net: add rte prefix to ether defines
[dpdk.git] / drivers / net / avp / avp_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2013-2017 Wind River Systems, Inc.
3  */
4
5 #include <stdint.h>
6 #include <string.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <unistd.h>
10
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_memcpy.h>
14 #include <rte_string_fns.h>
15 #include <rte_malloc.h>
16 #include <rte_atomic.h>
17 #include <rte_branch_prediction.h>
18 #include <rte_pci.h>
19 #include <rte_bus_pci.h>
20 #include <rte_ether.h>
21 #include <rte_common.h>
22 #include <rte_cycles.h>
23 #include <rte_spinlock.h>
24 #include <rte_byteorder.h>
25 #include <rte_dev.h>
26 #include <rte_memory.h>
27 #include <rte_eal.h>
28 #include <rte_io.h>
29
30 #include "rte_avp_common.h"
31 #include "rte_avp_fifo.h"
32
33 #include "avp_logs.h"
34
35 int avp_logtype_driver;
36
37 static int avp_dev_create(struct rte_pci_device *pci_dev,
38                           struct rte_eth_dev *eth_dev);
39
40 static int avp_dev_configure(struct rte_eth_dev *dev);
41 static int avp_dev_start(struct rte_eth_dev *dev);
42 static void avp_dev_stop(struct rte_eth_dev *dev);
43 static void avp_dev_close(struct rte_eth_dev *dev);
44 static void avp_dev_info_get(struct rte_eth_dev *dev,
45                              struct rte_eth_dev_info *dev_info);
46 static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask);
47 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete);
48 static void avp_dev_promiscuous_enable(struct rte_eth_dev *dev);
49 static void avp_dev_promiscuous_disable(struct rte_eth_dev *dev);
50
51 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev,
52                                   uint16_t rx_queue_id,
53                                   uint16_t nb_rx_desc,
54                                   unsigned int socket_id,
55                                   const struct rte_eth_rxconf *rx_conf,
56                                   struct rte_mempool *pool);
57
58 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev,
59                                   uint16_t tx_queue_id,
60                                   uint16_t nb_tx_desc,
61                                   unsigned int socket_id,
62                                   const struct rte_eth_txconf *tx_conf);
63
64 static uint16_t avp_recv_scattered_pkts(void *rx_queue,
65                                         struct rte_mbuf **rx_pkts,
66                                         uint16_t nb_pkts);
67
68 static uint16_t avp_recv_pkts(void *rx_queue,
69                               struct rte_mbuf **rx_pkts,
70                               uint16_t nb_pkts);
71
72 static uint16_t avp_xmit_scattered_pkts(void *tx_queue,
73                                         struct rte_mbuf **tx_pkts,
74                                         uint16_t nb_pkts);
75
76 static uint16_t avp_xmit_pkts(void *tx_queue,
77                               struct rte_mbuf **tx_pkts,
78                               uint16_t nb_pkts);
79
80 static void avp_dev_rx_queue_release(void *rxq);
81 static void avp_dev_tx_queue_release(void *txq);
82
83 static int avp_dev_stats_get(struct rte_eth_dev *dev,
84                               struct rte_eth_stats *stats);
85 static void avp_dev_stats_reset(struct rte_eth_dev *dev);
86
87
88 #define AVP_MAX_RX_BURST 64
89 #define AVP_MAX_TX_BURST 64
90 #define AVP_MAX_MAC_ADDRS 1
91 #define AVP_MIN_RX_BUFSIZE RTE_ETHER_MIN_LEN
92
93
94 /*
95  * Defines the number of microseconds to wait before checking the response
96  * queue for completion.
97  */
98 #define AVP_REQUEST_DELAY_USECS (5000)
99
100 /*
101  * Defines the number times to check the response queue for completion before
102  * declaring a timeout.
103  */
104 #define AVP_MAX_REQUEST_RETRY (100)
105
106 /* Defines the current PCI driver version number */
107 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION
108
109 /*
110  * The set of PCI devices this driver supports
111  */
112 static const struct rte_pci_id pci_id_avp_map[] = {
113         { .vendor_id = RTE_AVP_PCI_VENDOR_ID,
114           .device_id = RTE_AVP_PCI_DEVICE_ID,
115           .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID,
116           .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID,
117           .class_id = RTE_CLASS_ANY_ID,
118         },
119
120         { .vendor_id = 0, /* sentinel */
121         },
122 };
123
124 /*
125  * dev_ops for avp, bare necessities for basic operation
126  */
127 static const struct eth_dev_ops avp_eth_dev_ops = {
128         .dev_configure       = avp_dev_configure,
129         .dev_start           = avp_dev_start,
130         .dev_stop            = avp_dev_stop,
131         .dev_close           = avp_dev_close,
132         .dev_infos_get       = avp_dev_info_get,
133         .vlan_offload_set    = avp_vlan_offload_set,
134         .stats_get           = avp_dev_stats_get,
135         .stats_reset         = avp_dev_stats_reset,
136         .link_update         = avp_dev_link_update,
137         .promiscuous_enable  = avp_dev_promiscuous_enable,
138         .promiscuous_disable = avp_dev_promiscuous_disable,
139         .rx_queue_setup      = avp_dev_rx_queue_setup,
140         .rx_queue_release    = avp_dev_rx_queue_release,
141         .tx_queue_setup      = avp_dev_tx_queue_setup,
142         .tx_queue_release    = avp_dev_tx_queue_release,
143 };
144
145 /**@{ AVP device flags */
146 #define AVP_F_PROMISC (1 << 1)
147 #define AVP_F_CONFIGURED (1 << 2)
148 #define AVP_F_LINKUP (1 << 3)
149 #define AVP_F_DETACHED (1 << 4)
150 /**@} */
151
152 /* Ethernet device validation marker */
153 #define AVP_ETHDEV_MAGIC 0x92972862
154
155 /*
156  * Defines the AVP device attributes which are attached to an RTE ethernet
157  * device
158  */
159 struct avp_dev {
160         uint32_t magic; /**< Memory validation marker */
161         uint64_t device_id; /**< Unique system identifier */
162         struct rte_ether_addr ethaddr; /**< Host specified MAC address */
163         struct rte_eth_dev_data *dev_data;
164         /**< Back pointer to ethernet device data */
165         volatile uint32_t flags; /**< Device operational flags */
166         uint16_t port_id; /**< Ethernet port identifier */
167         struct rte_mempool *pool; /**< pkt mbuf mempool */
168         unsigned int guest_mbuf_size; /**< local pool mbuf size */
169         unsigned int host_mbuf_size; /**< host mbuf size */
170         unsigned int max_rx_pkt_len; /**< maximum receive unit */
171         uint32_t host_features; /**< Supported feature bitmap */
172         uint32_t features; /**< Enabled feature bitmap */
173         unsigned int num_tx_queues; /**< Negotiated number of transmit queues */
174         unsigned int max_tx_queues; /**< Maximum number of transmit queues */
175         unsigned int num_rx_queues; /**< Negotiated number of receive queues */
176         unsigned int max_rx_queues; /**< Maximum number of receive queues */
177
178         struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */
179         struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */
180         struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES];
181         /**< Allocated mbufs queue */
182         struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES];
183         /**< To be freed mbufs queue */
184
185         /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */
186         rte_spinlock_t lock;
187
188         /* For request & response */
189         struct rte_avp_fifo *req_q; /**< Request queue */
190         struct rte_avp_fifo *resp_q; /**< Response queue */
191         void *host_sync_addr; /**< (host) Req/Resp Mem address */
192         void *sync_addr; /**< Req/Resp Mem address */
193         void *host_mbuf_addr; /**< (host) MBUF pool start address */
194         void *mbuf_addr; /**< MBUF pool start address */
195 } __rte_cache_aligned;
196
197 /* RTE ethernet private data */
198 struct avp_adapter {
199         struct avp_dev avp;
200 } __rte_cache_aligned;
201
202
203 /* 32-bit MMIO register write */
204 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr))
205
206 /* 32-bit MMIO register read */
207 #define AVP_READ32(_addr) rte_read32_relaxed((_addr))
208
209 /* Macro to cast the ethernet device private data to a AVP object */
210 #define AVP_DEV_PRIVATE_TO_HW(adapter) \
211         (&((struct avp_adapter *)adapter)->avp)
212
213 /*
214  * Defines the structure of a AVP device queue for the purpose of handling the
215  * receive and transmit burst callback functions
216  */
217 struct avp_queue {
218         struct rte_eth_dev_data *dev_data;
219         /**< Backpointer to ethernet device data */
220         struct avp_dev *avp; /**< Backpointer to AVP device */
221         uint16_t queue_id;
222         /**< Queue identifier used for indexing current queue */
223         uint16_t queue_base;
224         /**< Base queue identifier for queue servicing */
225         uint16_t queue_limit;
226         /**< Maximum queue identifier for queue servicing */
227
228         uint64_t packets;
229         uint64_t bytes;
230         uint64_t errors;
231 };
232
233 /* send a request and wait for a response
234  *
235  * @warning must be called while holding the avp->lock spinlock.
236  */
237 static int
238 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request)
239 {
240         unsigned int retry = AVP_MAX_REQUEST_RETRY;
241         void *resp_addr = NULL;
242         unsigned int count;
243         int ret;
244
245         PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id);
246
247         request->result = -ENOTSUP;
248
249         /* Discard any stale responses before starting a new request */
250         while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1))
251                 PMD_DRV_LOG(DEBUG, "Discarding stale response\n");
252
253         rte_memcpy(avp->sync_addr, request, sizeof(*request));
254         count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1);
255         if (count < 1) {
256                 PMD_DRV_LOG(ERR, "Cannot send request %u to host\n",
257                             request->req_id);
258                 ret = -EBUSY;
259                 goto done;
260         }
261
262         while (retry--) {
263                 /* wait for a response */
264                 usleep(AVP_REQUEST_DELAY_USECS);
265
266                 count = avp_fifo_count(avp->resp_q);
267                 if (count >= 1) {
268                         /* response received */
269                         break;
270                 }
271
272                 if ((count < 1) && (retry == 0)) {
273                         PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n",
274                                     request->req_id);
275                         ret = -ETIME;
276                         goto done;
277                 }
278         }
279
280         /* retrieve the response */
281         count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1);
282         if ((count != 1) || (resp_addr != avp->host_sync_addr)) {
283                 PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n",
284                             count, resp_addr, avp->host_sync_addr);
285                 ret = -ENODATA;
286                 goto done;
287         }
288
289         /* copy to user buffer */
290         rte_memcpy(request, avp->sync_addr, sizeof(*request));
291         ret = 0;
292
293         PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n",
294                     request->result, request->req_id);
295
296 done:
297         return ret;
298 }
299
300 static int
301 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state)
302 {
303         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
304         struct rte_avp_request request;
305         int ret;
306
307         /* setup a link state change request */
308         memset(&request, 0, sizeof(request));
309         request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF;
310         request.if_up = state;
311
312         ret = avp_dev_process_request(avp, &request);
313
314         return ret == 0 ? request.result : ret;
315 }
316
317 static int
318 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev,
319                         struct rte_avp_device_config *config)
320 {
321         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
322         struct rte_avp_request request;
323         int ret;
324
325         /* setup a configure request */
326         memset(&request, 0, sizeof(request));
327         request.req_id = RTE_AVP_REQ_CFG_DEVICE;
328         memcpy(&request.config, config, sizeof(request.config));
329
330         ret = avp_dev_process_request(avp, &request);
331
332         return ret == 0 ? request.result : ret;
333 }
334
335 static int
336 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev)
337 {
338         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
339         struct rte_avp_request request;
340         int ret;
341
342         /* setup a shutdown request */
343         memset(&request, 0, sizeof(request));
344         request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE;
345
346         ret = avp_dev_process_request(avp, &request);
347
348         return ret == 0 ? request.result : ret;
349 }
350
351 /* translate from host mbuf virtual address to guest virtual address */
352 static inline void *
353 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address)
354 {
355         return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address,
356                                        (uintptr_t)avp->host_mbuf_addr),
357                            (uintptr_t)avp->mbuf_addr);
358 }
359
360 /* translate from host physical address to guest virtual address */
361 static void *
362 avp_dev_translate_address(struct rte_eth_dev *eth_dev,
363                           rte_iova_t host_phys_addr)
364 {
365         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
366         struct rte_mem_resource *resource;
367         struct rte_avp_memmap_info *info;
368         struct rte_avp_memmap *map;
369         off_t offset;
370         void *addr;
371         unsigned int i;
372
373         addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr;
374         resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR];
375         info = (struct rte_avp_memmap_info *)resource->addr;
376
377         offset = 0;
378         for (i = 0; i < info->nb_maps; i++) {
379                 /* search all segments looking for a matching address */
380                 map = &info->maps[i];
381
382                 if ((host_phys_addr >= map->phys_addr) &&
383                         (host_phys_addr < (map->phys_addr + map->length))) {
384                         /* address is within this segment */
385                         offset += (host_phys_addr - map->phys_addr);
386                         addr = RTE_PTR_ADD(addr, (uintptr_t)offset);
387
388                         PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n",
389                                     host_phys_addr, addr);
390
391                         return addr;
392                 }
393                 offset += map->length;
394         }
395
396         return NULL;
397 }
398
399 /* verify that the incoming device version is compatible with our version */
400 static int
401 avp_dev_version_check(uint32_t version)
402 {
403         uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION);
404         uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version);
405
406         if (device <= driver) {
407                 /* the host driver version is less than or equal to ours */
408                 return 0;
409         }
410
411         return 1;
412 }
413
414 /* verify that memory regions have expected version and validation markers */
415 static int
416 avp_dev_check_regions(struct rte_eth_dev *eth_dev)
417 {
418         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
419         struct rte_avp_memmap_info *memmap;
420         struct rte_avp_device_info *info;
421         struct rte_mem_resource *resource;
422         unsigned int i;
423
424         /* Dump resource info for debug */
425         for (i = 0; i < PCI_MAX_RESOURCE; i++) {
426                 resource = &pci_dev->mem_resource[i];
427                 if ((resource->phys_addr == 0) || (resource->len == 0))
428                         continue;
429
430                 PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n",
431                             i, resource->phys_addr,
432                             resource->len, resource->addr);
433
434                 switch (i) {
435                 case RTE_AVP_PCI_MEMMAP_BAR:
436                         memmap = (struct rte_avp_memmap_info *)resource->addr;
437                         if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) ||
438                             (memmap->version != RTE_AVP_MEMMAP_VERSION)) {
439                                 PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n",
440                                             memmap->magic, memmap->version);
441                                 return -EINVAL;
442                         }
443                         break;
444
445                 case RTE_AVP_PCI_DEVICE_BAR:
446                         info = (struct rte_avp_device_info *)resource->addr;
447                         if ((info->magic != RTE_AVP_DEVICE_MAGIC) ||
448                             avp_dev_version_check(info->version)) {
449                                 PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n",
450                                             info->magic, info->version,
451                                             AVP_DPDK_DRIVER_VERSION);
452                                 return -EINVAL;
453                         }
454                         break;
455
456                 case RTE_AVP_PCI_MEMORY_BAR:
457                 case RTE_AVP_PCI_MMIO_BAR:
458                         if (resource->addr == NULL) {
459                                 PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n",
460                                             i);
461                                 return -EINVAL;
462                         }
463                         break;
464
465                 case RTE_AVP_PCI_MSIX_BAR:
466                 default:
467                         /* no validation required */
468                         break;
469                 }
470         }
471
472         return 0;
473 }
474
475 static int
476 avp_dev_detach(struct rte_eth_dev *eth_dev)
477 {
478         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
479         int ret;
480
481         PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n",
482                     eth_dev->data->port_id, avp->device_id);
483
484         rte_spinlock_lock(&avp->lock);
485
486         if (avp->flags & AVP_F_DETACHED) {
487                 PMD_DRV_LOG(NOTICE, "port %u already detached\n",
488                             eth_dev->data->port_id);
489                 ret = 0;
490                 goto unlock;
491         }
492
493         /* shutdown the device first so the host stops sending us packets. */
494         ret = avp_dev_ctrl_shutdown(eth_dev);
495         if (ret < 0) {
496                 PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n",
497                             ret);
498                 avp->flags &= ~AVP_F_DETACHED;
499                 goto unlock;
500         }
501
502         avp->flags |= AVP_F_DETACHED;
503         rte_wmb();
504
505         /* wait for queues to acknowledge the presence of the detach flag */
506         rte_delay_ms(1);
507
508         ret = 0;
509
510 unlock:
511         rte_spinlock_unlock(&avp->lock);
512         return ret;
513 }
514
515 static void
516 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
517 {
518         struct avp_dev *avp =
519                 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
520         struct avp_queue *rxq;
521         uint16_t queue_count;
522         uint16_t remainder;
523
524         rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id];
525
526         /*
527          * Must map all AVP fifos as evenly as possible between the configured
528          * device queues.  Each device queue will service a subset of the AVP
529          * fifos. If there is an odd number of device queues the first set of
530          * device queues will get the extra AVP fifos.
531          */
532         queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues;
533         remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues;
534         if (rx_queue_id < remainder) {
535                 /* these queues must service one extra FIFO */
536                 rxq->queue_base = rx_queue_id * (queue_count + 1);
537                 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1;
538         } else {
539                 /* these queues service the regular number of FIFO */
540                 rxq->queue_base = ((remainder * (queue_count + 1)) +
541                                    ((rx_queue_id - remainder) * queue_count));
542                 rxq->queue_limit = rxq->queue_base + queue_count - 1;
543         }
544
545         PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n",
546                     rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit);
547
548         rxq->queue_id = rxq->queue_base;
549 }
550
551 static void
552 _avp_set_queue_counts(struct rte_eth_dev *eth_dev)
553 {
554         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
555         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
556         struct rte_avp_device_info *host_info;
557         void *addr;
558
559         addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
560         host_info = (struct rte_avp_device_info *)addr;
561
562         /*
563          * the transmit direction is not negotiated beyond respecting the max
564          * number of queues because the host can handle arbitrary guest tx
565          * queues (host rx queues).
566          */
567         avp->num_tx_queues = eth_dev->data->nb_tx_queues;
568
569         /*
570          * the receive direction is more restrictive.  The host requires a
571          * minimum number of guest rx queues (host tx queues) therefore
572          * negotiate a value that is at least as large as the host minimum
573          * requirement.  If the host and guest values are not identical then a
574          * mapping will be established in the receive_queue_setup function.
575          */
576         avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues,
577                                      eth_dev->data->nb_rx_queues);
578
579         PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n",
580                     avp->num_tx_queues, avp->num_rx_queues);
581 }
582
583 static int
584 avp_dev_attach(struct rte_eth_dev *eth_dev)
585 {
586         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
587         struct rte_avp_device_config config;
588         unsigned int i;
589         int ret;
590
591         PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n",
592                     eth_dev->data->port_id, avp->device_id);
593
594         rte_spinlock_lock(&avp->lock);
595
596         if (!(avp->flags & AVP_F_DETACHED)) {
597                 PMD_DRV_LOG(NOTICE, "port %u already attached\n",
598                             eth_dev->data->port_id);
599                 ret = 0;
600                 goto unlock;
601         }
602
603         /*
604          * make sure that the detached flag is set prior to reconfiguring the
605          * queues.
606          */
607         avp->flags |= AVP_F_DETACHED;
608         rte_wmb();
609
610         /*
611          * re-run the device create utility which will parse the new host info
612          * and setup the AVP device queue pointers.
613          */
614         ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev);
615         if (ret < 0) {
616                 PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n",
617                             ret);
618                 goto unlock;
619         }
620
621         if (avp->flags & AVP_F_CONFIGURED) {
622                 /*
623                  * Update the receive queue mapping to handle cases where the
624                  * source and destination hosts have different queue
625                  * requirements.  As long as the DETACHED flag is asserted the
626                  * queue table should not be referenced so it should be safe to
627                  * update it.
628                  */
629                 _avp_set_queue_counts(eth_dev);
630                 for (i = 0; i < eth_dev->data->nb_rx_queues; i++)
631                         _avp_set_rx_queue_mappings(eth_dev, i);
632
633                 /*
634                  * Update the host with our config details so that it knows the
635                  * device is active.
636                  */
637                 memset(&config, 0, sizeof(config));
638                 config.device_id = avp->device_id;
639                 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
640                 config.driver_version = AVP_DPDK_DRIVER_VERSION;
641                 config.features = avp->features;
642                 config.num_tx_queues = avp->num_tx_queues;
643                 config.num_rx_queues = avp->num_rx_queues;
644                 config.if_up = !!(avp->flags & AVP_F_LINKUP);
645
646                 ret = avp_dev_ctrl_set_config(eth_dev, &config);
647                 if (ret < 0) {
648                         PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
649                                     ret);
650                         goto unlock;
651                 }
652         }
653
654         rte_wmb();
655         avp->flags &= ~AVP_F_DETACHED;
656
657         ret = 0;
658
659 unlock:
660         rte_spinlock_unlock(&avp->lock);
661         return ret;
662 }
663
664 static void
665 avp_dev_interrupt_handler(void *data)
666 {
667         struct rte_eth_dev *eth_dev = data;
668         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
669         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
670         uint32_t status, value;
671         int ret;
672
673         if (registers == NULL)
674                 rte_panic("no mapped MMIO register space\n");
675
676         /* read the interrupt status register
677          * note: this register clears on read so all raised interrupts must be
678          *    handled or remembered for later processing
679          */
680         status = AVP_READ32(
681                 RTE_PTR_ADD(registers,
682                             RTE_AVP_INTERRUPT_STATUS_OFFSET));
683
684         if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) {
685                 /* handle interrupt based on current status */
686                 value = AVP_READ32(
687                         RTE_PTR_ADD(registers,
688                                     RTE_AVP_MIGRATION_STATUS_OFFSET));
689                 switch (value) {
690                 case RTE_AVP_MIGRATION_DETACHED:
691                         ret = avp_dev_detach(eth_dev);
692                         break;
693                 case RTE_AVP_MIGRATION_ATTACHED:
694                         ret = avp_dev_attach(eth_dev);
695                         break;
696                 default:
697                         PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n",
698                                     value);
699                         ret = -EINVAL;
700                 }
701
702                 /* acknowledge the request by writing out our current status */
703                 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR);
704                 AVP_WRITE32(value,
705                             RTE_PTR_ADD(registers,
706                                         RTE_AVP_MIGRATION_ACK_OFFSET));
707
708                 PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n");
709         }
710
711         if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK)
712                 PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n",
713                             status);
714
715         /* re-enable UIO interrupt handling */
716         ret = rte_intr_enable(&pci_dev->intr_handle);
717         if (ret < 0) {
718                 PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n",
719                             ret);
720                 /* continue */
721         }
722 }
723
724 static int
725 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev)
726 {
727         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
728         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
729         int ret;
730
731         if (registers == NULL)
732                 return -EINVAL;
733
734         /* enable UIO interrupt handling */
735         ret = rte_intr_enable(&pci_dev->intr_handle);
736         if (ret < 0) {
737                 PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n",
738                             ret);
739                 return ret;
740         }
741
742         /* inform the device that all interrupts are enabled */
743         AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK,
744                     RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
745
746         return 0;
747 }
748
749 static int
750 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev)
751 {
752         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
753         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
754         int ret;
755
756         if (registers == NULL)
757                 return 0;
758
759         /* inform the device that all interrupts are disabled */
760         AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK,
761                     RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
762
763         /* enable UIO interrupt handling */
764         ret = rte_intr_disable(&pci_dev->intr_handle);
765         if (ret < 0) {
766                 PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n",
767                             ret);
768                 return ret;
769         }
770
771         return 0;
772 }
773
774 static int
775 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev)
776 {
777         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
778         int ret;
779
780         /* register a callback handler with UIO for interrupt notifications */
781         ret = rte_intr_callback_register(&pci_dev->intr_handle,
782                                          avp_dev_interrupt_handler,
783                                          (void *)eth_dev);
784         if (ret < 0) {
785                 PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n",
786                             ret);
787                 return ret;
788         }
789
790         /* enable interrupt processing */
791         return avp_dev_enable_interrupts(eth_dev);
792 }
793
794 static int
795 avp_dev_migration_pending(struct rte_eth_dev *eth_dev)
796 {
797         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
798         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
799         uint32_t value;
800
801         if (registers == NULL)
802                 return 0;
803
804         value = AVP_READ32(RTE_PTR_ADD(registers,
805                                        RTE_AVP_MIGRATION_STATUS_OFFSET));
806         if (value == RTE_AVP_MIGRATION_DETACHED) {
807                 /* migration is in progress; ack it if we have not already */
808                 AVP_WRITE32(value,
809                             RTE_PTR_ADD(registers,
810                                         RTE_AVP_MIGRATION_ACK_OFFSET));
811                 return 1;
812         }
813         return 0;
814 }
815
816 /*
817  * create a AVP device using the supplied device info by first translating it
818  * to guest address space(s).
819  */
820 static int
821 avp_dev_create(struct rte_pci_device *pci_dev,
822                struct rte_eth_dev *eth_dev)
823 {
824         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
825         struct rte_avp_device_info *host_info;
826         struct rte_mem_resource *resource;
827         unsigned int i;
828
829         resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR];
830         if (resource->addr == NULL) {
831                 PMD_DRV_LOG(ERR, "BAR%u is not mapped\n",
832                             RTE_AVP_PCI_DEVICE_BAR);
833                 return -EFAULT;
834         }
835         host_info = (struct rte_avp_device_info *)resource->addr;
836
837         if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) ||
838                 avp_dev_version_check(host_info->version)) {
839                 PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n",
840                             host_info->magic, host_info->version,
841                             AVP_DPDK_DRIVER_VERSION);
842                 return -EINVAL;
843         }
844
845         PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n",
846                     RTE_AVP_GET_RELEASE_VERSION(host_info->version),
847                     RTE_AVP_GET_MAJOR_VERSION(host_info->version),
848                     RTE_AVP_GET_MINOR_VERSION(host_info->version));
849
850         PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n",
851                     host_info->min_tx_queues, host_info->max_tx_queues);
852         PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n",
853                     host_info->min_rx_queues, host_info->max_rx_queues);
854         PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n",
855                     host_info->features);
856
857         if (avp->magic != AVP_ETHDEV_MAGIC) {
858                 /*
859                  * First time initialization (i.e., not during a VM
860                  * migration)
861                  */
862                 memset(avp, 0, sizeof(*avp));
863                 avp->magic = AVP_ETHDEV_MAGIC;
864                 avp->dev_data = eth_dev->data;
865                 avp->port_id = eth_dev->data->port_id;
866                 avp->host_mbuf_size = host_info->mbuf_size;
867                 avp->host_features = host_info->features;
868                 rte_spinlock_init(&avp->lock);
869                 memcpy(&avp->ethaddr.addr_bytes[0],
870                        host_info->ethaddr, RTE_ETHER_ADDR_LEN);
871                 /* adjust max values to not exceed our max */
872                 avp->max_tx_queues =
873                         RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES);
874                 avp->max_rx_queues =
875                         RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES);
876         } else {
877                 /* Re-attaching during migration */
878
879                 /* TODO... requires validation of host values */
880                 if ((host_info->features & avp->features) != avp->features) {
881                         PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n",
882                                     avp->features, host_info->features);
883                         /* this should not be possible; continue for now */
884                 }
885         }
886
887         /* the device id is allowed to change over migrations */
888         avp->device_id = host_info->device_id;
889
890         /* translate incoming host addresses to guest address space */
891         PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n",
892                     host_info->tx_phys);
893         PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n",
894                     host_info->alloc_phys);
895         for (i = 0; i < avp->max_tx_queues; i++) {
896                 avp->tx_q[i] = avp_dev_translate_address(eth_dev,
897                         host_info->tx_phys + (i * host_info->tx_size));
898
899                 avp->alloc_q[i] = avp_dev_translate_address(eth_dev,
900                         host_info->alloc_phys + (i * host_info->alloc_size));
901         }
902
903         PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n",
904                     host_info->rx_phys);
905         PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n",
906                     host_info->free_phys);
907         for (i = 0; i < avp->max_rx_queues; i++) {
908                 avp->rx_q[i] = avp_dev_translate_address(eth_dev,
909                         host_info->rx_phys + (i * host_info->rx_size));
910                 avp->free_q[i] = avp_dev_translate_address(eth_dev,
911                         host_info->free_phys + (i * host_info->free_size));
912         }
913
914         PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n",
915                     host_info->req_phys);
916         PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n",
917                     host_info->resp_phys);
918         PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n",
919                     host_info->sync_phys);
920         PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n",
921                     host_info->mbuf_phys);
922         avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys);
923         avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys);
924         avp->sync_addr =
925                 avp_dev_translate_address(eth_dev, host_info->sync_phys);
926         avp->mbuf_addr =
927                 avp_dev_translate_address(eth_dev, host_info->mbuf_phys);
928
929         /*
930          * store the host mbuf virtual address so that we can calculate
931          * relative offsets for each mbuf as they are processed
932          */
933         avp->host_mbuf_addr = host_info->mbuf_va;
934         avp->host_sync_addr = host_info->sync_va;
935
936         /*
937          * store the maximum packet length that is supported by the host.
938          */
939         avp->max_rx_pkt_len = host_info->max_rx_pkt_len;
940         PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n",
941                                 host_info->max_rx_pkt_len);
942
943         return 0;
944 }
945
946 /*
947  * This function is based on probe() function in avp_pci.c
948  * It returns 0 on success.
949  */
950 static int
951 eth_avp_dev_init(struct rte_eth_dev *eth_dev)
952 {
953         struct avp_dev *avp =
954                 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
955         struct rte_pci_device *pci_dev;
956         int ret;
957
958         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
959         eth_dev->dev_ops = &avp_eth_dev_ops;
960         eth_dev->rx_pkt_burst = &avp_recv_pkts;
961         eth_dev->tx_pkt_burst = &avp_xmit_pkts;
962
963         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
964                 /*
965                  * no setup required on secondary processes.  All data is saved
966                  * in dev_private by the primary process. All resource should
967                  * be mapped to the same virtual address so all pointers should
968                  * be valid.
969                  */
970                 if (eth_dev->data->scattered_rx) {
971                         PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
972                         eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
973                         eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
974                 }
975                 return 0;
976         }
977
978         rte_eth_copy_pci_info(eth_dev, pci_dev);
979
980         /* Check current migration status */
981         if (avp_dev_migration_pending(eth_dev)) {
982                 PMD_DRV_LOG(ERR, "VM live migration operation in progress\n");
983                 return -EBUSY;
984         }
985
986         /* Check BAR resources */
987         ret = avp_dev_check_regions(eth_dev);
988         if (ret < 0) {
989                 PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n",
990                             ret);
991                 return ret;
992         }
993
994         /* Enable interrupts */
995         ret = avp_dev_setup_interrupts(eth_dev);
996         if (ret < 0) {
997                 PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret);
998                 return ret;
999         }
1000
1001         /* Handle each subtype */
1002         ret = avp_dev_create(pci_dev, eth_dev);
1003         if (ret < 0) {
1004                 PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret);
1005                 return ret;
1006         }
1007
1008         /* Allocate memory for storing MAC addresses */
1009         eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev",
1010                                         RTE_ETHER_ADDR_LEN, 0);
1011         if (eth_dev->data->mac_addrs == NULL) {
1012                 PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n",
1013                             RTE_ETHER_ADDR_LEN);
1014                 return -ENOMEM;
1015         }
1016
1017         /* Get a mac from device config */
1018         rte_ether_addr_copy(&avp->ethaddr, &eth_dev->data->mac_addrs[0]);
1019
1020         return 0;
1021 }
1022
1023 static int
1024 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev)
1025 {
1026         int ret;
1027
1028         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1029                 return -EPERM;
1030
1031         if (eth_dev->data == NULL)
1032                 return 0;
1033
1034         ret = avp_dev_disable_interrupts(eth_dev);
1035         if (ret != 0) {
1036                 PMD_DRV_LOG(ERR, "Failed to disable interrupts, ret=%d\n", ret);
1037                 return ret;
1038         }
1039
1040         return 0;
1041 }
1042
1043 static int
1044 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1045                   struct rte_pci_device *pci_dev)
1046 {
1047         return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter),
1048                         eth_avp_dev_init);
1049 }
1050
1051 static int
1052 eth_avp_pci_remove(struct rte_pci_device *pci_dev)
1053 {
1054         return rte_eth_dev_pci_generic_remove(pci_dev,
1055                                               eth_avp_dev_uninit);
1056 }
1057
1058 static struct rte_pci_driver rte_avp_pmd = {
1059         .id_table = pci_id_avp_map,
1060         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1061         .probe = eth_avp_pci_probe,
1062         .remove = eth_avp_pci_remove,
1063 };
1064
1065 static int
1066 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev,
1067                          struct avp_dev *avp)
1068 {
1069         unsigned int max_rx_pkt_len;
1070
1071         max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
1072
1073         if ((max_rx_pkt_len > avp->guest_mbuf_size) ||
1074             (max_rx_pkt_len > avp->host_mbuf_size)) {
1075                 /*
1076                  * If the guest MTU is greater than either the host or guest
1077                  * buffers then chained mbufs have to be enabled in the TX
1078                  * direction.  It is assumed that the application will not need
1079                  * to send packets larger than their max_rx_pkt_len (MRU).
1080                  */
1081                 return 1;
1082         }
1083
1084         if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) ||
1085             (avp->max_rx_pkt_len > avp->host_mbuf_size)) {
1086                 /*
1087                  * If the host MRU is greater than its own mbuf size or the
1088                  * guest mbuf size then chained mbufs have to be enabled in the
1089                  * RX direction.
1090                  */
1091                 return 1;
1092         }
1093
1094         return 0;
1095 }
1096
1097 static int
1098 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
1099                        uint16_t rx_queue_id,
1100                        uint16_t nb_rx_desc,
1101                        unsigned int socket_id,
1102                        const struct rte_eth_rxconf *rx_conf,
1103                        struct rte_mempool *pool)
1104 {
1105         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1106         struct rte_pktmbuf_pool_private *mbp_priv;
1107         struct avp_queue *rxq;
1108
1109         if (rx_queue_id >= eth_dev->data->nb_rx_queues) {
1110                 PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n",
1111                             rx_queue_id, eth_dev->data->nb_rx_queues);
1112                 return -EINVAL;
1113         }
1114
1115         /* Save mbuf pool pointer */
1116         avp->pool = pool;
1117
1118         /* Save the local mbuf size */
1119         mbp_priv = rte_mempool_get_priv(pool);
1120         avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size);
1121         avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM;
1122
1123         if (avp_dev_enable_scattered(eth_dev, avp)) {
1124                 if (!eth_dev->data->scattered_rx) {
1125                         PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
1126                         eth_dev->data->scattered_rx = 1;
1127                         eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
1128                         eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
1129                 }
1130         }
1131
1132         PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n",
1133                     avp->max_rx_pkt_len,
1134                     eth_dev->data->dev_conf.rxmode.max_rx_pkt_len,
1135                     avp->host_mbuf_size,
1136                     avp->guest_mbuf_size);
1137
1138         /* allocate a queue object */
1139         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue),
1140                                  RTE_CACHE_LINE_SIZE, socket_id);
1141         if (rxq == NULL) {
1142                 PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n");
1143                 return -ENOMEM;
1144         }
1145
1146         /* save back pointers to AVP and Ethernet devices */
1147         rxq->avp = avp;
1148         rxq->dev_data = eth_dev->data;
1149         eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq;
1150
1151         /* setup the queue receive mapping for the current queue. */
1152         _avp_set_rx_queue_mappings(eth_dev, rx_queue_id);
1153
1154         PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq);
1155
1156         (void)nb_rx_desc;
1157         (void)rx_conf;
1158         return 0;
1159 }
1160
1161 static int
1162 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev,
1163                        uint16_t tx_queue_id,
1164                        uint16_t nb_tx_desc,
1165                        unsigned int socket_id,
1166                        const struct rte_eth_txconf *tx_conf)
1167 {
1168         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1169         struct avp_queue *txq;
1170
1171         if (tx_queue_id >= eth_dev->data->nb_tx_queues) {
1172                 PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n",
1173                             tx_queue_id, eth_dev->data->nb_tx_queues);
1174                 return -EINVAL;
1175         }
1176
1177         /* allocate a queue object */
1178         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue),
1179                                  RTE_CACHE_LINE_SIZE, socket_id);
1180         if (txq == NULL) {
1181                 PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n");
1182                 return -ENOMEM;
1183         }
1184
1185         /* only the configured set of transmit queues are used */
1186         txq->queue_id = tx_queue_id;
1187         txq->queue_base = tx_queue_id;
1188         txq->queue_limit = tx_queue_id;
1189
1190         /* save back pointers to AVP and Ethernet devices */
1191         txq->avp = avp;
1192         txq->dev_data = eth_dev->data;
1193         eth_dev->data->tx_queues[tx_queue_id] = (void *)txq;
1194
1195         PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq);
1196
1197         (void)nb_tx_desc;
1198         (void)tx_conf;
1199         return 0;
1200 }
1201
1202 static inline int
1203 _avp_cmp_ether_addr(struct rte_ether_addr *a, struct rte_ether_addr *b)
1204 {
1205         uint16_t *_a = (uint16_t *)&a->addr_bytes[0];
1206         uint16_t *_b = (uint16_t *)&b->addr_bytes[0];
1207         return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]);
1208 }
1209
1210 static inline int
1211 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m)
1212 {
1213         struct rte_ether_hdr *eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1214
1215         if (likely(_avp_cmp_ether_addr(&avp->ethaddr, &eth->d_addr) == 0)) {
1216                 /* allow all packets destined to our address */
1217                 return 0;
1218         }
1219
1220         if (likely(rte_is_broadcast_ether_addr(&eth->d_addr))) {
1221                 /* allow all broadcast packets */
1222                 return 0;
1223         }
1224
1225         if (likely(rte_is_multicast_ether_addr(&eth->d_addr))) {
1226                 /* allow all multicast packets */
1227                 return 0;
1228         }
1229
1230         if (avp->flags & AVP_F_PROMISC) {
1231                 /* allow all packets when in promiscuous mode */
1232                 return 0;
1233         }
1234
1235         return -1;
1236 }
1237
1238 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1239 static inline void
1240 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf)
1241 {
1242         struct rte_avp_desc *first_buf;
1243         struct rte_avp_desc *pkt_buf;
1244         unsigned int pkt_len;
1245         unsigned int nb_segs;
1246         void *pkt_data;
1247         unsigned int i;
1248
1249         first_buf = avp_dev_translate_buffer(avp, buf);
1250
1251         i = 0;
1252         pkt_len = 0;
1253         nb_segs = first_buf->nb_segs;
1254         do {
1255                 /* Adjust pointers for guest addressing */
1256                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1257                 if (pkt_buf == NULL)
1258                         rte_panic("bad buffer: segment %u has an invalid address %p\n",
1259                                   i, buf);
1260                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1261                 if (pkt_data == NULL)
1262                         rte_panic("bad buffer: segment %u has a NULL data pointer\n",
1263                                   i);
1264                 if (pkt_buf->data_len == 0)
1265                         rte_panic("bad buffer: segment %u has 0 data length\n",
1266                                   i);
1267                 pkt_len += pkt_buf->data_len;
1268                 nb_segs--;
1269                 i++;
1270
1271         } while (nb_segs && (buf = pkt_buf->next) != NULL);
1272
1273         if (nb_segs != 0)
1274                 rte_panic("bad buffer: expected %u segments found %u\n",
1275                           first_buf->nb_segs, (first_buf->nb_segs - nb_segs));
1276         if (pkt_len != first_buf->pkt_len)
1277                 rte_panic("bad buffer: expected length %u found %u\n",
1278                           first_buf->pkt_len, pkt_len);
1279 }
1280
1281 #define avp_dev_buffer_sanity_check(a, b) \
1282         __avp_dev_buffer_sanity_check((a), (b))
1283
1284 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */
1285
1286 #define avp_dev_buffer_sanity_check(a, b) do {} while (0)
1287
1288 #endif
1289
1290 /*
1291  * Copy a host buffer chain to a set of mbufs.  This function assumes that
1292  * there exactly the required number of mbufs to copy all source bytes.
1293  */
1294 static inline struct rte_mbuf *
1295 avp_dev_copy_from_buffers(struct avp_dev *avp,
1296                           struct rte_avp_desc *buf,
1297                           struct rte_mbuf **mbufs,
1298                           unsigned int count)
1299 {
1300         struct rte_mbuf *m_previous = NULL;
1301         struct rte_avp_desc *pkt_buf;
1302         unsigned int total_length = 0;
1303         unsigned int copy_length;
1304         unsigned int src_offset;
1305         struct rte_mbuf *m;
1306         uint16_t ol_flags;
1307         uint16_t vlan_tci;
1308         void *pkt_data;
1309         unsigned int i;
1310
1311         avp_dev_buffer_sanity_check(avp, buf);
1312
1313         /* setup the first source buffer */
1314         pkt_buf = avp_dev_translate_buffer(avp, buf);
1315         pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1316         total_length = pkt_buf->pkt_len;
1317         src_offset = 0;
1318
1319         if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1320                 ol_flags = PKT_RX_VLAN;
1321                 vlan_tci = pkt_buf->vlan_tci;
1322         } else {
1323                 ol_flags = 0;
1324                 vlan_tci = 0;
1325         }
1326
1327         for (i = 0; (i < count) && (buf != NULL); i++) {
1328                 /* fill each destination buffer */
1329                 m = mbufs[i];
1330
1331                 if (m_previous != NULL)
1332                         m_previous->next = m;
1333
1334                 m_previous = m;
1335
1336                 do {
1337                         /*
1338                          * Copy as many source buffers as will fit in the
1339                          * destination buffer.
1340                          */
1341                         copy_length = RTE_MIN((avp->guest_mbuf_size -
1342                                                rte_pktmbuf_data_len(m)),
1343                                               (pkt_buf->data_len -
1344                                                src_offset));
1345                         rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1346                                                rte_pktmbuf_data_len(m)),
1347                                    RTE_PTR_ADD(pkt_data, src_offset),
1348                                    copy_length);
1349                         rte_pktmbuf_data_len(m) += copy_length;
1350                         src_offset += copy_length;
1351
1352                         if (likely(src_offset == pkt_buf->data_len)) {
1353                                 /* need a new source buffer */
1354                                 buf = pkt_buf->next;
1355                                 if (buf != NULL) {
1356                                         pkt_buf = avp_dev_translate_buffer(
1357                                                 avp, buf);
1358                                         pkt_data = avp_dev_translate_buffer(
1359                                                 avp, pkt_buf->data);
1360                                         src_offset = 0;
1361                                 }
1362                         }
1363
1364                         if (unlikely(rte_pktmbuf_data_len(m) ==
1365                                      avp->guest_mbuf_size)) {
1366                                 /* need a new destination mbuf */
1367                                 break;
1368                         }
1369
1370                 } while (buf != NULL);
1371         }
1372
1373         m = mbufs[0];
1374         m->ol_flags = ol_flags;
1375         m->nb_segs = count;
1376         rte_pktmbuf_pkt_len(m) = total_length;
1377         m->vlan_tci = vlan_tci;
1378
1379         __rte_mbuf_sanity_check(m, 1);
1380
1381         return m;
1382 }
1383
1384 static uint16_t
1385 avp_recv_scattered_pkts(void *rx_queue,
1386                         struct rte_mbuf **rx_pkts,
1387                         uint16_t nb_pkts)
1388 {
1389         struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1390         struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1391         struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS];
1392         struct avp_dev *avp = rxq->avp;
1393         struct rte_avp_desc *pkt_buf;
1394         struct rte_avp_fifo *free_q;
1395         struct rte_avp_fifo *rx_q;
1396         struct rte_avp_desc *buf;
1397         unsigned int count, avail, n;
1398         unsigned int guest_mbuf_size;
1399         struct rte_mbuf *m;
1400         unsigned int required;
1401         unsigned int buf_len;
1402         unsigned int port_id;
1403         unsigned int i;
1404
1405         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1406                 /* VM live migration in progress */
1407                 return 0;
1408         }
1409
1410         guest_mbuf_size = avp->guest_mbuf_size;
1411         port_id = avp->port_id;
1412         rx_q = avp->rx_q[rxq->queue_id];
1413         free_q = avp->free_q[rxq->queue_id];
1414
1415         /* setup next queue to service */
1416         rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1417                 (rxq->queue_id + 1) : rxq->queue_base;
1418
1419         /* determine how many slots are available in the free queue */
1420         count = avp_fifo_free_count(free_q);
1421
1422         /* determine how many packets are available in the rx queue */
1423         avail = avp_fifo_count(rx_q);
1424
1425         /* determine how many packets can be received */
1426         count = RTE_MIN(count, avail);
1427         count = RTE_MIN(count, nb_pkts);
1428         count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1429
1430         if (unlikely(count == 0)) {
1431                 /* no free buffers, or no buffers on the rx queue */
1432                 return 0;
1433         }
1434
1435         /* retrieve pending packets */
1436         n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1437         PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1438                    count, rx_q);
1439
1440         count = 0;
1441         for (i = 0; i < n; i++) {
1442                 /* prefetch next entry while processing current one */
1443                 if (i + 1 < n) {
1444                         pkt_buf = avp_dev_translate_buffer(avp,
1445                                                            avp_bufs[i + 1]);
1446                         rte_prefetch0(pkt_buf);
1447                 }
1448                 buf = avp_bufs[i];
1449
1450                 /* Peek into the first buffer to determine the total length */
1451                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1452                 buf_len = pkt_buf->pkt_len;
1453
1454                 /* Allocate enough mbufs to receive the entire packet */
1455                 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size;
1456                 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) {
1457                         rxq->dev_data->rx_mbuf_alloc_failed++;
1458                         continue;
1459                 }
1460
1461                 /* Copy the data from the buffers to our mbufs */
1462                 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required);
1463
1464                 /* finalize mbuf */
1465                 m->port = port_id;
1466
1467                 if (_avp_mac_filter(avp, m) != 0) {
1468                         /* silently discard packets not destined to our MAC */
1469                         rte_pktmbuf_free(m);
1470                         continue;
1471                 }
1472
1473                 /* return new mbuf to caller */
1474                 rx_pkts[count++] = m;
1475                 rxq->bytes += buf_len;
1476         }
1477
1478         rxq->packets += count;
1479
1480         /* return the buffers to the free queue */
1481         avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1482
1483         return count;
1484 }
1485
1486
1487 static uint16_t
1488 avp_recv_pkts(void *rx_queue,
1489               struct rte_mbuf **rx_pkts,
1490               uint16_t nb_pkts)
1491 {
1492         struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1493         struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1494         struct avp_dev *avp = rxq->avp;
1495         struct rte_avp_desc *pkt_buf;
1496         struct rte_avp_fifo *free_q;
1497         struct rte_avp_fifo *rx_q;
1498         unsigned int count, avail, n;
1499         unsigned int pkt_len;
1500         struct rte_mbuf *m;
1501         char *pkt_data;
1502         unsigned int i;
1503
1504         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1505                 /* VM live migration in progress */
1506                 return 0;
1507         }
1508
1509         rx_q = avp->rx_q[rxq->queue_id];
1510         free_q = avp->free_q[rxq->queue_id];
1511
1512         /* setup next queue to service */
1513         rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1514                 (rxq->queue_id + 1) : rxq->queue_base;
1515
1516         /* determine how many slots are available in the free queue */
1517         count = avp_fifo_free_count(free_q);
1518
1519         /* determine how many packets are available in the rx queue */
1520         avail = avp_fifo_count(rx_q);
1521
1522         /* determine how many packets can be received */
1523         count = RTE_MIN(count, avail);
1524         count = RTE_MIN(count, nb_pkts);
1525         count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1526
1527         if (unlikely(count == 0)) {
1528                 /* no free buffers, or no buffers on the rx queue */
1529                 return 0;
1530         }
1531
1532         /* retrieve pending packets */
1533         n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1534         PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1535                    count, rx_q);
1536
1537         count = 0;
1538         for (i = 0; i < n; i++) {
1539                 /* prefetch next entry while processing current one */
1540                 if (i < n - 1) {
1541                         pkt_buf = avp_dev_translate_buffer(avp,
1542                                                            avp_bufs[i + 1]);
1543                         rte_prefetch0(pkt_buf);
1544                 }
1545
1546                 /* Adjust host pointers for guest addressing */
1547                 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1548                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1549                 pkt_len = pkt_buf->pkt_len;
1550
1551                 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1552                              (pkt_buf->nb_segs > 1))) {
1553                         /*
1554                          * application should be using the scattered receive
1555                          * function
1556                          */
1557                         rxq->errors++;
1558                         continue;
1559                 }
1560
1561                 /* process each packet to be transmitted */
1562                 m = rte_pktmbuf_alloc(avp->pool);
1563                 if (unlikely(m == NULL)) {
1564                         rxq->dev_data->rx_mbuf_alloc_failed++;
1565                         continue;
1566                 }
1567
1568                 /* copy data out of the host buffer to our buffer */
1569                 m->data_off = RTE_PKTMBUF_HEADROOM;
1570                 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len);
1571
1572                 /* initialize the local mbuf */
1573                 rte_pktmbuf_data_len(m) = pkt_len;
1574                 rte_pktmbuf_pkt_len(m) = pkt_len;
1575                 m->port = avp->port_id;
1576
1577                 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1578                         m->ol_flags = PKT_RX_VLAN;
1579                         m->vlan_tci = pkt_buf->vlan_tci;
1580                 }
1581
1582                 if (_avp_mac_filter(avp, m) != 0) {
1583                         /* silently discard packets not destined to our MAC */
1584                         rte_pktmbuf_free(m);
1585                         continue;
1586                 }
1587
1588                 /* return new mbuf to caller */
1589                 rx_pkts[count++] = m;
1590                 rxq->bytes += pkt_len;
1591         }
1592
1593         rxq->packets += count;
1594
1595         /* return the buffers to the free queue */
1596         avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1597
1598         return count;
1599 }
1600
1601 /*
1602  * Copy a chained mbuf to a set of host buffers.  This function assumes that
1603  * there are sufficient destination buffers to contain the entire source
1604  * packet.
1605  */
1606 static inline uint16_t
1607 avp_dev_copy_to_buffers(struct avp_dev *avp,
1608                         struct rte_mbuf *mbuf,
1609                         struct rte_avp_desc **buffers,
1610                         unsigned int count)
1611 {
1612         struct rte_avp_desc *previous_buf = NULL;
1613         struct rte_avp_desc *first_buf = NULL;
1614         struct rte_avp_desc *pkt_buf;
1615         struct rte_avp_desc *buf;
1616         size_t total_length;
1617         struct rte_mbuf *m;
1618         size_t copy_length;
1619         size_t src_offset;
1620         char *pkt_data;
1621         unsigned int i;
1622
1623         __rte_mbuf_sanity_check(mbuf, 1);
1624
1625         m = mbuf;
1626         src_offset = 0;
1627         total_length = rte_pktmbuf_pkt_len(m);
1628         for (i = 0; (i < count) && (m != NULL); i++) {
1629                 /* fill each destination buffer */
1630                 buf = buffers[i];
1631
1632                 if (i < count - 1) {
1633                         /* prefetch next entry while processing this one */
1634                         pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]);
1635                         rte_prefetch0(pkt_buf);
1636                 }
1637
1638                 /* Adjust pointers for guest addressing */
1639                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1640                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1641
1642                 /* setup the buffer chain */
1643                 if (previous_buf != NULL)
1644                         previous_buf->next = buf;
1645                 else
1646                         first_buf = pkt_buf;
1647
1648                 previous_buf = pkt_buf;
1649
1650                 do {
1651                         /*
1652                          * copy as many source mbuf segments as will fit in the
1653                          * destination buffer.
1654                          */
1655                         copy_length = RTE_MIN((avp->host_mbuf_size -
1656                                                pkt_buf->data_len),
1657                                               (rte_pktmbuf_data_len(m) -
1658                                                src_offset));
1659                         rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len),
1660                                    RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1661                                                src_offset),
1662                                    copy_length);
1663                         pkt_buf->data_len += copy_length;
1664                         src_offset += copy_length;
1665
1666                         if (likely(src_offset == rte_pktmbuf_data_len(m))) {
1667                                 /* need a new source buffer */
1668                                 m = m->next;
1669                                 src_offset = 0;
1670                         }
1671
1672                         if (unlikely(pkt_buf->data_len ==
1673                                      avp->host_mbuf_size)) {
1674                                 /* need a new destination buffer */
1675                                 break;
1676                         }
1677
1678                 } while (m != NULL);
1679         }
1680
1681         first_buf->nb_segs = count;
1682         first_buf->pkt_len = total_length;
1683
1684         if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1685                 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1686                 first_buf->vlan_tci = mbuf->vlan_tci;
1687         }
1688
1689         avp_dev_buffer_sanity_check(avp, buffers[0]);
1690
1691         return total_length;
1692 }
1693
1694
1695 static uint16_t
1696 avp_xmit_scattered_pkts(void *tx_queue,
1697                         struct rte_mbuf **tx_pkts,
1698                         uint16_t nb_pkts)
1699 {
1700         struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST *
1701                                        RTE_AVP_MAX_MBUF_SEGMENTS)];
1702         struct avp_queue *txq = (struct avp_queue *)tx_queue;
1703         struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST];
1704         struct avp_dev *avp = txq->avp;
1705         struct rte_avp_fifo *alloc_q;
1706         struct rte_avp_fifo *tx_q;
1707         unsigned int count, avail, n;
1708         unsigned int orig_nb_pkts;
1709         struct rte_mbuf *m;
1710         unsigned int required;
1711         unsigned int segments;
1712         unsigned int tx_bytes;
1713         unsigned int i;
1714
1715         orig_nb_pkts = nb_pkts;
1716         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1717                 /* VM live migration in progress */
1718                 /* TODO ... buffer for X packets then drop? */
1719                 txq->errors += nb_pkts;
1720                 return 0;
1721         }
1722
1723         tx_q = avp->tx_q[txq->queue_id];
1724         alloc_q = avp->alloc_q[txq->queue_id];
1725
1726         /* limit the number of transmitted packets to the max burst size */
1727         if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1728                 nb_pkts = AVP_MAX_TX_BURST;
1729
1730         /* determine how many buffers are available to copy into */
1731         avail = avp_fifo_count(alloc_q);
1732         if (unlikely(avail > (AVP_MAX_TX_BURST *
1733                               RTE_AVP_MAX_MBUF_SEGMENTS)))
1734                 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS;
1735
1736         /* determine how many slots are available in the transmit queue */
1737         count = avp_fifo_free_count(tx_q);
1738
1739         /* determine how many packets can be sent */
1740         nb_pkts = RTE_MIN(count, nb_pkts);
1741
1742         /* determine how many packets will fit in the available buffers */
1743         count = 0;
1744         segments = 0;
1745         for (i = 0; i < nb_pkts; i++) {
1746                 m = tx_pkts[i];
1747                 if (likely(i < (unsigned int)nb_pkts - 1)) {
1748                         /* prefetch next entry while processing this one */
1749                         rte_prefetch0(tx_pkts[i + 1]);
1750                 }
1751                 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1752                         avp->host_mbuf_size;
1753
1754                 if (unlikely((required == 0) ||
1755                              (required > RTE_AVP_MAX_MBUF_SEGMENTS)))
1756                         break;
1757                 else if (unlikely(required + segments > avail))
1758                         break;
1759                 segments += required;
1760                 count++;
1761         }
1762         nb_pkts = count;
1763
1764         if (unlikely(nb_pkts == 0)) {
1765                 /* no available buffers, or no space on the tx queue */
1766                 txq->errors += orig_nb_pkts;
1767                 return 0;
1768         }
1769
1770         PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1771                    nb_pkts, tx_q);
1772
1773         /* retrieve sufficient send buffers */
1774         n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments);
1775         if (unlikely(n != segments)) {
1776                 PMD_TX_LOG(DEBUG, "Failed to allocate buffers "
1777                            "n=%u, segments=%u, orig=%u\n",
1778                            n, segments, orig_nb_pkts);
1779                 txq->errors += orig_nb_pkts;
1780                 return 0;
1781         }
1782
1783         tx_bytes = 0;
1784         count = 0;
1785         for (i = 0; i < nb_pkts; i++) {
1786                 /* process each packet to be transmitted */
1787                 m = tx_pkts[i];
1788
1789                 /* determine how many buffers are required for this packet */
1790                 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1791                         avp->host_mbuf_size;
1792
1793                 tx_bytes += avp_dev_copy_to_buffers(avp, m,
1794                                                     &avp_bufs[count], required);
1795                 tx_bufs[i] = avp_bufs[count];
1796                 count += required;
1797
1798                 /* free the original mbuf */
1799                 rte_pktmbuf_free(m);
1800         }
1801
1802         txq->packets += nb_pkts;
1803         txq->bytes += tx_bytes;
1804
1805 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1806         for (i = 0; i < nb_pkts; i++)
1807                 avp_dev_buffer_sanity_check(avp, tx_bufs[i]);
1808 #endif
1809
1810         /* send the packets */
1811         n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts);
1812         if (unlikely(n != orig_nb_pkts))
1813                 txq->errors += (orig_nb_pkts - n);
1814
1815         return n;
1816 }
1817
1818
1819 static uint16_t
1820 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1821 {
1822         struct avp_queue *txq = (struct avp_queue *)tx_queue;
1823         struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST];
1824         struct avp_dev *avp = txq->avp;
1825         struct rte_avp_desc *pkt_buf;
1826         struct rte_avp_fifo *alloc_q;
1827         struct rte_avp_fifo *tx_q;
1828         unsigned int count, avail, n;
1829         struct rte_mbuf *m;
1830         unsigned int pkt_len;
1831         unsigned int tx_bytes;
1832         char *pkt_data;
1833         unsigned int i;
1834
1835         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1836                 /* VM live migration in progress */
1837                 /* TODO ... buffer for X packets then drop?! */
1838                 txq->errors++;
1839                 return 0;
1840         }
1841
1842         tx_q = avp->tx_q[txq->queue_id];
1843         alloc_q = avp->alloc_q[txq->queue_id];
1844
1845         /* limit the number of transmitted packets to the max burst size */
1846         if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1847                 nb_pkts = AVP_MAX_TX_BURST;
1848
1849         /* determine how many buffers are available to copy into */
1850         avail = avp_fifo_count(alloc_q);
1851
1852         /* determine how many slots are available in the transmit queue */
1853         count = avp_fifo_free_count(tx_q);
1854
1855         /* determine how many packets can be sent */
1856         count = RTE_MIN(count, avail);
1857         count = RTE_MIN(count, nb_pkts);
1858
1859         if (unlikely(count == 0)) {
1860                 /* no available buffers, or no space on the tx queue */
1861                 txq->errors += nb_pkts;
1862                 return 0;
1863         }
1864
1865         PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1866                    count, tx_q);
1867
1868         /* retrieve sufficient send buffers */
1869         n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count);
1870         if (unlikely(n != count)) {
1871                 txq->errors++;
1872                 return 0;
1873         }
1874
1875         tx_bytes = 0;
1876         for (i = 0; i < count; i++) {
1877                 /* prefetch next entry while processing the current one */
1878                 if (i < count - 1) {
1879                         pkt_buf = avp_dev_translate_buffer(avp,
1880                                                            avp_bufs[i + 1]);
1881                         rte_prefetch0(pkt_buf);
1882                 }
1883
1884                 /* process each packet to be transmitted */
1885                 m = tx_pkts[i];
1886
1887                 /* Adjust pointers for guest addressing */
1888                 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1889                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1890                 pkt_len = rte_pktmbuf_pkt_len(m);
1891
1892                 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1893                                          (pkt_len > avp->host_mbuf_size))) {
1894                         /*
1895                          * application should be using the scattered transmit
1896                          * function; send it truncated to avoid the performance
1897                          * hit of having to manage returning the already
1898                          * allocated buffer to the free list.  This should not
1899                          * happen since the application should have set the
1900                          * max_rx_pkt_len based on its MTU and it should be
1901                          * policing its own packet sizes.
1902                          */
1903                         txq->errors++;
1904                         pkt_len = RTE_MIN(avp->guest_mbuf_size,
1905                                           avp->host_mbuf_size);
1906                 }
1907
1908                 /* copy data out of our mbuf and into the AVP buffer */
1909                 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len);
1910                 pkt_buf->pkt_len = pkt_len;
1911                 pkt_buf->data_len = pkt_len;
1912                 pkt_buf->nb_segs = 1;
1913                 pkt_buf->next = NULL;
1914
1915                 if (m->ol_flags & PKT_TX_VLAN_PKT) {
1916                         pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1917                         pkt_buf->vlan_tci = m->vlan_tci;
1918                 }
1919
1920                 tx_bytes += pkt_len;
1921
1922                 /* free the original mbuf */
1923                 rte_pktmbuf_free(m);
1924         }
1925
1926         txq->packets += count;
1927         txq->bytes += tx_bytes;
1928
1929         /* send the packets */
1930         n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count);
1931
1932         return n;
1933 }
1934
1935 static void
1936 avp_dev_rx_queue_release(void *rx_queue)
1937 {
1938         struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1939         struct avp_dev *avp = rxq->avp;
1940         struct rte_eth_dev_data *data = avp->dev_data;
1941         unsigned int i;
1942
1943         for (i = 0; i < avp->num_rx_queues; i++) {
1944                 if (data->rx_queues[i] == rxq)
1945                         data->rx_queues[i] = NULL;
1946         }
1947 }
1948
1949 static void
1950 avp_dev_tx_queue_release(void *tx_queue)
1951 {
1952         struct avp_queue *txq = (struct avp_queue *)tx_queue;
1953         struct avp_dev *avp = txq->avp;
1954         struct rte_eth_dev_data *data = avp->dev_data;
1955         unsigned int i;
1956
1957         for (i = 0; i < avp->num_tx_queues; i++) {
1958                 if (data->tx_queues[i] == txq)
1959                         data->tx_queues[i] = NULL;
1960         }
1961 }
1962
1963 static int
1964 avp_dev_configure(struct rte_eth_dev *eth_dev)
1965 {
1966         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1967         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1968         struct rte_avp_device_info *host_info;
1969         struct rte_avp_device_config config;
1970         int mask = 0;
1971         void *addr;
1972         int ret;
1973
1974         rte_spinlock_lock(&avp->lock);
1975         if (avp->flags & AVP_F_DETACHED) {
1976                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
1977                 ret = -ENOTSUP;
1978                 goto unlock;
1979         }
1980
1981         addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
1982         host_info = (struct rte_avp_device_info *)addr;
1983
1984         /* Setup required number of queues */
1985         _avp_set_queue_counts(eth_dev);
1986
1987         mask = (ETH_VLAN_STRIP_MASK |
1988                 ETH_VLAN_FILTER_MASK |
1989                 ETH_VLAN_EXTEND_MASK);
1990         ret = avp_vlan_offload_set(eth_dev, mask);
1991         if (ret < 0) {
1992                 PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n",
1993                             ret);
1994                 goto unlock;
1995         }
1996
1997         /* update device config */
1998         memset(&config, 0, sizeof(config));
1999         config.device_id = host_info->device_id;
2000         config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
2001         config.driver_version = AVP_DPDK_DRIVER_VERSION;
2002         config.features = avp->features;
2003         config.num_tx_queues = avp->num_tx_queues;
2004         config.num_rx_queues = avp->num_rx_queues;
2005
2006         ret = avp_dev_ctrl_set_config(eth_dev, &config);
2007         if (ret < 0) {
2008                 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
2009                             ret);
2010                 goto unlock;
2011         }
2012
2013         avp->flags |= AVP_F_CONFIGURED;
2014         ret = 0;
2015
2016 unlock:
2017         rte_spinlock_unlock(&avp->lock);
2018         return ret;
2019 }
2020
2021 static int
2022 avp_dev_start(struct rte_eth_dev *eth_dev)
2023 {
2024         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2025         int ret;
2026
2027         rte_spinlock_lock(&avp->lock);
2028         if (avp->flags & AVP_F_DETACHED) {
2029                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2030                 ret = -ENOTSUP;
2031                 goto unlock;
2032         }
2033
2034         /* update link state */
2035         ret = avp_dev_ctrl_set_link_state(eth_dev, 1);
2036         if (ret < 0) {
2037                 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2038                             ret);
2039                 goto unlock;
2040         }
2041
2042         /* remember current link state */
2043         avp->flags |= AVP_F_LINKUP;
2044
2045         ret = 0;
2046
2047 unlock:
2048         rte_spinlock_unlock(&avp->lock);
2049         return ret;
2050 }
2051
2052 static void
2053 avp_dev_stop(struct rte_eth_dev *eth_dev)
2054 {
2055         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2056         int ret;
2057
2058         rte_spinlock_lock(&avp->lock);
2059         if (avp->flags & AVP_F_DETACHED) {
2060                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2061                 goto unlock;
2062         }
2063
2064         /* remember current link state */
2065         avp->flags &= ~AVP_F_LINKUP;
2066
2067         /* update link state */
2068         ret = avp_dev_ctrl_set_link_state(eth_dev, 0);
2069         if (ret < 0) {
2070                 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2071                             ret);
2072         }
2073
2074 unlock:
2075         rte_spinlock_unlock(&avp->lock);
2076 }
2077
2078 static void
2079 avp_dev_close(struct rte_eth_dev *eth_dev)
2080 {
2081         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2082         int ret;
2083
2084         rte_spinlock_lock(&avp->lock);
2085         if (avp->flags & AVP_F_DETACHED) {
2086                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2087                 goto unlock;
2088         }
2089
2090         /* remember current link state */
2091         avp->flags &= ~AVP_F_LINKUP;
2092         avp->flags &= ~AVP_F_CONFIGURED;
2093
2094         ret = avp_dev_disable_interrupts(eth_dev);
2095         if (ret < 0) {
2096                 PMD_DRV_LOG(ERR, "Failed to disable interrupts\n");
2097                 /* continue */
2098         }
2099
2100         /* update device state */
2101         ret = avp_dev_ctrl_shutdown(eth_dev);
2102         if (ret < 0) {
2103                 PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n",
2104                             ret);
2105                 /* continue */
2106         }
2107
2108 unlock:
2109         rte_spinlock_unlock(&avp->lock);
2110 }
2111
2112 static int
2113 avp_dev_link_update(struct rte_eth_dev *eth_dev,
2114                                         __rte_unused int wait_to_complete)
2115 {
2116         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2117         struct rte_eth_link *link = &eth_dev->data->dev_link;
2118
2119         link->link_speed = ETH_SPEED_NUM_10G;
2120         link->link_duplex = ETH_LINK_FULL_DUPLEX;
2121         link->link_status = !!(avp->flags & AVP_F_LINKUP);
2122
2123         return -1;
2124 }
2125
2126 static void
2127 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev)
2128 {
2129         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2130
2131         rte_spinlock_lock(&avp->lock);
2132         if ((avp->flags & AVP_F_PROMISC) == 0) {
2133                 avp->flags |= AVP_F_PROMISC;
2134                 PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n",
2135                             eth_dev->data->port_id);
2136         }
2137         rte_spinlock_unlock(&avp->lock);
2138 }
2139
2140 static void
2141 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev)
2142 {
2143         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2144
2145         rte_spinlock_lock(&avp->lock);
2146         if ((avp->flags & AVP_F_PROMISC) != 0) {
2147                 avp->flags &= ~AVP_F_PROMISC;
2148                 PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n",
2149                             eth_dev->data->port_id);
2150         }
2151         rte_spinlock_unlock(&avp->lock);
2152 }
2153
2154 static void
2155 avp_dev_info_get(struct rte_eth_dev *eth_dev,
2156                  struct rte_eth_dev_info *dev_info)
2157 {
2158         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2159
2160         dev_info->max_rx_queues = avp->max_rx_queues;
2161         dev_info->max_tx_queues = avp->max_tx_queues;
2162         dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE;
2163         dev_info->max_rx_pktlen = avp->max_rx_pkt_len;
2164         dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS;
2165         if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2166                 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
2167                 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
2168         }
2169 }
2170
2171 static int
2172 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
2173 {
2174         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2175         struct rte_eth_conf *dev_conf = &eth_dev->data->dev_conf;
2176         uint64_t offloads = dev_conf->rxmode.offloads;
2177
2178         if (mask & ETH_VLAN_STRIP_MASK) {
2179                 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2180                         if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2181                                 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD;
2182                         else
2183                                 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD;
2184                 } else {
2185                         PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n");
2186                 }
2187         }
2188
2189         if (mask & ETH_VLAN_FILTER_MASK) {
2190                 if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2191                         PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n");
2192         }
2193
2194         if (mask & ETH_VLAN_EXTEND_MASK) {
2195                 if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2196                         PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n");
2197         }
2198
2199         return 0;
2200 }
2201
2202 static int
2203 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats)
2204 {
2205         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2206         unsigned int i;
2207
2208         for (i = 0; i < avp->num_rx_queues; i++) {
2209                 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2210
2211                 if (rxq) {
2212                         stats->ipackets += rxq->packets;
2213                         stats->ibytes += rxq->bytes;
2214                         stats->ierrors += rxq->errors;
2215
2216                         stats->q_ipackets[i] += rxq->packets;
2217                         stats->q_ibytes[i] += rxq->bytes;
2218                         stats->q_errors[i] += rxq->errors;
2219                 }
2220         }
2221
2222         for (i = 0; i < avp->num_tx_queues; i++) {
2223                 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2224
2225                 if (txq) {
2226                         stats->opackets += txq->packets;
2227                         stats->obytes += txq->bytes;
2228                         stats->oerrors += txq->errors;
2229
2230                         stats->q_opackets[i] += txq->packets;
2231                         stats->q_obytes[i] += txq->bytes;
2232                         stats->q_errors[i] += txq->errors;
2233                 }
2234         }
2235
2236         return 0;
2237 }
2238
2239 static void
2240 avp_dev_stats_reset(struct rte_eth_dev *eth_dev)
2241 {
2242         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2243         unsigned int i;
2244
2245         for (i = 0; i < avp->num_rx_queues; i++) {
2246                 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2247
2248                 if (rxq) {
2249                         rxq->bytes = 0;
2250                         rxq->packets = 0;
2251                         rxq->errors = 0;
2252                 }
2253         }
2254
2255         for (i = 0; i < avp->num_tx_queues; i++) {
2256                 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2257
2258                 if (txq) {
2259                         txq->bytes = 0;
2260                         txq->packets = 0;
2261                         txq->errors = 0;
2262                 }
2263         }
2264 }
2265
2266 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd);
2267 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map);
2268
2269 RTE_INIT(avp_init_log)
2270 {
2271         avp_logtype_driver = rte_log_register("pmd.net.avp.driver");
2272         if (avp_logtype_driver >= 0)
2273                 rte_log_set_level(avp_logtype_driver, RTE_LOG_NOTICE);
2274 }