly.
206          */
207         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
208                 if (max_pkt_len <= ETHER_MAX_LEN ||
209                     max_pkt_len > AVF_FRAME_SIZE_MAX) {
210                         PMD_DRV_LOG(ERR, "maximum packet length must be "
211                                     "larger than %u and smaller than %u, "
212                                     "as jumbo frame is enabled",
213                                     (uint32_t)ETHER_MAX_LEN,
214                                     (uint32_t)AVF_FRAME_SIZE_MAX);
215                         return -EINVAL;
216                 }
217         } else {
218                 if (max_pkt_len < ETHER_MIN_LEN ||
219                     max_pkt_len > ETHER_MAX_LEN) {
220                         PMD_DRV_LOG(ERR, "maximum packet length must be "
221                                     "larger than %u and smaller than %u, "
222                                     "as jumbo frame is disabled",
223                                     (uint32_t)ETHER_MIN_LEN,
224                                     (uint32_t)ETHER_MAX_LEN);
225                         return -EINVAL;
226                 }
227         }
228
229         rxq->max_pkt_len = max_pkt_len;
230         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
231             (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
232                 dev_data->scattered_rx = 1;
233         }
234         AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
235         AVF_WRITE_FLUSH(hw);
236
237         return 0;
238 }
239
240 static int
241 avf_init_queues(struct rte_eth_dev *dev)
242 {
243         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
244         struct avf_rx_queue **rxq =
245                 (struct avf_rx_queue **)dev->data->rx_queues;
246         struct avf_tx_queue **txq =
247                 (struct avf_tx_queue **)dev->data->tx_queues;
248         int i, ret = AVF_SUCCESS;
249
250         for (i = 0; i < dev->data->nb_rx_queues; i++) {
251                 if (!rxq[i] || !rxq[i]->q_set)
252                         continue;
253                 ret = avf_init_rxq(dev, rxq[i]);
254                 if (ret != AVF_SUCCESS)
255                         break;
256         }
257         /* set rx/tx function to vector/scatter/single-segment
258          * according to parameters
259          */
260         avf_set_rx_function(dev);
261         avf_set_tx_function(dev);
262
263         return ret;
264 }
265
266 static int
267 avf_start_queues(struct rte_eth_dev *dev)
268 {
269         struct avf_rx_queue *rxq;
270         struct avf_tx_queue *txq;
271         int i;
272
273         for (i = 0; i < dev->data->nb_tx_queues; i++) {
274                 txq = dev->data->tx_queues[i];
275                 if (txq->tx_deferred_start)
276                         continue;
277                 if (avf_dev_tx_queue_start(dev, i) != 0) {
278                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
279                         return -1;
280                 }
281         }
282
283         for (i = 0; i < dev->data->nb_rx_queues; i++) {
284                 rxq = dev->data->rx_queues[i];
285                 if (rxq->rx_deferred_start)
286                         continue;
287                 if (avf_dev_rx_queue_start(dev, i) != 0) {
288                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
289                         return -1;
290                 }
291         }
292
293         return 0;
294 }
295
296 static int
297 avf_dev_start(struct rte_eth_dev *dev)
298 {
299         struct avf_adapter *adapter =
300                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
301         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
302         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
303         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
304         struct rte_intr_handle *intr_handle = dev->intr_handle;
305         uint16_t interval;
306         int i;
307
308         PMD_INIT_FUNC_TRACE();
309
310         hw->adapter_stopped = 0;
311
312         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
313         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
314                                       dev->data->nb_tx_queues);
315
316         /* TODO: Rx interrupt */
317
318         if (avf_init_queues(dev) != 0) {
319                 PMD_DRV_LOG(ERR, "failed to do Queue init");
320                 return -1;
321         }
322
323         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
324                 if (avf_init_rss(adapter) != 0) {
325                         PMD_DRV_LOG(ERR, "configure rss failed");
326                         goto err_rss;
327                 }
328         }
329
330         if (avf_configure_queues(adapter) != 0) {
331                 PMD_DRV_LOG(ERR, "configure queues failed");
332                 goto err_queue;
333         }
334
335         /* Map interrupt for writeback */
336         vf->nb_msix = 1;
337         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
338                 /* If WB_ON_ITR supports, enable it */
339                 vf->msix_base = AVF_RX_VEC_START;
340                 AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
341                               AVFINT_DYN_CTLN1_ITR_INDX_MASK |
342                               AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
343         } else {
344                 /* If no WB_ON_ITR offload flags, need to set interrupt for
345                  * descriptor write back.
346                  */
347                 vf->msix_base = AVF_MISC_VEC_ID;
348
349                 /* set ITR to max */
350                 interval = avf_calc_itr_interval(AVF_QUEUE_ITR_INTERVAL_MAX);
351                 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
352                               AVFINT_DYN_CTL01_INTENA_MASK |
353                               (AVF_ITR_INDEX_DEFAULT <<
354                                AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
355                               (interval << AVFINT_DYN_CTL01_INTERVAL_SHIFT));
356         }
357         AVF_WRITE_FLUSH(hw);
358         /* map all queues to the same interrupt */
359         for (i = 0; i < dev->data->nb_rx_queues; i++)
360                 vf->rxq_map[0] |= 1 << i;
361         if (avf_config_irq_map(adapter)) {
362                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
363                 goto err_queue;
364         }
365
366         /* Set all mac addrs */
367         avf_add_del_all_mac_addr(adapter, TRUE);
368
369         if (avf_start_queues(dev) != 0) {
370                 PMD_DRV_LOG(ERR, "enable queues failed");
371                 goto err_mac;
372         }
373
374         /* TODO: enable interrupt for RX interrupt */
375         return 0;
376
377 err_mac:
378         avf_add_del_all_mac_addr(adapter, FALSE);
379 err_queue:
380 err_rss:
381         return -1;
382 }
383
384 static void
385 avf_dev_stop(struct rte_eth_dev *dev)
386 {
387         struct avf_adapter *adapter =
388                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
389         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev);
390         int ret, i;
391
392         PMD_INIT_FUNC_TRACE();
393
394         if (hw->adapter_stopped == 1)
395                 return;
396
397         avf_stop_queues(dev);
398
399         /*TODO: Disable the interrupt for Rx*/
400
401         /* TODO: Rx interrupt vector mapping free */
402
403         /* remove all mac addrs */
404         avf_add_del_all_mac_addr(adapter, FALSE);
405         hw->adapter_stopped = 1;
406 }
407
408 static void
409 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
410 {
411         struct avf_adapter *adapter =
412                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
413         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
414
415         memset(dev_info, 0, sizeof(*dev_info));
416         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
417         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
418         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
419         dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
420         dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
421         dev_info->hash_key_size = vf->vf_res->rss_key_size;
422         dev_info->reta_size = vf->vf_res->rss_lut_size;
423         dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
424         dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
425         dev_info->rx_offload_capa =
426                 DEV_RX_OFFLOAD_VLAN_STRIP |
427                 DEV_RX_OFFLOAD_IPV4_CKSUM |
428                 DEV_RX_OFFLOAD_UDP_CKSUM |
429                 DEV_RX_OFFLOAD_TCP_CKSUM;
430         dev_info->tx_offload_capa =
431                 DEV_TX_OFFLOAD_VLAN_INSERT |
432                 DEV_TX_OFFLOAD_IPV4_CKSUM |
433                 DEV_TX_OFFLOAD_UDP_CKSUM |
434                 DEV_TX_OFFLOAD_TCP_CKSUM |
435                 DEV_TX_OFFLOAD_SCTP_CKSUM |
436                 DEV_TX_OFFLOAD_TCP_TSO;
437
438         dev_info->default_rxconf = (struct rte_eth_rxconf) {
439                 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
440                 .rx_drop_en = 0,
441         };
442
443         dev_info->default_txconf = (struct rte_eth_txconf) {
444                 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
445                 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
446                 .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
447                                 ETH_TXQ_FLAGS_NOOFFLOADS,
448         };
449
450         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
451                 .nb_max = AVF_MAX_RING_DESC,
452                 .nb_min = AVF_MIN_RING_DESC,
453                 .nb_align = AVF_ALIGN_RING_DESC,
454         };
455
456         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
457                 .nb_max = AVF_MAX_RING_DESC,
458                 .nb_min = AVF_MIN_RING_DESC,
459                 .nb_align = AVF_ALIGN_RING_DESC,
460         };
461 }
462
463 static const uint32_t *
464 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
465 {
466         static const uint32_t ptypes[] = {
467                 RTE_PTYPE_L2_ETHER,
468                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
469                 RTE_PTYPE_L4_FRAG,
470                 RTE_PTYPE_L4_ICMP,
471                 RTE_PTYPE_L4_NONFRAG,
472                 RTE_PTYPE_L4_SCTP,
473                 RTE_PTYPE_L4_TCP,
474                 RTE_PTYPE_L4_UDP,
475                 RTE_PTYPE_UNKNOWN
476         };
477         return ptypes;
478 }
479
480 int
481 avf_dev_link_update(struct rte_eth_dev *dev,
482                     __rte_unused int wait_to_complete)
483 {
484         struct rte_eth_link new_link;
485         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
486
487         /* Only read status info stored in VF, and the info is updated
488          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
489          */
490         switch (vf->link_speed) {
491         case VIRTCHNL_LINK_SPEED_100MB:
492                 new_link.link_speed = ETH_SPEED_NUM_100M;
493                 break;
494         case VIRTCHNL_LINK_SPEED_1GB:
495                 new_link.link_speed = ETH_SPEED_NUM_1G;
496                 break;
497         case VIRTCHNL_LINK_SPEED_10GB:
498                 new_link.link_speed = ETH_SPEED_NUM_10G;
499                 break;
500         case VIRTCHNL_LINK_SPEED_20GB:
501                 new_link.link_speed = ETH_SPEED_NUM_20G;
502                 break;
503         case VIRTCHNL_LINK_SPEED_25GB:
504                 new_link.link_speed = ETH_SPEED_NUM_25G;
505                 break;
506         case VIRTCHNL_LINK_SPEED_40GB:
507                 new_link.link_speed = ETH_SPEED_NUM_40G;
508                 break;
509         default:
510                 new_link.link_speed = ETH_SPEED_NUM_NONE;
511                 break;
512         }
513
514         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
515         new_link.link_status = vf->link_up ? ETH_LINK_UP :
516                                              ETH_LINK_DOWN;
517         new_link.link_autoneg = !!(dev->data->dev_conf.link_speeds &
518                                 ETH_LINK_SPEED_FIXED);
519
520         rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
521                             *(uint64_t *)&dev->data->dev_link,
522                             *(uint64_t *)&new_link);
523
524         return 0;
525 }
526
527 static void
528 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
529 {
530         struct avf_adapter *adapter =
531                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
532         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
533         int ret;
534
535         if (vf->promisc_unicast_enabled)
536                 return;
537
538         ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
539         if (!ret)
540                 vf->promisc_unicast_enabled = TRUE;
541 }
542
543 static void
544 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
545 {
546         struct avf_adapter *adapter =
547                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
548         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
549         int ret;
550
551         if (!vf->promisc_unicast_enabled)
552                 return;
553
554         ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
555         if (!ret)
556                 vf->promisc_unicast_enabled = FALSE;
557 }
558
559 static void
560 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
561 {
562         struct avf_adapter *adapter =
563                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
564         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
565         int ret;
566
567         if (vf->promisc_multicast_enabled)
568                 return;
569
570         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
571         if (!ret)
572                 vf->promisc_multicast_enabled = TRUE;
573 }
574
575 static void
576 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
577 {
578         struct avf_adapter *adapter =
579                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
580         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
581         int ret;
582
583         if (!vf->promisc_multicast_enabled)
584                 return;
585
586         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
587         if (!ret)
588                 vf->promisc_multicast_enabled = FALSE;
589 }
590
591 static int
592 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
593                      __rte_unused uint32_t index,
594                      __rte_unused uint32_t pool)
595 {
596         struct avf_adapter *adapter =
597                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
598         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
599         int err;
600
601         if (is_zero_ether_addr(addr)) {
602                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
603                 return -EINVAL;
604         }
605
606         err = avf_add_del_eth_addr(adapter, addr, TRUE);
607         if (err) {
608                 PMD_DRV_LOG(ERR, "fail to add MAC address");
609                 return -EIO;
610         }
611
612         vf->mac_num++;
613
614         return 0;
615 }
616
617 static void
618 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
619 {
620         struct avf_adapter *adapter =
621                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
622         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
623         struct ether_addr *addr;
624         int err;
625
626         addr = &dev->data->mac_addrs[index];
627
628         err = avf_add_del_eth_addr(adapter, addr, FALSE);
629         if (err)
630                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
631
632         vf->mac_num--;
633 }
634
635 static int
636 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
637 {
638         struct avf_adapter *adapter =
639                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
640         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
641         int err;
642
643         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
644                 return -ENOTSUP;
645
646         err = avf_add_del_vlan(adapter, vlan_id, on);
647         if (err)
648                 return -EIO;
649         return 0;
650 }
651
652 static int
653 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
654 {
655         struct avf_adapter *adapter =
656                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
657         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
658         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
659         int err;
660
661         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
662                 return -ENOTSUP;
663
664         /* Vlan stripping setting */
665         if (mask & ETH_VLAN_STRIP_MASK) {
666                 /* Enable or disable VLAN stripping */
667                 if (dev_conf->rxmode.hw_vlan_strip)
668                         err = avf_enable_vlan_strip(adapter);
669                 else
670                         err = avf_disable_vlan_strip(adapter);
671         }
672
673         if (err)
674                 return -EIO;
675         return 0;
676 }
677
678 static int
679 avf_dev_rss_reta_update(struct rte_eth_dev *dev,
680                         struct rte_eth_rss_reta_entry64 *reta_conf,
681                         uint16_t reta_size)
682 {
683         struct avf_adapter *adapter =
684                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
685         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
686         uint8_t *lut;
687         uint16_t i, idx, shift;
688         int ret;
689
690         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
691                 return -ENOTSUP;
692
693         if (reta_size != vf->vf_res->rss_lut_size) {
694                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
695                         "(%d) doesn't match the number of hardware can "
696                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
697                 return -EINVAL;
698         }
699
700         lut = rte_zmalloc("rss_lut", reta_size, 0);
701         if (!lut) {
702                 PMD_DRV_LOG(ERR, "No memory can be allocated");
703                 return -ENOMEM;
704         }
705         /* store the old lut table temporarily */
706         rte_memcpy(lut, vf->rss_lut, reta_size);
707
708         for (i = 0; i < reta_size; i++) {
709                 idx = i / RTE_RETA_GROUP_SIZE;
710                 shift = i % RTE_RETA_GROUP_SIZE;
711                 if (reta_conf[idx].mask & (1ULL << shift))
712                         lut[i] = reta_conf[idx].reta[shift];
713         }
714
715         rte_memcpy(vf->rss_lut, lut, reta_size);
716         /* send virtchnnl ops to configure rss*/
717         ret = avf_configure_rss_lut(adapter);
718         if (ret) /* revert back */
719                 rte_memcpy(vf->rss_lut, lut, reta_size);
720         rte_free(lut);
721
722         return ret;
723 }
724
725 static int
726 avf_dev_rss_reta_query(struct rte_eth_dev *dev,
727                        struct rte_eth_rss_reta_entry64 *reta_conf,
728                        uint16_t reta_size)
729 {
730         struct avf_adapter *adapter =
731                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
732         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
733         uint16_t i, idx, shift;
734
735         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
736                 return -ENOTSUP;
737
738         if (reta_size != vf->vf_res->rss_lut_size) {
739                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
740                         "(%d) doesn't match the number of hardware can "
741                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
742                 return -EINVAL;
743         }
744
745         for (i = 0; i < reta_size; i++) {
746                 idx = i / RTE_RETA_GROUP_SIZE;
747                 shift = i % RTE_RETA_GROUP_SIZE;
748                 if (reta_conf[idx].mask & (1ULL << shift))
749                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
750         }
751
752         return 0;
753 }
754
755 static int
756 avf_dev_rss_hash_update(struct rte_eth_dev *dev,
757                         struct rte_eth_rss_conf *rss_conf)
758 {
759         struct avf_adapter *adapter =
760                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
761         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
762
763         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
764                 return -ENOTSUP;
765
766         /* HENA setting, it is enabled by default, no change */
767         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
768                 PMD_DRV_LOG(DEBUG, "No key to be configured");
769                 return 0;
770         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
771                 PMD_DRV_LOG(ERR, "The size of hash key configured "
772                         "(%d) doesn't match the size of hardware can "
773                         "support (%d)", rss_conf->rss_key_len,
774                         vf->vf_res->rss_key_size);
775                 return -EINVAL;
776         }
777
778         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
779
780         return avf_configure_rss_key(adapter);
781 }
782
783 static int
784 avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
785                           struct rte_eth_rss_conf *rss_conf)
786 {
787         struct avf_adapter *adapter =
788                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
789         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
790
791         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
792                 return -ENOTSUP;
793
794          /* Just set it to default value now. */
795         rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
796
797         if (!rss_conf->rss_key)
798                 return 0;
799
800         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
801         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
802
803         return 0;
804 }
805
806 static int
807 avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
808 {
809         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
810         uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
811         int ret = 0;
812
813         if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
814                 return -EINVAL;
815
816         /* mtu setting is forbidden if port is start */
817         if (dev->data->dev_started) {
818                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
819                 return -EBUSY;
820         }
821
822         if (frame_size > ETHER_MAX_LEN)
823                 dev->data->dev_conf.rxmode.offloads |=
824                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
825         else
826                 dev->data->dev_conf.rxmode.offloads &=
827                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
828
829         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
830
831         return ret;
832 }
833
834 static void
835 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
836                              struct ether_addr *mac_addr)
837 {
838         struct avf_adapter *adapter =
839                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
840         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
841         struct ether_addr *perm_addr, *old_addr;
842         int ret;
843
844         old_addr = (struct ether_addr *)hw->mac.addr;
845         perm_addr = (struct ether_addr *)hw->mac.perm_addr;
846
847         if (is_same_ether_addr(mac_addr, old_addr))
848                 return;
849
850         /* If the MAC address is configured by host, skip the setting */
851         if (is_valid_assigned_ether_addr(perm_addr))
852                 return;
853
854         ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
855         if (ret)
856                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
857                             " %02X:%02X:%02X:%02X:%02X:%02X",
858                             old_addr->addr_bytes[0],
859                             old_addr->addr_bytes[1],
860                             old_addr->addr_bytes[2],
861                             old_addr->addr_bytes[3],
862                             old_addr->addr_bytes[4],
863                             old_addr->addr_bytes[5]);
864
865         ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
866         if (ret)
867                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
868                             " %02X:%02X:%02X:%02X:%02X:%02X",
869                             mac_addr->addr_bytes[0],
870                             mac_addr->addr_bytes[1],
871                             mac_addr->addr_bytes[2],
872                             mac_addr->addr_bytes[3],
873                             mac_addr->addr_bytes[4],
874                             mac_addr->addr_bytes[5]);
875
876         ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
877 }
878
879 static int
880 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
881 {
882         struct avf_adapter *adapter =
883                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
884         struct virtchnl_eth_stats *pstats = NULL;
885         int ret;
886
887         ret = avf_query_stats(adapter, &pstats);
888         if (ret == 0) {
889                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
890                                                 pstats->rx_broadcast;
891                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
892                                                 pstats->tx_unicast;
893                 stats->imissed = pstats->rx_discards;
894                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
895                 stats->ibytes = pstats->rx_bytes;
896                 stats->obytes = pstats->tx_bytes;
897         } else {
898                 PMD_DRV_LOG(ERR, "Get statistics failed");
899         }
900         return -EIO;
901 }
902
903 static int
904 avf_check_vf_reset_done(struct avf_hw *hw)
905 {
906         int i, reset;
907
908         for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
909                 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
910                         AVFGEN_RSTAT_VFR_STATE_MASK;
911                 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
912                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
913                     reset == VIRTCHNL_VFR_COMPLETED)
914                         break;
915                 rte_delay_ms(20);
916         }
917
918         if (i >= AVF_RESET_WAIT_CNT)
919                 return -1;
920
921         return 0;
922 }
923
924 static int
925 avf_init_vf(struct rte_eth_dev *dev)
926 {
927         int i, err, bufsz;
928         struct avf_adapter *adapter =
929                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
930         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
931         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
932
933         err = avf_set_mac_type(hw);
934         if (err) {
935                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
936                 goto err;
937         }
938
939         err = avf_check_vf_reset_done(hw);
940         if (err) {
941                 PMD_INIT_LOG(ERR, "VF is still resetting");
942                 goto err;
943         }
944
945         avf_init_adminq_parameter(hw);
946         err = avf_init_adminq(hw);
947         if (err) {
948                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
949                 goto err;
950         }
951
952         vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
953         if (!vf->aq_resp) {
954                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
955                 goto err_aq;
956         }
957         if (avf_check_api_version(adapter) != 0) {
958                 PMD_INIT_LOG(ERR, "check_api version failed");
959                 goto err_api;
960         }
961
962         bufsz = sizeof(struct virtchnl_vf_resource) +
963                 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
964         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
965         if (!vf->vf_res) {
966                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
967                 goto err_api;
968         }
969         if (avf_get_vf_resource(adapter) != 0) {
970                 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
971                 goto err_alloc;
972         }
973         /* Allocate memort for RSS info */
974         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
975                 vf->rss_key = rte_zmalloc("rss_key",
976                                           vf->vf_res->rss_key_size, 0);
977                 if (!vf->rss_key) {
978                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
979                         goto err_rss;
980                 }
981                 vf->rss_lut = rte_zmalloc("rss_lut",
982                                           vf->vf_res->rss_lut_size, 0);
983                 if (!vf->rss_lut) {
984                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
985                         goto err_rss;
986                 }
987         }
988         return 0;
989 err_rss:
990         rte_free(vf->rss_key);
991         rte_free(vf->rss_lut);
992 err_alloc:
993         rte_free(vf->vf_res);
994         vf->vsi_res = NULL;
995 err_api:
996         rte_free(vf->aq_resp);
997 err_aq:
998         avf_shutdown_adminq(hw);
999 err:
1000         return -1;
1001 }
1002
1003 /* Enable default admin queue interrupt setting */
1004 static inline void
1005 avf_enable_irq0(struct avf_hw *hw)
1006 {
1007         /* Enable admin queue interrupt trigger */
1008         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
1009
1010         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
1011                                             AVFINT_DYN_CTL01_ITR_INDX_MASK);
1012
1013         AVF_WRITE_FLUSH(hw);
1014 }
1015
1016 static inline void
1017 avf_disable_irq0(struct avf_hw *hw)
1018 {
1019         /* Disable all interrupt types */
1020         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
1021         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1022                       AVFINT_DYN_CTL01_ITR_INDX_MASK);
1023         AVF_WRITE_FLUSH(hw);
1024 }
1025
1026 static void
1027 avf_dev_interrupt_handler(void *param)
1028 {
1029         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1030         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1031
1032         avf_disable_irq0(hw);
1033
1034         avf_handle_virtchnl_msg(dev);
1035
1036 done:
1037         avf_enable_irq0(hw);
1038 }
1039
1040 static int
1041 avf_dev_init(struct rte_eth_dev *eth_dev)
1042 {
1043         struct avf_adapter *adapter =
1044                 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1045         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1046         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1047
1048         PMD_INIT_FUNC_TRACE();
1049
1050         /* assign ops func pointer */
1051         eth_dev->dev_ops = &avf_eth_dev_ops;
1052         eth_dev->rx_pkt_burst = &avf_recv_pkts;
1053         eth_dev->tx_pkt_burst = &avf_xmit_pkts;
1054         eth_dev->tx_pkt_prepare = &avf_prep_pkts;
1055
1056         /* For secondary processes, we don't initialise any further as primary
1057          * has already done this work. Only check if we need a different RX
1058          * and TX function.
1059          */
1060         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1061                 avf_set_rx_function(eth_dev);
1062                 avf_set_tx_function(eth_dev);
1063                 return 0;
1064         }
1065         rte_eth_copy_pci_info(eth_dev, pci_dev);
1066
1067         hw->vendor_id = pci_dev->id.vendor_id;
1068         hw->device_id = pci_dev->id.device_id;
1069         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1070         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1071         hw->bus.bus_id = pci_dev->addr.bus;
1072         hw->bus.device = pci_dev->addr.devid;
1073         hw->bus.func = pci_dev->addr.function;
1074         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1075         hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1076         adapter->eth_dev = eth_dev;
1077
1078         if (avf_init_vf(eth_dev) != 0) {
1079                 PMD_INIT_LOG(ERR, "Init vf failed");
1080                 return -1;
1081         }
1082
1083         /* copy mac addr */
1084         eth_dev->data->mac_addrs = rte_zmalloc(
1085                                         "avf_mac",
1086                                         ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
1087                                         0);
1088         if (!eth_dev->data->mac_addrs) {
1089                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1090                              " store MAC addresses",
1091                              ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
1092                 return -ENOMEM;
1093         }
1094         /* If the MAC address is not configured by host,
1095          * generate a random one.
1096          */
1097         if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
1098                 eth_random_addr(hw->mac.addr);
1099         ether_addr_copy((struct ether_addr *)hw->mac.addr,
1100                         &eth_dev->data->mac_addrs[0]);
1101
1102         /* register callback func to eal lib */
1103         rte_intr_callback_register(&pci_dev->intr_handle,
1104                                    avf_dev_interrupt_handler,
1105                                    (void *)eth_dev);
1106
1107         /* enable uio intr after callback register */
1108         rte_intr_enable(&pci_dev->intr_handle);
1109
1110         /* configure and enable device interrupt */
1111         avf_enable_irq0(hw);
1112
1113         return 0;
1114 }
1115
1116 static void
1117 avf_dev_close(struct rte_eth_dev *dev)
1118 {
1119         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1120         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1121         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1122
1123         avf_dev_stop(dev);
1124         avf_shutdown_adminq(hw);
1125         /* disable uio intr before callback unregister */
1126         rte_intr_disable(intr_handle);
1127
1128         /* unregister callback func from eal lib */
1129         rte_intr_callback_unregister(intr_handle,
1130                                      avf_dev_interrupt_handler, dev);
1131         avf_disable_irq0(hw);
1132 }
1133
1134 static int
1135 avf_dev_uninit(struct rte_eth_dev *dev)
1136 {
1137         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1138         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1139
1140         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1141                 return -EPERM;
1142
1143         dev->dev_ops = NULL;
1144         dev->rx_pkt_burst = NULL;
1145         dev->tx_pkt_burst = NULL;
1146         if (hw->adapter_stopped == 0)
1147                 avf_dev_close(dev);
1148
1149         rte_free(vf->vf_res);
1150         vf->vsi_res = NULL;
1151         vf->vf_res = NULL;
1152
1153         rte_free(vf->aq_resp);
1154         vf->aq_resp = NULL;
1155
1156         rte_free(dev->data->mac_addrs);
1157         dev->data->mac_addrs = NULL;
1158
1159         if (vf->rss_lut) {
1160                 rte_free(vf->rss_lut);
1161                 vf->rss_lut = NULL;
1162         }
1163         if (vf->rss_key) {
1164                 rte_free(vf->rss_key);
1165                 vf->rss_key = NULL;
1166         }
1167
1168         return 0;
1169 }
1170
1171 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1172                              struct rte_pci_device *pci_dev)
1173 {
1174         return rte_eth_dev_pci_generic_probe(pci_dev,
1175                 sizeof(struct avf_adapter), avf_dev_init);
1176 }
1177
1178 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1179 {
1180         return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1181 }
1182
1183 /* Adaptive virtual function driver struct */
1184 static struct rte_pci_driver rte_avf_pmd = {
1185         .id_table = pci_id_avf_map,
1186         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1187                      RTE_PCI_DRV_IOVA_AS_VA,
1188         .probe = eth_avf_pci_probe,
1189         .remove = eth_avf_pci_remove,
1190 };
1191
1192 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1193 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1194 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1195 RTE_INIT(avf_init_log);
1196 static void
1197 avf_init_log(void)
1198 {
1199         avf_logtype_init = rte_log_register("pmd.avf.init");
1200         if (avf_logtype_init >= 0)
1201                 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1202         avf_logtype_driver = rte_log_register("pmd.avf.driver");
1203         if (avf_logtype_driver >= 0)
1204                 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1205 }
1206
1207 /* memory func for base code */
1208 enum avf_status_code
1209 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1210                        struct avf_dma_mem *mem,
1211                        u64 size,
1212                        u32 alignment)
1213 {
1214         const struct rte_memzone *mz = NULL;
1215         char z_name[RTE_MEMZONE_NAMESIZE];
1216
1217         if (!mem)
1218                 return AVF_ERR_PARAM;
1219
1220         snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1221         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
1222                                          alignment, RTE_PGSIZE_2M);
1223         if (!mz)
1224                 return AVF_ERR_NO_MEMORY;
1225
1226         mem->size = size;
1227         mem->va = mz->addr;
1228         mem->pa = mz->phys_addr;
1229         mem->zone = (const void *)mz;
1230         PMD_DRV_LOG(DEBUG,
1231                     "memzone %s allocated with physical address: %"PRIu64,
1232                     mz->name, mem->pa);
1233
1234         return AVF_SUCCESS;
1235 }
1236
1237 enum avf_status_code
1238 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1239                    struct avf_dma_mem *mem)
1240 {
1241         if (!mem)
1242                 return AVF_ERR_PARAM;
1243
1244         PMD_DRV_LOG(DEBUG,
1245                     "memzone %s to be freed with physical address: %"PRIu64,
1246                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1247         rte_memzone_free((const struct rte_memzone *)mem->zone);
1248         mem->zone = NULL;
1249         mem->va = NULL;
1250         mem->pa = (u64)0;
1251
1252         return AVF_SUCCESS;
1253 }
1254
1255 enum avf_status_code
1256 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1257                         struct avf_virt_mem *mem,
1258                         u32 size)
1259 {
1260         if (!mem)
1261                 return AVF_ERR_PARAM;
1262
1263         mem->size = size;
1264         mem->va = rte_zmalloc("avf", size, 0);
1265
1266         if (mem->va)
1267                 return AVF_SUCCESS;
1268         else
1269                 return AVF_ERR_NO_MEMORY;
1270 }
1271
1272 enum avf_status_code
1273 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1274                     struct avf_virt_mem *mem)
1275 {
1276         if (!mem)
1277                 return AVF_ERR_PARAM;
1278
1279         rte_free(mem->va);
1280         mem->va = NULL;
1281
1282         return AVF_SUCCESS;
1283 }