ethdev: separate driver APIs
[dpdk.git] / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50                                 struct ether_addr *addr,
51                                 uint32_t index,
52                                 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55                                    uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
58                                    struct rte_eth_rss_reta_entry64 *reta_conf,
59                                    uint16_t reta_size);
60 static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
61                                   struct rte_eth_rss_reta_entry64 *reta_conf,
62                                   uint16_t reta_size);
63 static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
64                                    struct rte_eth_rss_conf *rss_conf);
65 static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
66                                      struct rte_eth_rss_conf *rss_conf);
67 static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68 static void avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
69                                          struct ether_addr *mac_addr);
70 static int avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
71                                         uint16_t queue_id);
72 static int avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
73                                          uint16_t queue_id);
74
75 int avf_logtype_init;
76 int avf_logtype_driver;
77
78 static const struct rte_pci_id pci_id_avf_map[] = {
79         { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
80         { .vendor_id = 0, /* sentinel */ },
81 };
82
83 static const struct eth_dev_ops avf_eth_dev_ops = {
84         .dev_configure              = avf_dev_configure,
85         .dev_start                  = avf_dev_start,
86         .dev_stop                   = avf_dev_stop,
87         .dev_close                  = avf_dev_close,
88         .dev_infos_get              = avf_dev_info_get,
89         .dev_supported_ptypes_get   = avf_dev_supported_ptypes_get,
90         .link_update                = avf_dev_link_update,
91         .stats_get                  = avf_dev_stats_get,
92         .promiscuous_enable         = avf_dev_promiscuous_enable,
93         .promiscuous_disable        = avf_dev_promiscuous_disable,
94         .allmulticast_enable        = avf_dev_allmulticast_enable,
95         .allmulticast_disable       = avf_dev_allmulticast_disable,
96         .mac_addr_add               = avf_dev_add_mac_addr,
97         .mac_addr_remove            = avf_dev_del_mac_addr,
98         .vlan_filter_set            = avf_dev_vlan_filter_set,
99         .vlan_offload_set           = avf_dev_vlan_offload_set,
100         .rx_queue_start             = avf_dev_rx_queue_start,
101         .rx_queue_stop              = avf_dev_rx_queue_stop,
102         .tx_queue_start             = avf_dev_tx_queue_start,
103         .tx_queue_stop              = avf_dev_tx_queue_stop,
104         .rx_queue_setup             = avf_dev_rx_queue_setup,
105         .rx_queue_release           = avf_dev_rx_queue_release,
106         .tx_queue_setup             = avf_dev_tx_queue_setup,
107         .tx_queue_release           = avf_dev_tx_queue_release,
108         .mac_addr_set               = avf_dev_set_default_mac_addr,
109         .reta_update                = avf_dev_rss_reta_update,
110         .reta_query                 = avf_dev_rss_reta_query,
111         .rss_hash_update            = avf_dev_rss_hash_update,
112         .rss_hash_conf_get          = avf_dev_rss_hash_conf_get,
113         .rxq_info_get               = avf_dev_rxq_info_get,
114         .txq_info_get               = avf_dev_txq_info_get,
115         .rx_queue_count             = avf_dev_rxq_count,
116         .rx_descriptor_status       = avf_dev_rx_desc_status,
117         .tx_descriptor_status       = avf_dev_tx_desc_status,
118         .mtu_set                    = avf_dev_mtu_set,
119         .rx_queue_intr_enable       = avf_dev_rx_queue_intr_enable,
120         .rx_queue_intr_disable      = avf_dev_rx_queue_intr_disable,
121 };
122
123 static int
124 avf_dev_configure(struct rte_eth_dev *dev)
125 {
126         struct avf_adapter *ad =
127                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
128         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(ad);
129         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
130
131         ad->rx_bulk_alloc_allowed = true;
132 #ifdef RTE_LIBRTE_AVF_INC_VECTOR
133         /* Initialize to TRUE. If any of Rx queues doesn't meet the
134          * vector Rx/Tx preconditions, it will be reset.
135          */
136         ad->rx_vec_allowed = true;
137         ad->tx_vec_allowed = true;
138 #else
139         ad->rx_vec_allowed = false;
140         ad->tx_vec_allowed = false;
141 #endif
142
143         /* Vlan stripping setting */
144         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
145                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
146                         avf_enable_vlan_strip(ad);
147                 else
148                         avf_disable_vlan_strip(ad);
149         }
150         return 0;
151 }
152
153 static int
154 avf_init_rss(struct avf_adapter *adapter)
155 {
156         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(adapter);
157         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
158         struct rte_eth_rss_conf *rss_conf;
159         uint8_t i, j, nb_q;
160         int ret;
161
162         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
163         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
164                        AVF_MAX_NUM_QUEUES);
165
166         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
167                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
168                 return -ENOTSUP;
169         }
170         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
171                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
172                 /* set all lut items to default queue */
173                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
174                         vf->rss_lut[i] = 0;
175                 ret = avf_configure_rss_lut(adapter);
176                 return ret;
177         }
178
179         /* In AVF, RSS enablement is set by PF driver. It is not supported
180          * to set based on rss_conf->rss_hf.
181          */
182
183         /* configure RSS key */
184         if (!rss_conf->rss_key) {
185                 /* Calculate the default hash key */
186                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
187                         vf->rss_key[i] = (uint8_t)rte_rand();
188         } else
189                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
190                            RTE_MIN(rss_conf->rss_key_len,
191                                    vf->vf_res->rss_key_size));
192
193         /* init RSS LUT table */
194         for (i = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
195                 if (j >= nb_q)
196                         j = 0;
197                 vf->rss_lut[i] = j;
198         }
199         /* send virtchnnl ops to configure rss*/
200         ret = avf_configure_rss_lut(adapter);
201         if (ret)
202                 return ret;
203         ret = avf_configure_rss_key(adapter);
204         if (ret)
205                 return ret;
206
207         return 0;
208 }
209
210 static int
211 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
212 {
213         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
214         struct rte_eth_dev_data *dev_data = dev->data;
215         uint16_t buf_size, max_pkt_len, len;
216
217         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
218
219         /* Calculate the maximum packet length allowed */
220         len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
221         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
222
223         /* Check if the jumbo frame and maximum packet length are set
224          * correctly.
225          */
226         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
227                 if (max_pkt_len <= ETHER_MAX_LEN ||
228                     max_pkt_len > AVF_FRAME_SIZE_MAX) {
229                         PMD_DRV_LOG(ERR, "maximum packet length must be "
230                                     "larger than %u and smaller than %u, "
231                                     "as jumbo frame is enabled",
232                                     (uint32_t)ETHER_MAX_LEN,
233                                     (uint32_t)AVF_FRAME_SIZE_MAX);
234                         return -EINVAL;
235                 }
236         } else {
237                 if (max_pkt_len < ETHER_MIN_LEN ||
238                     max_pkt_len > ETHER_MAX_LEN) {
239                         PMD_DRV_LOG(ERR, "maximum packet length must be "
240                                     "larger than %u and smaller than %u, "
241                                     "as jumbo frame is disabled",
242                                     (uint32_t)ETHER_MIN_LEN,
243                                     (uint32_t)ETHER_MAX_LEN);
244                         return -EINVAL;
245                 }
246         }
247
248         rxq->max_pkt_len = max_pkt_len;
249         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
250             (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
251                 dev_data->scattered_rx = 1;
252         }
253         AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
254         AVF_WRITE_FLUSH(hw);
255
256         return 0;
257 }
258
259 static int
260 avf_init_queues(struct rte_eth_dev *dev)
261 {
262         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
263         struct avf_rx_queue **rxq =
264                 (struct avf_rx_queue **)dev->data->rx_queues;
265         struct avf_tx_queue **txq =
266                 (struct avf_tx_queue **)dev->data->tx_queues;
267         int i, ret = AVF_SUCCESS;
268
269         for (i = 0; i < dev->data->nb_rx_queues; i++) {
270                 if (!rxq[i] || !rxq[i]->q_set)
271                         continue;
272                 ret = avf_init_rxq(dev, rxq[i]);
273                 if (ret != AVF_SUCCESS)
274                         break;
275         }
276         /* set rx/tx function to vector/scatter/single-segment
277          * according to parameters
278          */
279         avf_set_rx_function(dev);
280         avf_set_tx_function(dev);
281
282         return ret;
283 }
284
285 static int avf_config_rx_queues_irqs(struct rte_eth_dev *dev,
286                                      struct rte_intr_handle *intr_handle)
287 {
288         struct avf_adapter *adapter =
289                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
290         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
291         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
292         uint16_t interval, i;
293         int vec;
294
295         if (dev->data->dev_conf.intr_conf.rxq != 0) {
296                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
297                         return -1;
298         }
299
300         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
301                 intr_handle->intr_vec =
302                         rte_zmalloc("intr_vec",
303                                     dev->data->nb_rx_queues * sizeof(int), 0);
304                 if (!intr_handle->intr_vec) {
305                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
306                                     dev->data->nb_rx_queues);
307                         return -1;
308                 }
309         }
310
311         if (!dev->data->dev_conf.intr_conf.rxq) {
312                 /* Rx interrupt disabled, Map interrupt only for writeback */
313                 vf->nb_msix = 1;
314                 if (vf->vf_res->vf_cap_flags &
315                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
316                         /* If WB_ON_ITR supports, enable it */
317                         vf->msix_base = AVF_RX_VEC_START;
318                         AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
319                                       AVFINT_DYN_CTLN1_ITR_INDX_MASK |
320                                       AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
321                 } else {
322                         /* If no WB_ON_ITR offload flags, need to set
323                          * interrupt for descriptor write back.
324                          */
325                         vf->msix_base = AVF_MISC_VEC_ID;
326
327                         /* set ITR to max */
328                         interval = avf_calc_itr_interval(
329                                         AVF_QUEUE_ITR_INTERVAL_MAX);
330                         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
331                                       AVFINT_DYN_CTL01_INTENA_MASK |
332                                       (AVF_ITR_INDEX_DEFAULT <<
333                                        AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
334                                       (interval <<
335                                        AVFINT_DYN_CTL01_INTERVAL_SHIFT));
336                 }
337                 AVF_WRITE_FLUSH(hw);
338                 /* map all queues to the same interrupt */
339                 for (i = 0; i < dev->data->nb_rx_queues; i++)
340                         vf->rxq_map[0] |= 1 << i;
341         } else {
342                 if (!rte_intr_allow_others(intr_handle)) {
343                         vf->nb_msix = 1;
344                         vf->msix_base = AVF_MISC_VEC_ID;
345                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
346                                 vf->rxq_map[0] |= 1 << i;
347                                 intr_handle->intr_vec[i] = AVF_MISC_VEC_ID;
348                         }
349                         PMD_DRV_LOG(DEBUG,
350                                     "vector 0 are mapping to all Rx queues");
351                 } else {
352                         /* If Rx interrupt is reuquired, and we can use
353                          * multi interrupts, then the vec is from 1
354                          */
355                         vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
356                                               intr_handle->nb_efd);
357                         vf->msix_base = AVF_RX_VEC_START;
358                         vec = AVF_RX_VEC_START;
359                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
360                                 vf->rxq_map[vec] |= 1 << i;
361                                 intr_handle->intr_vec[i] = vec++;
362                                 if (vec >= vf->nb_msix)
363                                         vec = AVF_RX_VEC_START;
364                         }
365                         PMD_DRV_LOG(DEBUG,
366                                     "%u vectors are mapping to %u Rx queues",
367                                     vf->nb_msix, dev->data->nb_rx_queues);
368                 }
369         }
370
371         if (avf_config_irq_map(adapter)) {
372                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
373                 return -1;
374         }
375         return 0;
376 }
377
378 static int
379 avf_start_queues(struct rte_eth_dev *dev)
380 {
381         struct avf_rx_queue *rxq;
382         struct avf_tx_queue *txq;
383         int i;
384
385         for (i = 0; i < dev->data->nb_tx_queues; i++) {
386                 txq = dev->data->tx_queues[i];
387                 if (txq->tx_deferred_start)
388                         continue;
389                 if (avf_dev_tx_queue_start(dev, i) != 0) {
390                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
391                         return -1;
392                 }
393         }
394
395         for (i = 0; i < dev->data->nb_rx_queues; i++) {
396                 rxq = dev->data->rx_queues[i];
397                 if (rxq->rx_deferred_start)
398                         continue;
399                 if (avf_dev_rx_queue_start(dev, i) != 0) {
400                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
401                         return -1;
402                 }
403         }
404
405         return 0;
406 }
407
408 static int
409 avf_dev_start(struct rte_eth_dev *dev)
410 {
411         struct avf_adapter *adapter =
412                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
413         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
414         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
415         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
416         struct rte_intr_handle *intr_handle = dev->intr_handle;
417
418         PMD_INIT_FUNC_TRACE();
419
420         hw->adapter_stopped = 0;
421
422         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
423         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
424                                       dev->data->nb_tx_queues);
425
426         if (avf_init_queues(dev) != 0) {
427                 PMD_DRV_LOG(ERR, "failed to do Queue init");
428                 return -1;
429         }
430
431         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
432                 if (avf_init_rss(adapter) != 0) {
433                         PMD_DRV_LOG(ERR, "configure rss failed");
434                         goto err_rss;
435                 }
436         }
437
438         if (avf_configure_queues(adapter) != 0) {
439                 PMD_DRV_LOG(ERR, "configure queues failed");
440                 goto err_queue;
441         }
442
443         if (avf_config_rx_queues_irqs(dev, intr_handle) != 0) {
444                 PMD_DRV_LOG(ERR, "configure irq failed");
445                 goto err_queue;
446         }
447         /* re-enable intr again, because efd assign may change */
448         if (dev->data->dev_conf.intr_conf.rxq != 0) {
449                 rte_intr_disable(intr_handle);
450                 rte_intr_enable(intr_handle);
451         }
452
453         /* Set all mac addrs */
454         avf_add_del_all_mac_addr(adapter, TRUE);
455
456         if (avf_start_queues(dev) != 0) {
457                 PMD_DRV_LOG(ERR, "enable queues failed");
458                 goto err_mac;
459         }
460
461         return 0;
462
463 err_mac:
464         avf_add_del_all_mac_addr(adapter, FALSE);
465 err_queue:
466 err_rss:
467         return -1;
468 }
469
470 static void
471 avf_dev_stop(struct rte_eth_dev *dev)
472 {
473         struct avf_adapter *adapter =
474                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
475         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev);
476         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
477         struct rte_intr_handle *intr_handle = dev->intr_handle;
478         int ret, i;
479
480         PMD_INIT_FUNC_TRACE();
481
482         if (hw->adapter_stopped == 1)
483                 return;
484
485         avf_stop_queues(dev);
486
487         /* Disable the interrupt for Rx */
488         rte_intr_efd_disable(intr_handle);
489         /* Rx interrupt vector mapping free */
490         if (intr_handle->intr_vec) {
491                 rte_free(intr_handle->intr_vec);
492                 intr_handle->intr_vec = NULL;
493         }
494
495         /* remove all mac addrs */
496         avf_add_del_all_mac_addr(adapter, FALSE);
497         hw->adapter_stopped = 1;
498 }
499
500 static void
501 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
502 {
503         struct avf_adapter *adapter =
504                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
505         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
506
507         memset(dev_info, 0, sizeof(*dev_info));
508         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
509         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
510         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
511         dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
512         dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
513         dev_info->hash_key_size = vf->vf_res->rss_key_size;
514         dev_info->reta_size = vf->vf_res->rss_lut_size;
515         dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
516         dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
517         dev_info->rx_offload_capa =
518                 DEV_RX_OFFLOAD_VLAN_STRIP |
519                 DEV_RX_OFFLOAD_IPV4_CKSUM |
520                 DEV_RX_OFFLOAD_UDP_CKSUM |
521                 DEV_RX_OFFLOAD_TCP_CKSUM;
522         dev_info->tx_offload_capa =
523                 DEV_TX_OFFLOAD_VLAN_INSERT |
524                 DEV_TX_OFFLOAD_IPV4_CKSUM |
525                 DEV_TX_OFFLOAD_UDP_CKSUM |
526                 DEV_TX_OFFLOAD_TCP_CKSUM |
527                 DEV_TX_OFFLOAD_SCTP_CKSUM |
528                 DEV_TX_OFFLOAD_TCP_TSO;
529
530         dev_info->default_rxconf = (struct rte_eth_rxconf) {
531                 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
532                 .rx_drop_en = 0,
533         };
534
535         dev_info->default_txconf = (struct rte_eth_txconf) {
536                 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
537                 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
538                 .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
539                                 ETH_TXQ_FLAGS_NOOFFLOADS,
540         };
541
542         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
543                 .nb_max = AVF_MAX_RING_DESC,
544                 .nb_min = AVF_MIN_RING_DESC,
545                 .nb_align = AVF_ALIGN_RING_DESC,
546         };
547
548         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
549                 .nb_max = AVF_MAX_RING_DESC,
550                 .nb_min = AVF_MIN_RING_DESC,
551                 .nb_align = AVF_ALIGN_RING_DESC,
552         };
553 }
554
555 static const uint32_t *
556 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
557 {
558         static const uint32_t ptypes[] = {
559                 RTE_PTYPE_L2_ETHER,
560                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
561                 RTE_PTYPE_L4_FRAG,
562                 RTE_PTYPE_L4_ICMP,
563                 RTE_PTYPE_L4_NONFRAG,
564                 RTE_PTYPE_L4_SCTP,
565                 RTE_PTYPE_L4_TCP,
566                 RTE_PTYPE_L4_UDP,
567                 RTE_PTYPE_UNKNOWN
568         };
569         return ptypes;
570 }
571
572 int
573 avf_dev_link_update(struct rte_eth_dev *dev,
574                     __rte_unused int wait_to_complete)
575 {
576         struct rte_eth_link new_link;
577         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
578
579         /* Only read status info stored in VF, and the info is updated
580          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
581          */
582         switch (vf->link_speed) {
583         case VIRTCHNL_LINK_SPEED_100MB:
584                 new_link.link_speed = ETH_SPEED_NUM_100M;
585                 break;
586         case VIRTCHNL_LINK_SPEED_1GB:
587                 new_link.link_speed = ETH_SPEED_NUM_1G;
588                 break;
589         case VIRTCHNL_LINK_SPEED_10GB:
590                 new_link.link_speed = ETH_SPEED_NUM_10G;
591                 break;
592         case VIRTCHNL_LINK_SPEED_20GB:
593                 new_link.link_speed = ETH_SPEED_NUM_20G;
594                 break;
595         case VIRTCHNL_LINK_SPEED_25GB:
596                 new_link.link_speed = ETH_SPEED_NUM_25G;
597                 break;
598         case VIRTCHNL_LINK_SPEED_40GB:
599                 new_link.link_speed = ETH_SPEED_NUM_40G;
600                 break;
601         default:
602                 new_link.link_speed = ETH_SPEED_NUM_NONE;
603                 break;
604         }
605
606         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
607         new_link.link_status = vf->link_up ? ETH_LINK_UP :
608                                              ETH_LINK_DOWN;
609         new_link.link_autoneg = !!(dev->data->dev_conf.link_speeds &
610                                 ETH_LINK_SPEED_FIXED);
611
612         rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
613                             *(uint64_t *)&dev->data->dev_link,
614                             *(uint64_t *)&new_link);
615
616         return 0;
617 }
618
619 static void
620 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
621 {
622         struct avf_adapter *adapter =
623                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
624         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
625         int ret;
626
627         if (vf->promisc_unicast_enabled)
628                 return;
629
630         ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
631         if (!ret)
632                 vf->promisc_unicast_enabled = TRUE;
633 }
634
635 static void
636 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
637 {
638         struct avf_adapter *adapter =
639                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
640         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
641         int ret;
642
643         if (!vf->promisc_unicast_enabled)
644                 return;
645
646         ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
647         if (!ret)
648                 vf->promisc_unicast_enabled = FALSE;
649 }
650
651 static void
652 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
653 {
654         struct avf_adapter *adapter =
655                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
656         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
657         int ret;
658
659         if (vf->promisc_multicast_enabled)
660                 return;
661
662         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
663         if (!ret)
664                 vf->promisc_multicast_enabled = TRUE;
665 }
666
667 static void
668 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
669 {
670         struct avf_adapter *adapter =
671                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
672         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
673         int ret;
674
675         if (!vf->promisc_multicast_enabled)
676                 return;
677
678         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
679         if (!ret)
680                 vf->promisc_multicast_enabled = FALSE;
681 }
682
683 static int
684 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
685                      __rte_unused uint32_t index,
686                      __rte_unused uint32_t pool)
687 {
688         struct avf_adapter *adapter =
689                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
690         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
691         int err;
692
693         if (is_zero_ether_addr(addr)) {
694                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
695                 return -EINVAL;
696         }
697
698         err = avf_add_del_eth_addr(adapter, addr, TRUE);
699         if (err) {
700                 PMD_DRV_LOG(ERR, "fail to add MAC address");
701                 return -EIO;
702         }
703
704         vf->mac_num++;
705
706         return 0;
707 }
708
709 static void
710 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
711 {
712         struct avf_adapter *adapter =
713                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
714         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
715         struct ether_addr *addr;
716         int err;
717
718         addr = &dev->data->mac_addrs[index];
719
720         err = avf_add_del_eth_addr(adapter, addr, FALSE);
721         if (err)
722                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
723
724         vf->mac_num--;
725 }
726
727 static int
728 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
729 {
730         struct avf_adapter *adapter =
731                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
732         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
733         int err;
734
735         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
736                 return -ENOTSUP;
737
738         err = avf_add_del_vlan(adapter, vlan_id, on);
739         if (err)
740                 return -EIO;
741         return 0;
742 }
743
744 static int
745 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
746 {
747         struct avf_adapter *adapter =
748                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
749         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
750         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
751         int err;
752
753         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
754                 return -ENOTSUP;
755
756         /* Vlan stripping setting */
757         if (mask & ETH_VLAN_STRIP_MASK) {
758                 /* Enable or disable VLAN stripping */
759                 if (dev_conf->rxmode.hw_vlan_strip)
760                         err = avf_enable_vlan_strip(adapter);
761                 else
762                         err = avf_disable_vlan_strip(adapter);
763         }
764
765         if (err)
766                 return -EIO;
767         return 0;
768 }
769
770 static int
771 avf_dev_rss_reta_update(struct rte_eth_dev *dev,
772                         struct rte_eth_rss_reta_entry64 *reta_conf,
773                         uint16_t reta_size)
774 {
775         struct avf_adapter *adapter =
776                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
777         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
778         uint8_t *lut;
779         uint16_t i, idx, shift;
780         int ret;
781
782         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
783                 return -ENOTSUP;
784
785         if (reta_size != vf->vf_res->rss_lut_size) {
786                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
787                         "(%d) doesn't match the number of hardware can "
788                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
789                 return -EINVAL;
790         }
791
792         lut = rte_zmalloc("rss_lut", reta_size, 0);
793         if (!lut) {
794                 PMD_DRV_LOG(ERR, "No memory can be allocated");
795                 return -ENOMEM;
796         }
797         /* store the old lut table temporarily */
798         rte_memcpy(lut, vf->rss_lut, reta_size);
799
800         for (i = 0; i < reta_size; i++) {
801                 idx = i / RTE_RETA_GROUP_SIZE;
802                 shift = i % RTE_RETA_GROUP_SIZE;
803                 if (reta_conf[idx].mask & (1ULL << shift))
804                         lut[i] = reta_conf[idx].reta[shift];
805         }
806
807         rte_memcpy(vf->rss_lut, lut, reta_size);
808         /* send virtchnnl ops to configure rss*/
809         ret = avf_configure_rss_lut(adapter);
810         if (ret) /* revert back */
811                 rte_memcpy(vf->rss_lut, lut, reta_size);
812         rte_free(lut);
813
814         return ret;
815 }
816
817 static int
818 avf_dev_rss_reta_query(struct rte_eth_dev *dev,
819                        struct rte_eth_rss_reta_entry64 *reta_conf,
820                        uint16_t reta_size)
821 {
822         struct avf_adapter *adapter =
823                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
824         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
825         uint16_t i, idx, shift;
826
827         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
828                 return -ENOTSUP;
829
830         if (reta_size != vf->vf_res->rss_lut_size) {
831                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
832                         "(%d) doesn't match the number of hardware can "
833                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
834                 return -EINVAL;
835         }
836
837         for (i = 0; i < reta_size; i++) {
838                 idx = i / RTE_RETA_GROUP_SIZE;
839                 shift = i % RTE_RETA_GROUP_SIZE;
840                 if (reta_conf[idx].mask & (1ULL << shift))
841                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
842         }
843
844         return 0;
845 }
846
847 static int
848 avf_dev_rss_hash_update(struct rte_eth_dev *dev,
849                         struct rte_eth_rss_conf *rss_conf)
850 {
851         struct avf_adapter *adapter =
852                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
853         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
854
855         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
856                 return -ENOTSUP;
857
858         /* HENA setting, it is enabled by default, no change */
859         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
860                 PMD_DRV_LOG(DEBUG, "No key to be configured");
861                 return 0;
862         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
863                 PMD_DRV_LOG(ERR, "The size of hash key configured "
864                         "(%d) doesn't match the size of hardware can "
865                         "support (%d)", rss_conf->rss_key_len,
866                         vf->vf_res->rss_key_size);
867                 return -EINVAL;
868         }
869
870         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
871
872         return avf_configure_rss_key(adapter);
873 }
874
875 static int
876 avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
877                           struct rte_eth_rss_conf *rss_conf)
878 {
879         struct avf_adapter *adapter =
880                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
881         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
882
883         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
884                 return -ENOTSUP;
885
886          /* Just set it to default value now. */
887         rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
888
889         if (!rss_conf->rss_key)
890                 return 0;
891
892         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
893         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
894
895         return 0;
896 }
897
898 static int
899 avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
900 {
901         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
902         uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
903         int ret = 0;
904
905         if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
906                 return -EINVAL;
907
908         /* mtu setting is forbidden if port is start */
909         if (dev->data->dev_started) {
910                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
911                 return -EBUSY;
912         }
913
914         if (frame_size > ETHER_MAX_LEN)
915                 dev->data->dev_conf.rxmode.offloads |=
916                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
917         else
918                 dev->data->dev_conf.rxmode.offloads &=
919                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
920
921         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
922
923         return ret;
924 }
925
926 static void
927 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
928                              struct ether_addr *mac_addr)
929 {
930         struct avf_adapter *adapter =
931                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
932         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
933         struct ether_addr *perm_addr, *old_addr;
934         int ret;
935
936         old_addr = (struct ether_addr *)hw->mac.addr;
937         perm_addr = (struct ether_addr *)hw->mac.perm_addr;
938
939         if (is_same_ether_addr(mac_addr, old_addr))
940                 return;
941
942         /* If the MAC address is configured by host, skip the setting */
943         if (is_valid_assigned_ether_addr(perm_addr))
944                 return;
945
946         ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
947         if (ret)
948                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
949                             " %02X:%02X:%02X:%02X:%02X:%02X",
950                             old_addr->addr_bytes[0],
951                             old_addr->addr_bytes[1],
952                             old_addr->addr_bytes[2],
953                             old_addr->addr_bytes[3],
954                             old_addr->addr_bytes[4],
955                             old_addr->addr_bytes[5]);
956
957         ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
958         if (ret)
959                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
960                             " %02X:%02X:%02X:%02X:%02X:%02X",
961                             mac_addr->addr_bytes[0],
962                             mac_addr->addr_bytes[1],
963                             mac_addr->addr_bytes[2],
964                             mac_addr->addr_bytes[3],
965                             mac_addr->addr_bytes[4],
966                             mac_addr->addr_bytes[5]);
967
968         ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
969 }
970
971 static int
972 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
973 {
974         struct avf_adapter *adapter =
975                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
976         struct virtchnl_eth_stats *pstats = NULL;
977         int ret;
978
979         ret = avf_query_stats(adapter, &pstats);
980         if (ret == 0) {
981                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
982                                                 pstats->rx_broadcast;
983                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
984                                                 pstats->tx_unicast;
985                 stats->imissed = pstats->rx_discards;
986                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
987                 stats->ibytes = pstats->rx_bytes;
988                 stats->obytes = pstats->tx_bytes;
989         } else {
990                 PMD_DRV_LOG(ERR, "Get statistics failed");
991         }
992         return -EIO;
993 }
994
995 static int
996 avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
997 {
998         struct avf_adapter *adapter =
999                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1000         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1001         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1002         uint16_t msix_intr;
1003
1004         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1005         if (msix_intr == AVF_MISC_VEC_ID) {
1006                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1007                 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1008                               AVFINT_DYN_CTL01_INTENA_MASK |
1009                               AVFINT_DYN_CTL01_ITR_INDX_MASK);
1010         } else {
1011                 AVF_WRITE_REG(hw,
1012                               AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1013                               AVFINT_DYN_CTLN1_INTENA_MASK |
1014                               AVFINT_DYN_CTLN1_ITR_INDX_MASK);
1015         }
1016
1017         AVF_WRITE_FLUSH(hw);
1018
1019         rte_intr_enable(&pci_dev->intr_handle);
1020
1021         return 0;
1022 }
1023
1024 static int
1025 avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1026 {
1027         struct avf_adapter *adapter =
1028                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1029         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1030         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1031         uint16_t msix_intr;
1032
1033         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1034         if (msix_intr == AVF_MISC_VEC_ID) {
1035                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1036                 return -EIO;
1037         }
1038
1039         AVF_WRITE_REG(hw,
1040                       AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1041                       0);
1042
1043         AVF_WRITE_FLUSH(hw);
1044         return 0;
1045 }
1046
1047 static int
1048 avf_check_vf_reset_done(struct avf_hw *hw)
1049 {
1050         int i, reset;
1051
1052         for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
1053                 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
1054                         AVFGEN_RSTAT_VFR_STATE_MASK;
1055                 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
1056                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1057                     reset == VIRTCHNL_VFR_COMPLETED)
1058                         break;
1059                 rte_delay_ms(20);
1060         }
1061
1062         if (i >= AVF_RESET_WAIT_CNT)
1063                 return -1;
1064
1065         return 0;
1066 }
1067
1068 static int
1069 avf_init_vf(struct rte_eth_dev *dev)
1070 {
1071         int i, err, bufsz;
1072         struct avf_adapter *adapter =
1073                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1074         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1075         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1076
1077         err = avf_set_mac_type(hw);
1078         if (err) {
1079                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1080                 goto err;
1081         }
1082
1083         err = avf_check_vf_reset_done(hw);
1084         if (err) {
1085                 PMD_INIT_LOG(ERR, "VF is still resetting");
1086                 goto err;
1087         }
1088
1089         avf_init_adminq_parameter(hw);
1090         err = avf_init_adminq(hw);
1091         if (err) {
1092                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1093                 goto err;
1094         }
1095
1096         vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
1097         if (!vf->aq_resp) {
1098                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1099                 goto err_aq;
1100         }
1101         if (avf_check_api_version(adapter) != 0) {
1102                 PMD_INIT_LOG(ERR, "check_api version failed");
1103                 goto err_api;
1104         }
1105
1106         bufsz = sizeof(struct virtchnl_vf_resource) +
1107                 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1108         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1109         if (!vf->vf_res) {
1110                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1111                 goto err_api;
1112         }
1113         if (avf_get_vf_resource(adapter) != 0) {
1114                 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
1115                 goto err_alloc;
1116         }
1117         /* Allocate memort for RSS info */
1118         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1119                 vf->rss_key = rte_zmalloc("rss_key",
1120                                           vf->vf_res->rss_key_size, 0);
1121                 if (!vf->rss_key) {
1122                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1123                         goto err_rss;
1124                 }
1125                 vf->rss_lut = rte_zmalloc("rss_lut",
1126                                           vf->vf_res->rss_lut_size, 0);
1127                 if (!vf->rss_lut) {
1128                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1129                         goto err_rss;
1130                 }
1131         }
1132         return 0;
1133 err_rss:
1134         rte_free(vf->rss_key);
1135         rte_free(vf->rss_lut);
1136 err_alloc:
1137         rte_free(vf->vf_res);
1138         vf->vsi_res = NULL;
1139 err_api:
1140         rte_free(vf->aq_resp);
1141 err_aq:
1142         avf_shutdown_adminq(hw);
1143 err:
1144         return -1;
1145 }
1146
1147 /* Enable default admin queue interrupt setting */
1148 static inline void
1149 avf_enable_irq0(struct avf_hw *hw)
1150 {
1151         /* Enable admin queue interrupt trigger */
1152         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
1153
1154         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
1155                                             AVFINT_DYN_CTL01_ITR_INDX_MASK);
1156
1157         AVF_WRITE_FLUSH(hw);
1158 }
1159
1160 static inline void
1161 avf_disable_irq0(struct avf_hw *hw)
1162 {
1163         /* Disable all interrupt types */
1164         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
1165         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1166                       AVFINT_DYN_CTL01_ITR_INDX_MASK);
1167         AVF_WRITE_FLUSH(hw);
1168 }
1169
1170 static void
1171 avf_dev_interrupt_handler(void *param)
1172 {
1173         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1174         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1175
1176         avf_disable_irq0(hw);
1177
1178         avf_handle_virtchnl_msg(dev);
1179
1180 done:
1181         avf_enable_irq0(hw);
1182 }
1183
1184 static int
1185 avf_dev_init(struct rte_eth_dev *eth_dev)
1186 {
1187         struct avf_adapter *adapter =
1188                 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1189         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1190         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1191
1192         PMD_INIT_FUNC_TRACE();
1193
1194         /* assign ops func pointer */
1195         eth_dev->dev_ops = &avf_eth_dev_ops;
1196         eth_dev->rx_pkt_burst = &avf_recv_pkts;
1197         eth_dev->tx_pkt_burst = &avf_xmit_pkts;
1198         eth_dev->tx_pkt_prepare = &avf_prep_pkts;
1199
1200         /* For secondary processes, we don't initialise any further as primary
1201          * has already done this work. Only check if we need a different RX
1202          * and TX function.
1203          */
1204         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1205                 avf_set_rx_function(eth_dev);
1206                 avf_set_tx_function(eth_dev);
1207                 return 0;
1208         }
1209         rte_eth_copy_pci_info(eth_dev, pci_dev);
1210
1211         hw->vendor_id = pci_dev->id.vendor_id;
1212         hw->device_id = pci_dev->id.device_id;
1213         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1214         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1215         hw->bus.bus_id = pci_dev->addr.bus;
1216         hw->bus.device = pci_dev->addr.devid;
1217         hw->bus.func = pci_dev->addr.function;
1218         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1219         hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1220         adapter->eth_dev = eth_dev;
1221
1222         if (avf_init_vf(eth_dev) != 0) {
1223                 PMD_INIT_LOG(ERR, "Init vf failed");
1224                 return -1;
1225         }
1226
1227         /* copy mac addr */
1228         eth_dev->data->mac_addrs = rte_zmalloc(
1229                                         "avf_mac",
1230                                         ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
1231                                         0);
1232         if (!eth_dev->data->mac_addrs) {
1233                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1234                              " store MAC addresses",
1235                              ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
1236                 return -ENOMEM;
1237         }
1238         /* If the MAC address is not configured by host,
1239          * generate a random one.
1240          */
1241         if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
1242                 eth_random_addr(hw->mac.addr);
1243         ether_addr_copy((struct ether_addr *)hw->mac.addr,
1244                         &eth_dev->data->mac_addrs[0]);
1245
1246         /* register callback func to eal lib */
1247         rte_intr_callback_register(&pci_dev->intr_handle,
1248                                    avf_dev_interrupt_handler,
1249                                    (void *)eth_dev);
1250
1251         /* enable uio intr after callback register */
1252         rte_intr_enable(&pci_dev->intr_handle);
1253
1254         /* configure and enable device interrupt */
1255         avf_enable_irq0(hw);
1256
1257         return 0;
1258 }
1259
1260 static void
1261 avf_dev_close(struct rte_eth_dev *dev)
1262 {
1263         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1264         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1265         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1266
1267         avf_dev_stop(dev);
1268         avf_shutdown_adminq(hw);
1269         /* disable uio intr before callback unregister */
1270         rte_intr_disable(intr_handle);
1271
1272         /* unregister callback func from eal lib */
1273         rte_intr_callback_unregister(intr_handle,
1274                                      avf_dev_interrupt_handler, dev);
1275         avf_disable_irq0(hw);
1276 }
1277
1278 static int
1279 avf_dev_uninit(struct rte_eth_dev *dev)
1280 {
1281         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1282         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1283
1284         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1285                 return -EPERM;
1286
1287         dev->dev_ops = NULL;
1288         dev->rx_pkt_burst = NULL;
1289         dev->tx_pkt_burst = NULL;
1290         if (hw->adapter_stopped == 0)
1291                 avf_dev_close(dev);
1292
1293         rte_free(vf->vf_res);
1294         vf->vsi_res = NULL;
1295         vf->vf_res = NULL;
1296
1297         rte_free(vf->aq_resp);
1298         vf->aq_resp = NULL;
1299
1300         rte_free(dev->data->mac_addrs);
1301         dev->data->mac_addrs = NULL;
1302
1303         if (vf->rss_lut) {
1304                 rte_free(vf->rss_lut);
1305                 vf->rss_lut = NULL;
1306         }
1307         if (vf->rss_key) {
1308                 rte_free(vf->rss_key);
1309                 vf->rss_key = NULL;
1310         }
1311
1312         return 0;
1313 }
1314
1315 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1316                              struct rte_pci_device *pci_dev)
1317 {
1318         return rte_eth_dev_pci_generic_probe(pci_dev,
1319                 sizeof(struct avf_adapter), avf_dev_init);
1320 }
1321
1322 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1323 {
1324         return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1325 }
1326
1327 /* Adaptive virtual function driver struct */
1328 static struct rte_pci_driver rte_avf_pmd = {
1329         .id_table = pci_id_avf_map,
1330         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1331                      RTE_PCI_DRV_IOVA_AS_VA,
1332         .probe = eth_avf_pci_probe,
1333         .remove = eth_avf_pci_remove,
1334 };
1335
1336 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1337 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1338 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1339 RTE_INIT(avf_init_log);
1340 static void
1341 avf_init_log(void)
1342 {
1343         avf_logtype_init = rte_log_register("pmd.avf.init");
1344         if (avf_logtype_init >= 0)
1345                 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1346         avf_logtype_driver = rte_log_register("pmd.avf.driver");
1347         if (avf_logtype_driver >= 0)
1348                 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1349 }
1350
1351 /* memory func for base code */
1352 enum avf_status_code
1353 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1354                        struct avf_dma_mem *mem,
1355                        u64 size,
1356                        u32 alignment)
1357 {
1358         const struct rte_memzone *mz = NULL;
1359         char z_name[RTE_MEMZONE_NAMESIZE];
1360
1361         if (!mem)
1362                 return AVF_ERR_PARAM;
1363
1364         snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1365         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
1366                                          alignment, RTE_PGSIZE_2M);
1367         if (!mz)
1368                 return AVF_ERR_NO_MEMORY;
1369
1370         mem->size = size;
1371         mem->va = mz->addr;
1372         mem->pa = mz->phys_addr;
1373         mem->zone = (const void *)mz;
1374         PMD_DRV_LOG(DEBUG,
1375                     "memzone %s allocated with physical address: %"PRIu64,
1376                     mz->name, mem->pa);
1377
1378         return AVF_SUCCESS;
1379 }
1380
1381 enum avf_status_code
1382 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1383                    struct avf_dma_mem *mem)
1384 {
1385         if (!mem)
1386                 return AVF_ERR_PARAM;
1387
1388         PMD_DRV_LOG(DEBUG,
1389                     "memzone %s to be freed with physical address: %"PRIu64,
1390                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1391         rte_memzone_free((const struct rte_memzone *)mem->zone);
1392         mem->zone = NULL;
1393         mem->va = NULL;
1394         mem->pa = (u64)0;
1395
1396         return AVF_SUCCESS;
1397 }
1398
1399 enum avf_status_code
1400 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1401                         struct avf_virt_mem *mem,
1402                         u32 size)
1403 {
1404         if (!mem)
1405                 return AVF_ERR_PARAM;
1406
1407         mem->size = size;
1408         mem->va = rte_zmalloc("avf", size, 0);
1409
1410         if (mem->va)
1411                 return AVF_SUCCESS;
1412         else
1413                 return AVF_ERR_NO_MEMORY;
1414 }
1415
1416 enum avf_status_code
1417 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1418                     struct avf_virt_mem *mem)
1419 {
1420         if (!mem)
1421                 return AVF_ERR_PARAM;
1422
1423         rte_free(mem->va);
1424         mem->va = NULL;
1425
1426         return AVF_SUCCESS;
1427 }