net/avf: enable ops for MTU setting
[dpdk.git] / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50                                 struct ether_addr *addr,
51                                 uint32_t index,
52                                 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55                                    uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
58                                    struct rte_eth_rss_reta_entry64 *reta_conf,
59                                    uint16_t reta_size);
60 static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
61                                   struct rte_eth_rss_reta_entry64 *reta_conf,
62                                   uint16_t reta_size);
63 static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
64                                    struct rte_eth_rss_conf *rss_conf);
65 static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
66                                      struct rte_eth_rss_conf *rss_conf);
67 static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68 static void avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
69                                          struct ether_addr *mac_addr);
70
71 int avf_logtype_init;
72 int avf_logtype_driver;
73 static const struct rte_pci_id pci_id_avf_map[] = {
74         { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
75         { .vendor_id = 0, /* sentinel */ },
76 };
77
78 static const struct eth_dev_ops avf_eth_dev_ops = {
79         .dev_configure              = avf_dev_configure,
80         .dev_start                  = avf_dev_start,
81         .dev_stop                   = avf_dev_stop,
82         .dev_close                  = avf_dev_close,
83         .dev_infos_get              = avf_dev_info_get,
84         .dev_supported_ptypes_get   = avf_dev_supported_ptypes_get,
85         .link_update                = avf_dev_link_update,
86         .stats_get                  = avf_dev_stats_get,
87         .promiscuous_enable         = avf_dev_promiscuous_enable,
88         .promiscuous_disable        = avf_dev_promiscuous_disable,
89         .allmulticast_enable        = avf_dev_allmulticast_enable,
90         .allmulticast_disable       = avf_dev_allmulticast_disable,
91         .mac_addr_add               = avf_dev_add_mac_addr,
92         .mac_addr_remove            = avf_dev_del_mac_addr,
93         .vlan_filter_set            = avf_dev_vlan_filter_set,
94         .vlan_offload_set           = avf_dev_vlan_offload_set,
95         .rx_queue_start             = avf_dev_rx_queue_start,
96         .rx_queue_stop              = avf_dev_rx_queue_stop,
97         .tx_queue_start             = avf_dev_tx_queue_start,
98         .tx_queue_stop              = avf_dev_tx_queue_stop,
99         .rx_queue_setup             = avf_dev_rx_queue_setup,
100         .rx_queue_release           = avf_dev_rx_queue_release,
101         .tx_queue_setup             = avf_dev_tx_queue_setup,
102         .tx_queue_release           = avf_dev_tx_queue_release,
103         .mac_addr_set               = avf_dev_set_default_mac_addr,
104         .reta_update                = avf_dev_rss_reta_update,
105         .reta_query                 = avf_dev_rss_reta_query,
106         .rss_hash_update            = avf_dev_rss_hash_update,
107         .rss_hash_conf_get          = avf_dev_rss_hash_conf_get,
108         .mtu_set                    = avf_dev_mtu_set,
109 };
110
111 static int
112 avf_dev_configure(struct rte_eth_dev *dev)
113 {
114         struct avf_adapter *ad =
115                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
116         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(ad);
117         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
118
119         /* Vlan stripping setting */
120         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
121                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
122                         avf_enable_vlan_strip(ad);
123                 else
124                         avf_disable_vlan_strip(ad);
125         }
126         return 0;
127 }
128
129 static int
130 avf_init_rss(struct avf_adapter *adapter)
131 {
132         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(adapter);
133         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
134         struct rte_eth_rss_conf *rss_conf;
135         uint8_t i, j, nb_q;
136         int ret;
137
138         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
139         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
140                        AVF_MAX_NUM_QUEUES);
141
142         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
143                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
144                 return -ENOTSUP;
145         }
146         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
147                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
148                 /* set all lut items to default queue */
149                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
150                         vf->rss_lut[i] = 0;
151                 ret = avf_configure_rss_lut(adapter);
152                 return ret;
153         }
154
155         /* In AVF, RSS enablement is set by PF driver. It is not supported
156          * to set based on rss_conf->rss_hf.
157          */
158
159         /* configure RSS key */
160         if (!rss_conf->rss_key) {
161                 /* Calculate the default hash key */
162                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
163                         vf->rss_key[i] = (uint8_t)rte_rand();
164         } else
165                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
166                            RTE_MIN(rss_conf->rss_key_len,
167                                    vf->vf_res->rss_key_size));
168
169         /* init RSS LUT table */
170         for (i = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
171                 if (j >= nb_q)
172                         j = 0;
173                 vf->rss_lut[i] = j;
174         }
175         /* send virtchnnl ops to configure rss*/
176         ret = avf_configure_rss_lut(adapter);
177         if (ret)
178                 return ret;
179         ret = avf_configure_rss_key(adapter);
180         if (ret)
181                 return ret;
182
183         return 0;
184 }
185
186 static int
187 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
188 {
189         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
190         struct rte_eth_dev_data *dev_data = dev->data;
191         uint16_t buf_size, max_pkt_len, len;
192
193         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
194
195         /* Calculate the maximum packet length allowed */
196         len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
197         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
198
199         /* Check if the jumbo frame and maximum packet length are set
200          * correctly.
201          */
202         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
203                 if (max_pkt_len <= ETHER_MAX_LEN ||
204                     max_pkt_len > AVF_FRAME_SIZE_MAX) {
205                         PMD_DRV_LOG(ERR, "maximum packet length must be "
206                                     "larger than %u and smaller than %u, "
207                                     "as jumbo frame is enabled",
208                                     (uint32_t)ETHER_MAX_LEN,
209                                     (uint32_t)AVF_FRAME_SIZE_MAX);
210                         return -EINVAL;
211                 }
212         } else {
213                 if (max_pkt_len < ETHER_MIN_LEN ||
214                     max_pkt_len > ETHER_MAX_LEN) {
215                         PMD_DRV_LOG(ERR, "maximum packet length must be "
216                                     "larger than %u and smaller than %u, "
217                                     "as jumbo frame is disabled",
218                                     (uint32_t)ETHER_MIN_LEN,
219                                     (uint32_t)ETHER_MAX_LEN);
220                         return -EINVAL;
221                 }
222         }
223
224         rxq->max_pkt_len = max_pkt_len;
225         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
226             (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
227                 dev_data->scattered_rx = 1;
228         }
229         AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
230         AVF_WRITE_FLUSH(hw);
231
232         return 0;
233 }
234
235 static int
236 avf_init_queues(struct rte_eth_dev *dev)
237 {
238         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
239         struct avf_rx_queue **rxq =
240                 (struct avf_rx_queue **)dev->data->rx_queues;
241         struct avf_tx_queue **txq =
242                 (struct avf_tx_queue **)dev->data->tx_queues;
243         int i, ret = AVF_SUCCESS;
244
245         for (i = 0; i < dev->data->nb_rx_queues; i++) {
246                 if (!rxq[i] || !rxq[i]->q_set)
247                         continue;
248                 ret = avf_init_rxq(dev, rxq[i]);
249                 if (ret != AVF_SUCCESS)
250                         break;
251         }
252         /* set rx/tx function to vector/scatter/single-segment
253          * according to parameters
254          */
255         avf_set_rx_function(dev);
256         avf_set_tx_function(dev);
257
258         return ret;
259 }
260
261 static int
262 avf_start_queues(struct rte_eth_dev *dev)
263 {
264         struct avf_rx_queue *rxq;
265         struct avf_tx_queue *txq;
266         int i;
267
268         for (i = 0; i < dev->data->nb_tx_queues; i++) {
269                 txq = dev->data->tx_queues[i];
270                 if (txq->tx_deferred_start)
271                         continue;
272                 if (avf_dev_tx_queue_start(dev, i) != 0) {
273                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
274                         return -1;
275                 }
276         }
277
278         for (i = 0; i < dev->data->nb_rx_queues; i++) {
279                 rxq = dev->data->rx_queues[i];
280                 if (rxq->rx_deferred_start)
281                         continue;
282                 if (avf_dev_rx_queue_start(dev, i) != 0) {
283                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
284                         return -1;
285                 }
286         }
287
288         return 0;
289 }
290
291 static int
292 avf_dev_start(struct rte_eth_dev *dev)
293 {
294         struct avf_adapter *adapter =
295                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
296         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
297         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
298         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
299         struct rte_intr_handle *intr_handle = dev->intr_handle;
300         uint16_t interval;
301         int i;
302
303         PMD_INIT_FUNC_TRACE();
304
305         hw->adapter_stopped = 0;
306
307         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
308         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
309                                       dev->data->nb_tx_queues);
310
311         /* TODO: Rx interrupt */
312
313         if (avf_init_queues(dev) != 0) {
314                 PMD_DRV_LOG(ERR, "failed to do Queue init");
315                 return -1;
316         }
317
318         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
319                 if (avf_init_rss(adapter) != 0) {
320                         PMD_DRV_LOG(ERR, "configure rss failed");
321                         goto err_rss;
322                 }
323         }
324
325         if (avf_configure_queues(adapter) != 0) {
326                 PMD_DRV_LOG(ERR, "configure queues failed");
327                 goto err_queue;
328         }
329
330         /* Map interrupt for writeback */
331         vf->nb_msix = 1;
332         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
333                 /* If WB_ON_ITR supports, enable it */
334                 vf->msix_base = AVF_RX_VEC_START;
335                 AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
336                               AVFINT_DYN_CTLN1_ITR_INDX_MASK |
337                               AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
338         } else {
339                 /* If no WB_ON_ITR offload flags, need to set interrupt for
340                  * descriptor write back.
341                  */
342                 vf->msix_base = AVF_MISC_VEC_ID;
343
344                 /* set ITR to max */
345                 interval = avf_calc_itr_interval(AVF_QUEUE_ITR_INTERVAL_MAX);
346                 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
347                               AVFINT_DYN_CTL01_INTENA_MASK |
348                               (AVF_ITR_INDEX_DEFAULT <<
349                                AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
350                               (interval << AVFINT_DYN_CTL01_INTERVAL_SHIFT));
351         }
352         AVF_WRITE_FLUSH(hw);
353         /* map all queues to the same interrupt */
354         for (i = 0; i < dev->data->nb_rx_queues; i++)
355                 vf->rxq_map[0] |= 1 << i;
356         if (avf_config_irq_map(adapter)) {
357                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
358                 goto err_queue;
359         }
360
361         /* Set all mac addrs */
362         avf_add_del_all_mac_addr(adapter, TRUE);
363
364         if (avf_start_queues(dev) != 0) {
365                 PMD_DRV_LOG(ERR, "enable queues failed");
366                 goto err_mac;
367         }
368
369         /* TODO: enable interrupt for RX interrupt */
370         return 0;
371
372 err_mac:
373         avf_add_del_all_mac_addr(adapter, FALSE);
374 err_queue:
375 err_rss:
376         return -1;
377 }
378
379 static void
380 avf_dev_stop(struct rte_eth_dev *dev)
381 {
382         struct avf_adapter *adapter =
383                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
384         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev);
385         int ret, i;
386
387         PMD_INIT_FUNC_TRACE();
388
389         if (hw->adapter_stopped == 1)
390                 return;
391
392         avf_stop_queues(dev);
393
394         /*TODO: Disable the interrupt for Rx*/
395
396         /* TODO: Rx interrupt vector mapping free */
397
398         /* remove all mac addrs */
399         avf_add_del_all_mac_addr(adapter, FALSE);
400         hw->adapter_stopped = 1;
401 }
402
403 static void
404 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
405 {
406         struct avf_adapter *adapter =
407                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
408         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
409
410         memset(dev_info, 0, sizeof(*dev_info));
411         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
412         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
413         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
414         dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
415         dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
416         dev_info->hash_key_size = vf->vf_res->rss_key_size;
417         dev_info->reta_size = vf->vf_res->rss_lut_size;
418         dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
419         dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
420         dev_info->rx_offload_capa =
421                 DEV_RX_OFFLOAD_VLAN_STRIP |
422                 DEV_RX_OFFLOAD_IPV4_CKSUM |
423                 DEV_RX_OFFLOAD_UDP_CKSUM |
424                 DEV_RX_OFFLOAD_TCP_CKSUM;
425         dev_info->tx_offload_capa =
426                 DEV_TX_OFFLOAD_VLAN_INSERT |
427                 DEV_TX_OFFLOAD_IPV4_CKSUM |
428                 DEV_TX_OFFLOAD_UDP_CKSUM |
429                 DEV_TX_OFFLOAD_TCP_CKSUM |
430                 DEV_TX_OFFLOAD_SCTP_CKSUM |
431                 DEV_TX_OFFLOAD_TCP_TSO;
432
433         dev_info->default_rxconf = (struct rte_eth_rxconf) {
434                 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
435                 .rx_drop_en = 0,
436         };
437
438         dev_info->default_txconf = (struct rte_eth_txconf) {
439                 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
440                 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
441                 .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
442                                 ETH_TXQ_FLAGS_NOOFFLOADS,
443         };
444
445         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
446                 .nb_max = AVF_MAX_RING_DESC,
447                 .nb_min = AVF_MIN_RING_DESC,
448                 .nb_align = AVF_ALIGN_RING_DESC,
449         };
450
451         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
452                 .nb_max = AVF_MAX_RING_DESC,
453                 .nb_min = AVF_MIN_RING_DESC,
454                 .nb_align = AVF_ALIGN_RING_DESC,
455         };
456 }
457
458 static const uint32_t *
459 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
460 {
461         static const uint32_t ptypes[] = {
462                 RTE_PTYPE_L2_ETHER,
463                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
464                 RTE_PTYPE_L4_FRAG,
465                 RTE_PTYPE_L4_ICMP,
466                 RTE_PTYPE_L4_NONFRAG,
467                 RTE_PTYPE_L4_SCTP,
468                 RTE_PTYPE_L4_TCP,
469                 RTE_PTYPE_L4_UDP,
470                 RTE_PTYPE_UNKNOWN
471         };
472         return ptypes;
473 }
474
475 int
476 avf_dev_link_update(struct rte_eth_dev *dev,
477                     __rte_unused int wait_to_complete)
478 {
479         struct rte_eth_link new_link;
480         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
481
482         /* Only read status info stored in VF, and the info is updated
483          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
484          */
485         switch (vf->link_speed) {
486         case VIRTCHNL_LINK_SPEED_100MB:
487                 new_link.link_speed = ETH_SPEED_NUM_100M;
488                 break;
489         case VIRTCHNL_LINK_SPEED_1GB:
490                 new_link.link_speed = ETH_SPEED_NUM_1G;
491                 break;
492         case VIRTCHNL_LINK_SPEED_10GB:
493                 new_link.link_speed = ETH_SPEED_NUM_10G;
494                 break;
495         case VIRTCHNL_LINK_SPEED_20GB:
496                 new_link.link_speed = ETH_SPEED_NUM_20G;
497                 break;
498         case VIRTCHNL_LINK_SPEED_25GB:
499                 new_link.link_speed = ETH_SPEED_NUM_25G;
500                 break;
501         case VIRTCHNL_LINK_SPEED_40GB:
502                 new_link.link_speed = ETH_SPEED_NUM_40G;
503                 break;
504         default:
505                 new_link.link_speed = ETH_SPEED_NUM_NONE;
506                 break;
507         }
508
509         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
510         new_link.link_status = vf->link_up ? ETH_LINK_UP :
511                                              ETH_LINK_DOWN;
512         new_link.link_autoneg = !!(dev->data->dev_conf.link_speeds &
513                                 ETH_LINK_SPEED_FIXED);
514
515         rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
516                             *(uint64_t *)&dev->data->dev_link,
517                             *(uint64_t *)&new_link);
518
519         return 0;
520 }
521
522 static void
523 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
524 {
525         struct avf_adapter *adapter =
526                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
527         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
528         int ret;
529
530         if (vf->promisc_unicast_enabled)
531                 return;
532
533         ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
534         if (!ret)
535                 vf->promisc_unicast_enabled = TRUE;
536 }
537
538 static void
539 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
540 {
541         struct avf_adapter *adapter =
542                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
543         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
544         int ret;
545
546         if (!vf->promisc_unicast_enabled)
547                 return;
548
549         ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
550         if (!ret)
551                 vf->promisc_unicast_enabled = FALSE;
552 }
553
554 static void
555 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
556 {
557         struct avf_adapter *adapter =
558                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
559         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
560         int ret;
561
562         if (vf->promisc_multicast_enabled)
563                 return;
564
565         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
566         if (!ret)
567                 vf->promisc_multicast_enabled = TRUE;
568 }
569
570 static void
571 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
572 {
573         struct avf_adapter *adapter =
574                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
575         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
576         int ret;
577
578         if (!vf->promisc_multicast_enabled)
579                 return;
580
581         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
582         if (!ret)
583                 vf->promisc_multicast_enabled = FALSE;
584 }
585
586 static int
587 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
588                      __rte_unused uint32_t index,
589                      __rte_unused uint32_t pool)
590 {
591         struct avf_adapter *adapter =
592                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
593         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
594         int err;
595
596         if (is_zero_ether_addr(addr)) {
597                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
598                 return -EINVAL;
599         }
600
601         err = avf_add_del_eth_addr(adapter, addr, TRUE);
602         if (err) {
603                 PMD_DRV_LOG(ERR, "fail to add MAC address");
604                 return -EIO;
605         }
606
607         vf->mac_num++;
608
609         return 0;
610 }
611
612 static void
613 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
614 {
615         struct avf_adapter *adapter =
616                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
617         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
618         struct ether_addr *addr;
619         int err;
620
621         addr = &dev->data->mac_addrs[index];
622
623         err = avf_add_del_eth_addr(adapter, addr, FALSE);
624         if (err)
625                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
626
627         vf->mac_num--;
628 }
629
630 static int
631 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
632 {
633         struct avf_adapter *adapter =
634                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
635         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
636         int err;
637
638         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
639                 return -ENOTSUP;
640
641         err = avf_add_del_vlan(adapter, vlan_id, on);
642         if (err)
643                 return -EIO;
644         return 0;
645 }
646
647 static int
648 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
649 {
650         struct avf_adapter *adapter =
651                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
652         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
653         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
654         int err;
655
656         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
657                 return -ENOTSUP;
658
659         /* Vlan stripping setting */
660         if (mask & ETH_VLAN_STRIP_MASK) {
661                 /* Enable or disable VLAN stripping */
662                 if (dev_conf->rxmode.hw_vlan_strip)
663                         err = avf_enable_vlan_strip(adapter);
664                 else
665                         err = avf_disable_vlan_strip(adapter);
666         }
667
668         if (err)
669                 return -EIO;
670         return 0;
671 }
672
673 static int
674 avf_dev_rss_reta_update(struct rte_eth_dev *dev,
675                         struct rte_eth_rss_reta_entry64 *reta_conf,
676                         uint16_t reta_size)
677 {
678         struct avf_adapter *adapter =
679                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
680         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
681         uint8_t *lut;
682         uint16_t i, idx, shift;
683         int ret;
684
685         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
686                 return -ENOTSUP;
687
688         if (reta_size != vf->vf_res->rss_lut_size) {
689                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
690                         "(%d) doesn't match the number of hardware can "
691                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
692                 return -EINVAL;
693         }
694
695         lut = rte_zmalloc("rss_lut", reta_size, 0);
696         if (!lut) {
697                 PMD_DRV_LOG(ERR, "No memory can be allocated");
698                 return -ENOMEM;
699         }
700         /* store the old lut table temporarily */
701         rte_memcpy(lut, vf->rss_lut, reta_size);
702
703         for (i = 0; i < reta_size; i++) {
704                 idx = i / RTE_RETA_GROUP_SIZE;
705                 shift = i % RTE_RETA_GROUP_SIZE;
706                 if (reta_conf[idx].mask & (1ULL << shift))
707                         lut[i] = reta_conf[idx].reta[shift];
708         }
709
710         rte_memcpy(vf->rss_lut, lut, reta_size);
711         /* send virtchnnl ops to configure rss*/
712         ret = avf_configure_rss_lut(adapter);
713         if (ret) /* revert back */
714                 rte_memcpy(vf->rss_lut, lut, reta_size);
715         rte_free(lut);
716
717         return ret;
718 }
719
720 static int
721 avf_dev_rss_reta_query(struct rte_eth_dev *dev,
722                        struct rte_eth_rss_reta_entry64 *reta_conf,
723                        uint16_t reta_size)
724 {
725         struct avf_adapter *adapter =
726                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
727         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
728         uint16_t i, idx, shift;
729
730         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
731                 return -ENOTSUP;
732
733         if (reta_size != vf->vf_res->rss_lut_size) {
734                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
735                         "(%d) doesn't match the number of hardware can "
736                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
737                 return -EINVAL;
738         }
739
740         for (i = 0; i < reta_size; i++) {
741                 idx = i / RTE_RETA_GROUP_SIZE;
742                 shift = i % RTE_RETA_GROUP_SIZE;
743                 if (reta_conf[idx].mask & (1ULL << shift))
744                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
745         }
746
747         return 0;
748 }
749
750 static int
751 avf_dev_rss_hash_update(struct rte_eth_dev *dev,
752                         struct rte_eth_rss_conf *rss_conf)
753 {
754         struct avf_adapter *adapter =
755                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
756         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
757
758         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
759                 return -ENOTSUP;
760
761         /* HENA setting, it is enabled by default, no change */
762         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
763                 PMD_DRV_LOG(DEBUG, "No key to be configured");
764                 return 0;
765         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
766                 PMD_DRV_LOG(ERR, "The size of hash key configured "
767                         "(%d) doesn't match the size of hardware can "
768                         "support (%d)", rss_conf->rss_key_len,
769                         vf->vf_res->rss_key_size);
770                 return -EINVAL;
771         }
772
773         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
774
775         return avf_configure_rss_key(adapter);
776 }
777
778 static int
779 avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
780                           struct rte_eth_rss_conf *rss_conf)
781 {
782         struct avf_adapter *adapter =
783                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
784         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
785
786         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
787                 return -ENOTSUP;
788
789          /* Just set it to default value now. */
790         rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
791
792         if (!rss_conf->rss_key)
793                 return 0;
794
795         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
796         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
797
798         return 0;
799 }
800
801 static int
802 avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
803 {
804         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
805         uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
806         int ret = 0;
807
808         if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
809                 return -EINVAL;
810
811         /* mtu setting is forbidden if port is start */
812         if (dev->data->dev_started) {
813                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
814                 return -EBUSY;
815         }
816
817         if (frame_size > ETHER_MAX_LEN)
818                 dev->data->dev_conf.rxmode.offloads |=
819                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
820         else
821                 dev->data->dev_conf.rxmode.offloads &=
822                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
823
824         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
825
826         return ret;
827 }
828
829 static void
830 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
831                              struct ether_addr *mac_addr)
832 {
833         struct avf_adapter *adapter =
834                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
835         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
836         struct ether_addr *perm_addr, *old_addr;
837         int ret;
838
839         old_addr = (struct ether_addr *)hw->mac.addr;
840         perm_addr = (struct ether_addr *)hw->mac.perm_addr;
841
842         if (is_same_ether_addr(mac_addr, old_addr))
843                 return;
844
845         /* If the MAC address is configured by host, skip the setting */
846         if (is_valid_assigned_ether_addr(perm_addr))
847                 return;
848
849         ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
850         if (ret)
851                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
852                             " %02X:%02X:%02X:%02X:%02X:%02X",
853                             old_addr->addr_bytes[0],
854                             old_addr->addr_bytes[1],
855                             old_addr->addr_bytes[2],
856                             old_addr->addr_bytes[3],
857                             old_addr->addr_bytes[4],
858                             old_addr->addr_bytes[5]);
859
860         ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
861         if (ret)
862                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
863                             " %02X:%02X:%02X:%02X:%02X:%02X",
864                             mac_addr->addr_bytes[0],
865                             mac_addr->addr_bytes[1],
866                             mac_addr->addr_bytes[2],
867                             mac_addr->addr_bytes[3],
868                             mac_addr->addr_bytes[4],
869                             mac_addr->addr_bytes[5]);
870
871         ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
872 }
873
874 static int
875 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
876 {
877         struct avf_adapter *adapter =
878                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
879         struct virtchnl_eth_stats *pstats = NULL;
880         int ret;
881
882         ret = avf_query_stats(adapter, &pstats);
883         if (ret == 0) {
884                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
885                                                 pstats->rx_broadcast;
886                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
887                                                 pstats->tx_unicast;
888                 stats->imissed = pstats->rx_discards;
889                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
890                 stats->ibytes = pstats->rx_bytes;
891                 stats->obytes = pstats->tx_bytes;
892         } else {
893                 PMD_DRV_LOG(ERR, "Get statistics failed");
894         }
895         return -EIO;
896 }
897
898 static int
899 avf_check_vf_reset_done(struct avf_hw *hw)
900 {
901         int i, reset;
902
903         for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
904                 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
905                         AVFGEN_RSTAT_VFR_STATE_MASK;
906                 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
907                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
908                     reset == VIRTCHNL_VFR_COMPLETED)
909                         break;
910                 rte_delay_ms(20);
911         }
912
913         if (i >= AVF_RESET_WAIT_CNT)
914                 return -1;
915
916         return 0;
917 }
918
919 static int
920 avf_init_vf(struct rte_eth_dev *dev)
921 {
922         int i, err, bufsz;
923         struct avf_adapter *adapter =
924                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
925         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
926         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
927
928         err = avf_set_mac_type(hw);
929         if (err) {
930                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
931                 goto err;
932         }
933
934         err = avf_check_vf_reset_done(hw);
935         if (err) {
936                 PMD_INIT_LOG(ERR, "VF is still resetting");
937                 goto err;
938         }
939
940         avf_init_adminq_parameter(hw);
941         err = avf_init_adminq(hw);
942         if (err) {
943                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
944                 goto err;
945         }
946
947         vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
948         if (!vf->aq_resp) {
949                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
950                 goto err_aq;
951         }
952         if (avf_check_api_version(adapter) != 0) {
953                 PMD_INIT_LOG(ERR, "check_api version failed");
954                 goto err_api;
955         }
956
957         bufsz = sizeof(struct virtchnl_vf_resource) +
958                 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
959         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
960         if (!vf->vf_res) {
961                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
962                 goto err_api;
963         }
964         if (avf_get_vf_resource(adapter) != 0) {
965                 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
966                 goto err_alloc;
967         }
968         /* Allocate memort for RSS info */
969         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
970                 vf->rss_key = rte_zmalloc("rss_key",
971                                           vf->vf_res->rss_key_size, 0);
972                 if (!vf->rss_key) {
973                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
974                         goto err_rss;
975                 }
976                 vf->rss_lut = rte_zmalloc("rss_lut",
977                                           vf->vf_res->rss_lut_size, 0);
978                 if (!vf->rss_lut) {
979                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
980                         goto err_rss;
981                 }
982         }
983         return 0;
984 err_rss:
985         rte_free(vf->rss_key);
986         rte_free(vf->rss_lut);
987 err_alloc:
988         rte_free(vf->vf_res);
989         vf->vsi_res = NULL;
990 err_api:
991         rte_free(vf->aq_resp);
992 err_aq:
993         avf_shutdown_adminq(hw);
994 err:
995         return -1;
996 }
997
998 /* Enable default admin queue interrupt setting */
999 static inline void
1000 avf_enable_irq0(struct avf_hw *hw)
1001 {
1002         /* Enable admin queue interrupt trigger */
1003         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
1004
1005         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
1006                                             AVFINT_DYN_CTL01_ITR_INDX_MASK);
1007
1008         AVF_WRITE_FLUSH(hw);
1009 }
1010
1011 static inline void
1012 avf_disable_irq0(struct avf_hw *hw)
1013 {
1014         /* Disable all interrupt types */
1015         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
1016         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1017                       AVFINT_DYN_CTL01_ITR_INDX_MASK);
1018         AVF_WRITE_FLUSH(hw);
1019 }
1020
1021 static void
1022 avf_dev_interrupt_handler(void *param)
1023 {
1024         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1025         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1026
1027         avf_disable_irq0(hw);
1028
1029         avf_handle_virtchnl_msg(dev);
1030
1031 done:
1032         avf_enable_irq0(hw);
1033 }
1034
1035 static int
1036 avf_dev_init(struct rte_eth_dev *eth_dev)
1037 {
1038         struct avf_adapter *adapter =
1039                 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1040         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1041         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1042
1043         PMD_INIT_FUNC_TRACE();
1044
1045         /* assign ops func pointer */
1046         eth_dev->dev_ops = &avf_eth_dev_ops;
1047         eth_dev->rx_pkt_burst = &avf_recv_pkts;
1048         eth_dev->tx_pkt_burst = &avf_xmit_pkts;
1049         eth_dev->tx_pkt_prepare = &avf_prep_pkts;
1050
1051         /* For secondary processes, we don't initialise any further as primary
1052          * has already done this work. Only check if we need a different RX
1053          * and TX function.
1054          */
1055         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1056                 avf_set_rx_function(eth_dev);
1057                 avf_set_tx_function(eth_dev);
1058                 return 0;
1059         }
1060         rte_eth_copy_pci_info(eth_dev, pci_dev);
1061
1062         hw->vendor_id = pci_dev->id.vendor_id;
1063         hw->device_id = pci_dev->id.device_id;
1064         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1065         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1066         hw->bus.bus_id = pci_dev->addr.bus;
1067         hw->bus.device = pci_dev->addr.devid;
1068         hw->bus.func = pci_dev->addr.function;
1069         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1070         hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1071         adapter->eth_dev = eth_dev;
1072
1073         if (avf_init_vf(eth_dev) != 0) {
1074                 PMD_INIT_LOG(ERR, "Init vf failed");
1075                 return -1;
1076         }
1077
1078         /* copy mac addr */
1079         eth_dev->data->mac_addrs = rte_zmalloc(
1080                                         "avf_mac",
1081                                         ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
1082                                         0);
1083         if (!eth_dev->data->mac_addrs) {
1084                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1085                              " store MAC addresses",
1086                              ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
1087                 return -ENOMEM;
1088         }
1089         /* If the MAC address is not configured by host,
1090          * generate a random one.
1091          */
1092         if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
1093                 eth_random_addr(hw->mac.addr);
1094         ether_addr_copy((struct ether_addr *)hw->mac.addr,
1095                         &eth_dev->data->mac_addrs[0]);
1096
1097         /* register callback func to eal lib */
1098         rte_intr_callback_register(&pci_dev->intr_handle,
1099                                    avf_dev_interrupt_handler,
1100                                    (void *)eth_dev);
1101
1102         /* enable uio intr after callback register */
1103         rte_intr_enable(&pci_dev->intr_handle);
1104
1105         /* configure and enable device interrupt */
1106         avf_enable_irq0(hw);
1107
1108         return 0;
1109 }
1110
1111 static void
1112 avf_dev_close(struct rte_eth_dev *dev)
1113 {
1114         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1115         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1116         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1117
1118         avf_dev_stop(dev);
1119         avf_shutdown_adminq(hw);
1120         /* disable uio intr before callback unregister */
1121         rte_intr_disable(intr_handle);
1122
1123         /* unregister callback func from eal lib */
1124         rte_intr_callback_unregister(intr_handle,
1125                                      avf_dev_interrupt_handler, dev);
1126         avf_disable_irq0(hw);
1127 }
1128
1129 static int
1130 avf_dev_uninit(struct rte_eth_dev *dev)
1131 {
1132         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1133         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1134
1135         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1136                 return -EPERM;
1137
1138         dev->dev_ops = NULL;
1139         dev->rx_pkt_burst = NULL;
1140         dev->tx_pkt_burst = NULL;
1141         if (hw->adapter_stopped == 0)
1142                 avf_dev_close(dev);
1143
1144         rte_free(vf->vf_res);
1145         vf->vsi_res = NULL;
1146         vf->vf_res = NULL;
1147
1148         rte_free(vf->aq_resp);
1149         vf->aq_resp = NULL;
1150
1151         rte_free(dev->data->mac_addrs);
1152         dev->data->mac_addrs = NULL;
1153
1154         if (vf->rss_lut) {
1155                 rte_free(vf->rss_lut);
1156                 vf->rss_lut = NULL;
1157         }
1158         if (vf->rss_key) {
1159                 rte_free(vf->rss_key);
1160                 vf->rss_key = NULL;
1161         }
1162
1163         return 0;
1164 }
1165
1166 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1167                              struct rte_pci_device *pci_dev)
1168 {
1169         return rte_eth_dev_pci_generic_probe(pci_dev,
1170                 sizeof(struct avf_adapter), avf_dev_init);
1171 }
1172
1173 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1174 {
1175         return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1176 }
1177
1178 /* Adaptive virtual function driver struct */
1179 static struct rte_pci_driver rte_avf_pmd = {
1180         .id_table = pci_id_avf_map,
1181         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1182                      RTE_PCI_DRV_IOVA_AS_VA,
1183         .probe = eth_avf_pci_probe,
1184         .remove = eth_avf_pci_remove,
1185 };
1186
1187 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1188 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1189 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1190 RTE_INIT(avf_init_log);
1191 static void
1192 avf_init_log(void)
1193 {
1194         avf_logtype_init = rte_log_register("pmd.avf.init");
1195         if (avf_logtype_init >= 0)
1196                 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1197         avf_logtype_driver = rte_log_register("pmd.avf.driver");
1198         if (avf_logtype_driver >= 0)
1199                 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1200 }
1201
1202 /* memory func for base code */
1203 enum avf_status_code
1204 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1205                        struct avf_dma_mem *mem,
1206                        u64 size,
1207                        u32 alignment)
1208 {
1209         const struct rte_memzone *mz = NULL;
1210         char z_name[RTE_MEMZONE_NAMESIZE];
1211
1212         if (!mem)
1213                 return AVF_ERR_PARAM;
1214
1215         snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1216         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
1217                                          alignment, RTE_PGSIZE_2M);
1218         if (!mz)
1219                 return AVF_ERR_NO_MEMORY;
1220
1221         mem->size = size;
1222         mem->va = mz->addr;
1223         mem->pa = mz->phys_addr;
1224         mem->zone = (const void *)mz;
1225         PMD_DRV_LOG(DEBUG,
1226                     "memzone %s allocated with physical address: %"PRIu64,
1227                     mz->name, mem->pa);
1228
1229         return AVF_SUCCESS;
1230 }
1231
1232 enum avf_status_code
1233 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1234                    struct avf_dma_mem *mem)
1235 {
1236         if (!mem)
1237                 return AVF_ERR_PARAM;
1238
1239         PMD_DRV_LOG(DEBUG,
1240                     "memzone %s to be freed with physical address: %"PRIu64,
1241                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1242         rte_memzone_free((const struct rte_memzone *)mem->zone);
1243         mem->zone = NULL;
1244         mem->va = NULL;
1245         mem->pa = (u64)0;
1246
1247         return AVF_SUCCESS;
1248 }
1249
1250 enum avf_status_code
1251 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1252                         struct avf_virt_mem *mem,
1253                         u32 size)
1254 {
1255         if (!mem)
1256                 return AVF_ERR_PARAM;
1257
1258         mem->size = size;
1259         mem->va = rte_zmalloc("avf", size, 0);
1260
1261         if (mem->va)
1262                 return AVF_SUCCESS;
1263         else
1264                 return AVF_ERR_NO_MEMORY;
1265 }
1266
1267 enum avf_status_code
1268 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1269                     struct avf_virt_mem *mem)
1270 {
1271         if (!mem)
1272                 return AVF_ERR_PARAM;
1273
1274         rte_free(mem->va);
1275         mem->va = NULL;
1276
1277         return AVF_SUCCESS;
1278 }