ethdev: return diagnostic when setting MAC address
[dpdk.git] / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50                                 struct ether_addr *addr,
51                                 uint32_t index,
52                                 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55                                    uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
58                                    struct rte_eth_rss_reta_entry64 *reta_conf,
59                                    uint16_t reta_size);
60 static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
61                                   struct rte_eth_rss_reta_entry64 *reta_conf,
62                                   uint16_t reta_size);
63 static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
64                                    struct rte_eth_rss_conf *rss_conf);
65 static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
66                                      struct rte_eth_rss_conf *rss_conf);
67 static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68 static int avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
69                                          struct ether_addr *mac_addr);
70 static int avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
71                                         uint16_t queue_id);
72 static int avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
73                                          uint16_t queue_id);
74
75 int avf_logtype_init;
76 int avf_logtype_driver;
77
78 static const struct rte_pci_id pci_id_avf_map[] = {
79         { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
80         { .vendor_id = 0, /* sentinel */ },
81 };
82
83 static const struct eth_dev_ops avf_eth_dev_ops = {
84         .dev_configure              = avf_dev_configure,
85         .dev_start                  = avf_dev_start,
86         .dev_stop                   = avf_dev_stop,
87         .dev_close                  = avf_dev_close,
88         .dev_infos_get              = avf_dev_info_get,
89         .dev_supported_ptypes_get   = avf_dev_supported_ptypes_get,
90         .link_update                = avf_dev_link_update,
91         .stats_get                  = avf_dev_stats_get,
92         .promiscuous_enable         = avf_dev_promiscuous_enable,
93         .promiscuous_disable        = avf_dev_promiscuous_disable,
94         .allmulticast_enable        = avf_dev_allmulticast_enable,
95         .allmulticast_disable       = avf_dev_allmulticast_disable,
96         .mac_addr_add               = avf_dev_add_mac_addr,
97         .mac_addr_remove            = avf_dev_del_mac_addr,
98         .vlan_filter_set            = avf_dev_vlan_filter_set,
99         .vlan_offload_set           = avf_dev_vlan_offload_set,
100         .rx_queue_start             = avf_dev_rx_queue_start,
101         .rx_queue_stop              = avf_dev_rx_queue_stop,
102         .tx_queue_start             = avf_dev_tx_queue_start,
103         .tx_queue_stop              = avf_dev_tx_queue_stop,
104         .rx_queue_setup             = avf_dev_rx_queue_setup,
105         .rx_queue_release           = avf_dev_rx_queue_release,
106         .tx_queue_setup             = avf_dev_tx_queue_setup,
107         .tx_queue_release           = avf_dev_tx_queue_release,
108         .mac_addr_set               = avf_dev_set_default_mac_addr,
109         .reta_update                = avf_dev_rss_reta_update,
110         .reta_query                 = avf_dev_rss_reta_query,
111         .rss_hash_update            = avf_dev_rss_hash_update,
112         .rss_hash_conf_get          = avf_dev_rss_hash_conf_get,
113         .rxq_info_get               = avf_dev_rxq_info_get,
114         .txq_info_get               = avf_dev_txq_info_get,
115         .rx_queue_count             = avf_dev_rxq_count,
116         .rx_descriptor_status       = avf_dev_rx_desc_status,
117         .tx_descriptor_status       = avf_dev_tx_desc_status,
118         .mtu_set                    = avf_dev_mtu_set,
119         .rx_queue_intr_enable       = avf_dev_rx_queue_intr_enable,
120         .rx_queue_intr_disable      = avf_dev_rx_queue_intr_disable,
121 };
122
123 static int
124 avf_dev_configure(struct rte_eth_dev *dev)
125 {
126         struct avf_adapter *ad =
127                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
128         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(ad);
129         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
130
131         ad->rx_bulk_alloc_allowed = true;
132 #ifdef RTE_LIBRTE_AVF_INC_VECTOR
133         /* Initialize to TRUE. If any of Rx queues doesn't meet the
134          * vector Rx/Tx preconditions, it will be reset.
135          */
136         ad->rx_vec_allowed = true;
137         ad->tx_vec_allowed = true;
138 #else
139         ad->rx_vec_allowed = false;
140         ad->tx_vec_allowed = false;
141 #endif
142
143         /* Vlan stripping setting */
144         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
145                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
146                         avf_enable_vlan_strip(ad);
147                 else
148                         avf_disable_vlan_strip(ad);
149         }
150         return 0;
151 }
152
153 static int
154 avf_init_rss(struct avf_adapter *adapter)
155 {
156         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(adapter);
157         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
158         struct rte_eth_rss_conf *rss_conf;
159         uint8_t i, j, nb_q;
160         int ret;
161
162         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
163         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
164                        AVF_MAX_NUM_QUEUES);
165
166         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
167                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
168                 return -ENOTSUP;
169         }
170         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
171                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
172                 /* set all lut items to default queue */
173                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
174                         vf->rss_lut[i] = 0;
175                 ret = avf_configure_rss_lut(adapter);
176                 return ret;
177         }
178
179         /* In AVF, RSS enablement is set by PF driver. It is not supported
180          * to set based on rss_conf->rss_hf.
181          */
182
183         /* configure RSS key */
184         if (!rss_conf->rss_key) {
185                 /* Calculate the default hash key */
186                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
187                         vf->rss_key[i] = (uint8_t)rte_rand();
188         } else
189                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
190                            RTE_MIN(rss_conf->rss_key_len,
191                                    vf->vf_res->rss_key_size));
192
193         /* init RSS LUT table */
194         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
195                 if (j >= nb_q)
196                         j = 0;
197                 vf->rss_lut[i] = j;
198         }
199         /* send virtchnnl ops to configure rss*/
200         ret = avf_configure_rss_lut(adapter);
201         if (ret)
202                 return ret;
203         ret = avf_configure_rss_key(adapter);
204         if (ret)
205                 return ret;
206
207         return 0;
208 }
209
210 static int
211 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
212 {
213         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
214         struct rte_eth_dev_data *dev_data = dev->data;
215         uint16_t buf_size, max_pkt_len, len;
216
217         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
218
219         /* Calculate the maximum packet length allowed */
220         len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
221         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
222
223         /* Check if the jumbo frame and maximum packet length are set
224          * correctly.
225          */
226         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
227                 if (max_pkt_len <= ETHER_MAX_LEN ||
228                     max_pkt_len > AVF_FRAME_SIZE_MAX) {
229                         PMD_DRV_LOG(ERR, "maximum packet length must be "
230                                     "larger than %u and smaller than %u, "
231                                     "as jumbo frame is enabled",
232                                     (uint32_t)ETHER_MAX_LEN,
233                                     (uint32_t)AVF_FRAME_SIZE_MAX);
234                         return -EINVAL;
235                 }
236         } else {
237                 if (max_pkt_len < ETHER_MIN_LEN ||
238                     max_pkt_len > ETHER_MAX_LEN) {
239                         PMD_DRV_LOG(ERR, "maximum packet length must be "
240                                     "larger than %u and smaller than %u, "
241                                     "as jumbo frame is disabled",
242                                     (uint32_t)ETHER_MIN_LEN,
243                                     (uint32_t)ETHER_MAX_LEN);
244                         return -EINVAL;
245                 }
246         }
247
248         rxq->max_pkt_len = max_pkt_len;
249         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
250             (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
251                 dev_data->scattered_rx = 1;
252         }
253         AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
254         AVF_WRITE_FLUSH(hw);
255
256         return 0;
257 }
258
259 static int
260 avf_init_queues(struct rte_eth_dev *dev)
261 {
262         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
263         struct avf_rx_queue **rxq =
264                 (struct avf_rx_queue **)dev->data->rx_queues;
265         struct avf_tx_queue **txq =
266                 (struct avf_tx_queue **)dev->data->tx_queues;
267         int i, ret = AVF_SUCCESS;
268
269         for (i = 0; i < dev->data->nb_rx_queues; i++) {
270                 if (!rxq[i] || !rxq[i]->q_set)
271                         continue;
272                 ret = avf_init_rxq(dev, rxq[i]);
273                 if (ret != AVF_SUCCESS)
274                         break;
275         }
276         /* set rx/tx function to vector/scatter/single-segment
277          * according to parameters
278          */
279         avf_set_rx_function(dev);
280         avf_set_tx_function(dev);
281
282         return ret;
283 }
284
285 static int avf_config_rx_queues_irqs(struct rte_eth_dev *dev,
286                                      struct rte_intr_handle *intr_handle)
287 {
288         struct avf_adapter *adapter =
289                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
290         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
291         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
292         uint16_t interval, i;
293         int vec;
294
295         if (rte_intr_cap_multiple(intr_handle) &&
296             dev->data->dev_conf.intr_conf.rxq) {
297                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
298                         return -1;
299         }
300
301         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
302                 intr_handle->intr_vec =
303                         rte_zmalloc("intr_vec",
304                                     dev->data->nb_rx_queues * sizeof(int), 0);
305                 if (!intr_handle->intr_vec) {
306                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
307                                     dev->data->nb_rx_queues);
308                         return -1;
309                 }
310         }
311
312         if (!dev->data->dev_conf.intr_conf.rxq ||
313             !rte_intr_dp_is_en(intr_handle)) {
314                 /* Rx interrupt disabled, Map interrupt only for writeback */
315                 vf->nb_msix = 1;
316                 if (vf->vf_res->vf_cap_flags &
317                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
318                         /* If WB_ON_ITR supports, enable it */
319                         vf->msix_base = AVF_RX_VEC_START;
320                         AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
321                                       AVFINT_DYN_CTLN1_ITR_INDX_MASK |
322                                       AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
323                 } else {
324                         /* If no WB_ON_ITR offload flags, need to set
325                          * interrupt for descriptor write back.
326                          */
327                         vf->msix_base = AVF_MISC_VEC_ID;
328
329                         /* set ITR to max */
330                         interval = avf_calc_itr_interval(
331                                         AVF_QUEUE_ITR_INTERVAL_MAX);
332                         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
333                                       AVFINT_DYN_CTL01_INTENA_MASK |
334                                       (AVF_ITR_INDEX_DEFAULT <<
335                                        AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
336                                       (interval <<
337                                        AVFINT_DYN_CTL01_INTERVAL_SHIFT));
338                 }
339                 AVF_WRITE_FLUSH(hw);
340                 /* map all queues to the same interrupt */
341                 for (i = 0; i < dev->data->nb_rx_queues; i++)
342                         vf->rxq_map[0] |= 1 << i;
343         } else {
344                 if (!rte_intr_allow_others(intr_handle)) {
345                         vf->nb_msix = 1;
346                         vf->msix_base = AVF_MISC_VEC_ID;
347                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
348                                 vf->rxq_map[0] |= 1 << i;
349                                 intr_handle->intr_vec[i] = AVF_MISC_VEC_ID;
350                         }
351                         PMD_DRV_LOG(DEBUG,
352                                     "vector 0 are mapping to all Rx queues");
353                 } else {
354                         /* If Rx interrupt is reuquired, and we can use
355                          * multi interrupts, then the vec is from 1
356                          */
357                         vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
358                                               intr_handle->nb_efd);
359                         vf->msix_base = AVF_RX_VEC_START;
360                         vec = AVF_RX_VEC_START;
361                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
362                                 vf->rxq_map[vec] |= 1 << i;
363                                 intr_handle->intr_vec[i] = vec++;
364                                 if (vec >= vf->nb_msix)
365                                         vec = AVF_RX_VEC_START;
366                         }
367                         PMD_DRV_LOG(DEBUG,
368                                     "%u vectors are mapping to %u Rx queues",
369                                     vf->nb_msix, dev->data->nb_rx_queues);
370                 }
371         }
372
373         if (avf_config_irq_map(adapter)) {
374                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
375                 return -1;
376         }
377         return 0;
378 }
379
380 static int
381 avf_start_queues(struct rte_eth_dev *dev)
382 {
383         struct avf_rx_queue *rxq;
384         struct avf_tx_queue *txq;
385         int i;
386
387         for (i = 0; i < dev->data->nb_tx_queues; i++) {
388                 txq = dev->data->tx_queues[i];
389                 if (txq->tx_deferred_start)
390                         continue;
391                 if (avf_dev_tx_queue_start(dev, i) != 0) {
392                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
393                         return -1;
394                 }
395         }
396
397         for (i = 0; i < dev->data->nb_rx_queues; i++) {
398                 rxq = dev->data->rx_queues[i];
399                 if (rxq->rx_deferred_start)
400                         continue;
401                 if (avf_dev_rx_queue_start(dev, i) != 0) {
402                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
403                         return -1;
404                 }
405         }
406
407         return 0;
408 }
409
410 static int
411 avf_dev_start(struct rte_eth_dev *dev)
412 {
413         struct avf_adapter *adapter =
414                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
415         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
416         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
417         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
418         struct rte_intr_handle *intr_handle = dev->intr_handle;
419
420         PMD_INIT_FUNC_TRACE();
421
422         hw->adapter_stopped = 0;
423
424         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
425         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
426                                       dev->data->nb_tx_queues);
427
428         if (avf_init_queues(dev) != 0) {
429                 PMD_DRV_LOG(ERR, "failed to do Queue init");
430                 return -1;
431         }
432
433         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
434                 if (avf_init_rss(adapter) != 0) {
435                         PMD_DRV_LOG(ERR, "configure rss failed");
436                         goto err_rss;
437                 }
438         }
439
440         if (avf_configure_queues(adapter) != 0) {
441                 PMD_DRV_LOG(ERR, "configure queues failed");
442                 goto err_queue;
443         }
444
445         if (avf_config_rx_queues_irqs(dev, intr_handle) != 0) {
446                 PMD_DRV_LOG(ERR, "configure irq failed");
447                 goto err_queue;
448         }
449         /* re-enable intr again, because efd assign may change */
450         if (dev->data->dev_conf.intr_conf.rxq != 0) {
451                 rte_intr_disable(intr_handle);
452                 rte_intr_enable(intr_handle);
453         }
454
455         /* Set all mac addrs */
456         avf_add_del_all_mac_addr(adapter, TRUE);
457
458         if (avf_start_queues(dev) != 0) {
459                 PMD_DRV_LOG(ERR, "enable queues failed");
460                 goto err_mac;
461         }
462
463         return 0;
464
465 err_mac:
466         avf_add_del_all_mac_addr(adapter, FALSE);
467 err_queue:
468 err_rss:
469         return -1;
470 }
471
472 static void
473 avf_dev_stop(struct rte_eth_dev *dev)
474 {
475         struct avf_adapter *adapter =
476                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
477         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev);
478         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
479         struct rte_intr_handle *intr_handle = dev->intr_handle;
480         int ret, i;
481
482         PMD_INIT_FUNC_TRACE();
483
484         if (hw->adapter_stopped == 1)
485                 return;
486
487         avf_stop_queues(dev);
488
489         /* Disable the interrupt for Rx */
490         rte_intr_efd_disable(intr_handle);
491         /* Rx interrupt vector mapping free */
492         if (intr_handle->intr_vec) {
493                 rte_free(intr_handle->intr_vec);
494                 intr_handle->intr_vec = NULL;
495         }
496
497         /* remove all mac addrs */
498         avf_add_del_all_mac_addr(adapter, FALSE);
499         hw->adapter_stopped = 1;
500 }
501
502 static void
503 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
504 {
505         struct avf_adapter *adapter =
506                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
507         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
508
509         memset(dev_info, 0, sizeof(*dev_info));
510         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
511         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
512         dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
513         dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
514         dev_info->hash_key_size = vf->vf_res->rss_key_size;
515         dev_info->reta_size = vf->vf_res->rss_lut_size;
516         dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
517         dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
518         dev_info->rx_offload_capa =
519                 DEV_RX_OFFLOAD_VLAN_STRIP |
520                 DEV_RX_OFFLOAD_IPV4_CKSUM |
521                 DEV_RX_OFFLOAD_UDP_CKSUM |
522                 DEV_RX_OFFLOAD_TCP_CKSUM;
523         dev_info->tx_offload_capa =
524                 DEV_TX_OFFLOAD_VLAN_INSERT |
525                 DEV_TX_OFFLOAD_IPV4_CKSUM |
526                 DEV_TX_OFFLOAD_UDP_CKSUM |
527                 DEV_TX_OFFLOAD_TCP_CKSUM |
528                 DEV_TX_OFFLOAD_SCTP_CKSUM |
529                 DEV_TX_OFFLOAD_TCP_TSO;
530
531         dev_info->default_rxconf = (struct rte_eth_rxconf) {
532                 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
533                 .rx_drop_en = 0,
534                 .offloads = 0,
535         };
536
537         dev_info->default_txconf = (struct rte_eth_txconf) {
538                 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
539                 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
540                 .offloads = 0,
541         };
542
543         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
544                 .nb_max = AVF_MAX_RING_DESC,
545                 .nb_min = AVF_MIN_RING_DESC,
546                 .nb_align = AVF_ALIGN_RING_DESC,
547         };
548
549         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
550                 .nb_max = AVF_MAX_RING_DESC,
551                 .nb_min = AVF_MIN_RING_DESC,
552                 .nb_align = AVF_ALIGN_RING_DESC,
553         };
554 }
555
556 static const uint32_t *
557 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
558 {
559         static const uint32_t ptypes[] = {
560                 RTE_PTYPE_L2_ETHER,
561                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
562                 RTE_PTYPE_L4_FRAG,
563                 RTE_PTYPE_L4_ICMP,
564                 RTE_PTYPE_L4_NONFRAG,
565                 RTE_PTYPE_L4_SCTP,
566                 RTE_PTYPE_L4_TCP,
567                 RTE_PTYPE_L4_UDP,
568                 RTE_PTYPE_UNKNOWN
569         };
570         return ptypes;
571 }
572
573 int
574 avf_dev_link_update(struct rte_eth_dev *dev,
575                     __rte_unused int wait_to_complete)
576 {
577         struct rte_eth_link new_link;
578         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
579
580         /* Only read status info stored in VF, and the info is updated
581          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
582          */
583         switch (vf->link_speed) {
584         case VIRTCHNL_LINK_SPEED_100MB:
585                 new_link.link_speed = ETH_SPEED_NUM_100M;
586                 break;
587         case VIRTCHNL_LINK_SPEED_1GB:
588                 new_link.link_speed = ETH_SPEED_NUM_1G;
589                 break;
590         case VIRTCHNL_LINK_SPEED_10GB:
591                 new_link.link_speed = ETH_SPEED_NUM_10G;
592                 break;
593         case VIRTCHNL_LINK_SPEED_20GB:
594                 new_link.link_speed = ETH_SPEED_NUM_20G;
595                 break;
596         case VIRTCHNL_LINK_SPEED_25GB:
597                 new_link.link_speed = ETH_SPEED_NUM_25G;
598                 break;
599         case VIRTCHNL_LINK_SPEED_40GB:
600                 new_link.link_speed = ETH_SPEED_NUM_40G;
601                 break;
602         default:
603                 new_link.link_speed = ETH_SPEED_NUM_NONE;
604                 break;
605         }
606
607         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
608         new_link.link_status = vf->link_up ? ETH_LINK_UP :
609                                              ETH_LINK_DOWN;
610         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
611                                 ETH_LINK_SPEED_FIXED);
612
613         if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
614                                 *(uint64_t *)&dev->data->dev_link,
615                                 *(uint64_t *)&new_link) == 0)
616                 return -1;
617
618         return 0;
619 }
620
621 static void
622 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
623 {
624         struct avf_adapter *adapter =
625                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
626         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
627         int ret;
628
629         if (vf->promisc_unicast_enabled)
630                 return;
631
632         ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
633         if (!ret)
634                 vf->promisc_unicast_enabled = TRUE;
635 }
636
637 static void
638 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
639 {
640         struct avf_adapter *adapter =
641                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
642         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
643         int ret;
644
645         if (!vf->promisc_unicast_enabled)
646                 return;
647
648         ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
649         if (!ret)
650                 vf->promisc_unicast_enabled = FALSE;
651 }
652
653 static void
654 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
655 {
656         struct avf_adapter *adapter =
657                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
658         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
659         int ret;
660
661         if (vf->promisc_multicast_enabled)
662                 return;
663
664         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
665         if (!ret)
666                 vf->promisc_multicast_enabled = TRUE;
667 }
668
669 static void
670 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
671 {
672         struct avf_adapter *adapter =
673                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
674         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
675         int ret;
676
677         if (!vf->promisc_multicast_enabled)
678                 return;
679
680         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
681         if (!ret)
682                 vf->promisc_multicast_enabled = FALSE;
683 }
684
685 static int
686 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
687                      __rte_unused uint32_t index,
688                      __rte_unused uint32_t pool)
689 {
690         struct avf_adapter *adapter =
691                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
692         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
693         int err;
694
695         if (is_zero_ether_addr(addr)) {
696                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
697                 return -EINVAL;
698         }
699
700         err = avf_add_del_eth_addr(adapter, addr, TRUE);
701         if (err) {
702                 PMD_DRV_LOG(ERR, "fail to add MAC address");
703                 return -EIO;
704         }
705
706         vf->mac_num++;
707
708         return 0;
709 }
710
711 static void
712 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
713 {
714         struct avf_adapter *adapter =
715                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
716         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
717         struct ether_addr *addr;
718         int err;
719
720         addr = &dev->data->mac_addrs[index];
721
722         err = avf_add_del_eth_addr(adapter, addr, FALSE);
723         if (err)
724                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
725
726         vf->mac_num--;
727 }
728
729 static int
730 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
731 {
732         struct avf_adapter *adapter =
733                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
734         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
735         int err;
736
737         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
738                 return -ENOTSUP;
739
740         err = avf_add_del_vlan(adapter, vlan_id, on);
741         if (err)
742                 return -EIO;
743         return 0;
744 }
745
746 static int
747 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
748 {
749         struct avf_adapter *adapter =
750                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
751         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
752         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
753         int err;
754
755         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
756                 return -ENOTSUP;
757
758         /* Vlan stripping setting */
759         if (mask & ETH_VLAN_STRIP_MASK) {
760                 /* Enable or disable VLAN stripping */
761                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
762                         err = avf_enable_vlan_strip(adapter);
763                 else
764                         err = avf_disable_vlan_strip(adapter);
765
766                 if (err)
767                         return -EIO;
768         }
769         return 0;
770 }
771
772 static int
773 avf_dev_rss_reta_update(struct rte_eth_dev *dev,
774                         struct rte_eth_rss_reta_entry64 *reta_conf,
775                         uint16_t reta_size)
776 {
777         struct avf_adapter *adapter =
778                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
779         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
780         uint8_t *lut;
781         uint16_t i, idx, shift;
782         int ret;
783
784         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
785                 return -ENOTSUP;
786
787         if (reta_size != vf->vf_res->rss_lut_size) {
788                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
789                         "(%d) doesn't match the number of hardware can "
790                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
791                 return -EINVAL;
792         }
793
794         lut = rte_zmalloc("rss_lut", reta_size, 0);
795         if (!lut) {
796                 PMD_DRV_LOG(ERR, "No memory can be allocated");
797                 return -ENOMEM;
798         }
799         /* store the old lut table temporarily */
800         rte_memcpy(lut, vf->rss_lut, reta_size);
801
802         for (i = 0; i < reta_size; i++) {
803                 idx = i / RTE_RETA_GROUP_SIZE;
804                 shift = i % RTE_RETA_GROUP_SIZE;
805                 if (reta_conf[idx].mask & (1ULL << shift))
806                         lut[i] = reta_conf[idx].reta[shift];
807         }
808
809         rte_memcpy(vf->rss_lut, lut, reta_size);
810         /* send virtchnnl ops to configure rss*/
811         ret = avf_configure_rss_lut(adapter);
812         if (ret) /* revert back */
813                 rte_memcpy(vf->rss_lut, lut, reta_size);
814         rte_free(lut);
815
816         return ret;
817 }
818
819 static int
820 avf_dev_rss_reta_query(struct rte_eth_dev *dev,
821                        struct rte_eth_rss_reta_entry64 *reta_conf,
822                        uint16_t reta_size)
823 {
824         struct avf_adapter *adapter =
825                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
826         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
827         uint16_t i, idx, shift;
828
829         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
830                 return -ENOTSUP;
831
832         if (reta_size != vf->vf_res->rss_lut_size) {
833                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
834                         "(%d) doesn't match the number of hardware can "
835                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
836                 return -EINVAL;
837         }
838
839         for (i = 0; i < reta_size; i++) {
840                 idx = i / RTE_RETA_GROUP_SIZE;
841                 shift = i % RTE_RETA_GROUP_SIZE;
842                 if (reta_conf[idx].mask & (1ULL << shift))
843                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
844         }
845
846         return 0;
847 }
848
849 static int
850 avf_dev_rss_hash_update(struct rte_eth_dev *dev,
851                         struct rte_eth_rss_conf *rss_conf)
852 {
853         struct avf_adapter *adapter =
854                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
855         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
856
857         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
858                 return -ENOTSUP;
859
860         /* HENA setting, it is enabled by default, no change */
861         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
862                 PMD_DRV_LOG(DEBUG, "No key to be configured");
863                 return 0;
864         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
865                 PMD_DRV_LOG(ERR, "The size of hash key configured "
866                         "(%d) doesn't match the size of hardware can "
867                         "support (%d)", rss_conf->rss_key_len,
868                         vf->vf_res->rss_key_size);
869                 return -EINVAL;
870         }
871
872         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
873
874         return avf_configure_rss_key(adapter);
875 }
876
877 static int
878 avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
879                           struct rte_eth_rss_conf *rss_conf)
880 {
881         struct avf_adapter *adapter =
882                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
883         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
884
885         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
886                 return -ENOTSUP;
887
888          /* Just set it to default value now. */
889         rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
890
891         if (!rss_conf->rss_key)
892                 return 0;
893
894         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
895         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
896
897         return 0;
898 }
899
900 static int
901 avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
902 {
903         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
904         uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
905         int ret = 0;
906
907         if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
908                 return -EINVAL;
909
910         /* mtu setting is forbidden if port is start */
911         if (dev->data->dev_started) {
912                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
913                 return -EBUSY;
914         }
915
916         if (frame_size > ETHER_MAX_LEN)
917                 dev->data->dev_conf.rxmode.offloads |=
918                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
919         else
920                 dev->data->dev_conf.rxmode.offloads &=
921                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
922
923         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
924
925         return ret;
926 }
927
928 static int
929 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
930                              struct ether_addr *mac_addr)
931 {
932         struct avf_adapter *adapter =
933                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
934         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
935         struct ether_addr *perm_addr, *old_addr;
936         int ret;
937
938         old_addr = (struct ether_addr *)hw->mac.addr;
939         perm_addr = (struct ether_addr *)hw->mac.perm_addr;
940
941         if (is_same_ether_addr(mac_addr, old_addr))
942                 return 0;
943
944         /* If the MAC address is configured by host, skip the setting */
945         if (is_valid_assigned_ether_addr(perm_addr))
946                 return -EPERM;
947
948         ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
949         if (ret)
950                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
951                             " %02X:%02X:%02X:%02X:%02X:%02X",
952                             old_addr->addr_bytes[0],
953                             old_addr->addr_bytes[1],
954                             old_addr->addr_bytes[2],
955                             old_addr->addr_bytes[3],
956                             old_addr->addr_bytes[4],
957                             old_addr->addr_bytes[5]);
958
959         ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
960         if (ret)
961                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
962                             " %02X:%02X:%02X:%02X:%02X:%02X",
963                             mac_addr->addr_bytes[0],
964                             mac_addr->addr_bytes[1],
965                             mac_addr->addr_bytes[2],
966                             mac_addr->addr_bytes[3],
967                             mac_addr->addr_bytes[4],
968                             mac_addr->addr_bytes[5]);
969
970         if (ret)
971                 return -EIO;
972
973         ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
974         return 0;
975 }
976
977 static int
978 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
979 {
980         struct avf_adapter *adapter =
981                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
982         struct virtchnl_eth_stats *pstats = NULL;
983         int ret;
984
985         ret = avf_query_stats(adapter, &pstats);
986         if (ret == 0) {
987                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
988                                                 pstats->rx_broadcast;
989                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
990                                                 pstats->tx_unicast;
991                 stats->imissed = pstats->rx_discards;
992                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
993                 stats->ibytes = pstats->rx_bytes;
994                 stats->obytes = pstats->tx_bytes;
995         } else {
996                 PMD_DRV_LOG(ERR, "Get statistics failed");
997         }
998         return -EIO;
999 }
1000
1001 static int
1002 avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1003 {
1004         struct avf_adapter *adapter =
1005                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1006         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1007         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1008         uint16_t msix_intr;
1009
1010         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1011         if (msix_intr == AVF_MISC_VEC_ID) {
1012                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1013                 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1014                               AVFINT_DYN_CTL01_INTENA_MASK |
1015                               AVFINT_DYN_CTL01_ITR_INDX_MASK);
1016         } else {
1017                 AVF_WRITE_REG(hw,
1018                               AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1019                               AVFINT_DYN_CTLN1_INTENA_MASK |
1020                               AVFINT_DYN_CTLN1_ITR_INDX_MASK);
1021         }
1022
1023         AVF_WRITE_FLUSH(hw);
1024
1025         rte_intr_enable(&pci_dev->intr_handle);
1026
1027         return 0;
1028 }
1029
1030 static int
1031 avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1032 {
1033         struct avf_adapter *adapter =
1034                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1035         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1036         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1037         uint16_t msix_intr;
1038
1039         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1040         if (msix_intr == AVF_MISC_VEC_ID) {
1041                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1042                 return -EIO;
1043         }
1044
1045         AVF_WRITE_REG(hw,
1046                       AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1047                       0);
1048
1049         AVF_WRITE_FLUSH(hw);
1050         return 0;
1051 }
1052
1053 static int
1054 avf_check_vf_reset_done(struct avf_hw *hw)
1055 {
1056         int i, reset;
1057
1058         for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
1059                 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
1060                         AVFGEN_RSTAT_VFR_STATE_MASK;
1061                 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
1062                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1063                     reset == VIRTCHNL_VFR_COMPLETED)
1064                         break;
1065                 rte_delay_ms(20);
1066         }
1067
1068         if (i >= AVF_RESET_WAIT_CNT)
1069                 return -1;
1070
1071         return 0;
1072 }
1073
1074 static int
1075 avf_init_vf(struct rte_eth_dev *dev)
1076 {
1077         int i, err, bufsz;
1078         struct avf_adapter *adapter =
1079                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1080         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1081         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1082
1083         err = avf_set_mac_type(hw);
1084         if (err) {
1085                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1086                 goto err;
1087         }
1088
1089         err = avf_check_vf_reset_done(hw);
1090         if (err) {
1091                 PMD_INIT_LOG(ERR, "VF is still resetting");
1092                 goto err;
1093         }
1094
1095         avf_init_adminq_parameter(hw);
1096         err = avf_init_adminq(hw);
1097         if (err) {
1098                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1099                 goto err;
1100         }
1101
1102         vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
1103         if (!vf->aq_resp) {
1104                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1105                 goto err_aq;
1106         }
1107         if (avf_check_api_version(adapter) != 0) {
1108                 PMD_INIT_LOG(ERR, "check_api version failed");
1109                 goto err_api;
1110         }
1111
1112         bufsz = sizeof(struct virtchnl_vf_resource) +
1113                 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1114         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1115         if (!vf->vf_res) {
1116                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1117                 goto err_api;
1118         }
1119         if (avf_get_vf_resource(adapter) != 0) {
1120                 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
1121                 goto err_alloc;
1122         }
1123         /* Allocate memort for RSS info */
1124         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1125                 vf->rss_key = rte_zmalloc("rss_key",
1126                                           vf->vf_res->rss_key_size, 0);
1127                 if (!vf->rss_key) {
1128                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1129                         goto err_rss;
1130                 }
1131                 vf->rss_lut = rte_zmalloc("rss_lut",
1132                                           vf->vf_res->rss_lut_size, 0);
1133                 if (!vf->rss_lut) {
1134                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1135                         goto err_rss;
1136                 }
1137         }
1138         return 0;
1139 err_rss:
1140         rte_free(vf->rss_key);
1141         rte_free(vf->rss_lut);
1142 err_alloc:
1143         rte_free(vf->vf_res);
1144         vf->vsi_res = NULL;
1145 err_api:
1146         rte_free(vf->aq_resp);
1147 err_aq:
1148         avf_shutdown_adminq(hw);
1149 err:
1150         return -1;
1151 }
1152
1153 /* Enable default admin queue interrupt setting */
1154 static inline void
1155 avf_enable_irq0(struct avf_hw *hw)
1156 {
1157         /* Enable admin queue interrupt trigger */
1158         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
1159
1160         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
1161                                             AVFINT_DYN_CTL01_ITR_INDX_MASK);
1162
1163         AVF_WRITE_FLUSH(hw);
1164 }
1165
1166 static inline void
1167 avf_disable_irq0(struct avf_hw *hw)
1168 {
1169         /* Disable all interrupt types */
1170         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
1171         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1172                       AVFINT_DYN_CTL01_ITR_INDX_MASK);
1173         AVF_WRITE_FLUSH(hw);
1174 }
1175
1176 static void
1177 avf_dev_interrupt_handler(void *param)
1178 {
1179         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1180         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1181
1182         avf_disable_irq0(hw);
1183
1184         avf_handle_virtchnl_msg(dev);
1185
1186 done:
1187         avf_enable_irq0(hw);
1188 }
1189
1190 static int
1191 avf_dev_init(struct rte_eth_dev *eth_dev)
1192 {
1193         struct avf_adapter *adapter =
1194                 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1195         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1196         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1197
1198         PMD_INIT_FUNC_TRACE();
1199
1200         /* assign ops func pointer */
1201         eth_dev->dev_ops = &avf_eth_dev_ops;
1202         eth_dev->rx_pkt_burst = &avf_recv_pkts;
1203         eth_dev->tx_pkt_burst = &avf_xmit_pkts;
1204         eth_dev->tx_pkt_prepare = &avf_prep_pkts;
1205
1206         /* For secondary processes, we don't initialise any further as primary
1207          * has already done this work. Only check if we need a different RX
1208          * and TX function.
1209          */
1210         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1211                 avf_set_rx_function(eth_dev);
1212                 avf_set_tx_function(eth_dev);
1213                 return 0;
1214         }
1215         rte_eth_copy_pci_info(eth_dev, pci_dev);
1216
1217         hw->vendor_id = pci_dev->id.vendor_id;
1218         hw->device_id = pci_dev->id.device_id;
1219         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1220         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1221         hw->bus.bus_id = pci_dev->addr.bus;
1222         hw->bus.device = pci_dev->addr.devid;
1223         hw->bus.func = pci_dev->addr.function;
1224         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1225         hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1226         adapter->eth_dev = eth_dev;
1227
1228         if (avf_init_vf(eth_dev) != 0) {
1229                 PMD_INIT_LOG(ERR, "Init vf failed");
1230                 return -1;
1231         }
1232
1233         /* copy mac addr */
1234         eth_dev->data->mac_addrs = rte_zmalloc(
1235                                         "avf_mac",
1236                                         ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
1237                                         0);
1238         if (!eth_dev->data->mac_addrs) {
1239                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1240                              " store MAC addresses",
1241                              ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
1242                 return -ENOMEM;
1243         }
1244         /* If the MAC address is not configured by host,
1245          * generate a random one.
1246          */
1247         if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
1248                 eth_random_addr(hw->mac.addr);
1249         ether_addr_copy((struct ether_addr *)hw->mac.addr,
1250                         &eth_dev->data->mac_addrs[0]);
1251
1252         /* register callback func to eal lib */
1253         rte_intr_callback_register(&pci_dev->intr_handle,
1254                                    avf_dev_interrupt_handler,
1255                                    (void *)eth_dev);
1256
1257         /* enable uio intr after callback register */
1258         rte_intr_enable(&pci_dev->intr_handle);
1259
1260         /* configure and enable device interrupt */
1261         avf_enable_irq0(hw);
1262
1263         return 0;
1264 }
1265
1266 static void
1267 avf_dev_close(struct rte_eth_dev *dev)
1268 {
1269         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1270         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1271         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1272
1273         avf_dev_stop(dev);
1274         avf_shutdown_adminq(hw);
1275         /* disable uio intr before callback unregister */
1276         rte_intr_disable(intr_handle);
1277
1278         /* unregister callback func from eal lib */
1279         rte_intr_callback_unregister(intr_handle,
1280                                      avf_dev_interrupt_handler, dev);
1281         avf_disable_irq0(hw);
1282 }
1283
1284 static int
1285 avf_dev_uninit(struct rte_eth_dev *dev)
1286 {
1287         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1288         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1289
1290         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1291                 return -EPERM;
1292
1293         dev->dev_ops = NULL;
1294         dev->rx_pkt_burst = NULL;
1295         dev->tx_pkt_burst = NULL;
1296         if (hw->adapter_stopped == 0)
1297                 avf_dev_close(dev);
1298
1299         rte_free(vf->vf_res);
1300         vf->vsi_res = NULL;
1301         vf->vf_res = NULL;
1302
1303         rte_free(vf->aq_resp);
1304         vf->aq_resp = NULL;
1305
1306         rte_free(dev->data->mac_addrs);
1307         dev->data->mac_addrs = NULL;
1308
1309         if (vf->rss_lut) {
1310                 rte_free(vf->rss_lut);
1311                 vf->rss_lut = NULL;
1312         }
1313         if (vf->rss_key) {
1314                 rte_free(vf->rss_key);
1315                 vf->rss_key = NULL;
1316         }
1317
1318         return 0;
1319 }
1320
1321 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1322                              struct rte_pci_device *pci_dev)
1323 {
1324         return rte_eth_dev_pci_generic_probe(pci_dev,
1325                 sizeof(struct avf_adapter), avf_dev_init);
1326 }
1327
1328 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1329 {
1330         return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1331 }
1332
1333 /* Adaptive virtual function driver struct */
1334 static struct rte_pci_driver rte_avf_pmd = {
1335         .id_table = pci_id_avf_map,
1336         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1337                      RTE_PCI_DRV_IOVA_AS_VA,
1338         .probe = eth_avf_pci_probe,
1339         .remove = eth_avf_pci_remove,
1340 };
1341
1342 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1343 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1344 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1345 RTE_INIT(avf_init_log);
1346 static void
1347 avf_init_log(void)
1348 {
1349         avf_logtype_init = rte_log_register("pmd.net.avf.init");
1350         if (avf_logtype_init >= 0)
1351                 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1352         avf_logtype_driver = rte_log_register("pmd.net.avf.driver");
1353         if (avf_logtype_driver >= 0)
1354                 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1355 }
1356
1357 /* memory func for base code */
1358 enum avf_status_code
1359 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1360                        struct avf_dma_mem *mem,
1361                        u64 size,
1362                        u32 alignment)
1363 {
1364         const struct rte_memzone *mz = NULL;
1365         char z_name[RTE_MEMZONE_NAMESIZE];
1366
1367         if (!mem)
1368                 return AVF_ERR_PARAM;
1369
1370         snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1371         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
1372                         RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M);
1373         if (!mz)
1374                 return AVF_ERR_NO_MEMORY;
1375
1376         mem->size = size;
1377         mem->va = mz->addr;
1378         mem->pa = mz->phys_addr;
1379         mem->zone = (const void *)mz;
1380         PMD_DRV_LOG(DEBUG,
1381                     "memzone %s allocated with physical address: %"PRIu64,
1382                     mz->name, mem->pa);
1383
1384         return AVF_SUCCESS;
1385 }
1386
1387 enum avf_status_code
1388 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1389                    struct avf_dma_mem *mem)
1390 {
1391         if (!mem)
1392                 return AVF_ERR_PARAM;
1393
1394         PMD_DRV_LOG(DEBUG,
1395                     "memzone %s to be freed with physical address: %"PRIu64,
1396                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1397         rte_memzone_free((const struct rte_memzone *)mem->zone);
1398         mem->zone = NULL;
1399         mem->va = NULL;
1400         mem->pa = (u64)0;
1401
1402         return AVF_SUCCESS;
1403 }
1404
1405 enum avf_status_code
1406 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1407                         struct avf_virt_mem *mem,
1408                         u32 size)
1409 {
1410         if (!mem)
1411                 return AVF_ERR_PARAM;
1412
1413         mem->size = size;
1414         mem->va = rte_zmalloc("avf", size, 0);
1415
1416         if (mem->va)
1417                 return AVF_SUCCESS;
1418         else
1419                 return AVF_ERR_NO_MEMORY;
1420 }
1421
1422 enum avf_status_code
1423 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1424                     struct avf_virt_mem *mem)
1425 {
1426         if (!mem)
1427                 return AVF_ERR_PARAM;
1428
1429         rte_free(mem->va);
1430         mem->va = NULL;
1431
1432         return AVF_SUCCESS;
1433 }