net: add rte prefix to ether structures
[dpdk.git] / drivers / net / avp / avp_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2013-2017 Wind River Systems, Inc.
3  */
4
5 #include <stdint.h>
6 #include <string.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <unistd.h>
10
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_memcpy.h>
14 #include <rte_string_fns.h>
15 #include <rte_malloc.h>
16 #include <rte_atomic.h>
17 #include <rte_branch_prediction.h>
18 #include <rte_pci.h>
19 #include <rte_bus_pci.h>
20 #include <rte_ether.h>
21 #include <rte_common.h>
22 #include <rte_cycles.h>
23 #include <rte_spinlock.h>
24 #include <rte_byteorder.h>
25 #include <rte_dev.h>
26 #include <rte_memory.h>
27 #include <rte_eal.h>
28 #include <rte_io.h>
29
30 #include "rte_avp_common.h"
31 #include "rte_avp_fifo.h"
32
33 #include "avp_logs.h"
34
35 int avp_logtype_driver;
36
37 static int avp_dev_create(struct rte_pci_device *pci_dev,
38                           struct rte_eth_dev *eth_dev);
39
40 static int avp_dev_configure(struct rte_eth_dev *dev);
41 static int avp_dev_start(struct rte_eth_dev *dev);
42 static void avp_dev_stop(struct rte_eth_dev *dev);
43 static void avp_dev_close(struct rte_eth_dev *dev);
44 static void avp_dev_info_get(struct rte_eth_dev *dev,
45                              struct rte_eth_dev_info *dev_info);
46 static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask);
47 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete);
48 static void avp_dev_promiscuous_enable(struct rte_eth_dev *dev);
49 static void avp_dev_promiscuous_disable(struct rte_eth_dev *dev);
50
51 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev,
52                                   uint16_t rx_queue_id,
53                                   uint16_t nb_rx_desc,
54                                   unsigned int socket_id,
55                                   const struct rte_eth_rxconf *rx_conf,
56                                   struct rte_mempool *pool);
57
58 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev,
59                                   uint16_t tx_queue_id,
60                                   uint16_t nb_tx_desc,
61                                   unsigned int socket_id,
62                                   const struct rte_eth_txconf *tx_conf);
63
64 static uint16_t avp_recv_scattered_pkts(void *rx_queue,
65                                         struct rte_mbuf **rx_pkts,
66                                         uint16_t nb_pkts);
67
68 static uint16_t avp_recv_pkts(void *rx_queue,
69                               struct rte_mbuf **rx_pkts,
70                               uint16_t nb_pkts);
71
72 static uint16_t avp_xmit_scattered_pkts(void *tx_queue,
73                                         struct rte_mbuf **tx_pkts,
74                                         uint16_t nb_pkts);
75
76 static uint16_t avp_xmit_pkts(void *tx_queue,
77                               struct rte_mbuf **tx_pkts,
78                               uint16_t nb_pkts);
79
80 static void avp_dev_rx_queue_release(void *rxq);
81 static void avp_dev_tx_queue_release(void *txq);
82
83 static int avp_dev_stats_get(struct rte_eth_dev *dev,
84                               struct rte_eth_stats *stats);
85 static void avp_dev_stats_reset(struct rte_eth_dev *dev);
86
87
88 #define AVP_MAX_RX_BURST 64
89 #define AVP_MAX_TX_BURST 64
90 #define AVP_MAX_MAC_ADDRS 1
91 #define AVP_MIN_RX_BUFSIZE ETHER_MIN_LEN
92
93
94 /*
95  * Defines the number of microseconds to wait before checking the response
96  * queue for completion.
97  */
98 #define AVP_REQUEST_DELAY_USECS (5000)
99
100 /*
101  * Defines the number times to check the response queue for completion before
102  * declaring a timeout.
103  */
104 #define AVP_MAX_REQUEST_RETRY (100)
105
106 /* Defines the current PCI driver version number */
107 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION
108
109 /*
110  * The set of PCI devices this driver supports
111  */
112 static const struct rte_pci_id pci_id_avp_map[] = {
113         { .vendor_id = RTE_AVP_PCI_VENDOR_ID,
114           .device_id = RTE_AVP_PCI_DEVICE_ID,
115           .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID,
116           .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID,
117           .class_id = RTE_CLASS_ANY_ID,
118         },
119
120         { .vendor_id = 0, /* sentinel */
121         },
122 };
123
124 /*
125  * dev_ops for avp, bare necessities for basic operation
126  */
127 static const struct eth_dev_ops avp_eth_dev_ops = {
128         .dev_configure       = avp_dev_configure,
129         .dev_start           = avp_dev_start,
130         .dev_stop            = avp_dev_stop,
131         .dev_close           = avp_dev_close,
132         .dev_infos_get       = avp_dev_info_get,
133         .vlan_offload_set    = avp_vlan_offload_set,
134         .stats_get           = avp_dev_stats_get,
135         .stats_reset         = avp_dev_stats_reset,
136         .link_update         = avp_dev_link_update,
137         .promiscuous_enable  = avp_dev_promiscuous_enable,
138         .promiscuous_disable = avp_dev_promiscuous_disable,
139         .rx_queue_setup      = avp_dev_rx_queue_setup,
140         .rx_queue_release    = avp_dev_rx_queue_release,
141         .tx_queue_setup      = avp_dev_tx_queue_setup,
142         .tx_queue_release    = avp_dev_tx_queue_release,
143 };
144
145 /**@{ AVP device flags */
146 #define AVP_F_PROMISC (1 << 1)
147 #define AVP_F_CONFIGURED (1 << 2)
148 #define AVP_F_LINKUP (1 << 3)
149 #define AVP_F_DETACHED (1 << 4)
150 /**@} */
151
152 /* Ethernet device validation marker */
153 #define AVP_ETHDEV_MAGIC 0x92972862
154
155 /*
156  * Defines the AVP device attributes which are attached to an RTE ethernet
157  * device
158  */
159 struct avp_dev {
160         uint32_t magic; /**< Memory validation marker */
161         uint64_t device_id; /**< Unique system identifier */
162         struct rte_ether_addr ethaddr; /**< Host specified MAC address */
163         struct rte_eth_dev_data *dev_data;
164         /**< Back pointer to ethernet device data */
165         volatile uint32_t flags; /**< Device operational flags */
166         uint16_t port_id; /**< Ethernet port identifier */
167         struct rte_mempool *pool; /**< pkt mbuf mempool */
168         unsigned int guest_mbuf_size; /**< local pool mbuf size */
169         unsigned int host_mbuf_size; /**< host mbuf size */
170         unsigned int max_rx_pkt_len; /**< maximum receive unit */
171         uint32_t host_features; /**< Supported feature bitmap */
172         uint32_t features; /**< Enabled feature bitmap */
173         unsigned int num_tx_queues; /**< Negotiated number of transmit queues */
174         unsigned int max_tx_queues; /**< Maximum number of transmit queues */
175         unsigned int num_rx_queues; /**< Negotiated number of receive queues */
176         unsigned int max_rx_queues; /**< Maximum number of receive queues */
177
178         struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */
179         struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */
180         struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES];
181         /**< Allocated mbufs queue */
182         struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES];
183         /**< To be freed mbufs queue */
184
185         /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */
186         rte_spinlock_t lock;
187
188         /* For request & response */
189         struct rte_avp_fifo *req_q; /**< Request queue */
190         struct rte_avp_fifo *resp_q; /**< Response queue */
191         void *host_sync_addr; /**< (host) Req/Resp Mem address */
192         void *sync_addr; /**< Req/Resp Mem address */
193         void *host_mbuf_addr; /**< (host) MBUF pool start address */
194         void *mbuf_addr; /**< MBUF pool start address */
195 } __rte_cache_aligned;
196
197 /* RTE ethernet private data */
198 struct avp_adapter {
199         struct avp_dev avp;
200 } __rte_cache_aligned;
201
202
203 /* 32-bit MMIO register write */
204 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr))
205
206 /* 32-bit MMIO register read */
207 #define AVP_READ32(_addr) rte_read32_relaxed((_addr))
208
209 /* Macro to cast the ethernet device private data to a AVP object */
210 #define AVP_DEV_PRIVATE_TO_HW(adapter) \
211         (&((struct avp_adapter *)adapter)->avp)
212
213 /*
214  * Defines the structure of a AVP device queue for the purpose of handling the
215  * receive and transmit burst callback functions
216  */
217 struct avp_queue {
218         struct rte_eth_dev_data *dev_data;
219         /**< Backpointer to ethernet device data */
220         struct avp_dev *avp; /**< Backpointer to AVP device */
221         uint16_t queue_id;
222         /**< Queue identifier used for indexing current queue */
223         uint16_t queue_base;
224         /**< Base queue identifier for queue servicing */
225         uint16_t queue_limit;
226         /**< Maximum queue identifier for queue servicing */
227
228         uint64_t packets;
229         uint64_t bytes;
230         uint64_t errors;
231 };
232
233 /* send a request and wait for a response
234  *
235  * @warning must be called while holding the avp->lock spinlock.
236  */
237 static int
238 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request)
239 {
240         unsigned int retry = AVP_MAX_REQUEST_RETRY;
241         void *resp_addr = NULL;
242         unsigned int count;
243         int ret;
244
245         PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id);
246
247         request->result = -ENOTSUP;
248
249         /* Discard any stale responses before starting a new request */
250         while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1))
251                 PMD_DRV_LOG(DEBUG, "Discarding stale response\n");
252
253         rte_memcpy(avp->sync_addr, request, sizeof(*request));
254         count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1);
255         if (count < 1) {
256                 PMD_DRV_LOG(ERR, "Cannot send request %u to host\n",
257                             request->req_id);
258                 ret = -EBUSY;
259                 goto done;
260         }
261
262         while (retry--) {
263                 /* wait for a response */
264                 usleep(AVP_REQUEST_DELAY_USECS);
265
266                 count = avp_fifo_count(avp->resp_q);
267                 if (count >= 1) {
268                         /* response received */
269                         break;
270                 }
271
272                 if ((count < 1) && (retry == 0)) {
273                         PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n",
274                                     request->req_id);
275                         ret = -ETIME;
276                         goto done;
277                 }
278         }
279
280         /* retrieve the response */
281         count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1);
282         if ((count != 1) || (resp_addr != avp->host_sync_addr)) {
283                 PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n",
284                             count, resp_addr, avp->host_sync_addr);
285                 ret = -ENODATA;
286                 goto done;
287         }
288
289         /* copy to user buffer */
290         rte_memcpy(request, avp->sync_addr, sizeof(*request));
291         ret = 0;
292
293         PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n",
294                     request->result, request->req_id);
295
296 done:
297         return ret;
298 }
299
300 static int
301 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state)
302 {
303         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
304         struct rte_avp_request request;
305         int ret;
306
307         /* setup a link state change request */
308         memset(&request, 0, sizeof(request));
309         request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF;
310         request.if_up = state;
311
312         ret = avp_dev_process_request(avp, &request);
313
314         return ret == 0 ? request.result : ret;
315 }
316
317 static int
318 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev,
319                         struct rte_avp_device_config *config)
320 {
321         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
322         struct rte_avp_request request;
323         int ret;
324
325         /* setup a configure request */
326         memset(&request, 0, sizeof(request));
327         request.req_id = RTE_AVP_REQ_CFG_DEVICE;
328         memcpy(&request.config, config, sizeof(request.config));
329
330         ret = avp_dev_process_request(avp, &request);
331
332         return ret == 0 ? request.result : ret;
333 }
334
335 static int
336 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev)
337 {
338         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
339         struct rte_avp_request request;
340         int ret;
341
342         /* setup a shutdown request */
343         memset(&request, 0, sizeof(request));
344         request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE;
345
346         ret = avp_dev_process_request(avp, &request);
347
348         return ret == 0 ? request.result : ret;
349 }
350
351 /* translate from host mbuf virtual address to guest virtual address */
352 static inline void *
353 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address)
354 {
355         return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address,
356                                        (uintptr_t)avp->host_mbuf_addr),
357                            (uintptr_t)avp->mbuf_addr);
358 }
359
360 /* translate from host physical address to guest virtual address */
361 static void *
362 avp_dev_translate_address(struct rte_eth_dev *eth_dev,
363                           rte_iova_t host_phys_addr)
364 {
365         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
366         struct rte_mem_resource *resource;
367         struct rte_avp_memmap_info *info;
368         struct rte_avp_memmap *map;
369         off_t offset;
370         void *addr;
371         unsigned int i;
372
373         addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr;
374         resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR];
375         info = (struct rte_avp_memmap_info *)resource->addr;
376
377         offset = 0;
378         for (i = 0; i < info->nb_maps; i++) {
379                 /* search all segments looking for a matching address */
380                 map = &info->maps[i];
381
382                 if ((host_phys_addr >= map->phys_addr) &&
383                         (host_phys_addr < (map->phys_addr + map->length))) {
384                         /* address is within this segment */
385                         offset += (host_phys_addr - map->phys_addr);
386                         addr = RTE_PTR_ADD(addr, (uintptr_t)offset);
387
388                         PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n",
389                                     host_phys_addr, addr);
390
391                         return addr;
392                 }
393                 offset += map->length;
394         }
395
396         return NULL;
397 }
398
399 /* verify that the incoming device version is compatible with our version */
400 static int
401 avp_dev_version_check(uint32_t version)
402 {
403         uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION);
404         uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version);
405
406         if (device <= driver) {
407                 /* the host driver version is less than or equal to ours */
408                 return 0;
409         }
410
411         return 1;
412 }
413
414 /* verify that memory regions have expected version and validation markers */
415 static int
416 avp_dev_check_regions(struct rte_eth_dev *eth_dev)
417 {
418         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
419         struct rte_avp_memmap_info *memmap;
420         struct rte_avp_device_info *info;
421         struct rte_mem_resource *resource;
422         unsigned int i;
423
424         /* Dump resource info for debug */
425         for (i = 0; i < PCI_MAX_RESOURCE; i++) {
426                 resource = &pci_dev->mem_resource[i];
427                 if ((resource->phys_addr == 0) || (resource->len == 0))
428                         continue;
429
430                 PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n",
431                             i, resource->phys_addr,
432                             resource->len, resource->addr);
433
434                 switch (i) {
435                 case RTE_AVP_PCI_MEMMAP_BAR:
436                         memmap = (struct rte_avp_memmap_info *)resource->addr;
437                         if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) ||
438                             (memmap->version != RTE_AVP_MEMMAP_VERSION)) {
439                                 PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n",
440                                             memmap->magic, memmap->version);
441                                 return -EINVAL;
442                         }
443                         break;
444
445                 case RTE_AVP_PCI_DEVICE_BAR:
446                         info = (struct rte_avp_device_info *)resource->addr;
447                         if ((info->magic != RTE_AVP_DEVICE_MAGIC) ||
448                             avp_dev_version_check(info->version)) {
449                                 PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n",
450                                             info->magic, info->version,
451                                             AVP_DPDK_DRIVER_VERSION);
452                                 return -EINVAL;
453                         }
454                         break;
455
456                 case RTE_AVP_PCI_MEMORY_BAR:
457                 case RTE_AVP_PCI_MMIO_BAR:
458                         if (resource->addr == NULL) {
459                                 PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n",
460                                             i);
461                                 return -EINVAL;
462                         }
463                         break;
464
465                 case RTE_AVP_PCI_MSIX_BAR:
466                 default:
467                         /* no validation required */
468                         break;
469                 }
470         }
471
472         return 0;
473 }
474
475 static int
476 avp_dev_detach(struct rte_eth_dev *eth_dev)
477 {
478         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
479         int ret;
480
481         PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n",
482                     eth_dev->data->port_id, avp->device_id);
483
484         rte_spinlock_lock(&avp->lock);
485
486         if (avp->flags & AVP_F_DETACHED) {
487                 PMD_DRV_LOG(NOTICE, "port %u already detached\n",
488                             eth_dev->data->port_id);
489                 ret = 0;
490                 goto unlock;
491         }
492
493         /* shutdown the device first so the host stops sending us packets. */
494         ret = avp_dev_ctrl_shutdown(eth_dev);
495         if (ret < 0) {
496                 PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n",
497                             ret);
498                 avp->flags &= ~AVP_F_DETACHED;
499                 goto unlock;
500         }
501
502         avp->flags |= AVP_F_DETACHED;
503         rte_wmb();
504
505         /* wait for queues to acknowledge the presence of the detach flag */
506         rte_delay_ms(1);
507
508         ret = 0;
509
510 unlock:
511         rte_spinlock_unlock(&avp->lock);
512         return ret;
513 }
514
515 static void
516 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
517 {
518         struct avp_dev *avp =
519                 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
520         struct avp_queue *rxq;
521         uint16_t queue_count;
522         uint16_t remainder;
523
524         rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id];
525
526         /*
527          * Must map all AVP fifos as evenly as possible between the configured
528          * device queues.  Each device queue will service a subset of the AVP
529          * fifos. If there is an odd number of device queues the first set of
530          * device queues will get the extra AVP fifos.
531          */
532         queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues;
533         remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues;
534         if (rx_queue_id < remainder) {
535                 /* these queues must service one extra FIFO */
536                 rxq->queue_base = rx_queue_id * (queue_count + 1);
537                 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1;
538         } else {
539                 /* these queues service the regular number of FIFO */
540                 rxq->queue_base = ((remainder * (queue_count + 1)) +
541                                    ((rx_queue_id - remainder) * queue_count));
542                 rxq->queue_limit = rxq->queue_base + queue_count - 1;
543         }
544
545         PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n",
546                     rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit);
547
548         rxq->queue_id = rxq->queue_base;
549 }
550
551 static void
552 _avp_set_queue_counts(struct rte_eth_dev *eth_dev)
553 {
554         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
555         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
556         struct rte_avp_device_info *host_info;
557         void *addr;
558
559         addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
560         host_info = (struct rte_avp_device_info *)addr;
561
562         /*
563          * the transmit direction is not negotiated beyond respecting the max
564          * number of queues because the host can handle arbitrary guest tx
565          * queues (host rx queues).
566          */
567         avp->num_tx_queues = eth_dev->data->nb_tx_queues;
568
569         /*
570          * the receive direction is more restrictive.  The host requires a
571          * minimum number of guest rx queues (host tx queues) therefore
572          * negotiate a value that is at least as large as the host minimum
573          * requirement.  If the host and guest values are not identical then a
574          * mapping will be established in the receive_queue_setup function.
575          */
576         avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues,
577                                      eth_dev->data->nb_rx_queues);
578
579         PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n",
580                     avp->num_tx_queues, avp->num_rx_queues);
581 }
582
583 static int
584 avp_dev_attach(struct rte_eth_dev *eth_dev)
585 {
586         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
587         struct rte_avp_device_config config;
588         unsigned int i;
589         int ret;
590
591         PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n",
592                     eth_dev->data->port_id, avp->device_id);
593
594         rte_spinlock_lock(&avp->lock);
595
596         if (!(avp->flags & AVP_F_DETACHED)) {
597                 PMD_DRV_LOG(NOTICE, "port %u already attached\n",
598                             eth_dev->data->port_id);
599                 ret = 0;
600                 goto unlock;
601         }
602
603         /*
604          * make sure that the detached flag is set prior to reconfiguring the
605          * queues.
606          */
607         avp->flags |= AVP_F_DETACHED;
608         rte_wmb();
609
610         /*
611          * re-run the device create utility which will parse the new host info
612          * and setup the AVP device queue pointers.
613          */
614         ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev);
615         if (ret < 0) {
616                 PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n",
617                             ret);
618                 goto unlock;
619         }
620
621         if (avp->flags & AVP_F_CONFIGURED) {
622                 /*
623                  * Update the receive queue mapping to handle cases where the
624                  * source and destination hosts have different queue
625                  * requirements.  As long as the DETACHED flag is asserted the
626                  * queue table should not be referenced so it should be safe to
627                  * update it.
628                  */
629                 _avp_set_queue_counts(eth_dev);
630                 for (i = 0; i < eth_dev->data->nb_rx_queues; i++)
631                         _avp_set_rx_queue_mappings(eth_dev, i);
632
633                 /*
634                  * Update the host with our config details so that it knows the
635                  * device is active.
636                  */
637                 memset(&config, 0, sizeof(config));
638                 config.device_id = avp->device_id;
639                 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
640                 config.driver_version = AVP_DPDK_DRIVER_VERSION;
641                 config.features = avp->features;
642                 config.num_tx_queues = avp->num_tx_queues;
643                 config.num_rx_queues = avp->num_rx_queues;
644                 config.if_up = !!(avp->flags & AVP_F_LINKUP);
645
646                 ret = avp_dev_ctrl_set_config(eth_dev, &config);
647                 if (ret < 0) {
648                         PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
649                                     ret);
650                         goto unlock;
651                 }
652         }
653
654         rte_wmb();
655         avp->flags &= ~AVP_F_DETACHED;
656
657         ret = 0;
658
659 unlock:
660         rte_spinlock_unlock(&avp->lock);
661         return ret;
662 }
663
664 static void
665 avp_dev_interrupt_handler(void *data)
666 {
667         struct rte_eth_dev *eth_dev = data;
668         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
669         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
670         uint32_t status, value;
671         int ret;
672
673         if (registers == NULL)
674                 rte_panic("no mapped MMIO register space\n");
675
676         /* read the interrupt status register
677          * note: this register clears on read so all raised interrupts must be
678          *    handled or remembered for later processing
679          */
680         status = AVP_READ32(
681                 RTE_PTR_ADD(registers,
682                             RTE_AVP_INTERRUPT_STATUS_OFFSET));
683
684         if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) {
685                 /* handle interrupt based on current status */
686                 value = AVP_READ32(
687                         RTE_PTR_ADD(registers,
688                                     RTE_AVP_MIGRATION_STATUS_OFFSET));
689                 switch (value) {
690                 case RTE_AVP_MIGRATION_DETACHED:
691                         ret = avp_dev_detach(eth_dev);
692                         break;
693                 case RTE_AVP_MIGRATION_ATTACHED:
694                         ret = avp_dev_attach(eth_dev);
695                         break;
696                 default:
697                         PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n",
698                                     value);
699                         ret = -EINVAL;
700                 }
701
702                 /* acknowledge the request by writing out our current status */
703                 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR);
704                 AVP_WRITE32(value,
705                             RTE_PTR_ADD(registers,
706                                         RTE_AVP_MIGRATION_ACK_OFFSET));
707
708                 PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n");
709         }
710
711         if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK)
712                 PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n",
713                             status);
714
715         /* re-enable UIO interrupt handling */
716         ret = rte_intr_enable(&pci_dev->intr_handle);
717         if (ret < 0) {
718                 PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n",
719                             ret);
720                 /* continue */
721         }
722 }
723
724 static int
725 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev)
726 {
727         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
728         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
729         int ret;
730
731         if (registers == NULL)
732                 return -EINVAL;
733
734         /* enable UIO interrupt handling */
735         ret = rte_intr_enable(&pci_dev->intr_handle);
736         if (ret < 0) {
737                 PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n",
738                             ret);
739                 return ret;
740         }
741
742         /* inform the device that all interrupts are enabled */
743         AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK,
744                     RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
745
746         return 0;
747 }
748
749 static int
750 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev)
751 {
752         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
753         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
754         int ret;
755
756         if (registers == NULL)
757                 return 0;
758
759         /* inform the device that all interrupts are disabled */
760         AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK,
761                     RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
762
763         /* enable UIO interrupt handling */
764         ret = rte_intr_disable(&pci_dev->intr_handle);
765         if (ret < 0) {
766                 PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n",
767                             ret);
768                 return ret;
769         }
770
771         return 0;
772 }
773
774 static int
775 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev)
776 {
777         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
778         int ret;
779
780         /* register a callback handler with UIO for interrupt notifications */
781         ret = rte_intr_callback_register(&pci_dev->intr_handle,
782                                          avp_dev_interrupt_handler,
783                                          (void *)eth_dev);
784         if (ret < 0) {
785                 PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n",
786                             ret);
787                 return ret;
788         }
789
790         /* enable interrupt processing */
791         return avp_dev_enable_interrupts(eth_dev);
792 }
793
794 static int
795 avp_dev_migration_pending(struct rte_eth_dev *eth_dev)
796 {
797         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
798         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
799         uint32_t value;
800
801         if (registers == NULL)
802                 return 0;
803
804         value = AVP_READ32(RTE_PTR_ADD(registers,
805                                        RTE_AVP_MIGRATION_STATUS_OFFSET));
806         if (value == RTE_AVP_MIGRATION_DETACHED) {
807                 /* migration is in progress; ack it if we have not already */
808                 AVP_WRITE32(value,
809                             RTE_PTR_ADD(registers,
810                                         RTE_AVP_MIGRATION_ACK_OFFSET));
811                 return 1;
812         }
813         return 0;
814 }
815
816 /*
817  * create a AVP device using the supplied device info by first translating it
818  * to guest address space(s).
819  */
820 static int
821 avp_dev_create(struct rte_pci_device *pci_dev,
822                struct rte_eth_dev *eth_dev)
823 {
824         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
825         struct rte_avp_device_info *host_info;
826         struct rte_mem_resource *resource;
827         unsigned int i;
828
829         resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR];
830         if (resource->addr == NULL) {
831                 PMD_DRV_LOG(ERR, "BAR%u is not mapped\n",
832                             RTE_AVP_PCI_DEVICE_BAR);
833                 return -EFAULT;
834         }
835         host_info = (struct rte_avp_device_info *)resource->addr;
836
837         if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) ||
838                 avp_dev_version_check(host_info->version)) {
839                 PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n",
840                             host_info->magic, host_info->version,
841                             AVP_DPDK_DRIVER_VERSION);
842                 return -EINVAL;
843         }
844
845         PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n",
846                     RTE_AVP_GET_RELEASE_VERSION(host_info->version),
847                     RTE_AVP_GET_MAJOR_VERSION(host_info->version),
848                     RTE_AVP_GET_MINOR_VERSION(host_info->version));
849
850         PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n",
851                     host_info->min_tx_queues, host_info->max_tx_queues);
852         PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n",
853                     host_info->min_rx_queues, host_info->max_rx_queues);
854         PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n",
855                     host_info->features);
856
857         if (avp->magic != AVP_ETHDEV_MAGIC) {
858                 /*
859                  * First time initialization (i.e., not during a VM
860                  * migration)
861                  */
862                 memset(avp, 0, sizeof(*avp));
863                 avp->magic = AVP_ETHDEV_MAGIC;
864                 avp->dev_data = eth_dev->data;
865                 avp->port_id = eth_dev->data->port_id;
866                 avp->host_mbuf_size = host_info->mbuf_size;
867                 avp->host_features = host_info->features;
868                 rte_spinlock_init(&avp->lock);
869                 memcpy(&avp->ethaddr.addr_bytes[0],
870                        host_info->ethaddr, ETHER_ADDR_LEN);
871                 /* adjust max values to not exceed our max */
872                 avp->max_tx_queues =
873                         RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES);
874                 avp->max_rx_queues =
875                         RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES);
876         } else {
877                 /* Re-attaching during migration */
878
879                 /* TODO... requires validation of host values */
880                 if ((host_info->features & avp->features) != avp->features) {
881                         PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n",
882                                     avp->features, host_info->features);
883                         /* this should not be possible; continue for now */
884                 }
885         }
886
887         /* the device id is allowed to change over migrations */
888         avp->device_id = host_info->device_id;
889
890         /* translate incoming host addresses to guest address space */
891         PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n",
892                     host_info->tx_phys);
893         PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n",
894                     host_info->alloc_phys);
895         for (i = 0; i < avp->max_tx_queues; i++) {
896                 avp->tx_q[i] = avp_dev_translate_address(eth_dev,
897                         host_info->tx_phys + (i * host_info->tx_size));
898
899                 avp->alloc_q[i] = avp_dev_translate_address(eth_dev,
900                         host_info->alloc_phys + (i * host_info->alloc_size));
901         }
902
903         PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n",
904                     host_info->rx_phys);
905         PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n",
906                     host_info->free_phys);
907         for (i = 0; i < avp->max_rx_queues; i++) {
908                 avp->rx_q[i] = avp_dev_translate_address(eth_dev,
909                         host_info->rx_phys + (i * host_info->rx_size));
910                 avp->free_q[i] = avp_dev_translate_address(eth_dev,
911                         host_info->free_phys + (i * host_info->free_size));
912         }
913
914         PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n",
915                     host_info->req_phys);
916         PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n",
917                     host_info->resp_phys);
918         PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n",
919                     host_info->sync_phys);
920         PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n",
921                     host_info->mbuf_phys);
922         avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys);
923         avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys);
924         avp->sync_addr =
925                 avp_dev_translate_address(eth_dev, host_info->sync_phys);
926         avp->mbuf_addr =
927                 avp_dev_translate_address(eth_dev, host_info->mbuf_phys);
928
929         /*
930          * store the host mbuf virtual address so that we can calculate
931          * relative offsets for each mbuf as they are processed
932          */
933         avp->host_mbuf_addr = host_info->mbuf_va;
934         avp->host_sync_addr = host_info->sync_va;
935
936         /*
937          * store the maximum packet length that is supported by the host.
938          */
939         avp->max_rx_pkt_len = host_info->max_rx_pkt_len;
940         PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n",
941                                 host_info->max_rx_pkt_len);
942
943         return 0;
944 }
945
946 /*
947  * This function is based on probe() function in avp_pci.c
948  * It returns 0 on success.
949  */
950 static int
951 eth_avp_dev_init(struct rte_eth_dev *eth_dev)
952 {
953         struct avp_dev *avp =
954                 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
955         struct rte_pci_device *pci_dev;
956         int ret;
957
958         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
959         eth_dev->dev_ops = &avp_eth_dev_ops;
960         eth_dev->rx_pkt_burst = &avp_recv_pkts;
961         eth_dev->tx_pkt_burst = &avp_xmit_pkts;
962
963         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
964                 /*
965                  * no setup required on secondary processes.  All data is saved
966                  * in dev_private by the primary process. All resource should
967                  * be mapped to the same virtual address so all pointers should
968                  * be valid.
969                  */
970                 if (eth_dev->data->scattered_rx) {
971                         PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
972                         eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
973                         eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
974                 }
975                 return 0;
976         }
977
978         rte_eth_copy_pci_info(eth_dev, pci_dev);
979
980         /* Check current migration status */
981         if (avp_dev_migration_pending(eth_dev)) {
982                 PMD_DRV_LOG(ERR, "VM live migration operation in progress\n");
983                 return -EBUSY;
984         }
985
986         /* Check BAR resources */
987         ret = avp_dev_check_regions(eth_dev);
988         if (ret < 0) {
989                 PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n",
990                             ret);
991                 return ret;
992         }
993
994         /* Enable interrupts */
995         ret = avp_dev_setup_interrupts(eth_dev);
996         if (ret < 0) {
997                 PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret);
998                 return ret;
999         }
1000
1001         /* Handle each subtype */
1002         ret = avp_dev_create(pci_dev, eth_dev);
1003         if (ret < 0) {
1004                 PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret);
1005                 return ret;
1006         }
1007
1008         /* Allocate memory for storing MAC addresses */
1009         eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev", ETHER_ADDR_LEN, 0);
1010         if (eth_dev->data->mac_addrs == NULL) {
1011                 PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n",
1012                             ETHER_ADDR_LEN);
1013                 return -ENOMEM;
1014         }
1015
1016         /* Get a mac from device config */
1017         ether_addr_copy(&avp->ethaddr, &eth_dev->data->mac_addrs[0]);
1018
1019         return 0;
1020 }
1021
1022 static int
1023 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev)
1024 {
1025         int ret;
1026
1027         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1028                 return -EPERM;
1029
1030         if (eth_dev->data == NULL)
1031                 return 0;
1032
1033         ret = avp_dev_disable_interrupts(eth_dev);
1034         if (ret != 0) {
1035                 PMD_DRV_LOG(ERR, "Failed to disable interrupts, ret=%d\n", ret);
1036                 return ret;
1037         }
1038
1039         return 0;
1040 }
1041
1042 static int
1043 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1044                   struct rte_pci_device *pci_dev)
1045 {
1046         return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter),
1047                         eth_avp_dev_init);
1048 }
1049
1050 static int
1051 eth_avp_pci_remove(struct rte_pci_device *pci_dev)
1052 {
1053         return rte_eth_dev_pci_generic_remove(pci_dev,
1054                                               eth_avp_dev_uninit);
1055 }
1056
1057 static struct rte_pci_driver rte_avp_pmd = {
1058         .id_table = pci_id_avp_map,
1059         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1060         .probe = eth_avp_pci_probe,
1061         .remove = eth_avp_pci_remove,
1062 };
1063
1064 static int
1065 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev,
1066                          struct avp_dev *avp)
1067 {
1068         unsigned int max_rx_pkt_len;
1069
1070         max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
1071
1072         if ((max_rx_pkt_len > avp->guest_mbuf_size) ||
1073             (max_rx_pkt_len > avp->host_mbuf_size)) {
1074                 /*
1075                  * If the guest MTU is greater than either the host or guest
1076                  * buffers then chained mbufs have to be enabled in the TX
1077                  * direction.  It is assumed that the application will not need
1078                  * to send packets larger than their max_rx_pkt_len (MRU).
1079                  */
1080                 return 1;
1081         }
1082
1083         if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) ||
1084             (avp->max_rx_pkt_len > avp->host_mbuf_size)) {
1085                 /*
1086                  * If the host MRU is greater than its own mbuf size or the
1087                  * guest mbuf size then chained mbufs have to be enabled in the
1088                  * RX direction.
1089                  */
1090                 return 1;
1091         }
1092
1093         return 0;
1094 }
1095
1096 static int
1097 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
1098                        uint16_t rx_queue_id,
1099                        uint16_t nb_rx_desc,
1100                        unsigned int socket_id,
1101                        const struct rte_eth_rxconf *rx_conf,
1102                        struct rte_mempool *pool)
1103 {
1104         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1105         struct rte_pktmbuf_pool_private *mbp_priv;
1106         struct avp_queue *rxq;
1107
1108         if (rx_queue_id >= eth_dev->data->nb_rx_queues) {
1109                 PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n",
1110                             rx_queue_id, eth_dev->data->nb_rx_queues);
1111                 return -EINVAL;
1112         }
1113
1114         /* Save mbuf pool pointer */
1115         avp->pool = pool;
1116
1117         /* Save the local mbuf size */
1118         mbp_priv = rte_mempool_get_priv(pool);
1119         avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size);
1120         avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM;
1121
1122         if (avp_dev_enable_scattered(eth_dev, avp)) {
1123                 if (!eth_dev->data->scattered_rx) {
1124                         PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
1125                         eth_dev->data->scattered_rx = 1;
1126                         eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
1127                         eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
1128                 }
1129         }
1130
1131         PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n",
1132                     avp->max_rx_pkt_len,
1133                     eth_dev->data->dev_conf.rxmode.max_rx_pkt_len,
1134                     avp->host_mbuf_size,
1135                     avp->guest_mbuf_size);
1136
1137         /* allocate a queue object */
1138         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue),
1139                                  RTE_CACHE_LINE_SIZE, socket_id);
1140         if (rxq == NULL) {
1141                 PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n");
1142                 return -ENOMEM;
1143         }
1144
1145         /* save back pointers to AVP and Ethernet devices */
1146         rxq->avp = avp;
1147         rxq->dev_data = eth_dev->data;
1148         eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq;
1149
1150         /* setup the queue receive mapping for the current queue. */
1151         _avp_set_rx_queue_mappings(eth_dev, rx_queue_id);
1152
1153         PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq);
1154
1155         (void)nb_rx_desc;
1156         (void)rx_conf;
1157         return 0;
1158 }
1159
1160 static int
1161 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev,
1162                        uint16_t tx_queue_id,
1163                        uint16_t nb_tx_desc,
1164                        unsigned int socket_id,
1165                        const struct rte_eth_txconf *tx_conf)
1166 {
1167         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1168         struct avp_queue *txq;
1169
1170         if (tx_queue_id >= eth_dev->data->nb_tx_queues) {
1171                 PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n",
1172                             tx_queue_id, eth_dev->data->nb_tx_queues);
1173                 return -EINVAL;
1174         }
1175
1176         /* allocate a queue object */
1177         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue),
1178                                  RTE_CACHE_LINE_SIZE, socket_id);
1179         if (txq == NULL) {
1180                 PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n");
1181                 return -ENOMEM;
1182         }
1183
1184         /* only the configured set of transmit queues are used */
1185         txq->queue_id = tx_queue_id;
1186         txq->queue_base = tx_queue_id;
1187         txq->queue_limit = tx_queue_id;
1188
1189         /* save back pointers to AVP and Ethernet devices */
1190         txq->avp = avp;
1191         txq->dev_data = eth_dev->data;
1192         eth_dev->data->tx_queues[tx_queue_id] = (void *)txq;
1193
1194         PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq);
1195
1196         (void)nb_tx_desc;
1197         (void)tx_conf;
1198         return 0;
1199 }
1200
1201 static inline int
1202 _avp_cmp_ether_addr(struct rte_ether_addr *a, struct rte_ether_addr *b)
1203 {
1204         uint16_t *_a = (uint16_t *)&a->addr_bytes[0];
1205         uint16_t *_b = (uint16_t *)&b->addr_bytes[0];
1206         return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]);
1207 }
1208
1209 static inline int
1210 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m)
1211 {
1212         struct rte_ether_hdr *eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1213
1214         if (likely(_avp_cmp_ether_addr(&avp->ethaddr, &eth->d_addr) == 0)) {
1215                 /* allow all packets destined to our address */
1216                 return 0;
1217         }
1218
1219         if (likely(is_broadcast_ether_addr(&eth->d_addr))) {
1220                 /* allow all broadcast packets */
1221                 return 0;
1222         }
1223
1224         if (likely(is_multicast_ether_addr(&eth->d_addr))) {
1225                 /* allow all multicast packets */
1226                 return 0;
1227         }
1228
1229         if (avp->flags & AVP_F_PROMISC) {
1230                 /* allow all packets when in promiscuous mode */
1231                 return 0;
1232         }
1233
1234         return -1;
1235 }
1236
1237 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1238 static inline void
1239 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf)
1240 {
1241         struct rte_avp_desc *first_buf;
1242         struct rte_avp_desc *pkt_buf;
1243         unsigned int pkt_len;
1244         unsigned int nb_segs;
1245         void *pkt_data;
1246         unsigned int i;
1247
1248         first_buf = avp_dev_translate_buffer(avp, buf);
1249
1250         i = 0;
1251         pkt_len = 0;
1252         nb_segs = first_buf->nb_segs;
1253         do {
1254                 /* Adjust pointers for guest addressing */
1255                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1256                 if (pkt_buf == NULL)
1257                         rte_panic("bad buffer: segment %u has an invalid address %p\n",
1258                                   i, buf);
1259                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1260                 if (pkt_data == NULL)
1261                         rte_panic("bad buffer: segment %u has a NULL data pointer\n",
1262                                   i);
1263                 if (pkt_buf->data_len == 0)
1264                         rte_panic("bad buffer: segment %u has 0 data length\n",
1265                                   i);
1266                 pkt_len += pkt_buf->data_len;
1267                 nb_segs--;
1268                 i++;
1269
1270         } while (nb_segs && (buf = pkt_buf->next) != NULL);
1271
1272         if (nb_segs != 0)
1273                 rte_panic("bad buffer: expected %u segments found %u\n",
1274                           first_buf->nb_segs, (first_buf->nb_segs - nb_segs));
1275         if (pkt_len != first_buf->pkt_len)
1276                 rte_panic("bad buffer: expected length %u found %u\n",
1277                           first_buf->pkt_len, pkt_len);
1278 }
1279
1280 #define avp_dev_buffer_sanity_check(a, b) \
1281         __avp_dev_buffer_sanity_check((a), (b))
1282
1283 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */
1284
1285 #define avp_dev_buffer_sanity_check(a, b) do {} while (0)
1286
1287 #endif
1288
1289 /*
1290  * Copy a host buffer chain to a set of mbufs.  This function assumes that
1291  * there exactly the required number of mbufs to copy all source bytes.
1292  */
1293 static inline struct rte_mbuf *
1294 avp_dev_copy_from_buffers(struct avp_dev *avp,
1295                           struct rte_avp_desc *buf,
1296                           struct rte_mbuf **mbufs,
1297                           unsigned int count)
1298 {
1299         struct rte_mbuf *m_previous = NULL;
1300         struct rte_avp_desc *pkt_buf;
1301         unsigned int total_length = 0;
1302         unsigned int copy_length;
1303         unsigned int src_offset;
1304         struct rte_mbuf *m;
1305         uint16_t ol_flags;
1306         uint16_t vlan_tci;
1307         void *pkt_data;
1308         unsigned int i;
1309
1310         avp_dev_buffer_sanity_check(avp, buf);
1311
1312         /* setup the first source buffer */
1313         pkt_buf = avp_dev_translate_buffer(avp, buf);
1314         pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1315         total_length = pkt_buf->pkt_len;
1316         src_offset = 0;
1317
1318         if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1319                 ol_flags = PKT_RX_VLAN;
1320                 vlan_tci = pkt_buf->vlan_tci;
1321         } else {
1322                 ol_flags = 0;
1323                 vlan_tci = 0;
1324         }
1325
1326         for (i = 0; (i < count) && (buf != NULL); i++) {
1327                 /* fill each destination buffer */
1328                 m = mbufs[i];
1329
1330                 if (m_previous != NULL)
1331                         m_previous->next = m;
1332
1333                 m_previous = m;
1334
1335                 do {
1336                         /*
1337                          * Copy as many source buffers as will fit in the
1338                          * destination buffer.
1339                          */
1340                         copy_length = RTE_MIN((avp->guest_mbuf_size -
1341                                                rte_pktmbuf_data_len(m)),
1342                                               (pkt_buf->data_len -
1343                                                src_offset));
1344                         rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1345                                                rte_pktmbuf_data_len(m)),
1346                                    RTE_PTR_ADD(pkt_data, src_offset),
1347                                    copy_length);
1348                         rte_pktmbuf_data_len(m) += copy_length;
1349                         src_offset += copy_length;
1350
1351                         if (likely(src_offset == pkt_buf->data_len)) {
1352                                 /* need a new source buffer */
1353                                 buf = pkt_buf->next;
1354                                 if (buf != NULL) {
1355                                         pkt_buf = avp_dev_translate_buffer(
1356                                                 avp, buf);
1357                                         pkt_data = avp_dev_translate_buffer(
1358                                                 avp, pkt_buf->data);
1359                                         src_offset = 0;
1360                                 }
1361                         }
1362
1363                         if (unlikely(rte_pktmbuf_data_len(m) ==
1364                                      avp->guest_mbuf_size)) {
1365                                 /* need a new destination mbuf */
1366                                 break;
1367                         }
1368
1369                 } while (buf != NULL);
1370         }
1371
1372         m = mbufs[0];
1373         m->ol_flags = ol_flags;
1374         m->nb_segs = count;
1375         rte_pktmbuf_pkt_len(m) = total_length;
1376         m->vlan_tci = vlan_tci;
1377
1378         __rte_mbuf_sanity_check(m, 1);
1379
1380         return m;
1381 }
1382
1383 static uint16_t
1384 avp_recv_scattered_pkts(void *rx_queue,
1385                         struct rte_mbuf **rx_pkts,
1386                         uint16_t nb_pkts)
1387 {
1388         struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1389         struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1390         struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS];
1391         struct avp_dev *avp = rxq->avp;
1392         struct rte_avp_desc *pkt_buf;
1393         struct rte_avp_fifo *free_q;
1394         struct rte_avp_fifo *rx_q;
1395         struct rte_avp_desc *buf;
1396         unsigned int count, avail, n;
1397         unsigned int guest_mbuf_size;
1398         struct rte_mbuf *m;
1399         unsigned int required;
1400         unsigned int buf_len;
1401         unsigned int port_id;
1402         unsigned int i;
1403
1404         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1405                 /* VM live migration in progress */
1406                 return 0;
1407         }
1408
1409         guest_mbuf_size = avp->guest_mbuf_size;
1410         port_id = avp->port_id;
1411         rx_q = avp->rx_q[rxq->queue_id];
1412         free_q = avp->free_q[rxq->queue_id];
1413
1414         /* setup next queue to service */
1415         rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1416                 (rxq->queue_id + 1) : rxq->queue_base;
1417
1418         /* determine how many slots are available in the free queue */
1419         count = avp_fifo_free_count(free_q);
1420
1421         /* determine how many packets are available in the rx queue */
1422         avail = avp_fifo_count(rx_q);
1423
1424         /* determine how many packets can be received */
1425         count = RTE_MIN(count, avail);
1426         count = RTE_MIN(count, nb_pkts);
1427         count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1428
1429         if (unlikely(count == 0)) {
1430                 /* no free buffers, or no buffers on the rx queue */
1431                 return 0;
1432         }
1433
1434         /* retrieve pending packets */
1435         n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1436         PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1437                    count, rx_q);
1438
1439         count = 0;
1440         for (i = 0; i < n; i++) {
1441                 /* prefetch next entry while processing current one */
1442                 if (i + 1 < n) {
1443                         pkt_buf = avp_dev_translate_buffer(avp,
1444                                                            avp_bufs[i + 1]);
1445                         rte_prefetch0(pkt_buf);
1446                 }
1447                 buf = avp_bufs[i];
1448
1449                 /* Peek into the first buffer to determine the total length */
1450                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1451                 buf_len = pkt_buf->pkt_len;
1452
1453                 /* Allocate enough mbufs to receive the entire packet */
1454                 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size;
1455                 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) {
1456                         rxq->dev_data->rx_mbuf_alloc_failed++;
1457                         continue;
1458                 }
1459
1460                 /* Copy the data from the buffers to our mbufs */
1461                 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required);
1462
1463                 /* finalize mbuf */
1464                 m->port = port_id;
1465
1466                 if (_avp_mac_filter(avp, m) != 0) {
1467                         /* silently discard packets not destined to our MAC */
1468                         rte_pktmbuf_free(m);
1469                         continue;
1470                 }
1471
1472                 /* return new mbuf to caller */
1473                 rx_pkts[count++] = m;
1474                 rxq->bytes += buf_len;
1475         }
1476
1477         rxq->packets += count;
1478
1479         /* return the buffers to the free queue */
1480         avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1481
1482         return count;
1483 }
1484
1485
1486 static uint16_t
1487 avp_recv_pkts(void *rx_queue,
1488               struct rte_mbuf **rx_pkts,
1489               uint16_t nb_pkts)
1490 {
1491         struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1492         struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1493         struct avp_dev *avp = rxq->avp;
1494         struct rte_avp_desc *pkt_buf;
1495         struct rte_avp_fifo *free_q;
1496         struct rte_avp_fifo *rx_q;
1497         unsigned int count, avail, n;
1498         unsigned int pkt_len;
1499         struct rte_mbuf *m;
1500         char *pkt_data;
1501         unsigned int i;
1502
1503         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1504                 /* VM live migration in progress */
1505                 return 0;
1506         }
1507
1508         rx_q = avp->rx_q[rxq->queue_id];
1509         free_q = avp->free_q[rxq->queue_id];
1510
1511         /* setup next queue to service */
1512         rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1513                 (rxq->queue_id + 1) : rxq->queue_base;
1514
1515         /* determine how many slots are available in the free queue */
1516         count = avp_fifo_free_count(free_q);
1517
1518         /* determine how many packets are available in the rx queue */
1519         avail = avp_fifo_count(rx_q);
1520
1521         /* determine how many packets can be received */
1522         count = RTE_MIN(count, avail);
1523         count = RTE_MIN(count, nb_pkts);
1524         count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1525
1526         if (unlikely(count == 0)) {
1527                 /* no free buffers, or no buffers on the rx queue */
1528                 return 0;
1529         }
1530
1531         /* retrieve pending packets */
1532         n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1533         PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1534                    count, rx_q);
1535
1536         count = 0;
1537         for (i = 0; i < n; i++) {
1538                 /* prefetch next entry while processing current one */
1539                 if (i < n - 1) {
1540                         pkt_buf = avp_dev_translate_buffer(avp,
1541                                                            avp_bufs[i + 1]);
1542                         rte_prefetch0(pkt_buf);
1543                 }
1544
1545                 /* Adjust host pointers for guest addressing */
1546                 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1547                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1548                 pkt_len = pkt_buf->pkt_len;
1549
1550                 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1551                              (pkt_buf->nb_segs > 1))) {
1552                         /*
1553                          * application should be using the scattered receive
1554                          * function
1555                          */
1556                         rxq->errors++;
1557                         continue;
1558                 }
1559
1560                 /* process each packet to be transmitted */
1561                 m = rte_pktmbuf_alloc(avp->pool);
1562                 if (unlikely(m == NULL)) {
1563                         rxq->dev_data->rx_mbuf_alloc_failed++;
1564                         continue;
1565                 }
1566
1567                 /* copy data out of the host buffer to our buffer */
1568                 m->data_off = RTE_PKTMBUF_HEADROOM;
1569                 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len);
1570
1571                 /* initialize the local mbuf */
1572                 rte_pktmbuf_data_len(m) = pkt_len;
1573                 rte_pktmbuf_pkt_len(m) = pkt_len;
1574                 m->port = avp->port_id;
1575
1576                 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1577                         m->ol_flags = PKT_RX_VLAN;
1578                         m->vlan_tci = pkt_buf->vlan_tci;
1579                 }
1580
1581                 if (_avp_mac_filter(avp, m) != 0) {
1582                         /* silently discard packets not destined to our MAC */
1583                         rte_pktmbuf_free(m);
1584                         continue;
1585                 }
1586
1587                 /* return new mbuf to caller */
1588                 rx_pkts[count++] = m;
1589                 rxq->bytes += pkt_len;
1590         }
1591
1592         rxq->packets += count;
1593
1594         /* return the buffers to the free queue */
1595         avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1596
1597         return count;
1598 }
1599
1600 /*
1601  * Copy a chained mbuf to a set of host buffers.  This function assumes that
1602  * there are sufficient destination buffers to contain the entire source
1603  * packet.
1604  */
1605 static inline uint16_t
1606 avp_dev_copy_to_buffers(struct avp_dev *avp,
1607                         struct rte_mbuf *mbuf,
1608                         struct rte_avp_desc **buffers,
1609                         unsigned int count)
1610 {
1611         struct rte_avp_desc *previous_buf = NULL;
1612         struct rte_avp_desc *first_buf = NULL;
1613         struct rte_avp_desc *pkt_buf;
1614         struct rte_avp_desc *buf;
1615         size_t total_length;
1616         struct rte_mbuf *m;
1617         size_t copy_length;
1618         size_t src_offset;
1619         char *pkt_data;
1620         unsigned int i;
1621
1622         __rte_mbuf_sanity_check(mbuf, 1);
1623
1624         m = mbuf;
1625         src_offset = 0;
1626         total_length = rte_pktmbuf_pkt_len(m);
1627         for (i = 0; (i < count) && (m != NULL); i++) {
1628                 /* fill each destination buffer */
1629                 buf = buffers[i];
1630
1631                 if (i < count - 1) {
1632                         /* prefetch next entry while processing this one */
1633                         pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]);
1634                         rte_prefetch0(pkt_buf);
1635                 }
1636
1637                 /* Adjust pointers for guest addressing */
1638                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1639                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1640
1641                 /* setup the buffer chain */
1642                 if (previous_buf != NULL)
1643                         previous_buf->next = buf;
1644                 else
1645                         first_buf = pkt_buf;
1646
1647                 previous_buf = pkt_buf;
1648
1649                 do {
1650                         /*
1651                          * copy as many source mbuf segments as will fit in the
1652                          * destination buffer.
1653                          */
1654                         copy_length = RTE_MIN((avp->host_mbuf_size -
1655                                                pkt_buf->data_len),
1656                                               (rte_pktmbuf_data_len(m) -
1657                                                src_offset));
1658                         rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len),
1659                                    RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1660                                                src_offset),
1661                                    copy_length);
1662                         pkt_buf->data_len += copy_length;
1663                         src_offset += copy_length;
1664
1665                         if (likely(src_offset == rte_pktmbuf_data_len(m))) {
1666                                 /* need a new source buffer */
1667                                 m = m->next;
1668                                 src_offset = 0;
1669                         }
1670
1671                         if (unlikely(pkt_buf->data_len ==
1672                                      avp->host_mbuf_size)) {
1673                                 /* need a new destination buffer */
1674                                 break;
1675                         }
1676
1677                 } while (m != NULL);
1678         }
1679
1680         first_buf->nb_segs = count;
1681         first_buf->pkt_len = total_length;
1682
1683         if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1684                 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1685                 first_buf->vlan_tci = mbuf->vlan_tci;
1686         }
1687
1688         avp_dev_buffer_sanity_check(avp, buffers[0]);
1689
1690         return total_length;
1691 }
1692
1693
1694 static uint16_t
1695 avp_xmit_scattered_pkts(void *tx_queue,
1696                         struct rte_mbuf **tx_pkts,
1697                         uint16_t nb_pkts)
1698 {
1699         struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST *
1700                                        RTE_AVP_MAX_MBUF_SEGMENTS)];
1701         struct avp_queue *txq = (struct avp_queue *)tx_queue;
1702         struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST];
1703         struct avp_dev *avp = txq->avp;
1704         struct rte_avp_fifo *alloc_q;
1705         struct rte_avp_fifo *tx_q;
1706         unsigned int count, avail, n;
1707         unsigned int orig_nb_pkts;
1708         struct rte_mbuf *m;
1709         unsigned int required;
1710         unsigned int segments;
1711         unsigned int tx_bytes;
1712         unsigned int i;
1713
1714         orig_nb_pkts = nb_pkts;
1715         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1716                 /* VM live migration in progress */
1717                 /* TODO ... buffer for X packets then drop? */
1718                 txq->errors += nb_pkts;
1719                 return 0;
1720         }
1721
1722         tx_q = avp->tx_q[txq->queue_id];
1723         alloc_q = avp->alloc_q[txq->queue_id];
1724
1725         /* limit the number of transmitted packets to the max burst size */
1726         if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1727                 nb_pkts = AVP_MAX_TX_BURST;
1728
1729         /* determine how many buffers are available to copy into */
1730         avail = avp_fifo_count(alloc_q);
1731         if (unlikely(avail > (AVP_MAX_TX_BURST *
1732                               RTE_AVP_MAX_MBUF_SEGMENTS)))
1733                 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS;
1734
1735         /* determine how many slots are available in the transmit queue */
1736         count = avp_fifo_free_count(tx_q);
1737
1738         /* determine how many packets can be sent */
1739         nb_pkts = RTE_MIN(count, nb_pkts);
1740
1741         /* determine how many packets will fit in the available buffers */
1742         count = 0;
1743         segments = 0;
1744         for (i = 0; i < nb_pkts; i++) {
1745                 m = tx_pkts[i];
1746                 if (likely(i < (unsigned int)nb_pkts - 1)) {
1747                         /* prefetch next entry while processing this one */
1748                         rte_prefetch0(tx_pkts[i + 1]);
1749                 }
1750                 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1751                         avp->host_mbuf_size;
1752
1753                 if (unlikely((required == 0) ||
1754                              (required > RTE_AVP_MAX_MBUF_SEGMENTS)))
1755                         break;
1756                 else if (unlikely(required + segments > avail))
1757                         break;
1758                 segments += required;
1759                 count++;
1760         }
1761         nb_pkts = count;
1762
1763         if (unlikely(nb_pkts == 0)) {
1764                 /* no available buffers, or no space on the tx queue */
1765                 txq->errors += orig_nb_pkts;
1766                 return 0;
1767         }
1768
1769         PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1770                    nb_pkts, tx_q);
1771
1772         /* retrieve sufficient send buffers */
1773         n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments);
1774         if (unlikely(n != segments)) {
1775                 PMD_TX_LOG(DEBUG, "Failed to allocate buffers "
1776                            "n=%u, segments=%u, orig=%u\n",
1777                            n, segments, orig_nb_pkts);
1778                 txq->errors += orig_nb_pkts;
1779                 return 0;
1780         }
1781
1782         tx_bytes = 0;
1783         count = 0;
1784         for (i = 0; i < nb_pkts; i++) {
1785                 /* process each packet to be transmitted */
1786                 m = tx_pkts[i];
1787
1788                 /* determine how many buffers are required for this packet */
1789                 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1790                         avp->host_mbuf_size;
1791
1792                 tx_bytes += avp_dev_copy_to_buffers(avp, m,
1793                                                     &avp_bufs[count], required);
1794                 tx_bufs[i] = avp_bufs[count];
1795                 count += required;
1796
1797                 /* free the original mbuf */
1798                 rte_pktmbuf_free(m);
1799         }
1800
1801         txq->packets += nb_pkts;
1802         txq->bytes += tx_bytes;
1803
1804 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1805         for (i = 0; i < nb_pkts; i++)
1806                 avp_dev_buffer_sanity_check(avp, tx_bufs[i]);
1807 #endif
1808
1809         /* send the packets */
1810         n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts);
1811         if (unlikely(n != orig_nb_pkts))
1812                 txq->errors += (orig_nb_pkts - n);
1813
1814         return n;
1815 }
1816
1817
1818 static uint16_t
1819 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1820 {
1821         struct avp_queue *txq = (struct avp_queue *)tx_queue;
1822         struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST];
1823         struct avp_dev *avp = txq->avp;
1824         struct rte_avp_desc *pkt_buf;
1825         struct rte_avp_fifo *alloc_q;
1826         struct rte_avp_fifo *tx_q;
1827         unsigned int count, avail, n;
1828         struct rte_mbuf *m;
1829         unsigned int pkt_len;
1830         unsigned int tx_bytes;
1831         char *pkt_data;
1832         unsigned int i;
1833
1834         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1835                 /* VM live migration in progress */
1836                 /* TODO ... buffer for X packets then drop?! */
1837                 txq->errors++;
1838                 return 0;
1839         }
1840
1841         tx_q = avp->tx_q[txq->queue_id];
1842         alloc_q = avp->alloc_q[txq->queue_id];
1843
1844         /* limit the number of transmitted packets to the max burst size */
1845         if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1846                 nb_pkts = AVP_MAX_TX_BURST;
1847
1848         /* determine how many buffers are available to copy into */
1849         avail = avp_fifo_count(alloc_q);
1850
1851         /* determine how many slots are available in the transmit queue */
1852         count = avp_fifo_free_count(tx_q);
1853
1854         /* determine how many packets can be sent */
1855         count = RTE_MIN(count, avail);
1856         count = RTE_MIN(count, nb_pkts);
1857
1858         if (unlikely(count == 0)) {
1859                 /* no available buffers, or no space on the tx queue */
1860                 txq->errors += nb_pkts;
1861                 return 0;
1862         }
1863
1864         PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1865                    count, tx_q);
1866
1867         /* retrieve sufficient send buffers */
1868         n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count);
1869         if (unlikely(n != count)) {
1870                 txq->errors++;
1871                 return 0;
1872         }
1873
1874         tx_bytes = 0;
1875         for (i = 0; i < count; i++) {
1876                 /* prefetch next entry while processing the current one */
1877                 if (i < count - 1) {
1878                         pkt_buf = avp_dev_translate_buffer(avp,
1879                                                            avp_bufs[i + 1]);
1880                         rte_prefetch0(pkt_buf);
1881                 }
1882
1883                 /* process each packet to be transmitted */
1884                 m = tx_pkts[i];
1885
1886                 /* Adjust pointers for guest addressing */
1887                 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1888                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1889                 pkt_len = rte_pktmbuf_pkt_len(m);
1890
1891                 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1892                                          (pkt_len > avp->host_mbuf_size))) {
1893                         /*
1894                          * application should be using the scattered transmit
1895                          * function; send it truncated to avoid the performance
1896                          * hit of having to manage returning the already
1897                          * allocated buffer to the free list.  This should not
1898                          * happen since the application should have set the
1899                          * max_rx_pkt_len based on its MTU and it should be
1900                          * policing its own packet sizes.
1901                          */
1902                         txq->errors++;
1903                         pkt_len = RTE_MIN(avp->guest_mbuf_size,
1904                                           avp->host_mbuf_size);
1905                 }
1906
1907                 /* copy data out of our mbuf and into the AVP buffer */
1908                 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len);
1909                 pkt_buf->pkt_len = pkt_len;
1910                 pkt_buf->data_len = pkt_len;
1911                 pkt_buf->nb_segs = 1;
1912                 pkt_buf->next = NULL;
1913
1914                 if (m->ol_flags & PKT_TX_VLAN_PKT) {
1915                         pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1916                         pkt_buf->vlan_tci = m->vlan_tci;
1917                 }
1918
1919                 tx_bytes += pkt_len;
1920
1921                 /* free the original mbuf */
1922                 rte_pktmbuf_free(m);
1923         }
1924
1925         txq->packets += count;
1926         txq->bytes += tx_bytes;
1927
1928         /* send the packets */
1929         n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count);
1930
1931         return n;
1932 }
1933
1934 static void
1935 avp_dev_rx_queue_release(void *rx_queue)
1936 {
1937         struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1938         struct avp_dev *avp = rxq->avp;
1939         struct rte_eth_dev_data *data = avp->dev_data;
1940         unsigned int i;
1941
1942         for (i = 0; i < avp->num_rx_queues; i++) {
1943                 if (data->rx_queues[i] == rxq)
1944                         data->rx_queues[i] = NULL;
1945         }
1946 }
1947
1948 static void
1949 avp_dev_tx_queue_release(void *tx_queue)
1950 {
1951         struct avp_queue *txq = (struct avp_queue *)tx_queue;
1952         struct avp_dev *avp = txq->avp;
1953         struct rte_eth_dev_data *data = avp->dev_data;
1954         unsigned int i;
1955
1956         for (i = 0; i < avp->num_tx_queues; i++) {
1957                 if (data->tx_queues[i] == txq)
1958                         data->tx_queues[i] = NULL;
1959         }
1960 }
1961
1962 static int
1963 avp_dev_configure(struct rte_eth_dev *eth_dev)
1964 {
1965         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1966         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1967         struct rte_avp_device_info *host_info;
1968         struct rte_avp_device_config config;
1969         int mask = 0;
1970         void *addr;
1971         int ret;
1972
1973         rte_spinlock_lock(&avp->lock);
1974         if (avp->flags & AVP_F_DETACHED) {
1975                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
1976                 ret = -ENOTSUP;
1977                 goto unlock;
1978         }
1979
1980         addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
1981         host_info = (struct rte_avp_device_info *)addr;
1982
1983         /* Setup required number of queues */
1984         _avp_set_queue_counts(eth_dev);
1985
1986         mask = (ETH_VLAN_STRIP_MASK |
1987                 ETH_VLAN_FILTER_MASK |
1988                 ETH_VLAN_EXTEND_MASK);
1989         ret = avp_vlan_offload_set(eth_dev, mask);
1990         if (ret < 0) {
1991                 PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n",
1992                             ret);
1993                 goto unlock;
1994         }
1995
1996         /* update device config */
1997         memset(&config, 0, sizeof(config));
1998         config.device_id = host_info->device_id;
1999         config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
2000         config.driver_version = AVP_DPDK_DRIVER_VERSION;
2001         config.features = avp->features;
2002         config.num_tx_queues = avp->num_tx_queues;
2003         config.num_rx_queues = avp->num_rx_queues;
2004
2005         ret = avp_dev_ctrl_set_config(eth_dev, &config);
2006         if (ret < 0) {
2007                 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
2008                             ret);
2009                 goto unlock;
2010         }
2011
2012         avp->flags |= AVP_F_CONFIGURED;
2013         ret = 0;
2014
2015 unlock:
2016         rte_spinlock_unlock(&avp->lock);
2017         return ret;
2018 }
2019
2020 static int
2021 avp_dev_start(struct rte_eth_dev *eth_dev)
2022 {
2023         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2024         int ret;
2025
2026         rte_spinlock_lock(&avp->lock);
2027         if (avp->flags & AVP_F_DETACHED) {
2028                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2029                 ret = -ENOTSUP;
2030                 goto unlock;
2031         }
2032
2033         /* update link state */
2034         ret = avp_dev_ctrl_set_link_state(eth_dev, 1);
2035         if (ret < 0) {
2036                 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2037                             ret);
2038                 goto unlock;
2039         }
2040
2041         /* remember current link state */
2042         avp->flags |= AVP_F_LINKUP;
2043
2044         ret = 0;
2045
2046 unlock:
2047         rte_spinlock_unlock(&avp->lock);
2048         return ret;
2049 }
2050
2051 static void
2052 avp_dev_stop(struct rte_eth_dev *eth_dev)
2053 {
2054         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2055         int ret;
2056
2057         rte_spinlock_lock(&avp->lock);
2058         if (avp->flags & AVP_F_DETACHED) {
2059                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2060                 goto unlock;
2061         }
2062
2063         /* remember current link state */
2064         avp->flags &= ~AVP_F_LINKUP;
2065
2066         /* update link state */
2067         ret = avp_dev_ctrl_set_link_state(eth_dev, 0);
2068         if (ret < 0) {
2069                 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2070                             ret);
2071         }
2072
2073 unlock:
2074         rte_spinlock_unlock(&avp->lock);
2075 }
2076
2077 static void
2078 avp_dev_close(struct rte_eth_dev *eth_dev)
2079 {
2080         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2081         int ret;
2082
2083         rte_spinlock_lock(&avp->lock);
2084         if (avp->flags & AVP_F_DETACHED) {
2085                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2086                 goto unlock;
2087         }
2088
2089         /* remember current link state */
2090         avp->flags &= ~AVP_F_LINKUP;
2091         avp->flags &= ~AVP_F_CONFIGURED;
2092
2093         ret = avp_dev_disable_interrupts(eth_dev);
2094         if (ret < 0) {
2095                 PMD_DRV_LOG(ERR, "Failed to disable interrupts\n");
2096                 /* continue */
2097         }
2098
2099         /* update device state */
2100         ret = avp_dev_ctrl_shutdown(eth_dev);
2101         if (ret < 0) {
2102                 PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n",
2103                             ret);
2104                 /* continue */
2105         }
2106
2107 unlock:
2108         rte_spinlock_unlock(&avp->lock);
2109 }
2110
2111 static int
2112 avp_dev_link_update(struct rte_eth_dev *eth_dev,
2113                                         __rte_unused int wait_to_complete)
2114 {
2115         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2116         struct rte_eth_link *link = &eth_dev->data->dev_link;
2117
2118         link->link_speed = ETH_SPEED_NUM_10G;
2119         link->link_duplex = ETH_LINK_FULL_DUPLEX;
2120         link->link_status = !!(avp->flags & AVP_F_LINKUP);
2121
2122         return -1;
2123 }
2124
2125 static void
2126 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev)
2127 {
2128         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2129
2130         rte_spinlock_lock(&avp->lock);
2131         if ((avp->flags & AVP_F_PROMISC) == 0) {
2132                 avp->flags |= AVP_F_PROMISC;
2133                 PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n",
2134                             eth_dev->data->port_id);
2135         }
2136         rte_spinlock_unlock(&avp->lock);
2137 }
2138
2139 static void
2140 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev)
2141 {
2142         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2143
2144         rte_spinlock_lock(&avp->lock);
2145         if ((avp->flags & AVP_F_PROMISC) != 0) {
2146                 avp->flags &= ~AVP_F_PROMISC;
2147                 PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n",
2148                             eth_dev->data->port_id);
2149         }
2150         rte_spinlock_unlock(&avp->lock);
2151 }
2152
2153 static void
2154 avp_dev_info_get(struct rte_eth_dev *eth_dev,
2155                  struct rte_eth_dev_info *dev_info)
2156 {
2157         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2158
2159         dev_info->max_rx_queues = avp->max_rx_queues;
2160         dev_info->max_tx_queues = avp->max_tx_queues;
2161         dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE;
2162         dev_info->max_rx_pktlen = avp->max_rx_pkt_len;
2163         dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS;
2164         if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2165                 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
2166                 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
2167         }
2168 }
2169
2170 static int
2171 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
2172 {
2173         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2174         struct rte_eth_conf *dev_conf = &eth_dev->data->dev_conf;
2175         uint64_t offloads = dev_conf->rxmode.offloads;
2176
2177         if (mask & ETH_VLAN_STRIP_MASK) {
2178                 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2179                         if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2180                                 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD;
2181                         else
2182                                 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD;
2183                 } else {
2184                         PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n");
2185                 }
2186         }
2187
2188         if (mask & ETH_VLAN_FILTER_MASK) {
2189                 if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2190                         PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n");
2191         }
2192
2193         if (mask & ETH_VLAN_EXTEND_MASK) {
2194                 if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2195                         PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n");
2196         }
2197
2198         return 0;
2199 }
2200
2201 static int
2202 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats)
2203 {
2204         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2205         unsigned int i;
2206
2207         for (i = 0; i < avp->num_rx_queues; i++) {
2208                 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2209
2210                 if (rxq) {
2211                         stats->ipackets += rxq->packets;
2212                         stats->ibytes += rxq->bytes;
2213                         stats->ierrors += rxq->errors;
2214
2215                         stats->q_ipackets[i] += rxq->packets;
2216                         stats->q_ibytes[i] += rxq->bytes;
2217                         stats->q_errors[i] += rxq->errors;
2218                 }
2219         }
2220
2221         for (i = 0; i < avp->num_tx_queues; i++) {
2222                 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2223
2224                 if (txq) {
2225                         stats->opackets += txq->packets;
2226                         stats->obytes += txq->bytes;
2227                         stats->oerrors += txq->errors;
2228
2229                         stats->q_opackets[i] += txq->packets;
2230                         stats->q_obytes[i] += txq->bytes;
2231                         stats->q_errors[i] += txq->errors;
2232                 }
2233         }
2234
2235         return 0;
2236 }
2237
2238 static void
2239 avp_dev_stats_reset(struct rte_eth_dev *eth_dev)
2240 {
2241         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2242         unsigned int i;
2243
2244         for (i = 0; i < avp->num_rx_queues; i++) {
2245                 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2246
2247                 if (rxq) {
2248                         rxq->bytes = 0;
2249                         rxq->packets = 0;
2250                         rxq->errors = 0;
2251                 }
2252         }
2253
2254         for (i = 0; i < avp->num_tx_queues; i++) {
2255                 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2256
2257                 if (txq) {
2258                         txq->bytes = 0;
2259                         txq->packets = 0;
2260                         txq->errors = 0;
2261                 }
2262         }
2263 }
2264
2265 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd);
2266 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map);
2267
2268 RTE_INIT(avp_init_log)
2269 {
2270         avp_logtype_driver = rte_log_register("pmd.net.avp.driver");
2271         if (avp_logtype_driver >= 0)
2272                 rte_log_set_level(avp_logtype_driver, RTE_LOG_NOTICE);
2273 }