net: add rte prefix to ether defines
[dpdk.git] / drivers / net / bnx2x / bnx2x.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2007-2013 Broadcom Corporation.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015-2018 Cavium Inc.
10  * All rights reserved.
11  * www.cavium.com
12  */
13
14 #define BNX2X_DRIVER_VERSION "1.78.18"
15
16 #include "bnx2x.h"
17 #include "bnx2x_vfpf.h"
18 #include "ecore_sp.h"
19 #include "ecore_init.h"
20 #include "ecore_init_ops.h"
21
22 #include "rte_version.h"
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <fcntl.h>
27 #include <zlib.h>
28 #include <rte_string_fns.h>
29
30 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
31 #define BNX2X_PMD_VERSION_MAJOR 1
32 #define BNX2X_PMD_VERSION_MINOR 0
33 #define BNX2X_PMD_VERSION_REVISION 7
34 #define BNX2X_PMD_VERSION_PATCH 1
35
36 static inline const char *
37 bnx2x_pmd_version(void)
38 {
39         static char version[32];
40
41         snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
42                         BNX2X_PMD_VER_PREFIX,
43                         BNX2X_DRIVER_VERSION,
44                         BNX2X_PMD_VERSION_MAJOR,
45                         BNX2X_PMD_VERSION_MINOR,
46                         BNX2X_PMD_VERSION_REVISION,
47                         BNX2X_PMD_VERSION_PATCH);
48
49         return version;
50 }
51
52 static z_stream zlib_stream;
53
54 #define EVL_VLID_MASK 0x0FFF
55
56 #define BNX2X_DEF_SB_ATT_IDX 0x0001
57 #define BNX2X_DEF_SB_IDX     0x0002
58
59 /*
60  * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
61  * function HW initialization.
62  */
63 #define FLR_WAIT_USEC     10000 /* 10 msecs */
64 #define FLR_WAIT_INTERVAL 50    /* usecs */
65 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL)   /* 200 */
66
67 struct pbf_pN_buf_regs {
68         int pN;
69         uint32_t init_crd;
70         uint32_t crd;
71         uint32_t crd_freed;
72 };
73
74 struct pbf_pN_cmd_regs {
75         int pN;
76         uint32_t lines_occup;
77         uint32_t lines_freed;
78 };
79
80 /* resources needed for unloading a previously loaded device */
81
82 #define BNX2X_PREV_WAIT_NEEDED 1
83 rte_spinlock_t bnx2x_prev_mtx;
84 struct bnx2x_prev_list_node {
85         LIST_ENTRY(bnx2x_prev_list_node) node;
86         uint8_t bus;
87         uint8_t slot;
88         uint8_t path;
89         uint8_t aer;
90         uint8_t undi;
91 };
92
93 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
94         = LIST_HEAD_INITIALIZER(bnx2x_prev_list);
95
96 static int load_count[2][3] = { { 0 } };
97         /* per-path: 0-common, 1-port0, 2-port1 */
98
99 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
100                                 uint8_t cmng_type);
101 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
102 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
103                               uint8_t port);
104 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
105 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
106 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
107 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
108 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
109                                      uint8_t print);
110 static void bnx2x_int_disable(struct bnx2x_softc *sc);
111 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
112 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
113 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
114                                  struct bnx2x_fastpath *fp,
115                                  uint16_t rx_bd_prod, uint16_t rx_cq_prod);
116 static void bnx2x_link_report_locked(struct bnx2x_softc *sc);
117 static void bnx2x_link_report(struct bnx2x_softc *sc);
118 void bnx2x_link_status_update(struct bnx2x_softc *sc);
119 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
120 static void bnx2x_free_mem(struct bnx2x_softc *sc);
121 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
122 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
123 static __rte_noinline
124 int bnx2x_nic_load(struct bnx2x_softc *sc);
125
126 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
127 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp);
128 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
129                          uint8_t storm, uint16_t index, uint8_t op,
130                          uint8_t update);
131
132 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
133 {
134         int res;
135
136         mb();
137         res = ((*addr) & (1UL << nr)) != 0;
138         mb();
139         return res;
140 }
141
142 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
143 {
144         __sync_fetch_and_or(addr, (1UL << nr));
145 }
146
147 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
148 {
149         __sync_fetch_and_and(addr, ~(1UL << nr));
150 }
151
152 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
153 {
154         unsigned long mask = (1UL << nr);
155         return __sync_fetch_and_and(addr, ~mask) & mask;
156 }
157
158 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
159 {
160         return __sync_val_compare_and_swap(addr, old, new);
161 }
162
163 int
164 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
165               const char *msg, uint32_t align)
166 {
167         char mz_name[RTE_MEMZONE_NAMESIZE];
168         const struct rte_memzone *z;
169
170         dma->sc = sc;
171         if (IS_PF(sc))
172                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
173                         rte_get_timer_cycles());
174         else
175                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
176                         rte_get_timer_cycles());
177
178         /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
179         z = rte_memzone_reserve_aligned(mz_name, (uint64_t)size,
180                                         SOCKET_ID_ANY,
181                                         RTE_MEMZONE_IOVA_CONTIG, align);
182         if (z == NULL) {
183                 PMD_DRV_LOG(ERR, sc, "DMA alloc failed for %s", msg);
184                 return -ENOMEM;
185         }
186         dma->paddr = (uint64_t) z->iova;
187         dma->vaddr = z->addr;
188         dma->mzone = (const void *)z;
189
190         PMD_DRV_LOG(DEBUG, sc,
191                     "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
192
193         return 0;
194 }
195
196 void bnx2x_dma_free(struct bnx2x_dma *dma)
197 {
198         if (dma->mzone == NULL)
199                 return;
200
201         rte_memzone_free((const struct rte_memzone *)dma->mzone);
202         dma->sc = NULL;
203         dma->paddr = 0;
204         dma->vaddr = NULL;
205         dma->nseg = 0;
206         dma->mzone = NULL;
207 }
208
209 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
210 {
211         uint32_t lock_status;
212         uint32_t resource_bit = (1 << resource);
213         int func = SC_FUNC(sc);
214         uint32_t hw_lock_control_reg;
215         int cnt;
216
217 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
218         if (resource)
219                 PMD_INIT_FUNC_TRACE(sc);
220 #else
221         PMD_INIT_FUNC_TRACE(sc);
222 #endif
223
224         /* validate the resource is within range */
225         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
226                 PMD_DRV_LOG(NOTICE, sc,
227                             "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
228                             resource);
229                 return -1;
230         }
231
232         if (func <= 5) {
233                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
234         } else {
235                 hw_lock_control_reg =
236                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
237         }
238
239         /* validate the resource is not already taken */
240         lock_status = REG_RD(sc, hw_lock_control_reg);
241         if (lock_status & resource_bit) {
242                 PMD_DRV_LOG(NOTICE, sc,
243                             "resource in use (status 0x%x bit 0x%x)",
244                             lock_status, resource_bit);
245                 return -1;
246         }
247
248         /* try every 5ms for 5 seconds */
249         for (cnt = 0; cnt < 1000; cnt++) {
250                 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
251                 lock_status = REG_RD(sc, hw_lock_control_reg);
252                 if (lock_status & resource_bit) {
253                         return 0;
254                 }
255                 DELAY(5000);
256         }
257
258         PMD_DRV_LOG(NOTICE, sc, "Resource 0x%x resource_bit 0x%x lock timeout!",
259                     resource, resource_bit);
260         return -1;
261 }
262
263 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
264 {
265         uint32_t lock_status;
266         uint32_t resource_bit = (1 << resource);
267         int func = SC_FUNC(sc);
268         uint32_t hw_lock_control_reg;
269
270 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
271         if (resource)
272                 PMD_INIT_FUNC_TRACE(sc);
273 #else
274         PMD_INIT_FUNC_TRACE(sc);
275 #endif
276
277         /* validate the resource is within range */
278         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
279                 PMD_DRV_LOG(NOTICE, sc,
280                             "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
281                             " resource_bit 0x%x", resource, resource_bit);
282                 return -1;
283         }
284
285         if (func <= 5) {
286                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
287         } else {
288                 hw_lock_control_reg =
289                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
290         }
291
292         /* validate the resource is currently taken */
293         lock_status = REG_RD(sc, hw_lock_control_reg);
294         if (!(lock_status & resource_bit)) {
295                 PMD_DRV_LOG(NOTICE, sc,
296                             "resource not in use (status 0x%x bit 0x%x)",
297                             lock_status, resource_bit);
298                 return -1;
299         }
300
301         REG_WR(sc, hw_lock_control_reg, resource_bit);
302         return 0;
303 }
304
305 static void bnx2x_acquire_phy_lock(struct bnx2x_softc *sc)
306 {
307         BNX2X_PHY_LOCK(sc);
308         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
309 }
310
311 static void bnx2x_release_phy_lock(struct bnx2x_softc *sc)
312 {
313         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
314         BNX2X_PHY_UNLOCK(sc);
315 }
316
317 /* copy command into DMAE command memory and set DMAE command Go */
318 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
319 {
320         uint32_t cmd_offset;
321         uint32_t i;
322
323         cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
324         for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
325                 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
326         }
327
328         REG_WR(sc, dmae_reg_go_c[idx], 1);
329 }
330
331 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
332 {
333         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
334                           DMAE_COMMAND_C_TYPE_ENABLE);
335 }
336
337 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
338 {
339         return opcode & ~DMAE_COMMAND_SRC_RESET;
340 }
341
342 uint32_t
343 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
344                 uint8_t with_comp, uint8_t comp_type)
345 {
346         uint32_t opcode = 0;
347
348         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
349                    (dst_type << DMAE_COMMAND_DST_SHIFT));
350
351         opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
352
353         opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
354
355         opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
356                    (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
357
358         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
359
360 #ifdef __BIG_ENDIAN
361         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
362 #else
363         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
364 #endif
365
366         if (with_comp) {
367                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
368         }
369
370         return opcode;
371 }
372
373 static void
374 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
375                         uint8_t src_type, uint8_t dst_type)
376 {
377         memset(dmae, 0, sizeof(struct dmae_command));
378
379         /* set the opcode */
380         dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
381                                        TRUE, DMAE_COMP_PCI);
382
383         /* fill in the completion parameters */
384         dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
385         dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
386         dmae->comp_val = DMAE_COMP_VAL;
387 }
388
389 /* issue a DMAE command over the init channel and wait for completion */
390 static int
391 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
392 {
393         uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
394         int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
395
396         /* reset completion */
397         *wb_comp = 0;
398
399         /* post the command on the channel used for initializations */
400         bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
401
402         /* wait for completion */
403         DELAY(500);
404
405         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
406                 if (!timeout ||
407                     (sc->recovery_state != BNX2X_RECOVERY_DONE &&
408                      sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
409                         PMD_DRV_LOG(INFO, sc, "DMAE timeout!");
410                         return DMAE_TIMEOUT;
411                 }
412
413                 timeout--;
414                 DELAY(50);
415         }
416
417         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
418                 PMD_DRV_LOG(INFO, sc, "DMAE PCI error!");
419                 return DMAE_PCI_ERROR;
420         }
421
422         return 0;
423 }
424
425 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
426 {
427         struct dmae_command dmae;
428         uint32_t *data;
429         uint32_t i;
430         int rc;
431
432         if (!sc->dmae_ready) {
433                 data = BNX2X_SP(sc, wb_data[0]);
434
435                 for (i = 0; i < len32; i++) {
436                         data[i] = REG_RD(sc, (src_addr + (i * 4)));
437                 }
438
439                 return;
440         }
441
442         /* set opcode and fixed command fields */
443         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
444
445         /* fill in addresses and len */
446         dmae.src_addr_lo = (src_addr >> 2);     /* GRC addr has dword resolution */
447         dmae.src_addr_hi = 0;
448         dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
449         dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
450         dmae.len = len32;
451
452         /* issue the command and wait for completion */
453         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
454                 rte_panic("DMAE failed (%d)", rc);
455         };
456 }
457
458 void
459 bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr, uint32_t dst_addr,
460                uint32_t len32)
461 {
462         struct dmae_command dmae;
463         int rc;
464
465         if (!sc->dmae_ready) {
466                 ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
467                 return;
468         }
469
470         /* set opcode and fixed command fields */
471         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
472
473         /* fill in addresses and len */
474         dmae.src_addr_lo = U64_LO(dma_addr);
475         dmae.src_addr_hi = U64_HI(dma_addr);
476         dmae.dst_addr_lo = (dst_addr >> 2);     /* GRC addr has dword resolution */
477         dmae.dst_addr_hi = 0;
478         dmae.len = len32;
479
480         /* issue the command and wait for completion */
481         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
482                 rte_panic("DMAE failed (%d)", rc);
483         }
484 }
485
486 static void
487 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
488                         uint32_t addr, uint32_t len)
489 {
490         uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
491         uint32_t offset = 0;
492
493         while (len > dmae_wr_max) {
494                 bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
495                                (addr + offset), /* dst GRC address */
496                                dmae_wr_max);
497                 offset += (dmae_wr_max * 4);
498                 len -= dmae_wr_max;
499         }
500
501         bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
502                        (addr + offset), /* dst GRC address */
503                        len);
504 }
505
506 void
507 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
508                        uint32_t cid)
509 {
510         /* ustorm cxt validation */
511         cxt->ustorm_ag_context.cdu_usage =
512             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
513                                    CDU_REGION_NUMBER_UCM_AG,
514                                    ETH_CONNECTION_TYPE);
515         /* xcontext validation */
516         cxt->xstorm_ag_context.cdu_reserved =
517             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
518                                    CDU_REGION_NUMBER_XCM_AG,
519                                    ETH_CONNECTION_TYPE);
520 }
521
522 static void
523 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
524                             uint8_t sb_index, uint8_t ticks)
525 {
526         uint32_t addr =
527             (BAR_CSTRORM_INTMEM +
528              CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
529
530         REG_WR8(sc, addr, ticks);
531 }
532
533 static void
534 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
535                             uint8_t sb_index, uint8_t disable)
536 {
537         uint32_t enable_flag =
538             (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
539         uint32_t addr =
540             (BAR_CSTRORM_INTMEM +
541              CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
542         uint8_t flags;
543
544         /* clear and set */
545         flags = REG_RD8(sc, addr);
546         flags &= ~HC_INDEX_DATA_HC_ENABLED;
547         flags |= enable_flag;
548         REG_WR8(sc, addr, flags);
549 }
550
551 void
552 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
553                              uint8_t sb_index, uint8_t disable, uint16_t usec)
554 {
555         uint8_t ticks = (usec / 4);
556
557         bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
558
559         disable = (disable) ? 1 : ((usec) ? 0 : 1);
560         bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
561 }
562
563 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
564 {
565         return REG_RD(sc, reg_addr);
566 }
567
568 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
569 {
570         REG_WR(sc, reg_addr, val);
571 }
572
573 void
574 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
575                    __rte_unused const elink_log_id_t elink_log_id, ...)
576 {
577         PMD_DRV_LOG(DEBUG, sc, "ELINK EVENT LOG (%d)", elink_log_id);
578 }
579
580 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
581 {
582         uint32_t spio_reg;
583
584         /* Only 2 SPIOs are configurable */
585         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
586                 PMD_DRV_LOG(NOTICE, sc, "Invalid SPIO 0x%x", spio);
587                 return -1;
588         }
589
590         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
591
592         /* read SPIO and mask except the float bits */
593         spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
594
595         switch (mode) {
596         case MISC_SPIO_OUTPUT_LOW:
597                 /* clear FLOAT and set CLR */
598                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
599                 spio_reg |= (spio << MISC_SPIO_CLR_POS);
600                 break;
601
602         case MISC_SPIO_OUTPUT_HIGH:
603                 /* clear FLOAT and set SET */
604                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
605                 spio_reg |= (spio << MISC_SPIO_SET_POS);
606                 break;
607
608         case MISC_SPIO_INPUT_HI_Z:
609                 /* set FLOAT */
610                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
611                 break;
612
613         default:
614                 break;
615         }
616
617         REG_WR(sc, MISC_REG_SPIO, spio_reg);
618         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
619
620         return 0;
621 }
622
623 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
624 {
625         /* The GPIO should be swapped if swap register is set and active */
626         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
627                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
628         int gpio_shift = gpio_num;
629         if (gpio_port)
630                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
631
632         uint32_t gpio_mask = (1 << gpio_shift);
633         uint32_t gpio_reg;
634
635         if (gpio_num > MISC_REGISTERS_GPIO_3) {
636                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
637                 return -1;
638         }
639
640         /* read GPIO value */
641         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
642
643         /* get the requested pin value */
644         return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
645 }
646
647 static int
648 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
649 {
650         /* The GPIO should be swapped if swap register is set and active */
651         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
652                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
653         int gpio_shift = gpio_num;
654         if (gpio_port)
655                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
656
657         uint32_t gpio_mask = (1 << gpio_shift);
658         uint32_t gpio_reg;
659
660         if (gpio_num > MISC_REGISTERS_GPIO_3) {
661                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
662                 return -1;
663         }
664
665         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
666
667         /* read GPIO and mask except the float bits */
668         gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
669
670         switch (mode) {
671         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
672                 /* clear FLOAT and set CLR */
673                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
674                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
675                 break;
676
677         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
678                 /* clear FLOAT and set SET */
679                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
680                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
681                 break;
682
683         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
684                 /* set FLOAT */
685                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
686                 break;
687
688         default:
689                 break;
690         }
691
692         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
693         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
694
695         return 0;
696 }
697
698 static int
699 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
700 {
701         uint32_t gpio_reg;
702
703         /* any port swapping should be handled by caller */
704
705         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
706
707         /* read GPIO and mask except the float bits */
708         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
709         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
710         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
711         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
712
713         switch (mode) {
714         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
715                 /* set CLR */
716                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
717                 break;
718
719         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
720                 /* set SET */
721                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
722                 break;
723
724         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
725                 /* set FLOAT */
726                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
727                 break;
728
729         default:
730                 PMD_DRV_LOG(NOTICE, sc,
731                             "Invalid GPIO mode assignment %d", mode);
732                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
733                 return -1;
734         }
735
736         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
737         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
738
739         return 0;
740 }
741
742 static int
743 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
744                    uint8_t port)
745 {
746         /* The GPIO should be swapped if swap register is set and active */
747         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
748                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
749         int gpio_shift = gpio_num;
750         if (gpio_port)
751                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
752
753         uint32_t gpio_mask = (1 << gpio_shift);
754         uint32_t gpio_reg;
755
756         if (gpio_num > MISC_REGISTERS_GPIO_3) {
757                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
758                 return -1;
759         }
760
761         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
762
763         /* read GPIO int */
764         gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
765
766         switch (mode) {
767         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
768                 /* clear SET and set CLR */
769                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
770                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
771                 break;
772
773         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
774                 /* clear CLR and set SET */
775                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
776                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
777                 break;
778
779         default:
780                 break;
781         }
782
783         REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
784         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
785
786         return 0;
787 }
788
789 uint32_t
790 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
791 {
792         return bnx2x_gpio_read(sc, gpio_num, port);
793 }
794
795 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,   /* 0=low 1=high */
796                             uint8_t port)
797 {
798         return bnx2x_gpio_write(sc, gpio_num, mode, port);
799 }
800
801 uint8_t
802 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
803                          uint8_t mode /* 0=low 1=high */ )
804 {
805         return bnx2x_gpio_mult_write(sc, pins, mode);
806 }
807
808 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,       /* 0=low 1=high */
809                                 uint8_t port)
810 {
811         return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
812 }
813
814 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
815 {
816         REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
817                     (SC_FUNC(sc) * sizeof(uint32_t))), 1);
818 }
819
820 /* send the MCP a request, block until there is a reply */
821 uint32_t
822 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
823 {
824         int mb_idx = SC_FW_MB_IDX(sc);
825         uint32_t seq;
826         uint32_t rc = 0;
827         uint32_t cnt = 1;
828         uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
829
830         seq = ++sc->fw_seq;
831         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
832         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
833
834         PMD_DRV_LOG(DEBUG, sc,
835                     "wrote command 0x%08x to FW MB param 0x%08x",
836                     (command | seq), param);
837
838         /* Let the FW do it's magic. GIve it up to 5 seconds... */
839         do {
840                 DELAY(delay * 1000);
841                 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
842         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
843
844         /* is this a reply to our command? */
845         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
846                 rc &= FW_MSG_CODE_MASK;
847         } else {
848                 /* Ruh-roh! */
849                 PMD_DRV_LOG(NOTICE, sc, "FW failed to respond!");
850                 rc = 0;
851         }
852
853         return rc;
854 }
855
856 static uint32_t
857 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
858 {
859         return elink_cb_fw_command(sc, command, param);
860 }
861
862 static void
863 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
864                            rte_iova_t mapping)
865 {
866         REG_WR(sc, addr, U64_LO(mapping));
867         REG_WR(sc, (addr + 4), U64_HI(mapping));
868 }
869
870 static void
871 storm_memset_spq_addr(struct bnx2x_softc *sc, rte_iova_t mapping,
872                       uint16_t abs_fid)
873 {
874         uint32_t addr = (XSEM_REG_FAST_MEMORY +
875                          XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
876         __storm_memset_dma_mapping(sc, addr, mapping);
877 }
878
879 static void
880 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
881 {
882         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
883                 pf_id);
884         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
885                 pf_id);
886         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
887                 pf_id);
888         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
889                 pf_id);
890 }
891
892 static void
893 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
894 {
895         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
896                 enable);
897         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
898                 enable);
899         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
900                 enable);
901         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
902                 enable);
903 }
904
905 static void
906 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
907                      uint16_t pfid)
908 {
909         uint32_t addr;
910         size_t size;
911
912         addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
913         size = sizeof(struct event_ring_data);
914         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
915 }
916
917 static void
918 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
919 {
920         uint32_t addr = (BAR_CSTRORM_INTMEM +
921                          CSTORM_EVENT_RING_PROD_OFFSET(pfid));
922         REG_WR16(sc, addr, eq_prod);
923 }
924
925 /*
926  * Post a slowpath command.
927  *
928  * A slowpath command is used to propagate a configuration change through
929  * the controller in a controlled manner, allowing each STORM processor and
930  * other H/W blocks to phase in the change.  The commands sent on the
931  * slowpath are referred to as ramrods.  Depending on the ramrod used the
932  * completion of the ramrod will occur in different ways.  Here's a
933  * breakdown of ramrods and how they complete:
934  *
935  * RAMROD_CMD_ID_ETH_PORT_SETUP
936  *   Used to setup the leading connection on a port.  Completes on the
937  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
938  *
939  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
940  *   Used to setup an additional connection on a port.  Completes on the
941  *   RCQ of the multi-queue/RSS connection being initialized.
942  *
943  * RAMROD_CMD_ID_ETH_STAT_QUERY
944  *   Used to force the storm processors to update the statistics database
945  *   in host memory.  This ramrod is send on the leading connection CID and
946  *   completes as an index increment of the CSTORM on the default status
947  *   block.
948  *
949  * RAMROD_CMD_ID_ETH_UPDATE
950  *   Used to update the state of the leading connection, usually to udpate
951  *   the RSS indirection table.  Completes on the RCQ of the leading
952  *   connection. (Not currently used under FreeBSD until OS support becomes
953  *   available.)
954  *
955  * RAMROD_CMD_ID_ETH_HALT
956  *   Used when tearing down a connection prior to driver unload.  Completes
957  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
958  *   use this on the leading connection.
959  *
960  * RAMROD_CMD_ID_ETH_SET_MAC
961  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
962  *   the RCQ of the leading connection.
963  *
964  * RAMROD_CMD_ID_ETH_CFC_DEL
965  *   Used when tearing down a conneciton prior to driver unload.  Completes
966  *   on the RCQ of the leading connection (since the current connection
967  *   has been completely removed from controller memory).
968  *
969  * RAMROD_CMD_ID_ETH_PORT_DEL
970  *   Used to tear down the leading connection prior to driver unload,
971  *   typically fp[0].  Completes as an index increment of the CSTORM on the
972  *   default status block.
973  *
974  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
975  *   Used for connection offload.  Completes on the RCQ of the multi-queue
976  *   RSS connection that is being offloaded.  (Not currently used under
977  *   FreeBSD.)
978  *
979  * There can only be one command pending per function.
980  *
981  * Returns:
982  *   0 = Success, !0 = Failure.
983  */
984
985 /* must be called under the spq lock */
986 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
987 {
988         struct eth_spe *next_spe = sc->spq_prod_bd;
989
990         if (sc->spq_prod_bd == sc->spq_last_bd) {
991                 /* wrap back to the first eth_spq */
992                 sc->spq_prod_bd = sc->spq;
993                 sc->spq_prod_idx = 0;
994         } else {
995                 sc->spq_prod_bd++;
996                 sc->spq_prod_idx++;
997         }
998
999         return next_spe;
1000 }
1001
1002 /* must be called under the spq lock */
1003 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
1004 {
1005         int func = SC_FUNC(sc);
1006
1007         /*
1008          * Make sure that BD data is updated before writing the producer.
1009          * BD data is written to the memory, the producer is read from the
1010          * memory, thus we need a full memory barrier to ensure the ordering.
1011          */
1012         mb();
1013
1014         REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
1015                  sc->spq_prod_idx);
1016
1017         mb();
1018 }
1019
1020 /**
1021  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
1022  *
1023  * @cmd:      command to check
1024  * @cmd_type: command type
1025  */
1026 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
1027 {
1028         if ((cmd_type == NONE_CONNECTION_TYPE) ||
1029             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
1030             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
1031             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
1032             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
1033             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
1034             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
1035                 return TRUE;
1036         } else {
1037                 return FALSE;
1038         }
1039 }
1040
1041 /**
1042  * bnx2x_sp_post - place a single command on an SP ring
1043  *
1044  * @sc:         driver handle
1045  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
1046  * @cid:        SW CID the command is related to
1047  * @data_hi:    command private data address (high 32 bits)
1048  * @data_lo:    command private data address (low 32 bits)
1049  * @cmd_type:   command type (e.g. NONE, ETH)
1050  *
1051  * SP data is handled as if it's always an address pair, thus data fields are
1052  * not swapped to little endian in upper functions. Instead this function swaps
1053  * data as if it's two uint32 fields.
1054  */
1055 int
1056 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1057             uint32_t data_lo, int cmd_type)
1058 {
1059         struct eth_spe *spe;
1060         uint16_t type;
1061         int common;
1062
1063         common = bnx2x_is_contextless_ramrod(command, cmd_type);
1064
1065         if (common) {
1066                 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1067                         PMD_DRV_LOG(INFO, sc, "EQ ring is full!");
1068                         return -1;
1069                 }
1070         } else {
1071                 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1072                         PMD_DRV_LOG(INFO, sc, "SPQ ring is full!");
1073                         return -1;
1074                 }
1075         }
1076
1077         spe = bnx2x_sp_get_next(sc);
1078
1079         /* CID needs port number to be encoded int it */
1080         spe->hdr.conn_and_cmd_data =
1081             htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1082
1083         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1084
1085         /* TBD: Check if it works for VFs */
1086         type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1087                  SPE_HDR_FUNCTION_ID);
1088
1089         spe->hdr.type = htole16(type);
1090
1091         spe->data.update_data_addr.hi = htole32(data_hi);
1092         spe->data.update_data_addr.lo = htole32(data_lo);
1093
1094         /*
1095          * It's ok if the actual decrement is issued towards the memory
1096          * somewhere between the lock and unlock. Thus no more explict
1097          * memory barrier is needed.
1098          */
1099         if (common) {
1100                 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1101         } else {
1102                 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1103         }
1104
1105         PMD_DRV_LOG(DEBUG, sc,
1106                     "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1107                     "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1108                     sc->spq_prod_idx,
1109                     (uint32_t) U64_HI(sc->spq_dma.paddr),
1110                     (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1111                                 (uint8_t *) sc->spq_prod_bd -
1112                                 (uint8_t *) sc->spq), command, common,
1113                     HW_CID(sc, cid), data_hi, data_lo, type,
1114                     atomic_load_acq_long(&sc->cq_spq_left),
1115                     atomic_load_acq_long(&sc->eq_spq_left));
1116
1117         /* RAMROD completion is processed in bnx2x_intr_legacy()
1118          * which can run from different contexts.
1119          * Ask bnx2x_intr_intr() to process RAMROD
1120          * completion whenever it gets scheduled.
1121          */
1122         rte_atomic32_set(&sc->scan_fp, 1);
1123         bnx2x_sp_prod_update(sc);
1124
1125         return 0;
1126 }
1127
1128 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1129 {
1130         SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1131                  sc->fw_drv_pulse_wr_seq);
1132 }
1133
1134 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1135 {
1136         uint16_t hw_cons;
1137         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1138
1139         if (unlikely(!txq)) {
1140                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1141                 return 0;
1142         }
1143
1144         mb();                   /* status block fields can change */
1145         hw_cons = le16toh(*fp->tx_cons_sb);
1146         return hw_cons != txq->tx_pkt_head;
1147 }
1148
1149 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1150 {
1151         /* expand this for multi-cos if ever supported */
1152         return bnx2x_tx_queue_has_work(fp);
1153 }
1154
1155 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1156 {
1157         uint16_t rx_cq_cons_sb;
1158         struct bnx2x_rx_queue *rxq;
1159         rxq = fp->sc->rx_queues[fp->index];
1160         if (unlikely(!rxq)) {
1161                 PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1162                 return 0;
1163         }
1164
1165         mb();                   /* status block fields can change */
1166         rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1167         if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1168                      MAX_RCQ_ENTRIES(rxq)))
1169                 rx_cq_cons_sb++;
1170         return rxq->rx_cq_head != rx_cq_cons_sb;
1171 }
1172
1173 static void
1174 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1175              union eth_rx_cqe *rr_cqe)
1176 {
1177         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1178         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1179         enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1180         struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1181
1182         PMD_DRV_LOG(DEBUG, sc,
1183                     "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1184                     fp->index, cid, command, sc->state,
1185                     rr_cqe->ramrod_cqe.ramrod_type);
1186
1187         switch (command) {
1188         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1189                 PMD_DRV_LOG(DEBUG, sc, "got UPDATE ramrod. CID %d", cid);
1190                 drv_cmd = ECORE_Q_CMD_UPDATE;
1191                 break;
1192
1193         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1194                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] setup ramrod", cid);
1195                 drv_cmd = ECORE_Q_CMD_SETUP;
1196                 break;
1197
1198         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1199                 PMD_DRV_LOG(DEBUG, sc,
1200                             "got MULTI[%d] tx-only setup ramrod", cid);
1201                 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1202                 break;
1203
1204         case (RAMROD_CMD_ID_ETH_HALT):
1205                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] halt ramrod", cid);
1206                 drv_cmd = ECORE_Q_CMD_HALT;
1207                 break;
1208
1209         case (RAMROD_CMD_ID_ETH_TERMINATE):
1210                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] teminate ramrod", cid);
1211                 drv_cmd = ECORE_Q_CMD_TERMINATE;
1212                 break;
1213
1214         case (RAMROD_CMD_ID_ETH_EMPTY):
1215                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] empty ramrod", cid);
1216                 drv_cmd = ECORE_Q_CMD_EMPTY;
1217                 break;
1218
1219         default:
1220                 PMD_DRV_LOG(DEBUG, sc,
1221                             "ERROR: unexpected MC reply (%d)"
1222                             "on fp[%d]", command, fp->index);
1223                 return;
1224         }
1225
1226         if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1227             q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1228                 /*
1229                  * q_obj->complete_cmd() failure means that this was
1230                  * an unexpected completion.
1231                  *
1232                  * In this case we don't want to increase the sc->spq_left
1233                  * because apparently we haven't sent this command the first
1234                  * place.
1235                  */
1236                 // rte_panic("Unexpected SP completion");
1237                 return;
1238         }
1239
1240         atomic_add_acq_long(&sc->cq_spq_left, 1);
1241
1242         PMD_DRV_LOG(DEBUG, sc, "sc->cq_spq_left 0x%lx",
1243                     atomic_load_acq_long(&sc->cq_spq_left));
1244 }
1245
1246 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1247 {
1248         struct bnx2x_rx_queue *rxq;
1249         uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1250         uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1251
1252         rxq = sc->rx_queues[fp->index];
1253         if (!rxq) {
1254                 PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1255                 return 0;
1256         }
1257
1258         /* CQ "next element" is of the size of the regular element */
1259         hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1260         if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1261                      USABLE_RCQ_ENTRIES_PER_PAGE)) {
1262                 hw_cq_cons++;
1263         }
1264
1265         bd_cons = rxq->rx_bd_head;
1266         bd_prod = rxq->rx_bd_tail;
1267         bd_prod_fw = bd_prod;
1268         sw_cq_cons = rxq->rx_cq_head;
1269         sw_cq_prod = rxq->rx_cq_tail;
1270
1271         /*
1272          * Memory barrier necessary as speculative reads of the rx
1273          * buffer can be ahead of the index in the status block
1274          */
1275         rmb();
1276
1277         while (sw_cq_cons != hw_cq_cons) {
1278                 union eth_rx_cqe *cqe;
1279                 struct eth_fast_path_rx_cqe *cqe_fp;
1280                 uint8_t cqe_fp_flags;
1281                 enum eth_rx_cqe_type cqe_fp_type;
1282
1283                 comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1284                 bd_prod = RX_BD(bd_prod, rxq);
1285                 bd_cons = RX_BD(bd_cons, rxq);
1286
1287                 cqe = &rxq->cq_ring[comp_ring_cons];
1288                 cqe_fp = &cqe->fast_path_cqe;
1289                 cqe_fp_flags = cqe_fp->type_error_flags;
1290                 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1291
1292                 /* is this a slowpath msg? */
1293                 if (CQE_TYPE_SLOW(cqe_fp_type)) {
1294                         bnx2x_sp_event(sc, fp, cqe);
1295                         goto next_cqe;
1296                 }
1297
1298                 /* is this an error packet? */
1299                 if (unlikely(cqe_fp_flags &
1300                              ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1301                         PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1302                                    cqe_fp_flags, sw_cq_cons);
1303                         goto next_rx;
1304                 }
1305
1306                 PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1307
1308 next_rx:
1309                 bd_cons = NEXT_RX_BD(bd_cons);
1310                 bd_prod = NEXT_RX_BD(bd_prod);
1311                 bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1312
1313 next_cqe:
1314                 sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1315                 sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1316
1317         }                       /* while work to do */
1318
1319         rxq->rx_bd_head = bd_cons;
1320         rxq->rx_bd_tail = bd_prod_fw;
1321         rxq->rx_cq_head = sw_cq_cons;
1322         rxq->rx_cq_tail = sw_cq_prod;
1323
1324         /* Update producers */
1325         bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1326
1327         return sw_cq_cons != hw_cq_cons;
1328 }
1329
1330 static uint16_t
1331 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1332                 uint16_t pkt_idx, uint16_t bd_idx)
1333 {
1334         struct eth_tx_start_bd *tx_start_bd =
1335             &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1336         uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1337         struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1338
1339         if (likely(tx_mbuf != NULL)) {
1340                 rte_pktmbuf_free_seg(tx_mbuf);
1341         } else {
1342                 PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1343                            fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1344         }
1345
1346         txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1347         txq->nb_tx_avail += nbd;
1348
1349         while (nbd--)
1350                 bd_idx = NEXT_TX_BD(bd_idx);
1351
1352         return bd_idx;
1353 }
1354
1355 /* processes transmit completions */
1356 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1357 {
1358         uint16_t bd_cons, hw_cons, sw_cons;
1359         __rte_unused uint16_t tx_bd_avail;
1360
1361         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1362
1363         if (unlikely(!txq)) {
1364                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1365                 return 0;
1366         }
1367
1368         bd_cons = txq->tx_bd_head;
1369         hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1370         sw_cons = txq->tx_pkt_head;
1371
1372         while (sw_cons != hw_cons) {
1373                 bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1374                 sw_cons++;
1375         }
1376
1377         txq->tx_pkt_head = sw_cons;
1378         txq->tx_bd_head = bd_cons;
1379
1380         tx_bd_avail = txq->nb_tx_avail;
1381
1382         PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1383                    "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1384                    fp->index, tx_bd_avail, hw_cons,
1385                    txq->tx_pkt_head, txq->tx_pkt_tail,
1386                    txq->tx_bd_head, txq->tx_bd_tail);
1387         return TRUE;
1388 }
1389
1390 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1391 {
1392         struct bnx2x_fastpath *fp;
1393         int i, count;
1394
1395         /* wait until all TX fastpath tasks have completed */
1396         for (i = 0; i < sc->num_queues; i++) {
1397                 fp = &sc->fp[i];
1398
1399                 count = 1000;
1400
1401                 while (bnx2x_has_tx_work(fp)) {
1402                         bnx2x_txeof(sc, fp);
1403
1404                         if (count == 0) {
1405                                 PMD_TX_LOG(ERR,
1406                                            "Timeout waiting for fp[%d] "
1407                                            "transmits to complete!", i);
1408                                 rte_panic("tx drain failure");
1409                                 return;
1410                         }
1411
1412                         count--;
1413                         DELAY(1000);
1414                         rmb();
1415                 }
1416         }
1417
1418         return;
1419 }
1420
1421 static int
1422 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1423                  int mac_type, uint8_t wait_for_comp)
1424 {
1425         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1426         int rc;
1427
1428         /* wait for completion of requested */
1429         if (wait_for_comp) {
1430                 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1431         }
1432
1433         /* Set the mac type of addresses we want to clear */
1434         bnx2x_set_bit(mac_type, &vlan_mac_flags);
1435
1436         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1437         if (rc < 0)
1438                 PMD_DRV_LOG(ERR, sc, "Failed to delete MACs (%d)", rc);
1439
1440         return rc;
1441 }
1442
1443 static int
1444 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1445                         unsigned long *rx_accept_flags,
1446                         unsigned long *tx_accept_flags)
1447 {
1448         /* Clear the flags first */
1449         *rx_accept_flags = 0;
1450         *tx_accept_flags = 0;
1451
1452         switch (rx_mode) {
1453         case BNX2X_RX_MODE_NONE:
1454                 /*
1455                  * 'drop all' supersedes any accept flags that may have been
1456                  * passed to the function.
1457                  */
1458                 break;
1459
1460         case BNX2X_RX_MODE_NORMAL:
1461                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1462                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1463                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1464
1465                 /* internal switching mode */
1466                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1467                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1468                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1469
1470                 break;
1471
1472         case BNX2X_RX_MODE_ALLMULTI:
1473                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1474                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1475                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1476
1477                 /* internal switching mode */
1478                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1479                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1480                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1481
1482                 break;
1483
1484         case BNX2X_RX_MODE_ALLMULTI_PROMISC:
1485         case BNX2X_RX_MODE_PROMISC:
1486                 /*
1487                  * According to deffinition of SI mode, iface in promisc mode
1488                  * should receive matched and unmatched (in resolution of port)
1489                  * unicast packets.
1490                  */
1491                 bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1492                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1493                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1494                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1495
1496                 /* internal switching mode */
1497                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1498                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1499
1500                 if (IS_MF_SI(sc)) {
1501                         bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1502                 } else {
1503                         bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1504                 }
1505
1506                 break;
1507
1508         default:
1509                 PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1510                 return -1;
1511         }
1512
1513         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1514         if (rx_mode != BNX2X_RX_MODE_NONE) {
1515                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1516                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1517         }
1518
1519         return 0;
1520 }
1521
1522 static int
1523 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1524                   unsigned long rx_mode_flags,
1525                   unsigned long rx_accept_flags,
1526                   unsigned long tx_accept_flags, unsigned long ramrod_flags)
1527 {
1528         struct ecore_rx_mode_ramrod_params ramrod_param;
1529         int rc;
1530
1531         memset(&ramrod_param, 0, sizeof(ramrod_param));
1532
1533         /* Prepare ramrod parameters */
1534         ramrod_param.cid = 0;
1535         ramrod_param.cl_id = cl_id;
1536         ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1537         ramrod_param.func_id = SC_FUNC(sc);
1538
1539         ramrod_param.pstate = &sc->sp_state;
1540         ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1541
1542         ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1543         ramrod_param.rdata_mapping =
1544             (rte_iova_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1545             bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1546
1547         ramrod_param.ramrod_flags = ramrod_flags;
1548         ramrod_param.rx_mode_flags = rx_mode_flags;
1549
1550         ramrod_param.rx_accept_flags = rx_accept_flags;
1551         ramrod_param.tx_accept_flags = tx_accept_flags;
1552
1553         rc = ecore_config_rx_mode(sc, &ramrod_param);
1554         if (rc < 0) {
1555                 PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1556                 return rc;
1557         }
1558
1559         return 0;
1560 }
1561
1562 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1563 {
1564         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1565         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1566         int rc;
1567
1568         rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1569                                    &tx_accept_flags);
1570         if (rc) {
1571                 return rc;
1572         }
1573
1574         bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1575         bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1576         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1577
1578         return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1579                                  rx_accept_flags, tx_accept_flags,
1580                                  ramrod_flags);
1581 }
1582
1583 /* returns the "mcp load_code" according to global load_count array */
1584 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1585 {
1586         int path = SC_PATH(sc);
1587         int port = SC_PORT(sc);
1588
1589         PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1590                     path, load_count[path][0], load_count[path][1],
1591                     load_count[path][2]);
1592
1593         load_count[path][0]++;
1594         load_count[path][1 + port]++;
1595         PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1596                     path, load_count[path][0], load_count[path][1],
1597                     load_count[path][2]);
1598         if (load_count[path][0] == 1)
1599                 return FW_MSG_CODE_DRV_LOAD_COMMON;
1600         else if (load_count[path][1 + port] == 1)
1601                 return FW_MSG_CODE_DRV_LOAD_PORT;
1602         else
1603                 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1604 }
1605
1606 /* returns the "mcp load_code" according to global load_count array */
1607 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1608 {
1609         int port = SC_PORT(sc);
1610         int path = SC_PATH(sc);
1611
1612         PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1613                     path, load_count[path][0], load_count[path][1],
1614                     load_count[path][2]);
1615         load_count[path][0]--;
1616         load_count[path][1 + port]--;
1617         PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1618                     path, load_count[path][0], load_count[path][1],
1619                     load_count[path][2]);
1620         if (load_count[path][0] == 0) {
1621                 return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1622         } else if (load_count[path][1 + port] == 0) {
1623                 return FW_MSG_CODE_DRV_UNLOAD_PORT;
1624         } else {
1625                 return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1626         }
1627 }
1628
1629 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1630 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1631 {
1632         uint32_t reset_code = 0;
1633
1634         /* Select the UNLOAD request mode */
1635         if (unload_mode == UNLOAD_NORMAL) {
1636                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1637         } else {
1638                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1639         }
1640
1641         /* Send the request to the MCP */
1642         if (!BNX2X_NOMCP(sc)) {
1643                 reset_code = bnx2x_fw_command(sc, reset_code, 0);
1644         } else {
1645                 reset_code = bnx2x_nic_unload_no_mcp(sc);
1646         }
1647
1648         return reset_code;
1649 }
1650
1651 /* send UNLOAD_DONE command to the MCP */
1652 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1653 {
1654         uint32_t reset_param =
1655             keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1656
1657         /* Report UNLOAD_DONE to MCP */
1658         if (!BNX2X_NOMCP(sc)) {
1659                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1660         }
1661 }
1662
1663 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1664 {
1665         int tout = 50;
1666
1667         if (!sc->port.pmf) {
1668                 return 0;
1669         }
1670
1671         /*
1672          * (assumption: No Attention from MCP at this stage)
1673          * PMF probably in the middle of TX disable/enable transaction
1674          * 1. Sync IRS for default SB
1675          * 2. Sync SP queue - this guarantees us that attention handling started
1676          * 3. Wait, that TX disable/enable transaction completes
1677          *
1678          * 1+2 guarantee that if DCBX attention was scheduled it already changed
1679          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1680          * received completion for the transaction the state is TX_STOPPED.
1681          * State will return to STARTED after completion of TX_STOPPED-->STARTED
1682          * transaction.
1683          */
1684
1685         while (ecore_func_get_state(sc, &sc->func_obj) !=
1686                ECORE_F_STATE_STARTED && tout--) {
1687                 DELAY(20000);
1688         }
1689
1690         if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1691                 /*
1692                  * Failed to complete the transaction in a "good way"
1693                  * Force both transactions with CLR bit.
1694                  */
1695                 struct ecore_func_state_params func_params = { NULL };
1696
1697                 PMD_DRV_LOG(NOTICE, sc, "Unexpected function state! "
1698                             "Forcing STARTED-->TX_STOPPED-->STARTED");
1699
1700                 func_params.f_obj = &sc->func_obj;
1701                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1702
1703                 /* STARTED-->TX_STOPPED */
1704                 func_params.cmd = ECORE_F_CMD_TX_STOP;
1705                 ecore_func_state_change(sc, &func_params);
1706
1707                 /* TX_STOPPED-->STARTED */
1708                 func_params.cmd = ECORE_F_CMD_TX_START;
1709                 return ecore_func_state_change(sc, &func_params);
1710         }
1711
1712         return 0;
1713 }
1714
1715 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1716 {
1717         struct bnx2x_fastpath *fp = &sc->fp[index];
1718         struct ecore_queue_state_params q_params = { NULL };
1719         int rc;
1720
1721         PMD_DRV_LOG(DEBUG, sc, "stopping queue %d cid %d", index, fp->index);
1722
1723         q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1724         /* We want to wait for completion in this context */
1725         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1726
1727         /* Stop the primary connection: */
1728
1729         /* ...halt the connection */
1730         q_params.cmd = ECORE_Q_CMD_HALT;
1731         rc = ecore_queue_state_change(sc, &q_params);
1732         if (rc) {
1733                 return rc;
1734         }
1735
1736         /* ...terminate the connection */
1737         q_params.cmd = ECORE_Q_CMD_TERMINATE;
1738         memset(&q_params.params.terminate, 0,
1739                sizeof(q_params.params.terminate));
1740         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1741         rc = ecore_queue_state_change(sc, &q_params);
1742         if (rc) {
1743                 return rc;
1744         }
1745
1746         /* ...delete cfc entry */
1747         q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1748         memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1749         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1750         return ecore_queue_state_change(sc, &q_params);
1751 }
1752
1753 /* wait for the outstanding SP commands */
1754 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1755 {
1756         unsigned long tmp;
1757         int tout = 5000;        /* wait for 5 secs tops */
1758
1759         while (tout--) {
1760                 mb();
1761                 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1762                         return TRUE;
1763                 }
1764
1765                 DELAY(1000);
1766         }
1767
1768         mb();
1769
1770         tmp = atomic_load_acq_long(&sc->sp_state);
1771         if (tmp & mask) {
1772                 PMD_DRV_LOG(INFO, sc, "Filtering completion timed out: "
1773                             "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1774                 return FALSE;
1775         }
1776
1777         return FALSE;
1778 }
1779
1780 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1781 {
1782         struct ecore_func_state_params func_params = { NULL };
1783         int rc;
1784
1785         /* prepare parameters for function state transitions */
1786         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1787         func_params.f_obj = &sc->func_obj;
1788         func_params.cmd = ECORE_F_CMD_STOP;
1789
1790         /*
1791          * Try to stop the function the 'good way'. If it fails (in case
1792          * of a parity error during bnx2x_chip_cleanup()) and we are
1793          * not in a debug mode, perform a state transaction in order to
1794          * enable further HW_RESET transaction.
1795          */
1796         rc = ecore_func_state_change(sc, &func_params);
1797         if (rc) {
1798                 PMD_DRV_LOG(NOTICE, sc, "FUNC_STOP ramrod failed. "
1799                             "Running a dry transaction");
1800                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1801                 return ecore_func_state_change(sc, &func_params);
1802         }
1803
1804         return 0;
1805 }
1806
1807 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1808 {
1809         struct ecore_func_state_params func_params = { NULL };
1810
1811         /* Prepare parameters for function state transitions */
1812         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1813
1814         func_params.f_obj = &sc->func_obj;
1815         func_params.cmd = ECORE_F_CMD_HW_RESET;
1816
1817         func_params.params.hw_init.load_phase = load_code;
1818
1819         return ecore_func_state_change(sc, &func_params);
1820 }
1821
1822 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1823 {
1824         if (disable_hw) {
1825                 /* prevent the HW from sending interrupts */
1826                 bnx2x_int_disable(sc);
1827         }
1828 }
1829
1830 static void
1831 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1832 {
1833         int port = SC_PORT(sc);
1834         struct ecore_mcast_ramrod_params rparam = { NULL };
1835         uint32_t reset_code;
1836         int i, rc = 0;
1837
1838         bnx2x_drain_tx_queues(sc);
1839
1840         /* give HW time to discard old tx messages */
1841         DELAY(1000);
1842
1843         /* Clean all ETH MACs */
1844         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1845                               FALSE);
1846         if (rc < 0) {
1847                 PMD_DRV_LOG(NOTICE, sc,
1848                             "Failed to delete all ETH MACs (%d)", rc);
1849         }
1850
1851         /* Clean up UC list  */
1852         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1853                               TRUE);
1854         if (rc < 0) {
1855                 PMD_DRV_LOG(NOTICE, sc,
1856                             "Failed to delete UC MACs list (%d)", rc);
1857         }
1858
1859         /* Disable LLH */
1860         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1861
1862         /* Set "drop all" to stop Rx */
1863
1864         /*
1865          * We need to take the if_maddr_lock() here in order to prevent
1866          * a race between the completion code and this code.
1867          */
1868
1869         if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1870                 bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1871         } else {
1872                 bnx2x_set_storm_rx_mode(sc);
1873         }
1874
1875         /* Clean up multicast configuration */
1876         rparam.mcast_obj = &sc->mcast_obj;
1877         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1878         if (rc < 0) {
1879                 PMD_DRV_LOG(NOTICE, sc,
1880                             "Failed to send DEL MCAST command (%d)", rc);
1881         }
1882
1883         /*
1884          * Send the UNLOAD_REQUEST to the MCP. This will return if
1885          * this function should perform FUNCTION, PORT, or COMMON HW
1886          * reset.
1887          */
1888         reset_code = bnx2x_send_unload_req(sc, unload_mode);
1889
1890         /*
1891          * (assumption: No Attention from MCP at this stage)
1892          * PMF probably in the middle of TX disable/enable transaction
1893          */
1894         rc = bnx2x_func_wait_started(sc);
1895         if (rc) {
1896                 PMD_DRV_LOG(NOTICE, sc, "bnx2x_func_wait_started failed");
1897         }
1898
1899         /*
1900          * Close multi and leading connections
1901          * Completions for ramrods are collected in a synchronous way
1902          */
1903         for (i = 0; i < sc->num_queues; i++) {
1904                 if (bnx2x_stop_queue(sc, i)) {
1905                         goto unload_error;
1906                 }
1907         }
1908
1909         /*
1910          * If SP settings didn't get completed so far - something
1911          * very wrong has happen.
1912          */
1913         if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1914                 PMD_DRV_LOG(NOTICE, sc, "Common slow path ramrods got stuck!");
1915         }
1916
1917 unload_error:
1918
1919         rc = bnx2x_func_stop(sc);
1920         if (rc) {
1921                 PMD_DRV_LOG(NOTICE, sc, "Function stop failed!");
1922         }
1923
1924         /* disable HW interrupts */
1925         bnx2x_int_disable_sync(sc, TRUE);
1926
1927         /* Reset the chip */
1928         rc = bnx2x_reset_hw(sc, reset_code);
1929         if (rc) {
1930                 PMD_DRV_LOG(NOTICE, sc, "Hardware reset failed");
1931         }
1932
1933         /* Report UNLOAD_DONE to MCP */
1934         bnx2x_send_unload_done(sc, keep_link);
1935 }
1936
1937 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1938 {
1939         uint32_t val;
1940
1941         PMD_DRV_LOG(DEBUG, sc, "Disabling 'close the gates'");
1942
1943         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1944         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1945                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1946         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1947 }
1948
1949 /*
1950  * Cleans the object that have internal lists without sending
1951  * ramrods. Should be run when interrutps are disabled.
1952  */
1953 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1954 {
1955         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1956         struct ecore_mcast_ramrod_params rparam = { NULL };
1957         struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1958         int rc;
1959
1960         /* Cleanup MACs' object first... */
1961
1962         /* Wait for completion of requested */
1963         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1964         /* Perform a dry cleanup */
1965         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1966
1967         /* Clean ETH primary MAC */
1968         bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1969         rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1970                                  &ramrod_flags);
1971         if (rc != 0) {
1972                 PMD_DRV_LOG(NOTICE, sc, "Failed to clean ETH MACs (%d)", rc);
1973         }
1974
1975         /* Cleanup UC list */
1976         vlan_mac_flags = 0;
1977         bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1978         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1979         if (rc != 0) {
1980                 PMD_DRV_LOG(NOTICE, sc,
1981                             "Failed to clean UC list MACs (%d)", rc);
1982         }
1983
1984         /* Now clean mcast object... */
1985
1986         rparam.mcast_obj = &sc->mcast_obj;
1987         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1988
1989         /* Add a DEL command... */
1990         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1991         if (rc < 0) {
1992                 PMD_DRV_LOG(NOTICE, sc,
1993                             "Failed to send DEL MCAST command (%d)", rc);
1994         }
1995
1996         /* now wait until all pending commands are cleared */
1997
1998         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1999         while (rc != 0) {
2000                 if (rc < 0) {
2001                         PMD_DRV_LOG(NOTICE, sc,
2002                                     "Failed to clean MCAST object (%d)", rc);
2003                         return;
2004                 }
2005
2006                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
2007         }
2008 }
2009
2010 /* stop the controller */
2011 __rte_noinline
2012 int
2013 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
2014 {
2015         uint8_t global = FALSE;
2016         uint32_t val;
2017
2018         PMD_DRV_LOG(DEBUG, sc, "Starting NIC unload...");
2019
2020         /* mark driver as unloaded in shmem2 */
2021         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
2022                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
2023                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
2024                           val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2025         }
2026
2027         if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
2028             (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
2029                 /*
2030                  * We can get here if the driver has been unloaded
2031                  * during parity error recovery and is either waiting for a
2032                  * leader to complete or for other functions to unload and
2033                  * then ifconfig down has been issued. In this case we want to
2034                  * unload and let other functions to complete a recovery
2035                  * process.
2036                  */
2037                 sc->recovery_state = BNX2X_RECOVERY_DONE;
2038                 sc->is_leader = 0;
2039                 bnx2x_release_leader_lock(sc);
2040                 mb();
2041
2042                 PMD_DRV_LOG(NOTICE, sc, "Can't unload in closed or error state");
2043                 return -1;
2044         }
2045
2046         /*
2047          * Nothing to do during unload if previous bnx2x_nic_load()
2048          * did not completed successfully - all resourses are released.
2049          */
2050         if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2051                 return 0;
2052         }
2053
2054         sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2055         mb();
2056
2057         sc->rx_mode = BNX2X_RX_MODE_NONE;
2058         bnx2x_set_rx_mode(sc);
2059         mb();
2060
2061         if (IS_PF(sc)) {
2062                 /* set ALWAYS_ALIVE bit in shmem */
2063                 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2064
2065                 bnx2x_drv_pulse(sc);
2066
2067                 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2068                 bnx2x_save_statistics(sc);
2069         }
2070
2071         /* wait till consumers catch up with producers in all queues */
2072         bnx2x_drain_tx_queues(sc);
2073
2074         /* if VF indicate to PF this function is going down (PF will delete sp
2075          * elements and clear initializations
2076          */
2077         if (IS_VF(sc)) {
2078                 bnx2x_vf_unload(sc);
2079         } else if (unload_mode != UNLOAD_RECOVERY) {
2080                 /* if this is a normal/close unload need to clean up chip */
2081                 bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2082         } else {
2083                 /* Send the UNLOAD_REQUEST to the MCP */
2084                 bnx2x_send_unload_req(sc, unload_mode);
2085
2086                 /*
2087                  * Prevent transactions to host from the functions on the
2088                  * engine that doesn't reset global blocks in case of global
2089                  * attention once gloabl blocks are reset and gates are opened
2090                  * (the engine which leader will perform the recovery
2091                  * last).
2092                  */
2093                 if (!CHIP_IS_E1x(sc)) {
2094                         bnx2x_pf_disable(sc);
2095                 }
2096
2097                 /* disable HW interrupts */
2098                 bnx2x_int_disable_sync(sc, TRUE);
2099
2100                 /* Report UNLOAD_DONE to MCP */
2101                 bnx2x_send_unload_done(sc, FALSE);
2102         }
2103
2104         /*
2105          * At this stage no more interrupts will arrive so we may safely clean
2106          * the queue'able objects here in case they failed to get cleaned so far.
2107          */
2108         if (IS_PF(sc)) {
2109                 bnx2x_squeeze_objects(sc);
2110         }
2111
2112         /* There should be no more pending SP commands at this stage */
2113         sc->sp_state = 0;
2114
2115         sc->port.pmf = 0;
2116
2117         if (IS_PF(sc)) {
2118                 bnx2x_free_mem(sc);
2119         }
2120
2121         bnx2x_free_fw_stats_mem(sc);
2122
2123         sc->state = BNX2X_STATE_CLOSED;
2124
2125         /*
2126          * Check if there are pending parity attentions. If there are - set
2127          * RECOVERY_IN_PROGRESS.
2128          */
2129         if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2130                 bnx2x_set_reset_in_progress(sc);
2131
2132                 /* Set RESET_IS_GLOBAL if needed */
2133                 if (global) {
2134                         bnx2x_set_reset_global(sc);
2135                 }
2136         }
2137
2138         /*
2139          * The last driver must disable a "close the gate" if there is no
2140          * parity attention or "process kill" pending.
2141          */
2142         if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2143             bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2144                 bnx2x_disable_close_the_gate(sc);
2145         }
2146
2147         PMD_DRV_LOG(DEBUG, sc, "Ended NIC unload");
2148
2149         return 0;
2150 }
2151
2152 /*
2153  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2154  * visible to the controller.
2155  *
2156  * If an mbuf is submitted to this routine and cannot be given to the
2157  * controller (e.g. it has too many fragments) then the function may free
2158  * the mbuf and return to the caller.
2159  *
2160  * Returns:
2161  *     int: Number of TX BDs used for the mbuf
2162  *
2163  *   Note the side effect that an mbuf may be freed if it causes a problem.
2164  */
2165 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2166 {
2167         struct eth_tx_start_bd *tx_start_bd;
2168         uint16_t bd_prod, pkt_prod;
2169         struct bnx2x_softc *sc;
2170         uint32_t nbds = 0;
2171
2172         sc = txq->sc;
2173         bd_prod = txq->tx_bd_tail;
2174         pkt_prod = txq->tx_pkt_tail;
2175
2176         txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2177
2178         tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2179
2180         tx_start_bd->addr =
2181             rte_cpu_to_le_64(rte_mbuf_data_iova(m0));
2182         tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2183         tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2184         tx_start_bd->general_data =
2185             (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2186
2187         tx_start_bd->nbd = rte_cpu_to_le_16(2);
2188
2189         if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2190                 tx_start_bd->vlan_or_ethertype =
2191                     rte_cpu_to_le_16(m0->vlan_tci);
2192                 tx_start_bd->bd_flags.as_bitfield |=
2193                     (X_ETH_OUTBAND_VLAN <<
2194                      ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2195         } else {
2196                 if (IS_PF(sc))
2197                         tx_start_bd->vlan_or_ethertype =
2198                             rte_cpu_to_le_16(pkt_prod);
2199                 else {
2200                         struct rte_ether_hdr *eh =
2201                             rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2202
2203                         tx_start_bd->vlan_or_ethertype =
2204                             rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2205                 }
2206         }
2207
2208         bd_prod = NEXT_TX_BD(bd_prod);
2209         if (IS_VF(sc)) {
2210                 struct eth_tx_parse_bd_e2 *tx_parse_bd;
2211                 const struct rte_ether_hdr *eh =
2212                     rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2213                 uint8_t mac_type = UNICAST_ADDRESS;
2214
2215                 tx_parse_bd =
2216                     &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2217                 if (rte_is_multicast_ether_addr(&eh->d_addr)) {
2218                         if (rte_is_broadcast_ether_addr(&eh->d_addr))
2219                                 mac_type = BROADCAST_ADDRESS;
2220                         else
2221                                 mac_type = MULTICAST_ADDRESS;
2222                 }
2223                 tx_parse_bd->parsing_data =
2224                     (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2225
2226                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2227                            &eh->d_addr.addr_bytes[0], 2);
2228                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2229                            &eh->d_addr.addr_bytes[2], 2);
2230                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2231                            &eh->d_addr.addr_bytes[4], 2);
2232                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2233                            &eh->s_addr.addr_bytes[0], 2);
2234                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2235                            &eh->s_addr.addr_bytes[2], 2);
2236                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2237                            &eh->s_addr.addr_bytes[4], 2);
2238
2239                 tx_parse_bd->data.mac_addr.dst_hi =
2240                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2241                 tx_parse_bd->data.mac_addr.dst_mid =
2242                     rte_cpu_to_be_16(tx_parse_bd->data.
2243                                      mac_addr.dst_mid);
2244                 tx_parse_bd->data.mac_addr.dst_lo =
2245                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2246                 tx_parse_bd->data.mac_addr.src_hi =
2247                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2248                 tx_parse_bd->data.mac_addr.src_mid =
2249                     rte_cpu_to_be_16(tx_parse_bd->data.
2250                                      mac_addr.src_mid);
2251                 tx_parse_bd->data.mac_addr.src_lo =
2252                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2253
2254                 PMD_TX_LOG(DEBUG,
2255                            "PBD dst %x %x %x src %x %x %x p_data %x",
2256                            tx_parse_bd->data.mac_addr.dst_hi,
2257                            tx_parse_bd->data.mac_addr.dst_mid,
2258                            tx_parse_bd->data.mac_addr.dst_lo,
2259                            tx_parse_bd->data.mac_addr.src_hi,
2260                            tx_parse_bd->data.mac_addr.src_mid,
2261                            tx_parse_bd->data.mac_addr.src_lo,
2262                            tx_parse_bd->parsing_data);
2263         }
2264
2265         PMD_TX_LOG(DEBUG,
2266                    "start bd: nbytes %d flags %x vlan %x",
2267                    tx_start_bd->nbytes,
2268                    tx_start_bd->bd_flags.as_bitfield,
2269                    tx_start_bd->vlan_or_ethertype);
2270
2271         bd_prod = NEXT_TX_BD(bd_prod);
2272         pkt_prod++;
2273
2274         if (TX_IDX(bd_prod) < 2)
2275                 nbds++;
2276
2277         txq->nb_tx_avail -= 2;
2278         txq->tx_bd_tail = bd_prod;
2279         txq->tx_pkt_tail = pkt_prod;
2280
2281         return nbds + 2;
2282 }
2283
2284 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2285 {
2286         return L2_ILT_LINES(sc);
2287 }
2288
2289 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2290 {
2291         struct ilt_client_info *ilt_client;
2292         struct ecore_ilt *ilt = sc->ilt;
2293         uint16_t line = 0;
2294
2295         PMD_INIT_FUNC_TRACE(sc);
2296
2297         ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2298
2299         /* CDU */
2300         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2301         ilt_client->client_num = ILT_CLIENT_CDU;
2302         ilt_client->page_size = CDU_ILT_PAGE_SZ;
2303         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2304         ilt_client->start = line;
2305         line += bnx2x_cid_ilt_lines(sc);
2306
2307         if (CNIC_SUPPORT(sc)) {
2308                 line += CNIC_ILT_LINES;
2309         }
2310
2311         ilt_client->end = (line - 1);
2312
2313         /* QM */
2314         if (QM_INIT(sc->qm_cid_count)) {
2315                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
2316                 ilt_client->client_num = ILT_CLIENT_QM;
2317                 ilt_client->page_size = QM_ILT_PAGE_SZ;
2318                 ilt_client->flags = 0;
2319                 ilt_client->start = line;
2320
2321                 /* 4 bytes for each cid */
2322                 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2323                                      QM_ILT_PAGE_SZ);
2324
2325                 ilt_client->end = (line - 1);
2326         }
2327
2328         if (CNIC_SUPPORT(sc)) {
2329                 /* SRC */
2330                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2331                 ilt_client->client_num = ILT_CLIENT_SRC;
2332                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
2333                 ilt_client->flags = 0;
2334                 ilt_client->start = line;
2335                 line += SRC_ILT_LINES;
2336                 ilt_client->end = (line - 1);
2337
2338                 /* TM */
2339                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
2340                 ilt_client->client_num = ILT_CLIENT_TM;
2341                 ilt_client->page_size = TM_ILT_PAGE_SZ;
2342                 ilt_client->flags = 0;
2343                 ilt_client->start = line;
2344                 line += TM_ILT_LINES;
2345                 ilt_client->end = (line - 1);
2346         }
2347
2348         assert((line <= ILT_MAX_LINES));
2349 }
2350
2351 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2352 {
2353         int i;
2354
2355         for (i = 0; i < sc->num_queues; i++) {
2356                 /* get the Rx buffer size for RX frames */
2357                 sc->fp[i].rx_buf_size =
2358                     (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2359         }
2360 }
2361
2362 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2363 {
2364
2365         sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2366
2367         return sc->ilt == NULL;
2368 }
2369
2370 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2371 {
2372         sc->ilt->lines = rte_calloc("",
2373                                     sizeof(struct ilt_line), ILT_MAX_LINES,
2374                                     RTE_CACHE_LINE_SIZE);
2375         return sc->ilt->lines == NULL;
2376 }
2377
2378 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2379 {
2380         rte_free(sc->ilt);
2381         sc->ilt = NULL;
2382 }
2383
2384 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2385 {
2386         if (sc->ilt->lines != NULL) {
2387                 rte_free(sc->ilt->lines);
2388                 sc->ilt->lines = NULL;
2389         }
2390 }
2391
2392 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2393 {
2394         uint32_t i;
2395
2396         for (i = 0; i < L2_ILT_LINES(sc); i++) {
2397                 sc->context[i].vcxt = NULL;
2398                 sc->context[i].size = 0;
2399         }
2400
2401         ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2402
2403         bnx2x_free_ilt_lines_mem(sc);
2404 }
2405
2406 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2407 {
2408         int context_size;
2409         int allocated;
2410         int i;
2411         char cdu_name[RTE_MEMZONE_NAMESIZE];
2412
2413         /*
2414          * Allocate memory for CDU context:
2415          * This memory is allocated separately and not in the generic ILT
2416          * functions because CDU differs in few aspects:
2417          * 1. There can be multiple entities allocating memory for context -
2418          * regular L2, CNIC, and SRIOV drivers. Each separately controls
2419          * its own ILT lines.
2420          * 2. Since CDU page-size is not a single 4KB page (which is the case
2421          * for the other ILT clients), to be efficient we want to support
2422          * allocation of sub-page-size in the last entry.
2423          * 3. Context pointers are used by the driver to pass to FW / update
2424          * the context (for the other ILT clients the pointers are used just to
2425          * free the memory during unload).
2426          */
2427         context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2428         for (i = 0, allocated = 0; allocated < context_size; i++) {
2429                 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2430                                           (context_size - allocated));
2431
2432                 snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2433                 if (bnx2x_dma_alloc(sc, sc->context[i].size,
2434                                   &sc->context[i].vcxt_dma,
2435                                   cdu_name, BNX2X_PAGE_SIZE) != 0) {
2436                         bnx2x_free_mem(sc);
2437                         return -1;
2438                 }
2439
2440                 sc->context[i].vcxt =
2441                     (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2442
2443                 allocated += sc->context[i].size;
2444         }
2445
2446         bnx2x_alloc_ilt_lines_mem(sc);
2447
2448         if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2449                 PMD_DRV_LOG(NOTICE, sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2450                 bnx2x_free_mem(sc);
2451                 return -1;
2452         }
2453
2454         return 0;
2455 }
2456
2457 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2458 {
2459         bnx2x_dma_free(&sc->fw_stats_dma);
2460         sc->fw_stats_num = 0;
2461
2462         sc->fw_stats_req_size = 0;
2463         sc->fw_stats_req = NULL;
2464         sc->fw_stats_req_mapping = 0;
2465
2466         sc->fw_stats_data_size = 0;
2467         sc->fw_stats_data = NULL;
2468         sc->fw_stats_data_mapping = 0;
2469 }
2470
2471 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2472 {
2473         uint8_t num_queue_stats;
2474         int num_groups, vf_headroom = 0;
2475
2476         /* number of queues for statistics is number of eth queues */
2477         num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2478
2479         /*
2480          * Total number of FW statistics requests =
2481          *   1 for port stats + 1 for PF stats + num of queues
2482          */
2483         sc->fw_stats_num = (2 + num_queue_stats);
2484
2485         /*
2486          * Request is built from stats_query_header and an array of
2487          * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2488          * rules. The real number or requests is configured in the
2489          * stats_query_header.
2490          */
2491         num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2492         if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2493                 num_groups++;
2494
2495         sc->fw_stats_req_size =
2496             (sizeof(struct stats_query_header) +
2497              (num_groups * sizeof(struct stats_query_cmd_group)));
2498
2499         /*
2500          * Data for statistics requests + stats_counter.
2501          * stats_counter holds per-STORM counters that are incremented when
2502          * STORM has finished with the current request. Memory for FCoE
2503          * offloaded statistics are counted anyway, even if they will not be sent.
2504          * VF stats are not accounted for here as the data of VF stats is stored
2505          * in memory allocated by the VF, not here.
2506          */
2507         sc->fw_stats_data_size =
2508             (sizeof(struct stats_counter) +
2509              sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2510              /* sizeof(struct fcoe_statistics_params) + */
2511              (sizeof(struct per_queue_stats) * num_queue_stats));
2512
2513         if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2514                           &sc->fw_stats_dma, "fw_stats",
2515                           RTE_CACHE_LINE_SIZE) != 0) {
2516                 bnx2x_free_fw_stats_mem(sc);
2517                 return -1;
2518         }
2519
2520         /* set up the shortcuts */
2521
2522         sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2523         sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2524
2525         sc->fw_stats_data =
2526             (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2527                                          sc->fw_stats_req_size);
2528         sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2529                                      sc->fw_stats_req_size);
2530
2531         return 0;
2532 }
2533
2534 /*
2535  * Bits map:
2536  * 0-7  - Engine0 load counter.
2537  * 8-15 - Engine1 load counter.
2538  * 16   - Engine0 RESET_IN_PROGRESS bit.
2539  * 17   - Engine1 RESET_IN_PROGRESS bit.
2540  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
2541  *        function on the engine
2542  * 19   - Engine1 ONE_IS_LOADED.
2543  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
2544  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
2545  *        for just the one belonging to its engine).
2546  */
2547 #define BNX2X_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
2548 #define BNX2X_PATH0_LOAD_CNT_MASK   0x000000ff
2549 #define BNX2X_PATH0_LOAD_CNT_SHIFT  0
2550 #define BNX2X_PATH1_LOAD_CNT_MASK   0x0000ff00
2551 #define BNX2X_PATH1_LOAD_CNT_SHIFT  8
2552 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2553 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2554 #define BNX2X_GLOBAL_RESET_BIT      0x00040000
2555
2556 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2557 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2558 {
2559         uint32_t val;
2560         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2561         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2562         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2563         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2564 }
2565
2566 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2567 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2568 {
2569         uint32_t val;
2570         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2571         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2572         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2573         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2574 }
2575
2576 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2577 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2578 {
2579         return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2580 }
2581
2582 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2583 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2584 {
2585         uint32_t val;
2586         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2587             BNX2X_PATH0_RST_IN_PROG_BIT;
2588
2589         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2590
2591         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2592         /* Clear the bit */
2593         val &= ~bit;
2594         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2595
2596         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2597 }
2598
2599 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2600 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2601 {
2602         uint32_t val;
2603         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2604             BNX2X_PATH0_RST_IN_PROG_BIT;
2605
2606         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2607
2608         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2609         /* Set the bit */
2610         val |= bit;
2611         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2612
2613         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2614 }
2615
2616 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2617 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2618 {
2619         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2620         uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2621             BNX2X_PATH0_RST_IN_PROG_BIT;
2622
2623         /* return false if bit is set */
2624         return (val & bit) ? FALSE : TRUE;
2625 }
2626
2627 /* get the load status for an engine, should be run under rtnl lock */
2628 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2629 {
2630         uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2631             BNX2X_PATH0_LOAD_CNT_MASK;
2632         uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2633             BNX2X_PATH0_LOAD_CNT_SHIFT;
2634         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2635
2636         val = ((val & mask) >> shift);
2637
2638         return val != 0;
2639 }
2640
2641 /* set pf load mark */
2642 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2643 {
2644         uint32_t val;
2645         uint32_t val1;
2646         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2647             BNX2X_PATH0_LOAD_CNT_MASK;
2648         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2649             BNX2X_PATH0_LOAD_CNT_SHIFT;
2650
2651         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2652
2653         PMD_INIT_FUNC_TRACE(sc);
2654
2655         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2656
2657         /* get the current counter value */
2658         val1 = ((val & mask) >> shift);
2659
2660         /* set bit of this PF */
2661         val1 |= (1 << SC_ABS_FUNC(sc));
2662
2663         /* clear the old value */
2664         val &= ~mask;
2665
2666         /* set the new one */
2667         val |= ((val1 << shift) & mask);
2668
2669         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2670
2671         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2672 }
2673
2674 /* clear pf load mark */
2675 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2676 {
2677         uint32_t val1, val;
2678         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2679             BNX2X_PATH0_LOAD_CNT_MASK;
2680         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2681             BNX2X_PATH0_LOAD_CNT_SHIFT;
2682
2683         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2684         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2685
2686         /* get the current counter value */
2687         val1 = (val & mask) >> shift;
2688
2689         /* clear bit of that PF */
2690         val1 &= ~(1 << SC_ABS_FUNC(sc));
2691
2692         /* clear the old value */
2693         val &= ~mask;
2694
2695         /* set the new one */
2696         val |= ((val1 << shift) & mask);
2697
2698         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2699         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2700         return val1 != 0;
2701 }
2702
2703 /* send load requrest to mcp and analyze response */
2704 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2705 {
2706         PMD_INIT_FUNC_TRACE(sc);
2707
2708         /* init fw_seq */
2709         sc->fw_seq =
2710             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2711              DRV_MSG_SEQ_NUMBER_MASK);
2712
2713         PMD_DRV_LOG(DEBUG, sc, "initial fw_seq 0x%04x", sc->fw_seq);
2714
2715 #ifdef BNX2X_PULSE
2716         /* get the current FW pulse sequence */
2717         sc->fw_drv_pulse_wr_seq =
2718             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2719              DRV_PULSE_SEQ_MASK);
2720 #else
2721         /* set ALWAYS_ALIVE bit in shmem */
2722         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2723         bnx2x_drv_pulse(sc);
2724 #endif
2725
2726         /* load request */
2727         (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2728                                       DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2729
2730         /* if the MCP fails to respond we must abort */
2731         if (!(*load_code)) {
2732                 PMD_DRV_LOG(NOTICE, sc, "MCP response failure!");
2733                 return -1;
2734         }
2735
2736         /* if MCP refused then must abort */
2737         if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2738                 PMD_DRV_LOG(NOTICE, sc, "MCP refused load request");
2739                 return -1;
2740         }
2741
2742         return 0;
2743 }
2744
2745 /*
2746  * Check whether another PF has already loaded FW to chip. In virtualized
2747  * environments a pf from anoth VM may have already initialized the device
2748  * including loading FW.
2749  */
2750 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2751 {
2752         uint32_t my_fw, loaded_fw;
2753
2754         /* is another pf loaded on this engine? */
2755         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2756             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2757                 /* build my FW version dword */
2758                 my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2759                          (BNX2X_5710_FW_MINOR_VERSION << 8) +
2760                          (BNX2X_5710_FW_REVISION_VERSION << 16) +
2761                          (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2762
2763                 /* read loaded FW from chip */
2764                 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2765                 PMD_DRV_LOG(DEBUG, sc, "loaded FW 0x%08x / my FW 0x%08x",
2766                             loaded_fw, my_fw);
2767
2768                 /* abort nic load if version mismatch */
2769                 if (my_fw != loaded_fw) {
2770                         PMD_DRV_LOG(NOTICE, sc,
2771                                     "FW 0x%08x already loaded (mine is 0x%08x)",
2772                                     loaded_fw, my_fw);
2773                         return -1;
2774                 }
2775         }
2776
2777         return 0;
2778 }
2779
2780 /* mark PMF if applicable */
2781 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2782 {
2783         uint32_t ncsi_oem_data_addr;
2784
2785         PMD_INIT_FUNC_TRACE(sc);
2786
2787         if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2788             (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2789             (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2790                 /*
2791                  * Barrier here for ordering between the writing to sc->port.pmf here
2792                  * and reading it from the periodic task.
2793                  */
2794                 sc->port.pmf = 1;
2795                 mb();
2796         } else {
2797                 sc->port.pmf = 0;
2798         }
2799
2800         PMD_DRV_LOG(DEBUG, sc, "pmf %d", sc->port.pmf);
2801
2802         if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2803                 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2804                         ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2805                         if (ncsi_oem_data_addr) {
2806                                 REG_WR(sc,
2807                                        (ncsi_oem_data_addr +
2808                                         offsetof(struct glob_ncsi_oem_data,
2809                                                  driver_version)), 0);
2810                         }
2811                 }
2812         }
2813 }
2814
2815 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2816 {
2817         int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2818         int abs_func;
2819         int vn;
2820
2821         if (BNX2X_NOMCP(sc)) {
2822                 return;         /* what should be the default bvalue in this case */
2823         }
2824
2825         /*
2826          * The formula for computing the absolute function number is...
2827          * For 2 port configuration (4 functions per port):
2828          *   abs_func = 2 * vn + SC_PORT + SC_PATH
2829          * For 4 port configuration (2 functions per port):
2830          *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2831          */
2832         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2833                 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2834                 if (abs_func >= E1H_FUNC_MAX) {
2835                         break;
2836                 }
2837                 sc->devinfo.mf_info.mf_config[vn] =
2838                     MFCFG_RD(sc, func_mf_config[abs_func].config);
2839         }
2840
2841         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2842             FUNC_MF_CFG_FUNC_DISABLED) {
2843                 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
2844                 sc->flags |= BNX2X_MF_FUNC_DIS;
2845         } else {
2846                 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
2847                 sc->flags &= ~BNX2X_MF_FUNC_DIS;
2848         }
2849 }
2850
2851 /* acquire split MCP access lock register */
2852 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2853 {
2854         uint32_t j, val;
2855
2856         for (j = 0; j < 1000; j++) {
2857                 val = (1UL << 31);
2858                 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2859                 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2860                 if (val & (1L << 31))
2861                         break;
2862
2863                 DELAY(5000);
2864         }
2865
2866         if (!(val & (1L << 31))) {
2867                 PMD_DRV_LOG(NOTICE, sc, "Cannot acquire MCP access lock register");
2868                 return -1;
2869         }
2870
2871         return 0;
2872 }
2873
2874 /* release split MCP access lock register */
2875 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2876 {
2877         REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2878 }
2879
2880 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2881 {
2882         int port = SC_PORT(sc);
2883         uint32_t ext_phy_config;
2884
2885         /* mark the failure */
2886         ext_phy_config =
2887             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2888
2889         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2890         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2891         SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2892                  ext_phy_config);
2893
2894         /* log the failure */
2895         PMD_DRV_LOG(INFO, sc,
2896                     "Fan Failure has caused the driver to shutdown "
2897                     "the card to prevent permanent damage. "
2898                     "Please contact OEM Support for assistance");
2899
2900         rte_panic("Schedule task to handle fan failure");
2901 }
2902
2903 /* this function is called upon a link interrupt */
2904 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2905 {
2906         uint32_t pause_enabled = 0;
2907         struct host_port_stats *pstats;
2908         int cmng_fns;
2909
2910         /* Make sure that we are synced with the current statistics */
2911         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2912
2913         elink_link_update(&sc->link_params, &sc->link_vars);
2914
2915         if (sc->link_vars.link_up) {
2916
2917                 /* dropless flow control */
2918                 if (sc->dropless_fc) {
2919                         pause_enabled = 0;
2920
2921                         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2922                                 pause_enabled = 1;
2923                         }
2924
2925                         REG_WR(sc,
2926                                (BAR_USTRORM_INTMEM +
2927                                 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2928                                pause_enabled);
2929                 }
2930
2931                 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2932                         pstats = BNX2X_SP(sc, port_stats);
2933                         /* reset old mac stats */
2934                         memset(&(pstats->mac_stx[0]), 0,
2935                                sizeof(struct mac_stx));
2936                 }
2937
2938                 if (sc->state == BNX2X_STATE_OPEN) {
2939                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2940                 }
2941         }
2942
2943         if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2944                 cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2945
2946                 if (cmng_fns != CMNG_FNS_NONE) {
2947                         bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2948                         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2949                 }
2950         }
2951
2952         bnx2x_link_report_locked(sc);
2953
2954         if (IS_MF(sc)) {
2955                 bnx2x_link_sync_notify(sc);
2956         }
2957 }
2958
2959 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2960 {
2961         int port = SC_PORT(sc);
2962         uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2963             MISC_REG_AEU_MASK_ATTN_FUNC_0;
2964         uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2965             NIG_REG_MASK_INTERRUPT_PORT0;
2966         uint32_t aeu_mask;
2967         uint32_t nig_mask = 0;
2968         uint32_t reg_addr;
2969         uint32_t igu_acked;
2970         uint32_t cnt;
2971
2972         if (sc->attn_state & asserted) {
2973                 PMD_DRV_LOG(ERR, sc, "IGU ERROR attn=0x%08x", asserted);
2974         }
2975
2976         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2977
2978         aeu_mask = REG_RD(sc, aeu_addr);
2979
2980         aeu_mask &= ~(asserted & 0x3ff);
2981
2982         REG_WR(sc, aeu_addr, aeu_mask);
2983
2984         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2985
2986         sc->attn_state |= asserted;
2987
2988         if (asserted & ATTN_HARD_WIRED_MASK) {
2989                 if (asserted & ATTN_NIG_FOR_FUNC) {
2990
2991                         bnx2x_acquire_phy_lock(sc);
2992                         /* save nig interrupt mask */
2993                         nig_mask = REG_RD(sc, nig_int_mask_addr);
2994
2995                         /* If nig_mask is not set, no need to call the update function */
2996                         if (nig_mask) {
2997                                 REG_WR(sc, nig_int_mask_addr, 0);
2998
2999                                 bnx2x_link_attn(sc);
3000                         }
3001
3002                         /* handle unicore attn? */
3003                 }
3004
3005                 if (asserted & ATTN_SW_TIMER_4_FUNC) {
3006                         PMD_DRV_LOG(DEBUG, sc, "ATTN_SW_TIMER_4_FUNC!");
3007                 }
3008
3009                 if (asserted & GPIO_2_FUNC) {
3010                         PMD_DRV_LOG(DEBUG, sc, "GPIO_2_FUNC!");
3011                 }
3012
3013                 if (asserted & GPIO_3_FUNC) {
3014                         PMD_DRV_LOG(DEBUG, sc, "GPIO_3_FUNC!");
3015                 }
3016
3017                 if (asserted & GPIO_4_FUNC) {
3018                         PMD_DRV_LOG(DEBUG, sc, "GPIO_4_FUNC!");
3019                 }
3020
3021                 if (port == 0) {
3022                         if (asserted & ATTN_GENERAL_ATTN_1) {
3023                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_1!");
3024                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3025                         }
3026                         if (asserted & ATTN_GENERAL_ATTN_2) {
3027                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_2!");
3028                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3029                         }
3030                         if (asserted & ATTN_GENERAL_ATTN_3) {
3031                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_3!");
3032                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3033                         }
3034                 } else {
3035                         if (asserted & ATTN_GENERAL_ATTN_4) {
3036                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_4!");
3037                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3038                         }
3039                         if (asserted & ATTN_GENERAL_ATTN_5) {
3040                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_5!");
3041                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3042                         }
3043                         if (asserted & ATTN_GENERAL_ATTN_6) {
3044                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_6!");
3045                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3046                         }
3047                 }
3048         }
3049         /* hardwired */
3050         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3051                 reg_addr =
3052                     (HC_REG_COMMAND_REG + port * 32 +
3053                      COMMAND_REG_ATTN_BITS_SET);
3054         } else {
3055                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3056         }
3057
3058         PMD_DRV_LOG(DEBUG, sc, "about to mask 0x%08x at %s addr 0x%08x",
3059                     asserted,
3060                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3061                     reg_addr);
3062         REG_WR(sc, reg_addr, asserted);
3063
3064         /* now set back the mask */
3065         if (asserted & ATTN_NIG_FOR_FUNC) {
3066                 /*
3067                  * Verify that IGU ack through BAR was written before restoring
3068                  * NIG mask. This loop should exit after 2-3 iterations max.
3069                  */
3070                 if (sc->devinfo.int_block != INT_BLOCK_HC) {
3071                         cnt = 0;
3072
3073                         do {
3074                                 igu_acked =
3075                                     REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3076                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3077                                  && (++cnt < MAX_IGU_ATTN_ACK_TO));
3078
3079                         if (!igu_acked) {
3080                                 PMD_DRV_LOG(ERR, sc,
3081                                             "Failed to verify IGU ack on time");
3082                         }
3083
3084                         mb();
3085                 }
3086
3087                 REG_WR(sc, nig_int_mask_addr, nig_mask);
3088
3089                 bnx2x_release_phy_lock(sc);
3090         }
3091 }
3092
3093 static void
3094 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3095                      __rte_unused const char *blk)
3096 {
3097         PMD_DRV_LOG(INFO, sc, "%s%s", idx ? ", " : "", blk);
3098 }
3099
3100 static int
3101 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3102                               uint8_t print)
3103 {
3104         uint32_t cur_bit = 0;
3105         int i = 0;
3106
3107         for (i = 0; sig; i++) {
3108                 cur_bit = ((uint32_t) 0x1 << i);
3109                 if (sig & cur_bit) {
3110                         switch (cur_bit) {
3111                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3112                                 if (print)
3113                                         bnx2x_print_next_block(sc, par_num++,
3114                                                              "BRB");
3115                                 break;
3116                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3117                                 if (print)
3118                                         bnx2x_print_next_block(sc, par_num++,
3119                                                              "PARSER");
3120                                 break;
3121                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3122                                 if (print)
3123                                         bnx2x_print_next_block(sc, par_num++,
3124                                                              "TSDM");
3125                                 break;
3126                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3127                                 if (print)
3128                                         bnx2x_print_next_block(sc, par_num++,
3129                                                              "SEARCHER");
3130                                 break;
3131                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3132                                 if (print)
3133                                         bnx2x_print_next_block(sc, par_num++,
3134                                                              "TCM");
3135                                 break;
3136                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3137                                 if (print)
3138                                         bnx2x_print_next_block(sc, par_num++,
3139                                                              "TSEMI");
3140                                 break;
3141                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3142                                 if (print)
3143                                         bnx2x_print_next_block(sc, par_num++,
3144                                                              "XPB");
3145                                 break;
3146                         }
3147
3148                         /* Clear the bit */
3149                         sig &= ~cur_bit;
3150                 }
3151         }
3152
3153         return par_num;
3154 }
3155
3156 static int
3157 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3158                               uint8_t * global, uint8_t print)
3159 {
3160         int i = 0;
3161         uint32_t cur_bit = 0;
3162         for (i = 0; sig; i++) {
3163                 cur_bit = ((uint32_t) 0x1 << i);
3164                 if (sig & cur_bit) {
3165                         switch (cur_bit) {
3166                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3167                                 if (print)
3168                                         bnx2x_print_next_block(sc, par_num++,
3169                                                              "PBF");
3170                                 break;
3171                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3172                                 if (print)
3173                                         bnx2x_print_next_block(sc, par_num++,
3174                                                              "QM");
3175                                 break;
3176                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3177                                 if (print)
3178                                         bnx2x_print_next_block(sc, par_num++,
3179                                                              "TM");
3180                                 break;
3181                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3182                                 if (print)
3183                                         bnx2x_print_next_block(sc, par_num++,
3184                                                              "XSDM");
3185                                 break;
3186                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3187                                 if (print)
3188                                         bnx2x_print_next_block(sc, par_num++,
3189                                                              "XCM");
3190                                 break;
3191                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3192                                 if (print)
3193                                         bnx2x_print_next_block(sc, par_num++,
3194                                                              "XSEMI");
3195                                 break;
3196                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3197                                 if (print)
3198                                         bnx2x_print_next_block(sc, par_num++,
3199                                                              "DOORBELLQ");
3200                                 break;
3201                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3202                                 if (print)
3203                                         bnx2x_print_next_block(sc, par_num++,
3204                                                              "NIG");
3205                                 break;
3206                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3207                                 if (print)
3208                                         bnx2x_print_next_block(sc, par_num++,
3209                                                              "VAUX PCI CORE");
3210                                 *global = TRUE;
3211                                 break;
3212                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3213                                 if (print)
3214                                         bnx2x_print_next_block(sc, par_num++,
3215                                                              "DEBUG");
3216                                 break;
3217                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3218                                 if (print)
3219                                         bnx2x_print_next_block(sc, par_num++,
3220                                                              "USDM");
3221                                 break;
3222                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3223                                 if (print)
3224                                         bnx2x_print_next_block(sc, par_num++,
3225                                                              "UCM");
3226                                 break;
3227                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3228                                 if (print)
3229                                         bnx2x_print_next_block(sc, par_num++,
3230                                                              "USEMI");
3231                                 break;
3232                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3233                                 if (print)
3234                                         bnx2x_print_next_block(sc, par_num++,
3235                                                              "UPB");
3236                                 break;
3237                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3238                                 if (print)
3239                                         bnx2x_print_next_block(sc, par_num++,
3240                                                              "CSDM");
3241                                 break;
3242                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3243                                 if (print)
3244                                         bnx2x_print_next_block(sc, par_num++,
3245                                                              "CCM");
3246                                 break;
3247                         }
3248
3249                         /* Clear the bit */
3250                         sig &= ~cur_bit;
3251                 }
3252         }
3253
3254         return par_num;
3255 }
3256
3257 static int
3258 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3259                               uint8_t print)
3260 {
3261         uint32_t cur_bit = 0;
3262         int i = 0;
3263
3264         for (i = 0; sig; i++) {
3265                 cur_bit = ((uint32_t) 0x1 << i);
3266                 if (sig & cur_bit) {
3267                         switch (cur_bit) {
3268                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3269                                 if (print)
3270                                         bnx2x_print_next_block(sc, par_num++,
3271                                                              "CSEMI");
3272                                 break;
3273                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3274                                 if (print)
3275                                         bnx2x_print_next_block(sc, par_num++,
3276                                                              "PXP");
3277                                 break;
3278                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3279                                 if (print)
3280                                         bnx2x_print_next_block(sc, par_num++,
3281                                                              "PXPPCICLOCKCLIENT");
3282                                 break;
3283                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3284                                 if (print)
3285                                         bnx2x_print_next_block(sc, par_num++,
3286                                                              "CFC");
3287                                 break;
3288                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3289                                 if (print)
3290                                         bnx2x_print_next_block(sc, par_num++,
3291                                                              "CDU");
3292                                 break;
3293                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3294                                 if (print)
3295                                         bnx2x_print_next_block(sc, par_num++,
3296                                                              "DMAE");
3297                                 break;
3298                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3299                                 if (print)
3300                                         bnx2x_print_next_block(sc, par_num++,
3301                                                              "IGU");
3302                                 break;
3303                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3304                                 if (print)
3305                                         bnx2x_print_next_block(sc, par_num++,
3306                                                              "MISC");
3307                                 break;
3308                         }
3309
3310                         /* Clear the bit */
3311                         sig &= ~cur_bit;
3312                 }
3313         }
3314
3315         return par_num;
3316 }
3317
3318 static int
3319 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3320                               uint8_t * global, uint8_t print)
3321 {
3322         uint32_t cur_bit = 0;
3323         int i = 0;
3324
3325         for (i = 0; sig; i++) {
3326                 cur_bit = ((uint32_t) 0x1 << i);
3327                 if (sig & cur_bit) {
3328                         switch (cur_bit) {
3329                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3330                                 if (print)
3331                                         bnx2x_print_next_block(sc, par_num++,
3332                                                              "MCP ROM");
3333                                 *global = TRUE;
3334                                 break;
3335                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3336                                 if (print)
3337                                         bnx2x_print_next_block(sc, par_num++,
3338                                                              "MCP UMP RX");
3339                                 *global = TRUE;
3340                                 break;
3341                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3342                                 if (print)
3343                                         bnx2x_print_next_block(sc, par_num++,
3344                                                              "MCP UMP TX");
3345                                 *global = TRUE;
3346                                 break;
3347                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3348                                 if (print)
3349                                         bnx2x_print_next_block(sc, par_num++,
3350                                                              "MCP SCPAD");
3351                                 *global = TRUE;
3352                                 break;
3353                         }
3354
3355                         /* Clear the bit */
3356                         sig &= ~cur_bit;
3357                 }
3358         }
3359
3360         return par_num;
3361 }
3362
3363 static int
3364 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3365                               uint8_t print)
3366 {
3367         uint32_t cur_bit = 0;
3368         int i = 0;
3369
3370         for (i = 0; sig; i++) {
3371                 cur_bit = ((uint32_t) 0x1 << i);
3372                 if (sig & cur_bit) {
3373                         switch (cur_bit) {
3374                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3375                                 if (print)
3376                                         bnx2x_print_next_block(sc, par_num++,
3377                                                              "PGLUE_B");
3378                                 break;
3379                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3380                                 if (print)
3381                                         bnx2x_print_next_block(sc, par_num++,
3382                                                              "ATC");
3383                                 break;
3384                         }
3385
3386                         /* Clear the bit */
3387                         sig &= ~cur_bit;
3388                 }
3389         }
3390
3391         return par_num;
3392 }
3393
3394 static uint8_t
3395 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3396                 uint32_t * sig)
3397 {
3398         int par_num = 0;
3399
3400         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3401             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3402             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3403             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3404             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3405                 PMD_DRV_LOG(ERR, sc,
3406                             "Parity error: HW block parity attention:"
3407                             "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3408                             (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3409                             (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3410                             (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3411                             (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3412                             (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3413
3414                 if (print)
3415                         PMD_DRV_LOG(INFO, sc, "Parity errors detected in blocks: ");
3416
3417                 par_num =
3418                     bnx2x_check_blocks_with_parity0(sc, sig[0] &
3419                                                   HW_PRTY_ASSERT_SET_0,
3420                                                   par_num, print);
3421                 par_num =
3422                     bnx2x_check_blocks_with_parity1(sc, sig[1] &
3423                                                   HW_PRTY_ASSERT_SET_1,
3424                                                   par_num, global, print);
3425                 par_num =
3426                     bnx2x_check_blocks_with_parity2(sc, sig[2] &
3427                                                   HW_PRTY_ASSERT_SET_2,
3428                                                   par_num, print);
3429                 par_num =
3430                     bnx2x_check_blocks_with_parity3(sc, sig[3] &
3431                                                   HW_PRTY_ASSERT_SET_3,
3432                                                   par_num, global, print);
3433                 par_num =
3434                     bnx2x_check_blocks_with_parity4(sc, sig[4] &
3435                                                   HW_PRTY_ASSERT_SET_4,
3436                                                   par_num, print);
3437
3438                 if (print)
3439                         PMD_DRV_LOG(INFO, sc, "");
3440
3441                 return TRUE;
3442         }
3443
3444         return FALSE;
3445 }
3446
3447 static uint8_t
3448 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3449 {
3450         struct attn_route attn = { {0} };
3451         int port = SC_PORT(sc);
3452
3453         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3454         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3455         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3456         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3457
3458         if (!CHIP_IS_E1x(sc))
3459                 attn.sig[4] =
3460                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3461
3462         return bnx2x_parity_attn(sc, global, print, attn.sig);
3463 }
3464
3465 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3466 {
3467         uint32_t val;
3468
3469         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3470                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3471                 PMD_DRV_LOG(INFO, sc, "ERROR: PGLUE hw attention 0x%08x", val);
3472                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3473                         PMD_DRV_LOG(INFO, sc,
3474                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3475                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3476                         PMD_DRV_LOG(INFO, sc,
3477                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3478                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3479                         PMD_DRV_LOG(INFO, sc,
3480                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3481                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3482                         PMD_DRV_LOG(INFO, sc,
3483                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3484                 if (val &
3485                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3486                         PMD_DRV_LOG(INFO, sc,
3487                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3488                 if (val &
3489                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3490                         PMD_DRV_LOG(INFO, sc,
3491                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3492                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3493                         PMD_DRV_LOG(INFO, sc,
3494                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3495                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3496                         PMD_DRV_LOG(INFO, sc,
3497                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3498                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3499                         PMD_DRV_LOG(INFO, sc,
3500                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3501         }
3502
3503         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3504                 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3505                 PMD_DRV_LOG(INFO, sc, "ERROR: ATC hw attention 0x%08x", val);
3506                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3507                         PMD_DRV_LOG(INFO, sc,
3508                                     "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3509                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3510                         PMD_DRV_LOG(INFO, sc,
3511                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3512                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3513                         PMD_DRV_LOG(INFO, sc,
3514                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3515                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3516                         PMD_DRV_LOG(INFO, sc,
3517                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3518                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3519                         PMD_DRV_LOG(INFO, sc,
3520                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3521                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3522                         PMD_DRV_LOG(INFO, sc,
3523                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3524         }
3525
3526         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3527                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3528                 PMD_DRV_LOG(INFO, sc,
3529                             "ERROR: FATAL parity attention set4 0x%08x",
3530                             (uint32_t) (attn &
3531                                         (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3532                                          |
3533                                          AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3534         }
3535 }
3536
3537 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3538 {
3539         int port = SC_PORT(sc);
3540
3541         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3542 }
3543
3544 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3545 {
3546         int port = SC_PORT(sc);
3547
3548         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3549 }
3550
3551 /*
3552  * called due to MCP event (on pmf):
3553  *   reread new bandwidth configuration
3554  *   configure FW
3555  *   notify others function about the change
3556  */
3557 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3558 {
3559         if (sc->link_vars.link_up) {
3560                 bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3561                 bnx2x_link_sync_notify(sc);
3562         }
3563
3564         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3565 }
3566
3567 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3568 {
3569         bnx2x_config_mf_bw(sc);
3570         bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3571 }
3572
3573 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3574 {
3575         bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3576 }
3577
3578 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3579
3580 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3581 {
3582         struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3583
3584         strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3585                 ETH_STAT_INFO_VERSION_LEN);
3586
3587         sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3588                                               DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3589                                               ether_stat->mac_local + MAC_PAD,
3590                                               MAC_PAD, ETH_ALEN);
3591
3592         ether_stat->mtu_size = sc->mtu;
3593
3594         ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3595         ether_stat->promiscuous_mode = 0;       // (flags & PROMISC) ? 1 : 0;
3596
3597         ether_stat->txq_size = sc->tx_ring_size;
3598         ether_stat->rxq_size = sc->rx_ring_size;
3599 }
3600
3601 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3602 {
3603         enum drv_info_opcode op_code;
3604         uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3605
3606         /* if drv_info version supported by MFW doesn't match - send NACK */
3607         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3608                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3609                 return;
3610         }
3611
3612         op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3613                    DRV_INFO_CONTROL_OP_CODE_SHIFT);
3614
3615         memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3616
3617         switch (op_code) {
3618         case ETH_STATS_OPCODE:
3619                 bnx2x_drv_info_ether_stat(sc);
3620                 break;
3621         case FCOE_STATS_OPCODE:
3622         case ISCSI_STATS_OPCODE:
3623         default:
3624                 /* if op code isn't supported - send NACK */
3625                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3626                 return;
3627         }
3628
3629         /*
3630          * If we got drv_info attn from MFW then these fields are defined in
3631          * shmem2 for sure
3632          */
3633         SHMEM2_WR(sc, drv_info_host_addr_lo,
3634                   U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3635         SHMEM2_WR(sc, drv_info_host_addr_hi,
3636                   U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3637
3638         bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3639 }
3640
3641 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3642 {
3643         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3644 /*
3645  * This is the only place besides the function initialization
3646  * where the sc->flags can change so it is done without any
3647  * locks
3648  */
3649                 if (sc->devinfo.
3650                     mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3651                         PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
3652                         sc->flags |= BNX2X_MF_FUNC_DIS;
3653                         bnx2x_e1h_disable(sc);
3654                 } else {
3655                         PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
3656                         sc->flags &= ~BNX2X_MF_FUNC_DIS;
3657                         bnx2x_e1h_enable(sc);
3658                 }
3659                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3660         }
3661
3662         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3663                 bnx2x_config_mf_bw(sc);
3664                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3665         }
3666
3667         /* Report results to MCP */
3668         if (dcc_event)
3669                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3670         else
3671                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3672 }
3673
3674 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3675 {
3676         int port = SC_PORT(sc);
3677         uint32_t val;
3678
3679         sc->port.pmf = 1;
3680
3681         /*
3682          * We need the mb() to ensure the ordering between the writing to
3683          * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3684          */
3685         mb();
3686
3687         /* enable nig attention */
3688         val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3689         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3690                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3691                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3692         } else if (!CHIP_IS_E1x(sc)) {
3693                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3694                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3695         }
3696
3697         bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3698 }
3699
3700 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3701 {
3702         char last_idx;
3703         int i, rc = 0;
3704         __rte_unused uint32_t row0, row1, row2, row3;
3705
3706         /* XSTORM */
3707         last_idx =
3708             REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3709         if (last_idx)
3710                 PMD_DRV_LOG(ERR, sc, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3711
3712         /* print the asserts */
3713         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3714
3715                 row0 =
3716                     REG_RD(sc,
3717                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3718                 row1 =
3719                     REG_RD(sc,
3720                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3721                            4);
3722                 row2 =
3723                     REG_RD(sc,
3724                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3725                            8);
3726                 row3 =
3727                     REG_RD(sc,
3728                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3729                            12);
3730
3731                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3732                         PMD_DRV_LOG(ERR, sc,
3733                                     "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3734                                     i, row3, row2, row1, row0);
3735                         rc++;
3736                 } else {
3737                         break;
3738                 }
3739         }
3740
3741         /* TSTORM */
3742         last_idx =
3743             REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3744         if (last_idx) {
3745                 PMD_DRV_LOG(ERR, sc, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3746         }
3747
3748         /* print the asserts */
3749         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3750
3751                 row0 =
3752                     REG_RD(sc,
3753                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3754                 row1 =
3755                     REG_RD(sc,
3756                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3757                            4);
3758                 row2 =
3759                     REG_RD(sc,
3760                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3761                            8);
3762                 row3 =
3763                     REG_RD(sc,
3764                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3765                            12);
3766
3767                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3768                         PMD_DRV_LOG(ERR, sc,
3769                                     "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3770                                     i, row3, row2, row1, row0);
3771                         rc++;
3772                 } else {
3773                         break;
3774                 }
3775         }
3776
3777         /* CSTORM */
3778         last_idx =
3779             REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3780         if (last_idx) {
3781                 PMD_DRV_LOG(ERR, sc, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3782         }
3783
3784         /* print the asserts */
3785         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3786
3787                 row0 =
3788                     REG_RD(sc,
3789                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3790                 row1 =
3791                     REG_RD(sc,
3792                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3793                            4);
3794                 row2 =
3795                     REG_RD(sc,
3796                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3797                            8);
3798                 row3 =
3799                     REG_RD(sc,
3800                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3801                            12);
3802
3803                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3804                         PMD_DRV_LOG(ERR, sc,
3805                                     "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3806                                     i, row3, row2, row1, row0);
3807                         rc++;
3808                 } else {
3809                         break;
3810                 }
3811         }
3812
3813         /* USTORM */
3814         last_idx =
3815             REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3816         if (last_idx) {
3817                 PMD_DRV_LOG(ERR, sc, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3818         }
3819
3820         /* print the asserts */
3821         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3822
3823                 row0 =
3824                     REG_RD(sc,
3825                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3826                 row1 =
3827                     REG_RD(sc,
3828                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3829                            4);
3830                 row2 =
3831                     REG_RD(sc,
3832                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3833                            8);
3834                 row3 =
3835                     REG_RD(sc,
3836                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3837                            12);
3838
3839                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3840                         PMD_DRV_LOG(ERR, sc,
3841                                     "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3842                                     i, row3, row2, row1, row0);
3843                         rc++;
3844                 } else {
3845                         break;
3846                 }
3847         }
3848
3849         return rc;
3850 }
3851
3852 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3853 {
3854         int func = SC_FUNC(sc);
3855         uint32_t val;
3856
3857         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3858
3859                 if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3860
3861                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3862                         bnx2x_read_mf_cfg(sc);
3863                         sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3864                             MFCFG_RD(sc,
3865                                      func_mf_config[SC_ABS_FUNC(sc)].config);
3866                         val =
3867                             SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3868
3869                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3870                                 bnx2x_dcc_event(sc,
3871                                               (val &
3872                                                DRV_STATUS_DCC_EVENT_MASK));
3873
3874                         if (val & DRV_STATUS_SET_MF_BW)
3875                                 bnx2x_set_mf_bw(sc);
3876
3877                         if (val & DRV_STATUS_DRV_INFO_REQ)
3878                                 bnx2x_handle_drv_info_req(sc);
3879
3880                         if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3881                                 bnx2x_pmf_update(sc);
3882
3883                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3884                                 bnx2x_handle_eee_event(sc);
3885
3886                         if (sc->link_vars.periodic_flags &
3887                             ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3888                                 /* sync with link */
3889                                 bnx2x_acquire_phy_lock(sc);
3890                                 sc->link_vars.periodic_flags &=
3891                                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3892                                 bnx2x_release_phy_lock(sc);
3893                                 if (IS_MF(sc)) {
3894                                         bnx2x_link_sync_notify(sc);
3895                                 }
3896                                 bnx2x_link_report(sc);
3897                         }
3898
3899                         /*
3900                          * Always call it here: bnx2x_link_report() will
3901                          * prevent the link indication duplication.
3902                          */
3903                         bnx2x_link_status_update(sc);
3904
3905                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3906
3907                         PMD_DRV_LOG(ERR, sc, "MC assert!");
3908                         bnx2x_mc_assert(sc);
3909                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3910                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3911                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3912                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3913                         rte_panic("MC assert!");
3914
3915                 } else if (attn & BNX2X_MCP_ASSERT) {
3916
3917                         PMD_DRV_LOG(ERR, sc, "MCP assert!");
3918                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3919
3920                 } else {
3921                         PMD_DRV_LOG(ERR, sc,
3922                                     "Unknown HW assert! (attn 0x%08x)", attn);
3923                 }
3924         }
3925
3926         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3927                 PMD_DRV_LOG(ERR, sc, "LATCHED attention 0x%08x (masked)", attn);
3928                 if (attn & BNX2X_GRC_TIMEOUT) {
3929                         val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3930                         PMD_DRV_LOG(ERR, sc, "GRC time-out 0x%08x", val);
3931                 }
3932                 if (attn & BNX2X_GRC_RSV) {
3933                         val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3934                         PMD_DRV_LOG(ERR, sc, "GRC reserved 0x%08x", val);
3935                 }
3936                 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3937         }
3938 }
3939
3940 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3941 {
3942         int port = SC_PORT(sc);
3943         int reg_offset;
3944         uint32_t val0, mask0, val1, mask1;
3945         uint32_t val;
3946
3947         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3948                 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3949                 PMD_DRV_LOG(ERR, sc, "CFC hw attention 0x%08x", val);
3950 /* CFC error attention */
3951                 if (val & 0x2) {
3952                         PMD_DRV_LOG(ERR, sc, "FATAL error from CFC");
3953                 }
3954         }
3955
3956         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3957                 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3958                 PMD_DRV_LOG(ERR, sc, "PXP hw attention-0 0x%08x", val);
3959 /* RQ_USDMDP_FIFO_OVERFLOW */
3960                 if (val & 0x18000) {
3961                         PMD_DRV_LOG(ERR, sc, "FATAL error from PXP");
3962                 }
3963
3964                 if (!CHIP_IS_E1x(sc)) {
3965                         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3966                         PMD_DRV_LOG(ERR, sc, "PXP hw attention-1 0x%08x", val);
3967                 }
3968         }
3969 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3970 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3971
3972         if (attn & AEU_PXP2_HW_INT_BIT) {
3973 /*  CQ47854 workaround do not panic on
3974  *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3975  */
3976                 if (!CHIP_IS_E1x(sc)) {
3977                         mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3978                         val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3979                         mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3980                         val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3981                         /*
3982                          * If the only PXP2_EOP_ERROR_BIT is set in
3983                          * STS0 and STS1 - clear it
3984                          *
3985                          * probably we lose additional attentions between
3986                          * STS0 and STS_CLR0, in this case user will not
3987                          * be notified about them
3988                          */
3989                         if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
3990                             !(val1 & mask1))
3991                                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
3992
3993                         /* print the register, since no one can restore it */
3994                         PMD_DRV_LOG(ERR, sc,
3995                                     "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
3996
3997                         /*
3998                          * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3999                          * then notify
4000                          */
4001                         if (val0 & PXP2_EOP_ERROR_BIT) {
4002                                 PMD_DRV_LOG(ERR, sc, "PXP2_WR_PGLUE_EOP_ERROR");
4003
4004                                 /*
4005                                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
4006                                  * set then clear attention from PXP2 block without panic
4007                                  */
4008                                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
4009                                     ((val1 & mask1) == 0))
4010                                         attn &= ~AEU_PXP2_HW_INT_BIT;
4011                         }
4012                 }
4013         }
4014
4015         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4016                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4017                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4018
4019                 val = REG_RD(sc, reg_offset);
4020                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4021                 REG_WR(sc, reg_offset, val);
4022
4023                 PMD_DRV_LOG(ERR, sc,
4024                             "FATAL HW block attention set2 0x%x",
4025                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
4026                 rte_panic("HW block attention set2");
4027         }
4028 }
4029
4030 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
4031 {
4032         int port = SC_PORT(sc);
4033         int reg_offset;
4034         uint32_t val;
4035
4036         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4037                 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
4038                 PMD_DRV_LOG(ERR, sc, "DB hw attention 0x%08x", val);
4039 /* DORQ discard attention */
4040                 if (val & 0x2) {
4041                         PMD_DRV_LOG(ERR, sc, "FATAL error from DORQ");
4042                 }
4043         }
4044
4045         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4046                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4047                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4048
4049                 val = REG_RD(sc, reg_offset);
4050                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4051                 REG_WR(sc, reg_offset, val);
4052
4053                 PMD_DRV_LOG(ERR, sc,
4054                             "FATAL HW block attention set1 0x%08x",
4055                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4056                 rte_panic("HW block attention set1");
4057         }
4058 }
4059
4060 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4061 {
4062         int port = SC_PORT(sc);
4063         int reg_offset;
4064         uint32_t val;
4065
4066         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4067             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4068
4069         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4070                 val = REG_RD(sc, reg_offset);
4071                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4072                 REG_WR(sc, reg_offset, val);
4073
4074                 PMD_DRV_LOG(WARNING, sc, "SPIO5 hw attention");
4075
4076 /* Fan failure attention */
4077                 elink_hw_reset_phy(&sc->link_params);
4078                 bnx2x_fan_failure(sc);
4079         }
4080
4081         if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4082                 bnx2x_acquire_phy_lock(sc);
4083                 elink_handle_module_detect_int(&sc->link_params);
4084                 bnx2x_release_phy_lock(sc);
4085         }
4086
4087         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4088                 val = REG_RD(sc, reg_offset);
4089                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4090                 REG_WR(sc, reg_offset, val);
4091
4092                 rte_panic("FATAL HW block attention set0 0x%lx",
4093                           (attn & HW_INTERRUT_ASSERT_SET_0));
4094         }
4095 }
4096
4097 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4098 {
4099         struct attn_route attn;
4100         struct attn_route *group_mask;
4101         int port = SC_PORT(sc);
4102         int index;
4103         uint32_t reg_addr;
4104         uint32_t val;
4105         uint32_t aeu_mask;
4106         uint8_t global = FALSE;
4107
4108         /*
4109          * Need to take HW lock because MCP or other port might also
4110          * try to handle this event.
4111          */
4112         bnx2x_acquire_alr(sc);
4113
4114         if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4115                 sc->recovery_state = BNX2X_RECOVERY_INIT;
4116
4117 /* disable HW interrupts */
4118                 bnx2x_int_disable(sc);
4119                 bnx2x_release_alr(sc);
4120                 return;
4121         }
4122
4123         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4124         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4125         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4126         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4127         if (!CHIP_IS_E1x(sc)) {
4128                 attn.sig[4] =
4129                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4130         } else {
4131                 attn.sig[4] = 0;
4132         }
4133
4134         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4135                 if (deasserted & (1 << index)) {
4136                         group_mask = &sc->attn_group[index];
4137
4138                         bnx2x_attn_int_deasserted4(sc,
4139                                                  attn.
4140                                                  sig[4] & group_mask->sig[4]);
4141                         bnx2x_attn_int_deasserted3(sc,
4142                                                  attn.
4143                                                  sig[3] & group_mask->sig[3]);
4144                         bnx2x_attn_int_deasserted1(sc,
4145                                                  attn.
4146                                                  sig[1] & group_mask->sig[1]);
4147                         bnx2x_attn_int_deasserted2(sc,
4148                                                  attn.
4149                                                  sig[2] & group_mask->sig[2]);
4150                         bnx2x_attn_int_deasserted0(sc,
4151                                                  attn.
4152                                                  sig[0] & group_mask->sig[0]);
4153                 }
4154         }
4155
4156         bnx2x_release_alr(sc);
4157
4158         if (sc->devinfo.int_block == INT_BLOCK_HC) {
4159                 reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4160                             COMMAND_REG_ATTN_BITS_CLR);
4161         } else {
4162                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4163         }
4164
4165         val = ~deasserted;
4166         PMD_DRV_LOG(DEBUG, sc,
4167                     "about to mask 0x%08x at %s addr 0x%08x", val,
4168                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4169                     reg_addr);
4170         REG_WR(sc, reg_addr, val);
4171
4172         if (~sc->attn_state & deasserted) {
4173                 PMD_DRV_LOG(ERR, sc, "IGU error");
4174         }
4175
4176         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4177             MISC_REG_AEU_MASK_ATTN_FUNC_0;
4178
4179         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4180
4181         aeu_mask = REG_RD(sc, reg_addr);
4182
4183         aeu_mask |= (deasserted & 0x3ff);
4184
4185         REG_WR(sc, reg_addr, aeu_mask);
4186         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4187
4188         sc->attn_state &= ~deasserted;
4189 }
4190
4191 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4192 {
4193         /* read local copy of bits */
4194         uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4195         uint32_t attn_ack =
4196             le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4197         uint32_t attn_state = sc->attn_state;
4198
4199         /* look for changed bits */
4200         uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4201         uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4202
4203         PMD_DRV_LOG(DEBUG, sc,
4204                     "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4205                     attn_bits, attn_ack, asserted, deasserted);
4206
4207         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4208                 PMD_DRV_LOG(ERR, sc, "BAD attention state");
4209         }
4210
4211         /* handle bits that were raised */
4212         if (asserted) {
4213                 bnx2x_attn_int_asserted(sc, asserted);
4214         }
4215
4216         if (deasserted) {
4217                 bnx2x_attn_int_deasserted(sc, deasserted);
4218         }
4219 }
4220
4221 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4222 {
4223         struct host_sp_status_block *def_sb = sc->def_sb;
4224         uint16_t rc = 0;
4225
4226         if (!def_sb)
4227                 return 0;
4228
4229         mb();                   /* status block is written to by the chip */
4230
4231         if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4232                 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4233                 rc |= BNX2X_DEF_SB_ATT_IDX;
4234         }
4235
4236         if (sc->def_idx != def_sb->sp_sb.running_index) {
4237                 sc->def_idx = def_sb->sp_sb.running_index;
4238                 rc |= BNX2X_DEF_SB_IDX;
4239         }
4240
4241         mb();
4242
4243         return rc;
4244 }
4245
4246 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4247                                                           uint32_t cid)
4248 {
4249         return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4250 }
4251
4252 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4253 {
4254         struct ecore_mcast_ramrod_params rparam;
4255         int rc;
4256
4257         memset(&rparam, 0, sizeof(rparam));
4258
4259         rparam.mcast_obj = &sc->mcast_obj;
4260
4261         /* clear pending state for the last command */
4262         sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4263
4264         /* if there are pending mcast commands - send them */
4265         if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4266                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4267                 if (rc < 0) {
4268                         PMD_DRV_LOG(INFO, sc,
4269                                     "Failed to send pending mcast commands (%d)",
4270                                     rc);
4271                 }
4272         }
4273 }
4274
4275 static void
4276 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4277 {
4278         unsigned long ramrod_flags = 0;
4279         int rc = 0;
4280         uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4281         struct ecore_vlan_mac_obj *vlan_mac_obj;
4282
4283         /* always push next commands out, don't wait here */
4284         bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4285
4286         switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4287         case ECORE_FILTER_MAC_PENDING:
4288                 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MAC completions");
4289                 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4290                 break;
4291
4292         case ECORE_FILTER_MCAST_PENDING:
4293                 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MCAST completions");
4294                 bnx2x_handle_mcast_eqe(sc);
4295                 return;
4296
4297         default:
4298                 PMD_DRV_LOG(NOTICE, sc, "Unsupported classification command: %d",
4299                             elem->message.data.eth_event.echo);
4300                 return;
4301         }
4302
4303         rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4304
4305         if (rc < 0) {
4306                 PMD_DRV_LOG(NOTICE, sc,
4307                             "Failed to schedule new commands (%d)", rc);
4308         } else if (rc > 0) {
4309                 PMD_DRV_LOG(DEBUG, sc, "Scheduled next pending commands...");
4310         }
4311 }
4312
4313 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4314 {
4315         bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4316
4317         /* send rx_mode command again if was requested */
4318         if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4319                 bnx2x_set_storm_rx_mode(sc);
4320         }
4321 }
4322
4323 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4324 {
4325         storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4326         wmb();                  /* keep prod updates ordered */
4327 }
4328
4329 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4330 {
4331         uint16_t hw_cons, sw_cons, sw_prod;
4332         union event_ring_elem *elem;
4333         uint8_t echo;
4334         uint32_t cid;
4335         uint8_t opcode;
4336         int spqe_cnt = 0;
4337         struct ecore_queue_sp_obj *q_obj;
4338         struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4339         struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4340
4341         hw_cons = le16toh(*sc->eq_cons_sb);
4342
4343         /*
4344          * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4345          * when we get to the next-page we need to adjust so the loop
4346          * condition below will be met. The next element is the size of a
4347          * regular element and hence incrementing by 1
4348          */
4349         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4350                 hw_cons++;
4351         }
4352
4353         /*
4354          * This function may never run in parallel with itself for a
4355          * specific sc and no need for a read memory barrier here.
4356          */
4357         sw_cons = sc->eq_cons;
4358         sw_prod = sc->eq_prod;
4359
4360         for (;
4361              sw_cons != hw_cons;
4362              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4363
4364                 elem = &sc->eq[EQ_DESC(sw_cons)];
4365
4366 /* elem CID originates from FW, actually LE */
4367                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4368                 opcode = elem->message.opcode;
4369
4370 /* handle eq element */
4371                 switch (opcode) {
4372                 case EVENT_RING_OPCODE_STAT_QUERY:
4373                         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "got statistics completion event %d",
4374                                     sc->stats_comp++);
4375                         /* nothing to do with stats comp */
4376                         goto next_spqe;
4377
4378                 case EVENT_RING_OPCODE_CFC_DEL:
4379                         /* handle according to cid range */
4380                         /* we may want to verify here that the sc state is HALTING */
4381                         PMD_DRV_LOG(DEBUG, sc, "got delete ramrod for MULTI[%d]",
4382                                     cid);
4383                         q_obj = bnx2x_cid_to_q_obj(sc, cid);
4384                         if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4385                                 break;
4386                         }
4387                         goto next_spqe;
4388
4389                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4390                         PMD_DRV_LOG(DEBUG, sc, "got STOP TRAFFIC");
4391                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4392                                 break;
4393                         }
4394                         goto next_spqe;
4395
4396                 case EVENT_RING_OPCODE_START_TRAFFIC:
4397                         PMD_DRV_LOG(DEBUG, sc, "got START TRAFFIC");
4398                         if (f_obj->complete_cmd
4399                             (sc, f_obj, ECORE_F_CMD_TX_START)) {
4400                                 break;
4401                         }
4402                         goto next_spqe;
4403
4404                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4405                         echo = elem->message.data.function_update_event.echo;
4406                         if (echo == SWITCH_UPDATE) {
4407                                 PMD_DRV_LOG(DEBUG, sc,
4408                                             "got FUNC_SWITCH_UPDATE ramrod");
4409                                 if (f_obj->complete_cmd(sc, f_obj,
4410                                                         ECORE_F_CMD_SWITCH_UPDATE))
4411                                 {
4412                                         break;
4413                                 }
4414                         } else {
4415                                 PMD_DRV_LOG(DEBUG, sc,
4416                                             "AFEX: ramrod completed FUNCTION_UPDATE");
4417                                 f_obj->complete_cmd(sc, f_obj,
4418                                                     ECORE_F_CMD_AFEX_UPDATE);
4419                         }
4420                         goto next_spqe;
4421
4422                 case EVENT_RING_OPCODE_FORWARD_SETUP:
4423                         q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4424                         if (q_obj->complete_cmd(sc, q_obj,
4425                                                 ECORE_Q_CMD_SETUP_TX_ONLY)) {
4426                                 break;
4427                         }
4428                         goto next_spqe;
4429
4430                 case EVENT_RING_OPCODE_FUNCTION_START:
4431                         PMD_DRV_LOG(DEBUG, sc, "got FUNC_START ramrod");
4432                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4433                                 break;
4434                         }
4435                         goto next_spqe;
4436
4437                 case EVENT_RING_OPCODE_FUNCTION_STOP:
4438                         PMD_DRV_LOG(DEBUG, sc, "got FUNC_STOP ramrod");
4439                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4440                                 break;
4441                         }
4442                         goto next_spqe;
4443                 }
4444
4445                 switch (opcode | sc->state) {
4446                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4447                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4448                         cid =
4449                             elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4450                         PMD_DRV_LOG(DEBUG, sc, "got RSS_UPDATE ramrod. CID %d",
4451                                     cid);
4452                         rss_raw->clear_pending(rss_raw);
4453                         break;
4454
4455                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4456                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4457                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4458                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4459                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4460                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4461                         PMD_DRV_LOG(DEBUG, sc,
4462                                     "got (un)set mac ramrod");
4463                         bnx2x_handle_classification_eqe(sc, elem);
4464                         break;
4465
4466                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4467                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4468                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4469                         PMD_DRV_LOG(DEBUG, sc,
4470                                     "got mcast ramrod");
4471                         bnx2x_handle_mcast_eqe(sc);
4472                         break;
4473
4474                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4475                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4476                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4477                         PMD_DRV_LOG(DEBUG, sc,
4478                                     "got rx_mode ramrod");
4479                         bnx2x_handle_rx_mode_eqe(sc);
4480                         break;
4481
4482                 default:
4483                         /* unknown event log error and continue */
4484                         PMD_DRV_LOG(INFO, sc, "Unknown EQ event %d, sc->state 0x%x",
4485                                     elem->message.opcode, sc->state);
4486                 }
4487
4488 next_spqe:
4489                 spqe_cnt++;
4490         }                       /* for */
4491
4492         mb();
4493         atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4494
4495         sc->eq_cons = sw_cons;
4496         sc->eq_prod = sw_prod;
4497
4498         /* make sure that above mem writes were issued towards the memory */
4499         wmb();
4500
4501         /* update producer */
4502         bnx2x_update_eq_prod(sc, sc->eq_prod);
4503 }
4504
4505 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4506 {
4507         uint16_t status;
4508         int rc = 0;
4509
4510         PMD_DRV_LOG(DEBUG, sc, "---> SP TASK <---");
4511
4512         /* what work needs to be performed? */
4513         status = bnx2x_update_dsb_idx(sc);
4514
4515         PMD_DRV_LOG(DEBUG, sc, "dsb status 0x%04x", status);
4516
4517         /* HW attentions */
4518         if (status & BNX2X_DEF_SB_ATT_IDX) {
4519                 PMD_DRV_LOG(DEBUG, sc, "---> ATTN INTR <---");
4520                 bnx2x_attn_int(sc);
4521                 status &= ~BNX2X_DEF_SB_ATT_IDX;
4522                 rc = 1;
4523         }
4524
4525         /* SP events: STAT_QUERY and others */
4526         if (status & BNX2X_DEF_SB_IDX) {
4527 /* handle EQ completions */
4528                 PMD_DRV_LOG(DEBUG, sc, "---> EQ INTR <---");
4529                 bnx2x_eq_int(sc);
4530                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4531                            le16toh(sc->def_idx), IGU_INT_NOP, 1);
4532                 status &= ~BNX2X_DEF_SB_IDX;
4533         }
4534
4535         /* if status is non zero then something went wrong */
4536         if (unlikely(status)) {
4537                 PMD_DRV_LOG(INFO, sc,
4538                             "Got an unknown SP interrupt! (0x%04x)", status);
4539         }
4540
4541         /* ack status block only if something was actually handled */
4542         bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4543                    le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4544
4545         return rc;
4546 }
4547
4548 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp)
4549 {
4550         struct bnx2x_softc *sc = fp->sc;
4551         uint8_t more_rx = FALSE;
4552
4553         /* Make sure FP is initialized */
4554         if (!fp->sb_running_index)
4555                 return;
4556
4557         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc,
4558                                "---> FP TASK QUEUE (%d) <--", fp->index);
4559
4560         /* update the fastpath index */
4561         bnx2x_update_fp_sb_idx(fp);
4562
4563         if (rte_atomic32_read(&sc->scan_fp) == 1) {
4564                 if (bnx2x_has_rx_work(fp)) {
4565                         more_rx = bnx2x_rxeof(sc, fp);
4566                 }
4567
4568                 if (more_rx) {
4569                         /* still more work to do */
4570                         bnx2x_handle_fp_tq(fp);
4571                         return;
4572                 }
4573         }
4574
4575         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4576                    le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
4577 }
4578
4579 /*
4580  * Legacy interrupt entry point.
4581  *
4582  * Verifies that the controller generated the interrupt and
4583  * then calls a separate routine to handle the various
4584  * interrupt causes: link, RX, and TX.
4585  */
4586 int bnx2x_intr_legacy(struct bnx2x_softc *sc)
4587 {
4588         struct bnx2x_fastpath *fp;
4589         uint32_t status, mask;
4590         int i, rc = 0;
4591
4592         /*
4593          * 0 for ustorm, 1 for cstorm
4594          * the bits returned from ack_int() are 0-15
4595          * bit 0 = attention status block
4596          * bit 1 = fast path status block
4597          * a mask of 0x2 or more = tx/rx event
4598          * a mask of 1 = slow path event
4599          */
4600
4601         status = bnx2x_ack_int(sc);
4602
4603         /* the interrupt is not for us */
4604         if (unlikely(status == 0)) {
4605                 return 0;
4606         }
4607
4608         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "Interrupt status 0x%04x", status);
4609         //bnx2x_dump_status_block(sc);
4610
4611         FOR_EACH_ETH_QUEUE(sc, i) {
4612                 fp = &sc->fp[i];
4613                 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4614                 if (status & mask) {
4615                 /* acknowledge and disable further fastpath interrupts */
4616                         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4617                                      0, IGU_INT_DISABLE, 0);
4618                         bnx2x_handle_fp_tq(fp);
4619                         status &= ~mask;
4620                 }
4621         }
4622
4623         if (unlikely(status & 0x1)) {
4624                 /* acknowledge and disable further slowpath interrupts */
4625                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4626                              0, IGU_INT_DISABLE, 0);
4627                 rc = bnx2x_handle_sp_tq(sc);
4628                 status &= ~0x1;
4629         }
4630
4631         if (unlikely(status)) {
4632                 PMD_DRV_LOG(WARNING, sc,
4633                             "Unexpected fastpath status (0x%08x)!", status);
4634         }
4635
4636         return rc;
4637 }
4638
4639 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4640 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4641 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4642 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4643 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4644 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4645 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4646 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4647 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4648
4649 static struct
4650 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4651         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4652         .init_hw_cmn = bnx2x_init_hw_common,
4653         .init_hw_port = bnx2x_init_hw_port,
4654         .init_hw_func = bnx2x_init_hw_func,
4655
4656         .reset_hw_cmn = bnx2x_reset_common,
4657         .reset_hw_port = bnx2x_reset_port,
4658         .reset_hw_func = bnx2x_reset_func,
4659
4660         .init_fw = bnx2x_init_firmware,
4661         .release_fw = bnx2x_release_firmware,
4662 };
4663
4664 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4665 {
4666         sc->dmae_ready = 0;
4667
4668         PMD_INIT_FUNC_TRACE(sc);
4669
4670         ecore_init_func_obj(sc,
4671                             &sc->func_obj,
4672                             BNX2X_SP(sc, func_rdata),
4673                             (rte_iova_t)BNX2X_SP_MAPPING(sc, func_rdata),
4674                             BNX2X_SP(sc, func_afex_rdata),
4675                             (rte_iova_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4676                             &bnx2x_func_sp_drv);
4677 }
4678
4679 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4680 {
4681         struct ecore_func_state_params func_params = { NULL };
4682         int rc;
4683
4684         PMD_INIT_FUNC_TRACE(sc);
4685
4686         /* prepare the parameters for function state transitions */
4687         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4688
4689         func_params.f_obj = &sc->func_obj;
4690         func_params.cmd = ECORE_F_CMD_HW_INIT;
4691
4692         func_params.params.hw_init.load_phase = load_code;
4693
4694         /*
4695          * Via a plethora of function pointers, we will eventually reach
4696          * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4697          */
4698         rc = ecore_func_state_change(sc, &func_params);
4699
4700         return rc;
4701 }
4702
4703 static void
4704 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4705 {
4706         uint32_t i;
4707
4708         if (!(len % 4) && !(addr % 4)) {
4709                 for (i = 0; i < len; i += 4) {
4710                         REG_WR(sc, (addr + i), fill);
4711                 }
4712         } else {
4713                 for (i = 0; i < len; i++) {
4714                         REG_WR8(sc, (addr + i), fill);
4715                 }
4716         }
4717 }
4718
4719 /* writes FP SP data to FW - data_size in dwords */
4720 static void
4721 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4722                   uint32_t data_size)
4723 {
4724         uint32_t index;
4725
4726         for (index = 0; index < data_size; index++) {
4727                 REG_WR(sc,
4728                        (BAR_CSTRORM_INTMEM +
4729                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4730                         (sizeof(uint32_t) * index)), *(sb_data_p + index));
4731         }
4732 }
4733
4734 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4735 {
4736         struct hc_status_block_data_e2 sb_data_e2;
4737         struct hc_status_block_data_e1x sb_data_e1x;
4738         uint32_t *sb_data_p;
4739         uint32_t data_size = 0;
4740
4741         if (!CHIP_IS_E1x(sc)) {
4742                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4743                 sb_data_e2.common.state = SB_DISABLED;
4744                 sb_data_e2.common.p_func.vf_valid = FALSE;
4745                 sb_data_p = (uint32_t *) & sb_data_e2;
4746                 data_size = (sizeof(struct hc_status_block_data_e2) /
4747                              sizeof(uint32_t));
4748         } else {
4749                 memset(&sb_data_e1x, 0,
4750                        sizeof(struct hc_status_block_data_e1x));
4751                 sb_data_e1x.common.state = SB_DISABLED;
4752                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4753                 sb_data_p = (uint32_t *) & sb_data_e1x;
4754                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4755                              sizeof(uint32_t));
4756         }
4757
4758         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4759
4760         bnx2x_fill(sc,
4761                  (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4762                  CSTORM_STATUS_BLOCK_SIZE);
4763         bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4764                  0, CSTORM_SYNC_BLOCK_SIZE);
4765 }
4766
4767 static void
4768 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4769                   struct hc_sp_status_block_data *sp_sb_data)
4770 {
4771         uint32_t i;
4772
4773         for (i = 0;
4774              i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4775              i++) {
4776                 REG_WR(sc,
4777                        (BAR_CSTRORM_INTMEM +
4778                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4779                         (i * sizeof(uint32_t))),
4780                        *((uint32_t *) sp_sb_data + i));
4781         }
4782 }
4783
4784 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4785 {
4786         struct hc_sp_status_block_data sp_sb_data;
4787
4788         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4789
4790         sp_sb_data.state = SB_DISABLED;
4791         sp_sb_data.p_func.vf_valid = FALSE;
4792
4793         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4794
4795         bnx2x_fill(sc,
4796                  (BAR_CSTRORM_INTMEM +
4797                   CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4798                  0, CSTORM_SP_STATUS_BLOCK_SIZE);
4799         bnx2x_fill(sc,
4800                  (BAR_CSTRORM_INTMEM +
4801                   CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4802                  0, CSTORM_SP_SYNC_BLOCK_SIZE);
4803 }
4804
4805 static void
4806 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4807                              int igu_seg_id)
4808 {
4809         hc_sm->igu_sb_id = igu_sb_id;
4810         hc_sm->igu_seg_id = igu_seg_id;
4811         hc_sm->timer_value = 0xFF;
4812         hc_sm->time_to_expire = 0xFFFFFFFF;
4813 }
4814
4815 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4816 {
4817         /* zero out state machine indices */
4818
4819         /* rx indices */
4820         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4821
4822         /* tx indices */
4823         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4824         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4825         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4826         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4827
4828         /* map indices */
4829
4830         /* rx indices */
4831         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4832             (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4833
4834         /* tx indices */
4835         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4836             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4837         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4838             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4839         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4840             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4841         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4842             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4843 }
4844
4845 static void
4846 bnx2x_init_sb(struct bnx2x_softc *sc, rte_iova_t busaddr, int vfid,
4847             uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4848 {
4849         struct hc_status_block_data_e2 sb_data_e2;
4850         struct hc_status_block_data_e1x sb_data_e1x;
4851         struct hc_status_block_sm *hc_sm_p;
4852         uint32_t *sb_data_p;
4853         int igu_seg_id;
4854         int data_size;
4855
4856         if (CHIP_INT_MODE_IS_BC(sc)) {
4857                 igu_seg_id = HC_SEG_ACCESS_NORM;
4858         } else {
4859                 igu_seg_id = IGU_SEG_ACCESS_NORM;
4860         }
4861
4862         bnx2x_zero_fp_sb(sc, fw_sb_id);
4863
4864         if (!CHIP_IS_E1x(sc)) {
4865                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4866                 sb_data_e2.common.state = SB_ENABLED;
4867                 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4868                 sb_data_e2.common.p_func.vf_id = vfid;
4869                 sb_data_e2.common.p_func.vf_valid = vf_valid;
4870                 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4871                 sb_data_e2.common.same_igu_sb_1b = TRUE;
4872                 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4873                 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4874                 hc_sm_p = sb_data_e2.common.state_machine;
4875                 sb_data_p = (uint32_t *) & sb_data_e2;
4876                 data_size = (sizeof(struct hc_status_block_data_e2) /
4877                              sizeof(uint32_t));
4878                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4879         } else {
4880                 memset(&sb_data_e1x, 0,
4881                        sizeof(struct hc_status_block_data_e1x));
4882                 sb_data_e1x.common.state = SB_ENABLED;
4883                 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4884                 sb_data_e1x.common.p_func.vf_id = 0xff;
4885                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4886                 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4887                 sb_data_e1x.common.same_igu_sb_1b = TRUE;
4888                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4889                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4890                 hc_sm_p = sb_data_e1x.common.state_machine;
4891                 sb_data_p = (uint32_t *) & sb_data_e1x;
4892                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4893                              sizeof(uint32_t));
4894                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4895         }
4896
4897         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4898         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4899
4900         /* write indices to HW - PCI guarantees endianity of regpairs */
4901         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4902 }
4903
4904 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4905 {
4906         if (CHIP_IS_E1x(fp->sc)) {
4907                 return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4908         } else {
4909                 return fp->cl_id;
4910         }
4911 }
4912
4913 static uint32_t
4914 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4915 {
4916         uint32_t offset = BAR_USTRORM_INTMEM;
4917
4918         if (IS_VF(sc)) {
4919                 return PXP_VF_ADDR_USDM_QUEUES_START +
4920                         (sc->acquire_resp.resc.hw_qid[fp->index] *
4921                          sizeof(struct ustorm_queue_zone_data));
4922         } else if (!CHIP_IS_E1x(sc)) {
4923                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4924         } else {
4925                 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4926         }
4927
4928         return offset;
4929 }
4930
4931 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4932 {
4933         struct bnx2x_fastpath *fp = &sc->fp[idx];
4934         uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4935         unsigned long q_type = 0;
4936         int cos;
4937
4938         fp->sc = sc;
4939         fp->index = idx;
4940
4941         fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4942         fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4943
4944         if (CHIP_IS_E1x(sc))
4945                 fp->cl_id = SC_L_ID(sc) + idx;
4946         else
4947 /* want client ID same as IGU SB ID for non-E1 */
4948                 fp->cl_id = fp->igu_sb_id;
4949         fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4950
4951         /* setup sb indices */
4952         if (!CHIP_IS_E1x(sc)) {
4953                 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4954                 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4955         } else {
4956                 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4957                 fp->sb_running_index =
4958                     fp->status_block.e1x_sb->sb.running_index;
4959         }
4960
4961         /* init shortcut */
4962         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4963
4964         fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4965
4966         for (cos = 0; cos < sc->max_cos; cos++) {
4967                 cids[cos] = idx;
4968         }
4969         fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4970
4971         /* nothing more for a VF to do */
4972         if (IS_VF(sc)) {
4973                 return;
4974         }
4975
4976         bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4977                     fp->fw_sb_id, fp->igu_sb_id);
4978
4979         bnx2x_update_fp_sb_idx(fp);
4980
4981         /* Configure Queue State object */
4982         bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4983         bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4984
4985         ecore_init_queue_obj(sc,
4986                              &sc->sp_objs[idx].q_obj,
4987                              fp->cl_id,
4988                              cids,
4989                              sc->max_cos,
4990                              SC_FUNC(sc),
4991                              BNX2X_SP(sc, q_rdata),
4992                              (rte_iova_t)BNX2X_SP_MAPPING(sc, q_rdata),
4993                              q_type);
4994
4995         /* configure classification DBs */
4996         ecore_init_mac_obj(sc,
4997                            &sc->sp_objs[idx].mac_obj,
4998                            fp->cl_id,
4999                            idx,
5000                            SC_FUNC(sc),
5001                            BNX2X_SP(sc, mac_rdata),
5002                            (rte_iova_t)BNX2X_SP_MAPPING(sc, mac_rdata),
5003                            ECORE_FILTER_MAC_PENDING, &sc->sp_state,
5004                            ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
5005 }
5006
5007 static void
5008 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
5009                    uint16_t rx_bd_prod, uint16_t rx_cq_prod)
5010 {
5011         union ustorm_eth_rx_producers rx_prods;
5012         uint32_t i;
5013
5014         /* update producers */
5015         rx_prods.prod.bd_prod = rx_bd_prod;
5016         rx_prods.prod.cqe_prod = rx_cq_prod;
5017         rx_prods.prod.reserved = 0;
5018
5019         /*
5020          * Make sure that the BD and SGE data is updated before updating the
5021          * producers since FW might read the BD/SGE right after the producer
5022          * is updated.
5023          * This is only applicable for weak-ordered memory model archs such
5024          * as IA-64. The following barrier is also mandatory since FW will
5025          * assumes BDs must have buffers.
5026          */
5027         wmb();
5028
5029         for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
5030                 REG_WR(sc,
5031                        (fp->ustorm_rx_prods_offset + (i * 4)),
5032                        rx_prods.raw_data[i]);
5033         }
5034
5035         wmb();                  /* keep prod updates ordered */
5036 }
5037
5038 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
5039 {
5040         struct bnx2x_fastpath *fp;
5041         int i;
5042         struct bnx2x_rx_queue *rxq;
5043
5044         for (i = 0; i < sc->num_queues; i++) {
5045                 fp = &sc->fp[i];
5046                 rxq = sc->rx_queues[fp->index];
5047                 if (!rxq) {
5048                         PMD_RX_LOG(ERR, "RX queue is NULL");
5049                         return;
5050                 }
5051
5052                 rxq->rx_bd_head = 0;
5053                 rxq->rx_bd_tail = rxq->nb_rx_desc;
5054                 rxq->rx_cq_head = 0;
5055                 rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
5056                 *fp->rx_cq_cons_sb = 0;
5057
5058                 /*
5059                  * Activate the BD ring...
5060                  * Warning, this will generate an interrupt (to the TSTORM)
5061                  * so this can only be done after the chip is initialized
5062                  */
5063                 bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
5064
5065                 if (i != 0) {
5066                         continue;
5067                 }
5068         }
5069 }
5070
5071 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5072 {
5073         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5074
5075         fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5076         fp->tx_db.data.zero_fill1 = 0;
5077         fp->tx_db.data.prod = 0;
5078
5079         if (!txq) {
5080                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5081                 return;
5082         }
5083
5084         txq->tx_pkt_tail = 0;
5085         txq->tx_pkt_head = 0;
5086         txq->tx_bd_tail = 0;
5087         txq->tx_bd_head = 0;
5088 }
5089
5090 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5091 {
5092         int i;
5093
5094         for (i = 0; i < sc->num_queues; i++) {
5095                 bnx2x_init_tx_ring_one(&sc->fp[i]);
5096         }
5097 }
5098
5099 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5100 {
5101         struct host_sp_status_block *def_sb = sc->def_sb;
5102         rte_iova_t mapping = sc->def_sb_dma.paddr;
5103         int igu_sp_sb_index;
5104         int igu_seg_id;
5105         int port = SC_PORT(sc);
5106         int func = SC_FUNC(sc);
5107         int reg_offset, reg_offset_en5;
5108         uint64_t section;
5109         int index, sindex;
5110         struct hc_sp_status_block_data sp_sb_data;
5111
5112         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5113
5114         if (CHIP_INT_MODE_IS_BC(sc)) {
5115                 igu_sp_sb_index = DEF_SB_IGU_ID;
5116                 igu_seg_id = HC_SEG_ACCESS_DEF;
5117         } else {
5118                 igu_sp_sb_index = sc->igu_dsb_id;
5119                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5120         }
5121
5122         /* attentions */
5123         section = ((uint64_t) mapping +
5124                    offsetof(struct host_sp_status_block, atten_status_block));
5125         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5126         sc->attn_state = 0;
5127
5128         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5129             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5130
5131         reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5132             MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5133
5134         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5135 /* take care of sig[0]..sig[4] */
5136                 for (sindex = 0; sindex < 4; sindex++) {
5137                         sc->attn_group[index].sig[sindex] =
5138                             REG_RD(sc,
5139                                    (reg_offset + (sindex * 0x4) +
5140                                     (0x10 * index)));
5141                 }
5142
5143                 if (!CHIP_IS_E1x(sc)) {
5144                         /*
5145                          * enable5 is separate from the rest of the registers,
5146                          * and the address skip is 4 and not 16 between the
5147                          * different groups
5148                          */
5149                         sc->attn_group[index].sig[4] =
5150                             REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5151                 } else {
5152                         sc->attn_group[index].sig[4] = 0;
5153                 }
5154         }
5155
5156         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5157                 reg_offset =
5158                     port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5159                 REG_WR(sc, reg_offset, U64_LO(section));
5160                 REG_WR(sc, (reg_offset + 4), U64_HI(section));
5161         } else if (!CHIP_IS_E1x(sc)) {
5162                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5163                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5164         }
5165
5166         section = ((uint64_t) mapping +
5167                    offsetof(struct host_sp_status_block, sp_sb));
5168
5169         bnx2x_zero_sp_sb(sc);
5170
5171         /* PCI guarantees endianity of regpair */
5172         sp_sb_data.state = SB_ENABLED;
5173         sp_sb_data.host_sb_addr.lo = U64_LO(section);
5174         sp_sb_data.host_sb_addr.hi = U64_HI(section);
5175         sp_sb_data.igu_sb_id = igu_sp_sb_index;
5176         sp_sb_data.igu_seg_id = igu_seg_id;
5177         sp_sb_data.p_func.pf_id = func;
5178         sp_sb_data.p_func.vnic_id = SC_VN(sc);
5179         sp_sb_data.p_func.vf_id = 0xff;
5180
5181         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5182
5183         bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5184 }
5185
5186 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5187 {
5188         atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5189         sc->spq_prod_idx = 0;
5190         sc->dsb_sp_prod =
5191             &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5192         sc->spq_prod_bd = sc->spq;
5193         sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5194 }
5195
5196 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5197 {
5198         union event_ring_elem *elem;
5199         int i;
5200
5201         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5202                 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5203
5204                 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5205                                                          BNX2X_PAGE_SIZE *
5206                                                          (i % NUM_EQ_PAGES)));
5207                 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5208                                                          BNX2X_PAGE_SIZE *
5209                                                          (i % NUM_EQ_PAGES)));
5210         }
5211
5212         sc->eq_cons = 0;
5213         sc->eq_prod = NUM_EQ_DESC;
5214         sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5215
5216         atomic_store_rel_long(&sc->eq_spq_left,
5217                               (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5218                                    NUM_EQ_DESC) - 1));
5219 }
5220
5221 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5222 {
5223         int i;
5224
5225         if (IS_MF_SI(sc)) {
5226 /*
5227  * In switch independent mode, the TSTORM needs to accept
5228  * packets that failed classification, since approximate match
5229  * mac addresses aren't written to NIG LLH.
5230  */
5231                 REG_WR8(sc,
5232                         (BAR_TSTRORM_INTMEM +
5233                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
5234         } else
5235                 REG_WR8(sc,
5236                         (BAR_TSTRORM_INTMEM +
5237                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
5238
5239         /*
5240          * Zero this manually as its initialization is currently missing
5241          * in the initTool.
5242          */
5243         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5244                 REG_WR(sc,
5245                        (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5246                        0);
5247         }
5248
5249         if (!CHIP_IS_E1x(sc)) {
5250                 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5251                         CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5252                         HC_IGU_NBC_MODE);
5253         }
5254 }
5255
5256 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5257 {
5258         switch (load_code) {
5259         case FW_MSG_CODE_DRV_LOAD_COMMON:
5260         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5261                 bnx2x_init_internal_common(sc);
5262                 /* no break */
5263
5264         case FW_MSG_CODE_DRV_LOAD_PORT:
5265                 /* nothing to do */
5266                 /* no break */
5267
5268         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5269                 /* internal memory per function is initialized inside bnx2x_pf_init */
5270                 break;
5271
5272         default:
5273                 PMD_DRV_LOG(NOTICE, sc, "Unknown load_code (0x%x) from MCP",
5274                             load_code);
5275                 break;
5276         }
5277 }
5278
5279 static void
5280 storm_memset_func_cfg(struct bnx2x_softc *sc,
5281                       struct tstorm_eth_function_common_config *tcfg,
5282                       uint16_t abs_fid)
5283 {
5284         uint32_t addr;
5285         size_t size;
5286
5287         addr = (BAR_TSTRORM_INTMEM +
5288                 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5289         size = sizeof(struct tstorm_eth_function_common_config);
5290         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5291 }
5292
5293 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5294 {
5295         struct tstorm_eth_function_common_config tcfg = { 0 };
5296
5297         if (CHIP_IS_E1x(sc)) {
5298                 storm_memset_func_cfg(sc, &tcfg, p->func_id);
5299         }
5300
5301         /* Enable the function in the FW */
5302         storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5303         storm_memset_func_en(sc, p->func_id, 1);
5304
5305         /* spq */
5306         if (p->func_flgs & FUNC_FLG_SPQ) {
5307                 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5308                 REG_WR(sc,
5309                        (XSEM_REG_FAST_MEMORY +
5310                         XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5311         }
5312 }
5313
5314 /*
5315  * Calculates the sum of vn_min_rates.
5316  * It's needed for further normalizing of the min_rates.
5317  * Returns:
5318  *   sum of vn_min_rates.
5319  *     or
5320  *   0 - if all the min_rates are 0.
5321  * In the later case fainess algorithm should be deactivated.
5322  * If all min rates are not zero then those that are zeroes will be set to 1.
5323  */
5324 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5325 {
5326         uint32_t vn_cfg;
5327         uint32_t vn_min_rate;
5328         int all_zero = 1;
5329         int vn;
5330
5331         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5332                 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5333                 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5334                                 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5335
5336                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5337                         /* skip hidden VNs */
5338                         vn_min_rate = 0;
5339                 } else if (!vn_min_rate) {
5340                         /* If min rate is zero - set it to 100 */
5341                         vn_min_rate = DEF_MIN_RATE;
5342                 } else {
5343                         all_zero = 0;
5344                 }
5345
5346                 input->vnic_min_rate[vn] = vn_min_rate;
5347         }
5348
5349         /* if ETS or all min rates are zeros - disable fairness */
5350         if (all_zero) {
5351                 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5352         } else {
5353                 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5354         }
5355 }
5356
5357 static uint16_t
5358 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5359 {
5360         uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5361                             FUNC_MF_CFG_MAX_BW_SHIFT);
5362
5363         if (!max_cfg) {
5364                 PMD_DRV_LOG(DEBUG, sc,
5365                             "Max BW configured to 0 - using 100 instead");
5366                 max_cfg = 100;
5367         }
5368
5369         return max_cfg;
5370 }
5371
5372 static void
5373 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5374 {
5375         uint16_t vn_max_rate;
5376         uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5377         uint32_t max_cfg;
5378
5379         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5380                 vn_max_rate = 0;
5381         } else {
5382                 max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5383
5384                 if (IS_MF_SI(sc)) {
5385                         /* max_cfg in percents of linkspeed */
5386                         vn_max_rate =
5387                             ((sc->link_vars.line_speed * max_cfg) / 100);
5388                 } else {        /* SD modes */
5389                         /* max_cfg is absolute in 100Mb units */
5390                         vn_max_rate = (max_cfg * 100);
5391                 }
5392         }
5393
5394         input->vnic_max_rate[vn] = vn_max_rate;
5395 }
5396
5397 static void
5398 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5399 {
5400         struct cmng_init_input input;
5401         int vn;
5402
5403         memset(&input, 0, sizeof(struct cmng_init_input));
5404
5405         input.port_rate = sc->link_vars.line_speed;
5406
5407         if (cmng_type == CMNG_FNS_MINMAX) {
5408 /* read mf conf from shmem */
5409                 if (read_cfg) {
5410                         bnx2x_read_mf_cfg(sc);
5411                 }
5412
5413 /* get VN min rate and enable fairness if not 0 */
5414                 bnx2x_calc_vn_min(sc, &input);
5415
5416 /* get VN max rate */
5417                 if (sc->port.pmf) {
5418                         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5419                                 bnx2x_calc_vn_max(sc, vn, &input);
5420                         }
5421                 }
5422
5423 /* always enable rate shaping and fairness */
5424                 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5425
5426                 ecore_init_cmng(&input, &sc->cmng);
5427                 return;
5428         }
5429 }
5430
5431 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5432 {
5433         if (CHIP_REV_IS_SLOW(sc)) {
5434                 return CMNG_FNS_NONE;
5435         }
5436
5437         if (IS_MF(sc)) {
5438                 return CMNG_FNS_MINMAX;
5439         }
5440
5441         return CMNG_FNS_NONE;
5442 }
5443
5444 static void
5445 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5446 {
5447         int vn;
5448         int func;
5449         uint32_t addr;
5450         size_t size;
5451
5452         addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5453         size = sizeof(struct cmng_struct_per_port);
5454         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5455
5456         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5457                 func = func_by_vn(sc, vn);
5458
5459                 addr = (BAR_XSTRORM_INTMEM +
5460                         XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5461                 size = sizeof(struct rate_shaping_vars_per_vn);
5462                 ecore_storm_memset_struct(sc, addr, size,
5463                                           (uint32_t *) & cmng->
5464                                           vnic.vnic_max_rate[vn]);
5465
5466                 addr = (BAR_XSTRORM_INTMEM +
5467                         XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5468                 size = sizeof(struct fairness_vars_per_vn);
5469                 ecore_storm_memset_struct(sc, addr, size,
5470                                           (uint32_t *) & cmng->
5471                                           vnic.vnic_min_rate[vn]);
5472         }
5473 }
5474
5475 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5476 {
5477         struct bnx2x_func_init_params func_init;
5478         struct event_ring_data eq_data;
5479         uint16_t flags;
5480
5481         memset(&eq_data, 0, sizeof(struct event_ring_data));
5482         memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5483
5484         if (!CHIP_IS_E1x(sc)) {
5485 /* reset IGU PF statistics: MSIX + ATTN */
5486 /* PF */
5487                 REG_WR(sc,
5488                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5489                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5490                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5491                          4)), 0);
5492 /* ATTN */
5493                 REG_WR(sc,
5494                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5495                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5496                         (BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5497                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5498                          4)), 0);
5499         }
5500
5501         /* function setup flags */
5502         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5503
5504         func_init.func_flgs = flags;
5505         func_init.pf_id = SC_FUNC(sc);
5506         func_init.func_id = SC_FUNC(sc);
5507         func_init.spq_map = sc->spq_dma.paddr;
5508         func_init.spq_prod = sc->spq_prod_idx;
5509
5510         bnx2x_func_init(sc, &func_init);
5511
5512         memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5513
5514         /*
5515          * Congestion management values depend on the link rate.
5516          * There is no active link so initial link rate is set to 10Gbps.
5517          * When the link comes up the congestion management values are
5518          * re-calculated according to the actual link rate.
5519          */
5520         sc->link_vars.line_speed = SPEED_10000;
5521         bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5522
5523         /* Only the PMF sets the HW */
5524         if (sc->port.pmf) {
5525                 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5526         }
5527
5528         /* init Event Queue - PCI bus guarantees correct endainity */
5529         eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5530         eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5531         eq_data.producer = sc->eq_prod;
5532         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5533         eq_data.sb_id = DEF_SB_ID;
5534         storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5535 }
5536
5537 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5538 {
5539         int port = SC_PORT(sc);
5540         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5541         uint32_t val = REG_RD(sc, addr);
5542         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5543             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5544         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5545         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5546
5547         if (msix) {
5548                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5549                          HC_CONFIG_0_REG_INT_LINE_EN_0);
5550                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5551                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5552                 if (single_msix) {
5553                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5554                 }
5555         } else if (msi) {
5556                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5557                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5558                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5559                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5560         } else {
5561                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5562                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5563                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
5564                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5565
5566                 REG_WR(sc, addr, val);
5567
5568                 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5569         }
5570
5571         REG_WR(sc, addr, val);
5572
5573         /* ensure that HC_CONFIG is written before leading/trailing edge config */
5574         mb();
5575
5576         /* init leading/trailing edge */
5577         if (IS_MF(sc)) {
5578                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5579                 if (sc->port.pmf) {
5580                         /* enable nig and gpio3 attention */
5581                         val |= 0x1100;
5582                 }
5583         } else {
5584                 val = 0xffff;
5585         }
5586
5587         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5588         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5589
5590         /* make sure that interrupts are indeed enabled from here on */
5591         mb();
5592 }
5593
5594 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5595 {
5596         uint32_t val;
5597         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5598             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5599         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5600         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5601
5602         val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5603
5604         if (msix) {
5605                 val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5606                 val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5607                 if (single_msix) {
5608                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
5609                 }
5610         } else if (msi) {
5611                 val &= ~IGU_PF_CONF_INT_LINE_EN;
5612                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
5613                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5614         } else {
5615                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5616                 val |= (IGU_PF_CONF_INT_LINE_EN |
5617                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5618         }
5619
5620         /* clean previous status - need to configure igu prior to ack */
5621         if ((!msix) || single_msix) {
5622                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5623                 bnx2x_ack_int(sc);
5624         }
5625
5626         val |= IGU_PF_CONF_FUNC_EN;
5627
5628         PMD_DRV_LOG(DEBUG, sc, "write 0x%x to IGU mode %s",
5629                     val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5630
5631         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5632
5633         mb();
5634
5635         /* init leading/trailing edge */
5636         if (IS_MF(sc)) {
5637                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5638                 if (sc->port.pmf) {
5639                         /* enable nig and gpio3 attention */
5640                         val |= 0x1100;
5641                 }
5642         } else {
5643                 val = 0xffff;
5644         }
5645
5646         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5647         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5648
5649         /* make sure that interrupts are indeed enabled from here on */
5650         mb();
5651 }
5652
5653 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5654 {
5655         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5656                 bnx2x_hc_int_enable(sc);
5657         } else {
5658                 bnx2x_igu_int_enable(sc);
5659         }
5660 }
5661
5662 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5663 {
5664         int port = SC_PORT(sc);
5665         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5666         uint32_t val = REG_RD(sc, addr);
5667
5668         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5669                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5670                  HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5671         /* flush all outstanding writes */
5672         mb();
5673
5674         REG_WR(sc, addr, val);
5675         if (REG_RD(sc, addr) != val) {
5676                 PMD_DRV_LOG(ERR, sc, "proper val not read from HC IGU!");
5677         }
5678 }
5679
5680 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5681 {
5682         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5683
5684         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5685                  IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5686
5687         PMD_DRV_LOG(DEBUG, sc, "write %x to IGU", val);
5688
5689         /* flush all outstanding writes */
5690         mb();
5691
5692         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5693         if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5694                 PMD_DRV_LOG(ERR, sc, "proper val not read from IGU!");
5695         }
5696 }
5697
5698 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5699 {
5700         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5701                 bnx2x_hc_int_disable(sc);
5702         } else {
5703                 bnx2x_igu_int_disable(sc);
5704         }
5705 }
5706
5707 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5708 {
5709         int i;
5710
5711         PMD_INIT_FUNC_TRACE(sc);
5712
5713         for (i = 0; i < sc->num_queues; i++) {
5714                 bnx2x_init_eth_fp(sc, i);
5715         }
5716
5717         rmb();                  /* ensure status block indices were read */
5718
5719         bnx2x_init_rx_rings(sc);
5720         bnx2x_init_tx_rings(sc);
5721
5722         if (IS_VF(sc)) {
5723                 bnx2x_memset_stats(sc);
5724                 return;
5725         }
5726
5727         /* initialize MOD_ABS interrupts */
5728         elink_init_mod_abs_int(sc, &sc->link_vars,
5729                                sc->devinfo.chip_id,
5730                                sc->devinfo.shmem_base,
5731                                sc->devinfo.shmem2_base, SC_PORT(sc));
5732
5733         bnx2x_init_def_sb(sc);
5734         bnx2x_update_dsb_idx(sc);
5735         bnx2x_init_sp_ring(sc);
5736         bnx2x_init_eq_ring(sc);
5737         bnx2x_init_internal(sc, load_code);
5738         bnx2x_pf_init(sc);
5739         bnx2x_stats_init(sc);
5740
5741         /* flush all before enabling interrupts */
5742         mb();
5743
5744         bnx2x_int_enable(sc);
5745
5746         /* check for SPIO5 */
5747         bnx2x_attn_int_deasserted0(sc,
5748                                  REG_RD(sc,
5749                                         (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5750                                          SC_PORT(sc) * 4)) &
5751                                  AEU_INPUTS_ATTN_BITS_SPIO5);
5752 }
5753
5754 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5755 {
5756         /* mcast rules must be added to tx if tx switching is enabled */
5757         ecore_obj_type o_type;
5758         if (sc->flags & BNX2X_TX_SWITCHING)
5759                 o_type = ECORE_OBJ_TYPE_RX_TX;
5760         else
5761                 o_type = ECORE_OBJ_TYPE_RX;
5762
5763         /* RX_MODE controlling object */
5764         ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5765
5766         /* multicast configuration controlling object */
5767         ecore_init_mcast_obj(sc,
5768                              &sc->mcast_obj,
5769                              sc->fp[0].cl_id,
5770                              sc->fp[0].index,
5771                              SC_FUNC(sc),
5772                              SC_FUNC(sc),
5773                              BNX2X_SP(sc, mcast_rdata),
5774                              (rte_iova_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5775                              ECORE_FILTER_MCAST_PENDING,
5776                              &sc->sp_state, o_type);
5777
5778         /* Setup CAM credit pools */
5779         ecore_init_mac_credit_pool(sc,
5780                                    &sc->macs_pool,
5781                                    SC_FUNC(sc),
5782                                    CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5783                                    VNICS_PER_PATH(sc));
5784
5785         ecore_init_vlan_credit_pool(sc,
5786                                     &sc->vlans_pool,
5787                                     SC_ABS_FUNC(sc) >> 1,
5788                                     CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5789                                     VNICS_PER_PATH(sc));
5790
5791         /* RSS configuration object */
5792         ecore_init_rss_config_obj(&sc->rss_conf_obj,
5793                                   sc->fp[0].cl_id,
5794                                   sc->fp[0].index,
5795                                   SC_FUNC(sc),
5796                                   SC_FUNC(sc),
5797                                   BNX2X_SP(sc, rss_rdata),
5798                                   (rte_iova_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5799                                   ECORE_FILTER_RSS_CONF_PENDING,
5800                                   &sc->sp_state, ECORE_OBJ_TYPE_RX);
5801 }
5802
5803 /*
5804  * Initialize the function. This must be called before sending CLIENT_SETUP
5805  * for the first client.
5806  */
5807 static int bnx2x_func_start(struct bnx2x_softc *sc)
5808 {
5809         struct ecore_func_state_params func_params = { NULL };
5810         struct ecore_func_start_params *start_params =
5811             &func_params.params.start;
5812
5813         /* Prepare parameters for function state transitions */
5814         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5815
5816         func_params.f_obj = &sc->func_obj;
5817         func_params.cmd = ECORE_F_CMD_START;
5818
5819         /* Function parameters */
5820         start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5821         start_params->sd_vlan_tag = OVLAN(sc);
5822
5823         if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5824                 start_params->network_cos_mode = STATIC_COS;
5825         } else {                /* CHIP_IS_E1X */
5826                 start_params->network_cos_mode = FW_WRR;
5827         }
5828
5829         start_params->gre_tunnel_mode = 0;
5830         start_params->gre_tunnel_rss = 0;
5831
5832         return ecore_func_state_change(sc, &func_params);
5833 }
5834
5835 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5836 {
5837         uint16_t pmcsr;
5838
5839         /* If there is no power capability, silently succeed */
5840         if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5841                 PMD_DRV_LOG(INFO, sc, "No power capability");
5842                 return 0;
5843         }
5844
5845         pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5846                  2);
5847
5848         switch (state) {
5849         case PCI_PM_D0:
5850                 pci_write_word(sc,
5851                                (sc->devinfo.pcie_pm_cap_reg +
5852                                 PCIR_POWER_STATUS),
5853                                ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5854
5855                 if (pmcsr & PCIM_PSTAT_DMASK) {
5856                         /* delay required during transition out of D3hot */
5857                         DELAY(20000);
5858                 }
5859
5860                 break;
5861
5862         case PCI_PM_D3hot:
5863                 /* don't shut down the power for emulation and FPGA */
5864                 if (CHIP_REV_IS_SLOW(sc)) {
5865                         return 0;
5866                 }
5867
5868                 pmcsr &= ~PCIM_PSTAT_DMASK;
5869                 pmcsr |= PCIM_PSTAT_D3;
5870
5871                 if (sc->wol) {
5872                         pmcsr |= PCIM_PSTAT_PMEENABLE;
5873                 }
5874
5875                 pci_write_long(sc,
5876                                (sc->devinfo.pcie_pm_cap_reg +
5877                                 PCIR_POWER_STATUS), pmcsr);
5878
5879                 /*
5880                  * No more memory access after this point until device is brought back
5881                  * to D0 state.
5882                  */
5883                 break;
5884
5885         default:
5886                 PMD_DRV_LOG(NOTICE, sc, "Can't support PCI power state = %d",
5887                             state);
5888                 return -1;
5889         }
5890
5891         return 0;
5892 }
5893
5894 /* return true if succeeded to acquire the lock */
5895 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5896 {
5897         uint32_t lock_status;
5898         uint32_t resource_bit = (1 << resource);
5899         int func = SC_FUNC(sc);
5900         uint32_t hw_lock_control_reg;
5901
5902         /* Validating that the resource is within range */
5903         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5904                 PMD_DRV_LOG(INFO, sc,
5905                             "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5906                             resource, HW_LOCK_MAX_RESOURCE_VALUE);
5907                 return FALSE;
5908         }
5909
5910         if (func <= 5) {
5911                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5912         } else {
5913                 hw_lock_control_reg =
5914                     (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5915         }
5916
5917         /* try to acquire the lock */
5918         REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5919         lock_status = REG_RD(sc, hw_lock_control_reg);
5920         if (lock_status & resource_bit) {
5921                 return TRUE;
5922         }
5923
5924         PMD_DRV_LOG(NOTICE, sc, "Failed to get a resource lock 0x%x", resource);
5925
5926         return FALSE;
5927 }
5928
5929 /*
5930  * Get the recovery leader resource id according to the engine this function
5931  * belongs to. Currently only only 2 engines is supported.
5932  */
5933 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5934 {
5935         if (SC_PATH(sc)) {
5936                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5937         } else {
5938                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5939         }
5940 }
5941
5942 /* try to acquire a leader lock for current engine */
5943 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5944 {
5945         return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5946 }
5947
5948 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5949 {
5950         return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5951 }
5952
5953 /* close gates #2, #3 and #4 */
5954 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5955 {
5956         uint32_t val;
5957
5958         /* gates #2 and #4a are closed/opened */
5959         /* #4 */
5960         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5961         /* #2 */
5962         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5963
5964         /* #3 */
5965         if (CHIP_IS_E1x(sc)) {
5966 /* prevent interrupts from HC on both ports */
5967                 val = REG_RD(sc, HC_REG_CONFIG_1);
5968                 if (close)
5969                         REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5970                                                      HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5971                 else
5972                         REG_WR(sc, HC_REG_CONFIG_1,
5973                                (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5974
5975                 val = REG_RD(sc, HC_REG_CONFIG_0);
5976                 if (close)
5977                         REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5978                                                      HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5979                 else
5980                         REG_WR(sc, HC_REG_CONFIG_0,
5981                                (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5982
5983         } else {
5984 /* Prevent incoming interrupts in IGU */
5985                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5986
5987                 if (close)
5988                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5989                                (val & ~(uint32_t)
5990                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5991                 else
5992                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5993                                (val |
5994                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5995         }
5996
5997         wmb();
5998 }
5999
6000 /* poll for pending writes bit, it should get cleared in no more than 1s */
6001 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
6002 {
6003         uint32_t cnt = 1000;
6004         uint32_t pend_bits = 0;
6005
6006         do {
6007                 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
6008
6009                 if (pend_bits == 0) {
6010                         break;
6011                 }
6012
6013                 DELAY(1000);
6014         } while (cnt-- > 0);
6015
6016         if (cnt <= 0) {
6017                 PMD_DRV_LOG(NOTICE, sc, "Still pending IGU requests bits=0x%08x!",
6018                             pend_bits);
6019                 return -1;
6020         }
6021
6022         return 0;
6023 }
6024
6025 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
6026
6027 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6028 {
6029         /* Do some magic... */
6030         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6031         *magic_val = val & SHARED_MF_CLP_MAGIC;
6032         MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
6033 }
6034
6035 /* restore the value of the 'magic' bit */
6036 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
6037 {
6038         /* Restore the 'magic' bit value... */
6039         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6040         MFCFG_WR(sc, shared_mf_config.clp_mb,
6041                  (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
6042 }
6043
6044 /* prepare for MCP reset, takes care of CLP configurations */
6045 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6046 {
6047         uint32_t shmem;
6048         uint32_t validity_offset;
6049
6050         /* set `magic' bit in order to save MF config */
6051         bnx2x_clp_reset_prep(sc, magic_val);
6052
6053         /* get shmem offset */
6054         shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6055         validity_offset =
6056             offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
6057
6058         /* Clear validity map flags */
6059         if (shmem > 0) {
6060                 REG_WR(sc, shmem + validity_offset, 0);
6061         }
6062 }
6063
6064 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
6065 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
6066
6067 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
6068 {
6069         /* special handling for emulation and FPGA (10 times longer) */
6070         if (CHIP_REV_IS_SLOW(sc)) {
6071                 DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6072         } else {
6073                 DELAY((MCP_ONE_TIMEOUT) * 1000);
6074         }
6075 }
6076
6077 /* initialize shmem_base and waits for validity signature to appear */
6078 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6079 {
6080         int cnt = 0;
6081         uint32_t val = 0;
6082
6083         do {
6084                 sc->devinfo.shmem_base =
6085                     sc->link_params.shmem_base =
6086                     REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6087
6088                 if (sc->devinfo.shmem_base) {
6089                         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6090                         if (val & SHR_MEM_VALIDITY_MB)
6091                                 return 0;
6092                 }
6093
6094                 bnx2x_mcp_wait_one(sc);
6095
6096         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6097
6098         PMD_DRV_LOG(NOTICE, sc, "BAD MCP validity signature");
6099
6100         return -1;
6101 }
6102
6103 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6104 {
6105         int rc = bnx2x_init_shmem(sc);
6106
6107         /* Restore the `magic' bit value */
6108         bnx2x_clp_reset_done(sc, magic_val);
6109
6110         return rc;
6111 }
6112
6113 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6114 {
6115         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6116         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6117         wmb();
6118 }
6119
6120 /*
6121  * Reset the whole chip except for:
6122  *      - PCIE core
6123  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6124  *      - IGU
6125  *      - MISC (including AEU)
6126  *      - GRC
6127  *      - RBCN, RBCP
6128  */
6129 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6130 {
6131         uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6132         uint32_t global_bits2, stay_reset2;
6133
6134         /*
6135          * Bits that have to be set in reset_mask2 if we want to reset 'global'
6136          * (per chip) blocks.
6137          */
6138         global_bits2 =
6139             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6140             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6141
6142         /*
6143          * Don't reset the following blocks.
6144          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6145          *            reset, as in 4 port device they might still be owned
6146          *            by the MCP (there is only one leader per path).
6147          */
6148         not_reset_mask1 =
6149             MISC_REGISTERS_RESET_REG_1_RST_HC |
6150             MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6151             MISC_REGISTERS_RESET_REG_1_RST_PXP;
6152
6153         not_reset_mask2 =
6154             MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6155             MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6156             MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6157             MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6158             MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6159             MISC_REGISTERS_RESET_REG_2_RST_GRC |
6160             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6161             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6162             MISC_REGISTERS_RESET_REG_2_RST_ATC |
6163             MISC_REGISTERS_RESET_REG_2_PGLC |
6164             MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6165             MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6166             MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6167             MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6168             MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6169
6170         /*
6171          * Keep the following blocks in reset:
6172          *  - all xxMACs are handled by the elink code.
6173          */
6174         stay_reset2 =
6175             MISC_REGISTERS_RESET_REG_2_XMAC |
6176             MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6177
6178         /* Full reset masks according to the chip */
6179         reset_mask1 = 0xffffffff;
6180
6181         if (CHIP_IS_E1H(sc))
6182                 reset_mask2 = 0x1ffff;
6183         else if (CHIP_IS_E2(sc))
6184                 reset_mask2 = 0xfffff;
6185         else                    /* CHIP_IS_E3 */
6186                 reset_mask2 = 0x3ffffff;
6187
6188         /* Don't reset global blocks unless we need to */
6189         if (!global)
6190                 reset_mask2 &= ~global_bits2;
6191
6192         /*
6193          * In case of attention in the QM, we need to reset PXP
6194          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6195          * because otherwise QM reset would release 'close the gates' shortly
6196          * before resetting the PXP, then the PSWRQ would send a write
6197          * request to PGLUE. Then when PXP is reset, PGLUE would try to
6198          * read the payload data from PSWWR, but PSWWR would not
6199          * respond. The write queue in PGLUE would stuck, dmae commands
6200          * would not return. Therefore it's important to reset the second
6201          * reset register (containing the
6202          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6203          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6204          * bit).
6205          */
6206         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6207                reset_mask2 & (~not_reset_mask2));
6208
6209         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6210                reset_mask1 & (~not_reset_mask1));
6211
6212         mb();
6213         wmb();
6214
6215         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6216                reset_mask2 & (~stay_reset2));
6217
6218         mb();
6219         wmb();
6220
6221         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6222         wmb();
6223 }
6224
6225 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6226 {
6227         int cnt = 1000;
6228         uint32_t val = 0;
6229         uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6230         uint32_t tags_63_32 = 0;
6231
6232         /* Empty the Tetris buffer, wait for 1s */
6233         do {
6234                 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6235                 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6236                 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6237                 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6238                 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6239                 if (CHIP_IS_E3(sc)) {
6240                         tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6241                 }
6242
6243                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6244                     ((port_is_idle_0 & 0x1) == 0x1) &&
6245                     ((port_is_idle_1 & 0x1) == 0x1) &&
6246                     (pgl_exp_rom2 == 0xffffffff) &&
6247                     (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6248                         break;
6249                 DELAY(1000);
6250         } while (cnt-- > 0);
6251
6252         if (cnt <= 0) {
6253                 PMD_DRV_LOG(NOTICE, sc,
6254                             "ERROR: Tetris buffer didn't get empty or there "
6255                             "are still outstanding read requests after 1s! "
6256                             "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6257                             "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6258                             sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6259                             pgl_exp_rom2);
6260                 return -1;
6261         }
6262
6263         mb();
6264
6265         /* Close gates #2, #3 and #4 */
6266         bnx2x_set_234_gates(sc, TRUE);
6267
6268         /* Poll for IGU VQs for 57712 and newer chips */
6269         if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6270                 return -1;
6271         }
6272
6273         /* clear "unprepared" bit */
6274         REG_WR(sc, MISC_REG_UNPREPARED, 0);
6275         mb();
6276
6277         /* Make sure all is written to the chip before the reset */
6278         wmb();
6279
6280         /*
6281          * Wait for 1ms to empty GLUE and PCI-E core queues,
6282          * PSWHST, GRC and PSWRD Tetris buffer.
6283          */
6284         DELAY(1000);
6285
6286         /* Prepare to chip reset: */
6287         /* MCP */
6288         if (global) {
6289                 bnx2x_reset_mcp_prep(sc, &val);
6290         }
6291
6292         /* PXP */
6293         bnx2x_pxp_prep(sc);
6294         mb();
6295
6296         /* reset the chip */
6297         bnx2x_process_kill_chip_reset(sc, global);
6298         mb();
6299
6300         /* Recover after reset: */
6301         /* MCP */
6302         if (global && bnx2x_reset_mcp_comp(sc, val)) {
6303                 return -1;
6304         }
6305
6306         /* Open the gates #2, #3 and #4 */
6307         bnx2x_set_234_gates(sc, FALSE);
6308
6309         return 0;
6310 }
6311
6312 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6313 {
6314         int rc = 0;
6315         uint8_t global = bnx2x_reset_is_global(sc);
6316         uint32_t load_code;
6317
6318         /*
6319          * If not going to reset MCP, load "fake" driver to reset HW while
6320          * driver is owner of the HW.
6321          */
6322         if (!global && !BNX2X_NOMCP(sc)) {
6323                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6324                                            DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6325                 if (!load_code) {
6326                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6327                         rc = -1;
6328                         goto exit_leader_reset;
6329                 }
6330
6331                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6332                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6333                         PMD_DRV_LOG(NOTICE, sc,
6334                                     "MCP unexpected response, aborting");
6335                         rc = -1;
6336                         goto exit_leader_reset2;
6337                 }
6338
6339                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6340                 if (!load_code) {
6341                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6342                         rc = -1;
6343                         goto exit_leader_reset2;
6344                 }
6345         }
6346
6347         /* try to recover after the failure */
6348         if (bnx2x_process_kill(sc, global)) {
6349                 PMD_DRV_LOG(NOTICE, sc, "Something bad occurred on engine %d!",
6350                             SC_PATH(sc));
6351                 rc = -1;
6352                 goto exit_leader_reset2;
6353         }
6354
6355         /*
6356          * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6357          * state.
6358          */
6359         bnx2x_set_reset_done(sc);
6360         if (global) {
6361                 bnx2x_clear_reset_global(sc);
6362         }
6363
6364 exit_leader_reset2:
6365
6366         /* unload "fake driver" if it was loaded */
6367         if (!global &&!BNX2X_NOMCP(sc)) {
6368                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6369                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6370         }
6371
6372 exit_leader_reset:
6373
6374         sc->is_leader = 0;
6375         bnx2x_release_leader_lock(sc);
6376
6377         mb();
6378         return rc;
6379 }
6380
6381 /*
6382  * prepare INIT transition, parameters configured:
6383  *   - HC configuration
6384  *   - Queue's CDU context
6385  */
6386 static void
6387 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6388                    struct ecore_queue_init_params *init_params)
6389 {
6390         uint8_t cos;
6391         int cxt_index, cxt_offset;
6392
6393         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6394         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6395
6396         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6397         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6398
6399         /* HC rate */
6400         init_params->rx.hc_rate =
6401             sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6402         init_params->tx.hc_rate =
6403             sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6404
6405         /* FW SB ID */
6406         init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6407
6408         /* CQ index among the SB indices */
6409         init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6410         init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6411
6412         /* set maximum number of COSs supported by this queue */
6413         init_params->max_cos = sc->max_cos;
6414
6415         /* set the context pointers queue object */
6416         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6417                 cxt_index = fp->index / ILT_PAGE_CIDS;
6418                 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6419                 init_params->cxts[cos] =
6420                     &sc->context[cxt_index].vcxt[cxt_offset].eth;
6421         }
6422 }
6423
6424 /* set flags that are common for the Tx-only and not normal connections */
6425 static unsigned long
6426 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6427 {
6428         unsigned long flags = 0;
6429
6430         /* PF driver will always initialize the Queue to an ACTIVE state */
6431         bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6432
6433         /*
6434          * tx only connections collect statistics (on the same index as the
6435          * parent connection). The statistics are zeroed when the parent
6436          * connection is initialized.
6437          */
6438
6439         bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6440         if (zero_stats) {
6441                 bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6442         }
6443
6444         /*
6445          * tx only connections can support tx-switching, though their
6446          * CoS-ness doesn't survive the loopback
6447          */
6448         if (sc->flags & BNX2X_TX_SWITCHING) {
6449                 bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6450         }
6451
6452         bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6453
6454         return flags;
6455 }
6456
6457 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6458 {
6459         unsigned long flags = 0;
6460
6461         if (IS_MF_SD(sc)) {
6462                 bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6463         }
6464
6465         if (leading) {
6466                 bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6467                 bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6468         }
6469
6470         bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6471
6472         /* merge with common flags */
6473         return flags | bnx2x_get_common_flags(sc, TRUE);
6474 }
6475
6476 static void
6477 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6478                       struct ecore_general_setup_params *gen_init, uint8_t cos)
6479 {
6480         gen_init->stat_id = bnx2x_stats_id(fp);
6481         gen_init->spcl_id = fp->cl_id;
6482         gen_init->mtu = sc->mtu;
6483         gen_init->cos = cos;
6484 }
6485
6486 static void
6487 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6488                  struct rxq_pause_params *pause,
6489                  struct ecore_rxq_setup_params *rxq_init)
6490 {
6491         struct bnx2x_rx_queue *rxq;
6492
6493         rxq = sc->rx_queues[fp->index];
6494         if (!rxq) {
6495                 PMD_RX_LOG(ERR, "RX queue is NULL");
6496                 return;
6497         }
6498         /* pause */
6499         pause->bd_th_lo = BD_TH_LO(sc);
6500         pause->bd_th_hi = BD_TH_HI(sc);
6501
6502         pause->rcq_th_lo = RCQ_TH_LO(sc);
6503         pause->rcq_th_hi = RCQ_TH_HI(sc);
6504
6505         /* validate rings have enough entries to cross high thresholds */
6506         if (sc->dropless_fc &&
6507             pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6508                 PMD_DRV_LOG(WARNING, sc, "rx bd ring threshold limit");
6509         }
6510
6511         if (sc->dropless_fc &&
6512             pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6513                 PMD_DRV_LOG(WARNING, sc, "rcq ring threshold limit");
6514         }
6515
6516         pause->pri_map = 1;
6517
6518         /* rxq setup */
6519         rxq_init->dscr_map = (rte_iova_t)rxq->rx_ring_phys_addr;
6520         rxq_init->rcq_map = (rte_iova_t)rxq->cq_ring_phys_addr;
6521         rxq_init->rcq_np_map = (rte_iova_t)(rxq->cq_ring_phys_addr +
6522                                               BNX2X_PAGE_SIZE);
6523
6524         /*
6525          * This should be a maximum number of data bytes that may be
6526          * placed on the BD (not including paddings).
6527          */
6528         rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6529
6530         rxq_init->cl_qzone_id = fp->cl_qzone_id;
6531         rxq_init->rss_engine_id = SC_FUNC(sc);
6532         rxq_init->mcast_engine_id = SC_FUNC(sc);
6533
6534         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6535         rxq_init->fw_sb_id = fp->fw_sb_id;
6536
6537         rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6538
6539         /*
6540          * configure silent vlan removal
6541          * if multi function mode is afex, then mask default vlan
6542          */
6543         if (IS_MF_AFEX(sc)) {
6544                 rxq_init->silent_removal_value =
6545                     sc->devinfo.mf_info.afex_def_vlan_tag;
6546                 rxq_init->silent_removal_mask = EVL_VLID_MASK;
6547         }
6548 }
6549
6550 static void
6551 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6552                  struct ecore_txq_setup_params *txq_init, uint8_t cos)
6553 {
6554         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6555
6556         if (!txq) {
6557                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6558                 return;
6559         }
6560         txq_init->dscr_map = (rte_iova_t)txq->tx_ring_phys_addr;
6561         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6562         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6563         txq_init->fw_sb_id = fp->fw_sb_id;
6564
6565         /*
6566          * set the TSS leading client id for TX classfication to the
6567          * leading RSS client id
6568          */
6569         txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6570 }
6571
6572 /*
6573  * This function performs 2 steps in a queue state machine:
6574  *   1) RESET->INIT
6575  *   2) INIT->SETUP
6576  */
6577 static int
6578 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6579 {
6580         struct ecore_queue_state_params q_params = { NULL };
6581         struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6582         int rc;
6583
6584         PMD_DRV_LOG(DEBUG, sc, "setting up queue %d", fp->index);
6585
6586         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6587
6588         q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6589
6590         /* we want to wait for completion in this context */
6591         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6592
6593         /* prepare the INIT parameters */
6594         bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6595
6596         /* Set the command */
6597         q_params.cmd = ECORE_Q_CMD_INIT;
6598
6599         /* Change the state to INIT */
6600         rc = ecore_queue_state_change(sc, &q_params);
6601         if (rc) {
6602                 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) INIT failed", fp->index);
6603                 return rc;
6604         }
6605
6606         PMD_DRV_LOG(DEBUG, sc, "init complete");
6607
6608         /* now move the Queue to the SETUP state */
6609         memset(setup_params, 0, sizeof(*setup_params));
6610
6611         /* set Queue flags */
6612         setup_params->flags = bnx2x_get_q_flags(sc, leading);
6613
6614         /* set general SETUP parameters */
6615         bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6616                               FIRST_TX_COS_INDEX);
6617
6618         bnx2x_pf_rx_q_prep(sc, fp,
6619                          &setup_params->pause_params,
6620                          &setup_params->rxq_params);
6621
6622         bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6623
6624         /* Set the command */
6625         q_params.cmd = ECORE_Q_CMD_SETUP;
6626
6627         /* change the state to SETUP */
6628         rc = ecore_queue_state_change(sc, &q_params);
6629         if (rc) {
6630                 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) SETUP failed", fp->index);
6631                 return rc;
6632         }
6633
6634         return rc;
6635 }
6636
6637 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6638 {
6639         if (IS_PF(sc))
6640                 return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6641         else                    /* VF */
6642                 return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6643 }
6644
6645 static int
6646 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6647                   uint8_t config_hash)
6648 {
6649         struct ecore_config_rss_params params = { NULL };
6650         uint32_t i;
6651
6652         /*
6653          * Although RSS is meaningless when there is a single HW queue we
6654          * still need it enabled in order to have HW Rx hash generated.
6655          */
6656
6657         params.rss_obj = rss_obj;
6658
6659         bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
6660
6661         bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6662
6663         /* RSS configuration */
6664         bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
6665         bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6666         bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
6667         bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6668         if (rss_obj->udp_rss_v4) {
6669                 bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6670         }
6671         if (rss_obj->udp_rss_v6) {
6672                 bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6673         }
6674
6675         /* Hash bits */
6676         params.rss_result_mask = MULTI_MASK;
6677
6678         rte_memcpy(params.ind_table, rss_obj->ind_table,
6679                          sizeof(params.ind_table));
6680
6681         if (config_hash) {
6682 /* RSS keys */
6683                 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6684                         params.rss_key[i] = (uint32_t) rte_rand();
6685                 }
6686
6687                 bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
6688         }
6689
6690         if (IS_PF(sc))
6691                 return ecore_config_rss(sc, &params);
6692         else
6693                 return bnx2x_vf_config_rss(sc, &params);
6694 }
6695
6696 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6697 {
6698         return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6699 }
6700
6701 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6702 {
6703         uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6704         uint32_t i;
6705
6706         /*
6707          * Prepare the initial contents of the indirection table if
6708          * RSS is enabled
6709          */
6710         for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6711                 sc->rss_conf_obj.ind_table[i] =
6712                     (sc->fp->cl_id + (i % num_eth_queues));
6713         }
6714
6715         if (sc->udp_rss) {
6716                 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6717         }
6718
6719         /*
6720          * For 57711 SEARCHER configuration (rss_keys) is
6721          * per-port, so if explicit configuration is needed, do it only
6722          * for a PMF.
6723          *
6724          * For 57712 and newer it's a per-function configuration.
6725          */
6726         return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6727 }
6728
6729 static int
6730 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6731                 struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6732                 unsigned long *ramrod_flags)
6733 {
6734         struct ecore_vlan_mac_ramrod_params ramrod_param;
6735         int rc;
6736
6737         memset(&ramrod_param, 0, sizeof(ramrod_param));
6738
6739         /* fill in general parameters */
6740         ramrod_param.vlan_mac_obj = obj;
6741         ramrod_param.ramrod_flags = *ramrod_flags;
6742
6743         /* fill a user request section if needed */
6744         if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6745                 rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6746                                  ETH_ALEN);
6747
6748                 bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6749
6750 /* Set the command: ADD or DEL */
6751                 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6752                     ECORE_VLAN_MAC_DEL;
6753         }
6754
6755         rc = ecore_config_vlan_mac(sc, &ramrod_param);
6756
6757         if (rc == ECORE_EXISTS) {
6758                 PMD_DRV_LOG(INFO, sc, "Failed to schedule ADD operations (EEXIST)");
6759 /* do not treat adding same MAC as error */
6760                 rc = 0;
6761         } else if (rc < 0) {
6762                 PMD_DRV_LOG(ERR, sc,
6763                             "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6764         }
6765
6766         return rc;
6767 }
6768
6769 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6770 {
6771         unsigned long ramrod_flags = 0;
6772
6773         PMD_DRV_LOG(DEBUG, sc, "Adding Ethernet MAC");
6774
6775         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6776
6777         /* Eth MAC is set on RSS leading client (fp[0]) */
6778         return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6779                                &sc->sp_objs->mac_obj,
6780                                set, ECORE_ETH_MAC, &ramrod_flags);
6781 }
6782
6783 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6784 {
6785         uint32_t sel_phy_idx = 0;
6786
6787         if (sc->link_params.num_phys <= 1) {
6788                 return ELINK_INT_PHY;
6789         }
6790
6791         if (sc->link_vars.link_up) {
6792                 sel_phy_idx = ELINK_EXT_PHY1;
6793 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6794                 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6795                     (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6796                      ELINK_SUPPORTED_FIBRE))
6797                         sel_phy_idx = ELINK_EXT_PHY2;
6798         } else {
6799                 switch (elink_phy_selection(&sc->link_params)) {
6800                 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6801                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6802                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6803                         sel_phy_idx = ELINK_EXT_PHY1;
6804                         break;
6805                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6806                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6807                         sel_phy_idx = ELINK_EXT_PHY2;
6808                         break;
6809                 }
6810         }
6811
6812         return sel_phy_idx;
6813 }
6814
6815 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6816 {
6817         uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6818
6819         /*
6820          * The selected activated PHY is always after swapping (in case PHY
6821          * swapping is enabled). So when swapping is enabled, we need to reverse
6822          * the configuration
6823          */
6824
6825         if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6826                 if (sel_phy_idx == ELINK_EXT_PHY1)
6827                         sel_phy_idx = ELINK_EXT_PHY2;
6828                 else if (sel_phy_idx == ELINK_EXT_PHY2)
6829                         sel_phy_idx = ELINK_EXT_PHY1;
6830         }
6831
6832         return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6833 }
6834
6835 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6836 {
6837         /*
6838          * Initialize link parameters structure variables
6839          * It is recommended to turn off RX FC for jumbo frames
6840          * for better performance
6841          */
6842         if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6843                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6844         } else {
6845                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6846         }
6847 }
6848
6849 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6850 {
6851         uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6852         switch (sc->link_vars.ieee_fc &
6853                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6854         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6855         default:
6856                 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6857                                                    ADVERTISED_Pause);
6858                 break;
6859
6860         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6861                 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6862                                                   ADVERTISED_Pause);
6863                 break;
6864
6865         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6866                 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6867                 break;
6868         }
6869 }
6870
6871 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6872 {
6873         uint16_t line_speed = sc->link_vars.line_speed;
6874         if (IS_MF(sc)) {
6875                 uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6876                                                       sc->devinfo.
6877                                                       mf_info.mf_config[SC_VN
6878                                                                         (sc)]);
6879
6880 /* calculate the current MAX line speed limit for the MF devices */
6881                 if (IS_MF_SI(sc)) {
6882                         line_speed = (line_speed * maxCfg) / 100;
6883                 } else {        /* SD mode */
6884                         uint16_t vn_max_rate = maxCfg * 100;
6885
6886                         if (vn_max_rate < line_speed) {
6887                                 line_speed = vn_max_rate;
6888                         }
6889                 }
6890         }
6891
6892         return line_speed;
6893 }
6894
6895 static void
6896 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6897 {
6898         uint16_t line_speed = bnx2x_get_mf_speed(sc);
6899
6900         memset(data, 0, sizeof(*data));
6901
6902         /* fill the report data with the effective line speed */
6903         data->line_speed = line_speed;
6904
6905         /* Link is down */
6906         if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6907                 bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6908                             &data->link_report_flags);
6909         }
6910
6911         /* Full DUPLEX */
6912         if (sc->link_vars.duplex == DUPLEX_FULL) {
6913                 bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6914                             &data->link_report_flags);
6915         }
6916
6917         /* Rx Flow Control is ON */
6918         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6919                 bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6920         }
6921
6922         /* Tx Flow Control is ON */
6923         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6924                 bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6925         }
6926 }
6927
6928 /* report link status to OS, should be called under phy_lock */
6929 static void bnx2x_link_report_locked(struct bnx2x_softc *sc)
6930 {
6931         struct bnx2x_link_report_data cur_data;
6932
6933         /* reread mf_cfg */
6934         if (IS_PF(sc)) {
6935                 bnx2x_read_mf_cfg(sc);
6936         }
6937
6938         /* Read the current link report info */
6939         bnx2x_fill_report_data(sc, &cur_data);
6940
6941         /* Don't report link down or exactly the same link status twice */
6942         if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6943             (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6944                           &sc->last_reported_link.link_report_flags) &&
6945              bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6946                           &cur_data.link_report_flags))) {
6947                 return;
6948         }
6949
6950         ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %lx, last_reported_link = %lx",
6951                        cur_data.link_report_flags,
6952                        sc->last_reported_link.link_report_flags);
6953
6954         sc->link_cnt++;
6955
6956         ELINK_DEBUG_P1(sc, "link status change count = %x", sc->link_cnt);
6957         /* report new link params and remember the state for the next time */
6958         rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6959
6960         if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6961                          &cur_data.link_report_flags)) {
6962                 ELINK_DEBUG_P0(sc, "NIC Link is Down");
6963         } else {
6964                 __rte_unused const char *duplex;
6965                 __rte_unused const char *flow;
6966
6967                 if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6968                                            &cur_data.link_report_flags)) {
6969                         duplex = "full";
6970                                 ELINK_DEBUG_P0(sc, "link set to full duplex");
6971                 } else {
6972                         duplex = "half";
6973                                 ELINK_DEBUG_P0(sc, "link set to half duplex");
6974                 }
6975
6976 /*
6977  * Handle the FC at the end so that only these flags would be
6978  * possibly set. This way we may easily check if there is no FC
6979  * enabled.
6980  */
6981                 if (cur_data.link_report_flags) {
6982                         if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6983                                          &cur_data.link_report_flags) &&
6984                             bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6985                                          &cur_data.link_report_flags)) {
6986                                 flow = "ON - receive & transmit";
6987                         } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6988                                                 &cur_data.link_report_flags) &&
6989                                    !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6990                                                  &cur_data.link_report_flags)) {
6991                                 flow = "ON - receive";
6992                         } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6993                                                  &cur_data.link_report_flags) &&
6994                                    bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6995                                                 &cur_data.link_report_flags)) {
6996                                 flow = "ON - transmit";
6997                         } else {
6998                                 flow = "none";  /* possible? */
6999                         }
7000                 } else {
7001                         flow = "none";
7002                 }
7003
7004                 PMD_DRV_LOG(INFO, sc,
7005                             "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
7006                             cur_data.line_speed, duplex, flow);
7007         }
7008 }
7009
7010 static void
7011 bnx2x_link_report(struct bnx2x_softc *sc)
7012 {
7013         bnx2x_acquire_phy_lock(sc);
7014         bnx2x_link_report_locked(sc);
7015         bnx2x_release_phy_lock(sc);
7016 }
7017
7018 void bnx2x_link_status_update(struct bnx2x_softc *sc)
7019 {
7020         if (sc->state != BNX2X_STATE_OPEN) {
7021                 return;
7022         }
7023
7024         if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
7025                 elink_link_status_update(&sc->link_params, &sc->link_vars);
7026         } else {
7027                 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
7028                                           ELINK_SUPPORTED_10baseT_Full |
7029                                           ELINK_SUPPORTED_100baseT_Half |
7030                                           ELINK_SUPPORTED_100baseT_Full |
7031                                           ELINK_SUPPORTED_1000baseT_Full |
7032                                           ELINK_SUPPORTED_2500baseX_Full |
7033                                           ELINK_SUPPORTED_10000baseT_Full |
7034                                           ELINK_SUPPORTED_TP |
7035                                           ELINK_SUPPORTED_FIBRE |
7036                                           ELINK_SUPPORTED_Autoneg |
7037                                           ELINK_SUPPORTED_Pause |
7038                                           ELINK_SUPPORTED_Asym_Pause);
7039                 sc->port.advertising[0] = sc->port.supported[0];
7040
7041                 sc->link_params.sc = sc;
7042                 sc->link_params.port = SC_PORT(sc);
7043                 sc->link_params.req_duplex[0] = DUPLEX_FULL;
7044                 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
7045                 sc->link_params.req_line_speed[0] = SPEED_10000;
7046                 sc->link_params.speed_cap_mask[0] = 0x7f0000;
7047                 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
7048
7049                 if (CHIP_REV_IS_FPGA(sc)) {
7050                         sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
7051                         sc->link_vars.line_speed = ELINK_SPEED_1000;
7052                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7053                                                      LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
7054                 } else {
7055                         sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
7056                         sc->link_vars.line_speed = ELINK_SPEED_10000;
7057                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7058                                                      LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
7059                 }
7060
7061                 sc->link_vars.link_up = 1;
7062
7063                 sc->link_vars.duplex = DUPLEX_FULL;
7064                 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
7065
7066                 if (IS_PF(sc)) {
7067                         REG_WR(sc,
7068                                NIG_REG_EGRESS_DRAIN0_MODE +
7069                                sc->link_params.port * 4, 0);
7070                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7071                         bnx2x_link_report(sc);
7072                 }
7073         }
7074
7075         if (IS_PF(sc)) {
7076                 if (sc->link_vars.link_up) {
7077                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7078                 } else {
7079                         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
7080                 }
7081                 bnx2x_link_report(sc);
7082         } else {
7083                 bnx2x_link_report_locked(sc);
7084                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7085         }
7086 }
7087
7088 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7089 {
7090         int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7091         uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7092         struct elink_params *lp = &sc->link_params;
7093
7094         bnx2x_set_requested_fc(sc);
7095
7096         bnx2x_acquire_phy_lock(sc);
7097
7098         if (load_mode == LOAD_DIAG) {
7099                 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7100 /* Prefer doing PHY loopback at 10G speed, if possible */
7101                 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7102                         if (lp->speed_cap_mask[cfg_idx] &
7103                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7104                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7105                         } else {
7106                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7107                         }
7108                 }
7109         }
7110
7111         if (load_mode == LOAD_LOOPBACK_EXT) {
7112                 lp->loopback_mode = ELINK_LOOPBACK_EXT;
7113         }
7114
7115         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7116
7117         bnx2x_release_phy_lock(sc);
7118
7119         bnx2x_calc_fc_adv(sc);
7120
7121         if (sc->link_vars.link_up) {
7122                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7123                 bnx2x_link_report(sc);
7124         }
7125
7126         sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7127         return rc;
7128 }
7129
7130 /* update flags in shmem */
7131 static void
7132 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7133 {
7134         uint32_t drv_flags;
7135
7136         if (SHMEM2_HAS(sc, drv_flags)) {
7137                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7138                 drv_flags = SHMEM2_RD(sc, drv_flags);
7139
7140                 if (set) {
7141                         drv_flags |= flags;
7142                 } else {
7143                         drv_flags &= ~flags;
7144                 }
7145
7146                 SHMEM2_WR(sc, drv_flags, drv_flags);
7147
7148                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7149         }
7150 }
7151
7152 /* periodic timer callout routine, only runs when the interface is up */
7153 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7154 {
7155         if ((sc->state != BNX2X_STATE_OPEN) ||
7156             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7157                 PMD_DRV_LOG(DEBUG, sc, "periodic callout exit (state=0x%x)",
7158                             sc->state);
7159                 return;
7160         }
7161         if (!CHIP_REV_IS_SLOW(sc)) {
7162 /*
7163  * This barrier is needed to ensure the ordering between the writing
7164  * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7165  * the reading here.
7166  */
7167                 mb();
7168                 if (sc->port.pmf) {
7169                         bnx2x_acquire_phy_lock(sc);
7170                         elink_period_func(&sc->link_params, &sc->link_vars);
7171                         bnx2x_release_phy_lock(sc);
7172                 }
7173         }
7174 #ifdef BNX2X_PULSE
7175         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7176                 int mb_idx = SC_FW_MB_IDX(sc);
7177                 uint32_t drv_pulse;
7178                 uint32_t mcp_pulse;
7179
7180                 ++sc->fw_drv_pulse_wr_seq;
7181                 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7182
7183                 drv_pulse = sc->fw_drv_pulse_wr_seq;
7184                 bnx2x_drv_pulse(sc);
7185
7186                 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7187                              MCP_PULSE_SEQ_MASK);
7188
7189 /*
7190  * The delta between driver pulse and mcp response should
7191  * be 1 (before mcp response) or 0 (after mcp response).
7192  */
7193                 if ((drv_pulse != mcp_pulse) &&
7194                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7195                         /* someone lost a heartbeat... */
7196                         PMD_DRV_LOG(ERR, sc,
7197                                     "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7198                                     drv_pulse, mcp_pulse);
7199                 }
7200         }
7201 #endif
7202 }
7203
7204 /* start the controller */
7205 static __rte_noinline
7206 int bnx2x_nic_load(struct bnx2x_softc *sc)
7207 {
7208         uint32_t val;
7209         uint32_t load_code = 0;
7210         int i, rc = 0;
7211
7212         PMD_INIT_FUNC_TRACE(sc);
7213
7214         sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7215
7216         if (IS_PF(sc)) {
7217 /* must be called before memory allocation and HW init */
7218                 bnx2x_ilt_set_info(sc);
7219         }
7220
7221         bnx2x_set_fp_rx_buf_size(sc);
7222
7223         if (IS_PF(sc)) {
7224                 if (bnx2x_alloc_mem(sc) != 0) {
7225                         sc->state = BNX2X_STATE_CLOSED;
7226                         rc = -ENOMEM;
7227                         goto bnx2x_nic_load_error0;
7228                 }
7229         }
7230
7231         if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7232                 sc->state = BNX2X_STATE_CLOSED;
7233                 rc = -ENOMEM;
7234                 goto bnx2x_nic_load_error0;
7235         }
7236
7237         if (IS_VF(sc)) {
7238                 rc = bnx2x_vf_init(sc);
7239                 if (rc) {
7240                         sc->state = BNX2X_STATE_ERROR;
7241                         goto bnx2x_nic_load_error0;
7242                 }
7243         }
7244
7245         if (IS_PF(sc)) {
7246 /* set pf load just before approaching the MCP */
7247                 bnx2x_set_pf_load(sc);
7248
7249 /* if MCP exists send load request and analyze response */
7250                 if (!BNX2X_NOMCP(sc)) {
7251                         /* attempt to load pf */
7252                         if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7253                                 sc->state = BNX2X_STATE_CLOSED;
7254                                 rc = -ENXIO;
7255                                 goto bnx2x_nic_load_error1;
7256                         }
7257
7258                         /* what did the MCP say? */
7259                         if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7260                                 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7261                                 sc->state = BNX2X_STATE_CLOSED;
7262                                 rc = -ENXIO;
7263                                 goto bnx2x_nic_load_error2;
7264                         }
7265                 } else {
7266                         PMD_DRV_LOG(INFO, sc, "Device has no MCP!");
7267                         load_code = bnx2x_nic_load_no_mcp(sc);
7268                 }
7269
7270 /* mark PMF if applicable */
7271                 bnx2x_nic_load_pmf(sc, load_code);
7272
7273 /* Init Function state controlling object */
7274                 bnx2x_init_func_obj(sc);
7275
7276 /* Initialize HW */
7277                 if (bnx2x_init_hw(sc, load_code) != 0) {
7278                         PMD_DRV_LOG(NOTICE, sc, "HW init failed");
7279                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7280                         sc->state = BNX2X_STATE_CLOSED;
7281                         rc = -ENXIO;
7282                         goto bnx2x_nic_load_error2;
7283                 }
7284         }
7285
7286         bnx2x_nic_init(sc, load_code);
7287
7288         /* Init per-function objects */
7289         if (IS_PF(sc)) {
7290                 bnx2x_init_objs(sc);
7291
7292 /* set AFEX default VLAN tag to an invalid value */
7293                 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7294
7295                 sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7296                 rc = bnx2x_func_start(sc);
7297                 if (rc) {
7298                         PMD_DRV_LOG(NOTICE, sc, "Function start failed!");
7299                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7300                         sc->state = BNX2X_STATE_ERROR;
7301                         goto bnx2x_nic_load_error3;
7302                 }
7303
7304 /* send LOAD_DONE command to MCP */
7305                 if (!BNX2X_NOMCP(sc)) {
7306                         load_code =
7307                             bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7308                         if (!load_code) {
7309                                 PMD_DRV_LOG(NOTICE, sc,
7310                                             "MCP response failure, aborting");
7311                                 sc->state = BNX2X_STATE_ERROR;
7312                                 rc = -ENXIO;
7313                                 goto bnx2x_nic_load_error3;
7314                         }
7315                 }
7316         }
7317
7318         rc = bnx2x_setup_leading(sc);
7319         if (rc) {
7320                 PMD_DRV_LOG(NOTICE, sc, "Setup leading failed!");
7321                 sc->state = BNX2X_STATE_ERROR;
7322                 goto bnx2x_nic_load_error3;
7323         }
7324
7325         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7326                 if (IS_PF(sc))
7327                         rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7328                 else            /* IS_VF(sc) */
7329                         rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7330
7331                 if (rc) {
7332                         PMD_DRV_LOG(NOTICE, sc, "Queue(%d) setup failed", i);
7333                         sc->state = BNX2X_STATE_ERROR;
7334                         goto bnx2x_nic_load_error3;
7335                 }
7336         }
7337
7338         rc = bnx2x_init_rss_pf(sc);
7339         if (rc) {
7340                 PMD_DRV_LOG(NOTICE, sc, "PF RSS init failed");
7341                 sc->state = BNX2X_STATE_ERROR;
7342                 goto bnx2x_nic_load_error3;
7343         }
7344
7345         /* now when Clients are configured we are ready to work */
7346         sc->state = BNX2X_STATE_OPEN;
7347
7348         /* Configure a ucast MAC */
7349         if (IS_PF(sc)) {
7350                 rc = bnx2x_set_eth_mac(sc, TRUE);
7351         } else {                /* IS_VF(sc) */
7352                 rc = bnx2x_vf_set_mac(sc, TRUE);
7353         }
7354
7355         if (rc) {
7356                 PMD_DRV_LOG(NOTICE, sc, "Setting Ethernet MAC failed");
7357                 sc->state = BNX2X_STATE_ERROR;
7358                 goto bnx2x_nic_load_error3;
7359         }
7360
7361         if (sc->port.pmf) {
7362                 rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7363                 if (rc) {
7364                         sc->state = BNX2X_STATE_ERROR;
7365                         goto bnx2x_nic_load_error3;
7366                 }
7367         }
7368
7369         sc->link_params.feature_config_flags &=
7370             ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7371
7372         /* start the Tx */
7373         switch (LOAD_OPEN) {
7374         case LOAD_NORMAL:
7375         case LOAD_OPEN:
7376                 break;
7377
7378         case LOAD_DIAG:
7379         case LOAD_LOOPBACK_EXT:
7380                 sc->state = BNX2X_STATE_DIAG;
7381                 break;
7382
7383         default:
7384                 break;
7385         }
7386
7387         if (sc->port.pmf) {
7388                 bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7389         } else {
7390                 bnx2x_link_status_update(sc);
7391         }
7392
7393         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7394 /* mark driver is loaded in shmem2 */
7395                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7396                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7397                           (val |
7398                            DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7399                            DRV_FLAGS_CAPABILITIES_LOADED_L2));
7400         }
7401
7402         /* start fast path */
7403         /* Initialize Rx filter */
7404         bnx2x_set_rx_mode(sc);
7405
7406         /* wait for all pending SP commands to complete */
7407         if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7408                 PMD_DRV_LOG(NOTICE, sc, "Timeout waiting for all SPs to complete!");
7409                 bnx2x_periodic_stop(sc);
7410                 bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7411                 return -ENXIO;
7412         }
7413
7414         PMD_DRV_LOG(DEBUG, sc, "NIC successfully loaded");
7415
7416         return 0;
7417
7418 bnx2x_nic_load_error3:
7419
7420         if (IS_PF(sc)) {
7421                 bnx2x_int_disable_sync(sc, 1);
7422
7423 /* clean out queued objects */
7424                 bnx2x_squeeze_objects(sc);
7425         }
7426
7427 bnx2x_nic_load_error2:
7428
7429         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7430                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7431                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7432         }
7433
7434         sc->port.pmf = 0;
7435
7436 bnx2x_nic_load_error1:
7437
7438         /* clear pf_load status, as it was already set */
7439         if (IS_PF(sc)) {
7440                 bnx2x_clear_pf_load(sc);
7441         }
7442
7443 bnx2x_nic_load_error0:
7444
7445         bnx2x_free_fw_stats_mem(sc);
7446         bnx2x_free_mem(sc);
7447
7448         return rc;
7449 }
7450
7451 /*
7452 * Handles controller initialization.
7453 */
7454 int bnx2x_init(struct bnx2x_softc *sc)
7455 {
7456         int other_engine = SC_PATH(sc) ? 0 : 1;
7457         uint8_t other_load_status, load_status;
7458         uint8_t global = FALSE;
7459         int rc;
7460
7461         /* Check if the driver is still running and bail out if it is. */
7462         if (sc->state != BNX2X_STATE_CLOSED) {
7463                 PMD_DRV_LOG(DEBUG, sc, "Init called while driver is running!");
7464                 rc = 0;
7465                 goto bnx2x_init_done;
7466         }
7467
7468         bnx2x_set_power_state(sc, PCI_PM_D0);
7469
7470         /*
7471          * If parity occurred during the unload, then attentions and/or
7472          * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7473          * loaded on the current engine to complete the recovery. Parity recovery
7474          * is only relevant for PF driver.
7475          */
7476         if (IS_PF(sc)) {
7477                 other_load_status = bnx2x_get_load_status(sc, other_engine);
7478                 load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7479
7480                 if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7481                     bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7482                         do {
7483                                 /*
7484                                  * If there are attentions and they are in global blocks, set
7485                                  * the GLOBAL_RESET bit regardless whether it will be this
7486                                  * function that will complete the recovery or not.
7487                                  */
7488                                 if (global) {
7489                                         bnx2x_set_reset_global(sc);
7490                                 }
7491
7492                                 /*
7493                                  * Only the first function on the current engine should try
7494                                  * to recover in open. In case of attentions in global blocks
7495                                  * only the first in the chip should try to recover.
7496                                  */
7497                                 if ((!load_status
7498                                      && (!global ||!other_load_status))
7499                                     && bnx2x_trylock_leader_lock(sc)
7500                                     && !bnx2x_leader_reset(sc)) {
7501                                         PMD_DRV_LOG(INFO, sc,
7502                                                     "Recovered during init");
7503                                         break;
7504                                 }
7505
7506                                 /* recovery has failed... */
7507                                 bnx2x_set_power_state(sc, PCI_PM_D3hot);
7508
7509                                 sc->recovery_state = BNX2X_RECOVERY_FAILED;
7510
7511                                 PMD_DRV_LOG(NOTICE, sc,
7512                                             "Recovery flow hasn't properly "
7513                                             "completed yet, try again later. "
7514                                             "If you still see this message after a "
7515                                             "few retries then power cycle is required.");
7516
7517                                 rc = -ENXIO;
7518                                 goto bnx2x_init_done;
7519                         } while (0);
7520                 }
7521         }
7522
7523         sc->recovery_state = BNX2X_RECOVERY_DONE;
7524
7525         rc = bnx2x_nic_load(sc);
7526
7527 bnx2x_init_done:
7528
7529         if (rc) {
7530                 PMD_DRV_LOG(NOTICE, sc, "Initialization failed, "
7531                             "stack notified driver is NOT running!");
7532         }
7533
7534         return rc;
7535 }
7536
7537 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7538 {
7539         uint32_t val = 0;
7540
7541         /*
7542          * Read the ME register to get the function number. The ME register
7543          * holds the relative-function number and absolute-function number. The
7544          * absolute-function number appears only in E2 and above. Before that
7545          * these bits always contained zero, therefore we cannot blindly use them.
7546          */
7547
7548         val = REG_RD(sc, BAR_ME_REGISTER);
7549
7550         sc->pfunc_rel =
7551             (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7552         sc->path_id =
7553             (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7554             1;
7555
7556         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7557                 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7558         } else {
7559                 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7560         }
7561
7562         PMD_DRV_LOG(DEBUG, sc,
7563                     "Relative function %d, Absolute function %d, Path %d",
7564                     sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7565 }
7566
7567 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7568 {
7569         uint32_t shmem2_size;
7570         uint32_t offset;
7571         uint32_t mf_cfg_offset_value;
7572
7573         /* Non 57712 */
7574         offset = (SHMEM_ADDR(sc, func_mb) +
7575                   (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7576
7577         /* 57712 plus */
7578         if (sc->devinfo.shmem2_base != 0) {
7579                 shmem2_size = SHMEM2_RD(sc, size);
7580                 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7581                         mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7582                         if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7583                                 offset = mf_cfg_offset_value;
7584                         }
7585                 }
7586         }
7587
7588         return offset;
7589 }
7590
7591 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7592 {
7593         uint32_t ret;
7594         struct bnx2x_pci_cap *caps;
7595
7596         /* ensure PCIe capability is enabled */
7597         caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7598         if (NULL != caps) {
7599                 PMD_DRV_LOG(DEBUG, sc, "Found PCIe capability: "
7600                             "id=0x%04X type=0x%04X addr=0x%08X",
7601                             caps->id, caps->type, caps->addr);
7602                 pci_read(sc, (caps->addr + reg), &ret, 2);
7603                 return ret;
7604         }
7605
7606         PMD_DRV_LOG(WARNING, sc, "PCIe capability NOT FOUND!!!");
7607
7608         return 0;
7609 }
7610
7611 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7612 {
7613         return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7614                 PCIM_EXP_STA_TRANSACTION_PND;
7615 }
7616
7617 /*
7618 * Walk the PCI capabiites list for the device to find what features are
7619 * supported. These capabilites may be enabled/disabled by firmware so it's
7620 * best to walk the list rather than make assumptions.
7621 */
7622 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7623 {
7624         PMD_INIT_FUNC_TRACE(sc);
7625
7626         struct bnx2x_pci_cap *caps;
7627         uint16_t link_status;
7628         int reg = 0;
7629
7630         /* check if PCI Power Management is enabled */
7631         caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7632         if (NULL != caps) {
7633                 PMD_DRV_LOG(DEBUG, sc, "Found PM capability: "
7634                             "id=0x%04X type=0x%04X addr=0x%08X",
7635                             caps->id, caps->type, caps->addr);
7636
7637                 sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7638                 sc->devinfo.pcie_pm_cap_reg = caps->addr;
7639         }
7640
7641         link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7642
7643         sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7644         sc->devinfo.pcie_link_width =
7645             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7646
7647         PMD_DRV_LOG(DEBUG, sc, "PCIe link speed=%d width=%d",
7648                     sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7649
7650         sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7651
7652         /* check if MSI capability is enabled */
7653         caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7654         if (NULL != caps) {
7655                 PMD_DRV_LOG(DEBUG, sc, "Found MSI capability at 0x%04x", reg);
7656
7657                 sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7658                 sc->devinfo.pcie_msi_cap_reg = caps->addr;
7659         }
7660
7661         /* check if MSI-X capability is enabled */
7662         caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7663         if (NULL != caps) {
7664                 PMD_DRV_LOG(DEBUG, sc, "Found MSI-X capability at 0x%04x", reg);
7665
7666                 sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7667                 sc->devinfo.pcie_msix_cap_reg = caps->addr;
7668         }
7669 }
7670
7671 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7672 {
7673         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7674         uint32_t val;
7675
7676         /* get the outer vlan if we're in switch-dependent mode */
7677
7678         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7679         mf_info->ext_id = (uint16_t) val;
7680
7681         mf_info->multi_vnics_mode = 1;
7682
7683         if (!VALID_OVLAN(mf_info->ext_id)) {
7684                 PMD_DRV_LOG(NOTICE, sc, "Invalid VLAN (%d)", mf_info->ext_id);
7685                 return 1;
7686         }
7687
7688         /* get the capabilities */
7689         if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7690             FUNC_MF_CFG_PROTOCOL_ISCSI) {
7691                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7692         } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7693                    == FUNC_MF_CFG_PROTOCOL_FCOE) {
7694                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7695         } else {
7696                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7697         }
7698
7699         mf_info->vnics_per_port =
7700             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7701
7702         return 0;
7703 }
7704
7705 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7706 {
7707         uint32_t retval = 0;
7708         uint32_t val;
7709
7710         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7711
7712         if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7713                 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7714                         retval |= MF_PROTO_SUPPORT_ETHERNET;
7715                 }
7716                 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7717                         retval |= MF_PROTO_SUPPORT_ISCSI;
7718                 }
7719                 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7720                         retval |= MF_PROTO_SUPPORT_FCOE;
7721                 }
7722         }
7723
7724         return retval;
7725 }
7726
7727 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7728 {
7729         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7730         uint32_t val;
7731
7732         /*
7733          * There is no outer vlan if we're in switch-independent mode.
7734          * If the mac is valid then assume multi-function.
7735          */
7736
7737         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7738
7739         mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7740
7741         mf_info->mf_protos_supported =
7742             bnx2x_get_shmem_ext_proto_support_flags(sc);
7743
7744         mf_info->vnics_per_port =
7745             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7746
7747         return 0;
7748 }
7749
7750 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7751 {
7752         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7753         uint32_t e1hov_tag;
7754         uint32_t func_config;
7755         uint32_t niv_config;
7756
7757         mf_info->multi_vnics_mode = 1;
7758
7759         e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7760         func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7761         niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7762
7763         mf_info->ext_id =
7764             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7765                         FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7766
7767         mf_info->default_vlan =
7768             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7769                         FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7770
7771         mf_info->niv_allowed_priorities =
7772             (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7773                        FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7774
7775         mf_info->niv_default_cos =
7776             (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7777                        FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7778
7779         mf_info->afex_vlan_mode =
7780             ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7781              FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7782
7783         mf_info->niv_mba_enabled =
7784             ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7785              FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7786
7787         mf_info->mf_protos_supported =
7788             bnx2x_get_shmem_ext_proto_support_flags(sc);
7789
7790         mf_info->vnics_per_port =
7791             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7792
7793         return 0;
7794 }
7795
7796 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7797 {
7798         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7799         uint32_t mf_cfg1;
7800         uint32_t mf_cfg2;
7801         uint32_t ovlan1;
7802         uint32_t ovlan2;
7803         uint8_t i, j;
7804
7805         /* various MF mode sanity checks... */
7806
7807         if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7808                 PMD_DRV_LOG(NOTICE, sc,
7809                             "Enumerated function %d is marked as hidden",
7810                             SC_PORT(sc));
7811                 return 1;
7812         }
7813
7814         if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7815                 PMD_DRV_LOG(NOTICE, sc, "vnics_per_port=%d multi_vnics_mode=%d",
7816                             mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7817                 return 1;
7818         }
7819
7820         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7821 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7822                 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7823                         PMD_DRV_LOG(NOTICE, sc, "mf_mode=SD vnic_id=%d ovlan=%d",
7824                                     SC_VN(sc), OVLAN(sc));
7825                         return 1;
7826                 }
7827
7828                 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7829                         PMD_DRV_LOG(NOTICE, sc,
7830                                     "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7831                                     mf_info->multi_vnics_mode, OVLAN(sc));
7832                         return 1;
7833                 }
7834
7835 /*
7836  * Verify all functions are either MF or SF mode. If MF, make sure
7837  * sure that all non-hidden functions have a valid ovlan. If SF,
7838  * make sure that all non-hidden functions have an invalid ovlan.
7839  */
7840                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7841                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7842                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7843                         if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7844                             (((mf_info->multi_vnics_mode)
7845                               && !VALID_OVLAN(ovlan1))
7846                              || ((!mf_info->multi_vnics_mode)
7847                                  && VALID_OVLAN(ovlan1)))) {
7848                                 PMD_DRV_LOG(NOTICE, sc,
7849                                             "mf_mode=SD function %d MF config "
7850                                             "mismatch, multi_vnics_mode=%d ovlan=%d",
7851                                             i, mf_info->multi_vnics_mode,
7852                                             ovlan1);
7853                                 return 1;
7854                         }
7855                 }
7856
7857 /* Verify all funcs on the same port each have a different ovlan. */
7858                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7859                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7860                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7861                         /* iterate from the next function on the port to the max func */
7862                         for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7863                                 mf_cfg2 =
7864                                     MFCFG_RD(sc, func_mf_config[j].config);
7865                                 ovlan2 =
7866                                     MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7867                                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7868                                     && VALID_OVLAN(ovlan1)
7869                                     && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7870                                     && VALID_OVLAN(ovlan2)
7871                                     && (ovlan1 == ovlan2)) {
7872                                         PMD_DRV_LOG(NOTICE, sc,
7873                                                     "mf_mode=SD functions %d and %d "
7874                                                     "have the same ovlan (%d)",
7875                                                     i, j, ovlan1);
7876                                         return 1;
7877                                 }
7878                         }
7879                 }
7880         }
7881         /* MULTI_FUNCTION_SD */
7882         return 0;
7883 }
7884
7885 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7886 {
7887         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7888         uint32_t val, mac_upper;
7889         uint8_t i, vnic;
7890
7891         /* initialize mf_info defaults */
7892         mf_info->vnics_per_port = 1;
7893         mf_info->multi_vnics_mode = FALSE;
7894         mf_info->path_has_ovlan = FALSE;
7895         mf_info->mf_mode = SINGLE_FUNCTION;
7896
7897         if (!CHIP_IS_MF_CAP(sc)) {
7898                 return 0;
7899         }
7900
7901         if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7902                 PMD_DRV_LOG(NOTICE, sc, "Invalid mf_cfg_base!");
7903                 return 1;
7904         }
7905
7906         /* get the MF mode (switch dependent / independent / single-function) */
7907
7908         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7909
7910         switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7911         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7912
7913                 mac_upper =
7914                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7915
7916                 /* check for legal upper mac bytes */
7917                 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7918                         mf_info->mf_mode = MULTI_FUNCTION_SI;
7919                 } else {
7920                         PMD_DRV_LOG(NOTICE, sc,
7921                                     "Invalid config for Switch Independent mode");
7922                 }
7923
7924                 break;
7925
7926         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7927         case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7928
7929                 /* get outer vlan configuration */
7930                 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7931
7932                 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7933                     FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7934                         mf_info->mf_mode = MULTI_FUNCTION_SD;
7935                 } else {
7936                         PMD_DRV_LOG(NOTICE, sc,
7937                                     "Invalid config for Switch Dependent mode");
7938                 }
7939
7940                 break;
7941
7942         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7943
7944                 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7945                 return 0;
7946
7947         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7948
7949                 /*
7950                  * Mark MF mode as NIV if MCP version includes NPAR-SD support
7951                  * and the MAC address is valid.
7952                  */
7953                 mac_upper =
7954                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7955
7956                 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7957                     (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7958                         mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7959                 } else {
7960                         PMD_DRV_LOG(NOTICE, sc, "Invalid config for AFEX mode");
7961                 }
7962
7963                 break;
7964
7965         default:
7966
7967                 PMD_DRV_LOG(NOTICE, sc, "Unknown MF mode (0x%08x)",
7968                             (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7969
7970                 return 1;
7971         }
7972
7973         /* set path mf_mode (which could be different than function mf_mode) */
7974         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7975                 mf_info->path_has_ovlan = TRUE;
7976         } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7977 /*
7978  * Decide on path multi vnics mode. If we're not in MF mode and in
7979  * 4-port mode, this is good enough to check vnic-0 of the other port
7980  * on the same path
7981  */
7982                 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7983                         uint8_t other_port = !(PORT_ID(sc) & 1);
7984                         uint8_t abs_func_other_port =
7985                             (SC_PATH(sc) + (2 * other_port));
7986
7987                         val =
7988                             MFCFG_RD(sc,
7989                                      func_mf_config
7990                                      [abs_func_other_port].e1hov_tag);
7991
7992                         mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
7993                 }
7994         }
7995
7996         if (mf_info->mf_mode == SINGLE_FUNCTION) {
7997 /* invalid MF config */
7998                 if (SC_VN(sc) >= 1) {
7999                         PMD_DRV_LOG(NOTICE, sc, "VNIC ID >= 1 in SF mode");
8000                         return 1;
8001                 }
8002
8003                 return 0;
8004         }
8005
8006         /* get the MF configuration */
8007         mf_info->mf_config[SC_VN(sc)] =
8008             MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8009
8010         switch (mf_info->mf_mode) {
8011         case MULTI_FUNCTION_SD:
8012
8013                 bnx2x_get_shmem_mf_cfg_info_sd(sc);
8014                 break;
8015
8016         case MULTI_FUNCTION_SI:
8017
8018                 bnx2x_get_shmem_mf_cfg_info_si(sc);
8019                 break;
8020
8021         case MULTI_FUNCTION_AFEX:
8022
8023                 bnx2x_get_shmem_mf_cfg_info_niv(sc);
8024                 break;
8025
8026         default:
8027
8028                 PMD_DRV_LOG(NOTICE, sc, "Get MF config failed (mf_mode=0x%08x)",
8029                             mf_info->mf_mode);
8030                 return 1;
8031         }
8032
8033         /* get the congestion management parameters */
8034
8035         vnic = 0;
8036         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
8037 /* get min/max bw */
8038                 val = MFCFG_RD(sc, func_mf_config[i].config);
8039                 mf_info->min_bw[vnic] =
8040                     ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
8041                      FUNC_MF_CFG_MIN_BW_SHIFT);
8042                 mf_info->max_bw[vnic] =
8043                     ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
8044                      FUNC_MF_CFG_MAX_BW_SHIFT);
8045                 vnic++;
8046         }
8047
8048         return bnx2x_check_valid_mf_cfg(sc);
8049 }
8050
8051 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
8052 {
8053         int port;
8054         uint32_t mac_hi, mac_lo, val;
8055
8056         PMD_INIT_FUNC_TRACE(sc);
8057
8058         port = SC_PORT(sc);
8059         mac_hi = mac_lo = 0;
8060
8061         sc->link_params.sc = sc;
8062         sc->link_params.port = port;
8063
8064         /* get the hardware config info */
8065         sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
8066         sc->devinfo.hw_config2 =
8067             SHMEM_RD(sc, dev_info.shared_hw_config.config2);
8068
8069         sc->link_params.hw_led_mode =
8070             ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
8071              SHARED_HW_CFG_LED_MODE_SHIFT);
8072
8073         /* get the port feature config */
8074         sc->port.config =
8075             SHMEM_RD(sc, dev_info.port_feature_config[port].config);
8076
8077         /* get the link params */
8078         sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
8079             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8080             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8081         sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8082             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8083             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8084
8085         /* get the lane config */
8086         sc->link_params.lane_config =
8087             SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8088
8089         /* get the link config */
8090         val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8091         sc->port.link_config[ELINK_INT_PHY] = val;
8092         sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8093         sc->port.link_config[ELINK_EXT_PHY1] =
8094             SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8095
8096         /* get the override preemphasis flag and enable it or turn it off */
8097         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8098         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8099                 sc->link_params.feature_config_flags |=
8100                     ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8101         } else {
8102                 sc->link_params.feature_config_flags &=
8103                     ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8104         }
8105
8106         val = sc->devinfo.bc_ver >> 8;
8107         if (val < BNX2X_BC_VER) {
8108                 /* for now only warn later we might need to enforce this */
8109                 PMD_DRV_LOG(NOTICE, sc, "This driver needs bc_ver %X but found %X, please upgrade BC\n",
8110                             BNX2X_BC_VER, val);
8111         }
8112         sc->link_params.feature_config_flags |=
8113                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8114                                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY :
8115                                 0;
8116
8117         sc->link_params.feature_config_flags |=
8118                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8119                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8120         sc->link_params.feature_config_flags |=
8121                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
8122                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
8123         sc->link_params.feature_config_flags |=
8124                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8125                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8126
8127         /* get the initial value of the link params */
8128         sc->link_params.multi_phy_config =
8129             SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8130
8131         /* get external phy info */
8132         sc->port.ext_phy_config =
8133             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8134
8135         /* get the multifunction configuration */
8136         bnx2x_get_mf_cfg_info(sc);
8137
8138         /* get the mac address */
8139         if (IS_MF(sc)) {
8140                 mac_hi =
8141                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8142                 mac_lo =
8143                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8144         } else {
8145                 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8146                 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8147         }
8148
8149         if ((mac_lo == 0) && (mac_hi == 0)) {
8150                 *sc->mac_addr_str = 0;
8151                 PMD_DRV_LOG(NOTICE, sc, "No Ethernet address programmed!");
8152         } else {
8153                 sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8154                 sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8155                 sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8156                 sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8157                 sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8158                 sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8159                 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8160                          "%02x:%02x:%02x:%02x:%02x:%02x",
8161                          sc->link_params.mac_addr[0],
8162                          sc->link_params.mac_addr[1],
8163                          sc->link_params.mac_addr[2],
8164                          sc->link_params.mac_addr[3],
8165                          sc->link_params.mac_addr[4],
8166                          sc->link_params.mac_addr[5]);
8167                 PMD_DRV_LOG(DEBUG, sc,
8168                             "Ethernet address: %s", sc->mac_addr_str);
8169         }
8170
8171         return 0;
8172 }
8173
8174 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8175 {
8176         uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8177         switch (sc->link_params.phy[phy_idx].media_type) {
8178         case ELINK_ETH_PHY_SFPP_10G_FIBER:
8179         case ELINK_ETH_PHY_SFP_1G_FIBER:
8180         case ELINK_ETH_PHY_XFP_FIBER:
8181         case ELINK_ETH_PHY_KR:
8182         case ELINK_ETH_PHY_CX4:
8183                 PMD_DRV_LOG(INFO, sc, "Found 10GBase-CX4 media.");
8184                 sc->media = IFM_10G_CX4;
8185                 break;
8186         case ELINK_ETH_PHY_DA_TWINAX:
8187                 PMD_DRV_LOG(INFO, sc, "Found 10Gb Twinax media.");
8188                 sc->media = IFM_10G_TWINAX;
8189                 break;
8190         case ELINK_ETH_PHY_BASE_T:
8191                 PMD_DRV_LOG(INFO, sc, "Found 10GBase-T media.");
8192                 sc->media = IFM_10G_T;
8193                 break;
8194         case ELINK_ETH_PHY_NOT_PRESENT:
8195                 PMD_DRV_LOG(INFO, sc, "Media not present.");
8196                 sc->media = 0;
8197                 break;
8198         case ELINK_ETH_PHY_UNSPECIFIED:
8199         default:
8200                 PMD_DRV_LOG(INFO, sc, "Unknown media!");
8201                 sc->media = 0;
8202                 break;
8203         }
8204 }
8205
8206 #define GET_FIELD(value, fname)                     \
8207 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8208 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8209 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8210
8211 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8212 {
8213         int pfid = SC_FUNC(sc);
8214         int igu_sb_id;
8215         uint32_t val;
8216         uint8_t fid, igu_sb_cnt = 0;
8217
8218         sc->igu_base_sb = 0xff;
8219
8220         if (CHIP_INT_MODE_IS_BC(sc)) {
8221                 int vn = SC_VN(sc);
8222                 igu_sb_cnt = sc->igu_sb_cnt;
8223                 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8224                                    FP_SB_MAX_E1x);
8225                 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8226                                   (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8227                 return 0;
8228         }
8229
8230         /* IGU in normal mode - read CAM */
8231         for (igu_sb_id = 0;
8232              igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8233                 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8234                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8235                         continue;
8236                 }
8237                 fid = IGU_FID(val);
8238                 if (fid & IGU_FID_ENCODE_IS_PF) {
8239                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8240                                 continue;
8241                         }
8242                         if (IGU_VEC(val) == 0) {
8243                                 /* default status block */
8244                                 sc->igu_dsb_id = igu_sb_id;
8245                         } else {
8246                                 if (sc->igu_base_sb == 0xff) {
8247                                         sc->igu_base_sb = igu_sb_id;
8248                                 }
8249                                 igu_sb_cnt++;
8250                         }
8251                 }
8252         }
8253
8254         /*
8255          * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8256          * that number of CAM entries will not be equal to the value advertised in
8257          * PCI. Driver should use the minimal value of both as the actual status
8258          * block count
8259          */
8260         sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8261
8262         if (igu_sb_cnt == 0) {
8263                 PMD_DRV_LOG(ERR, sc, "CAM configuration error");
8264                 return -1;
8265         }
8266
8267         return 0;
8268 }
8269
8270 /*
8271 * Gather various information from the device config space, the device itself,
8272 * shmem, and the user input.
8273 */
8274 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8275 {
8276         uint32_t val;
8277         int rc;
8278
8279         /* get the chip revision (chip metal comes from pci config space) */
8280         sc->devinfo.chip_id = sc->link_params.chip_id =
8281             (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8282              ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8283              (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8284              ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8285
8286         /* force 57811 according to MISC register */
8287         if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8288                 if (CHIP_IS_57810(sc)) {
8289                         sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8290                                                (sc->
8291                                                 devinfo.chip_id & 0x0000ffff));
8292                 } else if (CHIP_IS_57810_MF(sc)) {
8293                         sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8294                                                (sc->
8295                                                 devinfo.chip_id & 0x0000ffff));
8296                 }
8297                 sc->devinfo.chip_id |= 0x1;
8298         }
8299
8300         PMD_DRV_LOG(DEBUG, sc,
8301                     "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8302                     sc->devinfo.chip_id,
8303                     ((sc->devinfo.chip_id >> 16) & 0xffff),
8304                     ((sc->devinfo.chip_id >> 12) & 0xf),
8305                     ((sc->devinfo.chip_id >> 4) & 0xff),
8306                     ((sc->devinfo.chip_id >> 0) & 0xf));
8307
8308         val = (REG_RD(sc, 0x2874) & 0x55);
8309         if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8310                 sc->flags |= BNX2X_ONE_PORT_FLAG;
8311                 PMD_DRV_LOG(DEBUG, sc, "single port device");
8312         }
8313
8314         /* set the doorbell size */
8315         sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8316
8317         /* determine whether the device is in 2 port or 4 port mode */
8318         sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE;       /* E1h */
8319         if (CHIP_IS_E2E3(sc)) {
8320 /*
8321  * Read port4mode_en_ovwr[0]:
8322  *   If 1, four port mode is in port4mode_en_ovwr[1].
8323  *   If 0, four port mode is in port4mode_en[0].
8324  */
8325                 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8326                 if (val & 1) {
8327                         val = ((val >> 1) & 1);
8328                 } else {
8329                         val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8330                 }
8331
8332                 sc->devinfo.chip_port_mode =
8333                     (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8334
8335                 PMD_DRV_LOG(DEBUG, sc, "Port mode = %s", (val) ? "4" : "2");
8336         }
8337
8338         /* get the function and path info for the device */
8339         bnx2x_get_function_num(sc);
8340
8341         /* get the shared memory base address */
8342         sc->devinfo.shmem_base =
8343             sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8344         sc->devinfo.shmem2_base =
8345             REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8346                         MISC_REG_GENERIC_CR_0));
8347
8348         if (!sc->devinfo.shmem_base) {
8349 /* this should ONLY prevent upcoming shmem reads */
8350                 PMD_DRV_LOG(INFO, sc, "MCP not active");
8351                 sc->flags |= BNX2X_NO_MCP_FLAG;
8352                 return 0;
8353         }
8354
8355         /* make sure the shared memory contents are valid */
8356         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8357         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8358             (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8359                 PMD_DRV_LOG(NOTICE, sc, "Invalid SHMEM validity signature: 0x%08x",
8360                             val);
8361                 return 0;
8362         }
8363
8364         /* get the bootcode version */
8365         sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8366         snprintf(sc->devinfo.bc_ver_str,
8367                  sizeof(sc->devinfo.bc_ver_str),
8368                  "%d.%d.%d",
8369                  ((sc->devinfo.bc_ver >> 24) & 0xff),
8370                  ((sc->devinfo.bc_ver >> 16) & 0xff),
8371                  ((sc->devinfo.bc_ver >> 8) & 0xff));
8372         PMD_DRV_LOG(DEBUG, sc, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8373
8374         /* get the bootcode shmem address */
8375         sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8376
8377         /* clean indirect addresses as they're not used */
8378         pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8379         if (IS_PF(sc)) {
8380                 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8381                 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8382                 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8383                 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8384                 if (CHIP_IS_E1x(sc)) {
8385                         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8386                         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8387                         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8388                         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8389                 }
8390         }
8391
8392         /* get the nvram size */
8393         val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8394         sc->devinfo.flash_size =
8395             (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8396
8397         bnx2x_set_power_state(sc, PCI_PM_D0);
8398         /* get various configuration parameters from shmem */
8399         bnx2x_get_shmem_info(sc);
8400
8401         /* initialize IGU parameters */
8402         if (CHIP_IS_E1x(sc)) {
8403                 sc->devinfo.int_block = INT_BLOCK_HC;
8404                 sc->igu_dsb_id = DEF_SB_IGU_ID;
8405                 sc->igu_base_sb = 0;
8406         } else {
8407                 sc->devinfo.int_block = INT_BLOCK_IGU;
8408
8409 /* do not allow device reset during IGU info preocessing */
8410                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8411
8412                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8413
8414                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8415                         int tout = 5000;
8416
8417                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8418                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8419                         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8420
8421                         while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8422                                 tout--;
8423                                 DELAY(1000);
8424                         }
8425
8426                         if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8427                                 PMD_DRV_LOG(NOTICE, sc,
8428                                             "FORCING IGU Normal Mode failed!!!");
8429                                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8430                                 return -1;
8431                         }
8432                 }
8433
8434                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8435                         PMD_DRV_LOG(DEBUG, sc, "IGU Backward Compatible Mode");
8436                         sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8437                 } else {
8438                         PMD_DRV_LOG(DEBUG, sc, "IGU Normal Mode");
8439                 }
8440
8441                 rc = bnx2x_get_igu_cam_info(sc);
8442
8443                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8444
8445                 if (rc) {
8446                         return rc;
8447                 }
8448         }
8449
8450         /*
8451          * Get base FW non-default (fast path) status block ID. This value is
8452          * used to initialize the fw_sb_id saved on the fp/queue structure to
8453          * determine the id used by the FW.
8454          */
8455         if (CHIP_IS_E1x(sc)) {
8456                 sc->base_fw_ndsb =
8457                     ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8458         } else {
8459 /*
8460  * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8461  * the same queue are indicated on the same IGU SB). So we prefer
8462  * FW and IGU SBs to be the same value.
8463  */
8464                 sc->base_fw_ndsb = sc->igu_base_sb;
8465         }
8466
8467         elink_phy_probe(&sc->link_params);
8468
8469         return 0;
8470 }
8471
8472 static void
8473 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8474 {
8475         uint32_t cfg_size = 0;
8476         uint32_t idx;
8477         uint8_t port = SC_PORT(sc);
8478
8479         /* aggregation of supported attributes of all external phys */
8480         sc->port.supported[0] = 0;
8481         sc->port.supported[1] = 0;
8482
8483         switch (sc->link_params.num_phys) {
8484         case 1:
8485                 sc->port.supported[0] =
8486                     sc->link_params.phy[ELINK_INT_PHY].supported;
8487                 cfg_size = 1;
8488                 break;
8489         case 2:
8490                 sc->port.supported[0] =
8491                     sc->link_params.phy[ELINK_EXT_PHY1].supported;
8492                 cfg_size = 1;
8493                 break;
8494         case 3:
8495                 if (sc->link_params.multi_phy_config &
8496                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8497                         sc->port.supported[1] =
8498                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8499                         sc->port.supported[0] =
8500                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8501                 } else {
8502                         sc->port.supported[0] =
8503                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8504                         sc->port.supported[1] =
8505                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8506                 }
8507                 cfg_size = 2;
8508                 break;
8509         }
8510
8511         if (!(sc->port.supported[0] || sc->port.supported[1])) {
8512                 PMD_DRV_LOG(ERR, sc,
8513                             "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8514                             SHMEM_RD(sc,
8515                                      dev_info.port_hw_config
8516                                      [port].external_phy_config),
8517                             SHMEM_RD(sc,
8518                                      dev_info.port_hw_config
8519                                      [port].external_phy_config2));
8520                 return;
8521         }
8522
8523         if (CHIP_IS_E3(sc))
8524                 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8525         else {
8526                 switch (switch_cfg) {
8527                 case ELINK_SWITCH_CFG_1G:
8528                         sc->port.phy_addr =
8529                             REG_RD(sc,
8530                                    NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8531                         break;
8532                 case ELINK_SWITCH_CFG_10G:
8533                         sc->port.phy_addr =
8534                             REG_RD(sc,
8535                                    NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8536                         break;
8537                 default:
8538                         PMD_DRV_LOG(ERR, sc,
8539                                     "Invalid switch config in"
8540                                     "link_config=0x%08x",
8541                                     sc->port.link_config[0]);
8542                         return;
8543                 }
8544         }
8545
8546         PMD_DRV_LOG(INFO, sc, "PHY addr 0x%08x", sc->port.phy_addr);
8547
8548         /* mask what we support according to speed_cap_mask per configuration */
8549         for (idx = 0; idx < cfg_size; idx++) {
8550                 if (!(sc->link_params.speed_cap_mask[idx] &
8551                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8552                         sc->port.supported[idx] &=
8553                             ~ELINK_SUPPORTED_10baseT_Half;
8554                 }
8555
8556                 if (!(sc->link_params.speed_cap_mask[idx] &
8557                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8558                         sc->port.supported[idx] &=
8559                             ~ELINK_SUPPORTED_10baseT_Full;
8560                 }
8561
8562                 if (!(sc->link_params.speed_cap_mask[idx] &
8563                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8564                         sc->port.supported[idx] &=
8565                             ~ELINK_SUPPORTED_100baseT_Half;
8566                 }
8567
8568                 if (!(sc->link_params.speed_cap_mask[idx] &
8569                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8570                         sc->port.supported[idx] &=
8571                             ~ELINK_SUPPORTED_100baseT_Full;
8572                 }
8573
8574                 if (!(sc->link_params.speed_cap_mask[idx] &
8575                       PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8576                         sc->port.supported[idx] &=
8577                             ~ELINK_SUPPORTED_1000baseT_Full;
8578                 }
8579
8580                 if (!(sc->link_params.speed_cap_mask[idx] &
8581                       PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8582                         sc->port.supported[idx] &=
8583                             ~ELINK_SUPPORTED_2500baseX_Full;
8584                 }
8585
8586                 if (!(sc->link_params.speed_cap_mask[idx] &
8587                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8588                         sc->port.supported[idx] &=
8589                             ~ELINK_SUPPORTED_10000baseT_Full;
8590                 }
8591
8592                 if (!(sc->link_params.speed_cap_mask[idx] &
8593                       PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8594                         sc->port.supported[idx] &=
8595                             ~ELINK_SUPPORTED_20000baseKR2_Full;
8596                 }
8597         }
8598
8599         PMD_DRV_LOG(INFO, sc, "PHY supported 0=0x%08x 1=0x%08x",
8600                     sc->port.supported[0], sc->port.supported[1]);
8601 }
8602
8603 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8604 {
8605         uint32_t link_config;
8606         uint32_t idx;
8607         uint32_t cfg_size = 0;
8608
8609         sc->port.advertising[0] = 0;
8610         sc->port.advertising[1] = 0;
8611
8612         switch (sc->link_params.num_phys) {
8613         case 1:
8614         case 2:
8615                 cfg_size = 1;
8616                 break;
8617         case 3:
8618                 cfg_size = 2;
8619                 break;
8620         }
8621
8622         for (idx = 0; idx < cfg_size; idx++) {
8623                 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8624                 link_config = sc->port.link_config[idx];
8625
8626                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8627                 case PORT_FEATURE_LINK_SPEED_AUTO:
8628                         if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8629                                 sc->link_params.req_line_speed[idx] =
8630                                     ELINK_SPEED_AUTO_NEG;
8631                                 sc->port.advertising[idx] |=
8632                                     sc->port.supported[idx];
8633                                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8634                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8635                                         sc->port.advertising[idx] |=
8636                                             (ELINK_SUPPORTED_100baseT_Half |
8637                                              ELINK_SUPPORTED_100baseT_Full);
8638                         } else {
8639                                 /* force 10G, no AN */
8640                                 sc->link_params.req_line_speed[idx] =
8641                                     ELINK_SPEED_10000;
8642                                 sc->port.advertising[idx] |=
8643                                     (ADVERTISED_10000baseT_Full |
8644                                      ADVERTISED_FIBRE);
8645                                 continue;
8646                         }
8647                         break;
8648
8649                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8650                         if (sc->
8651                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8652                         {
8653                                 sc->link_params.req_line_speed[idx] =
8654                                     ELINK_SPEED_10;
8655                                 sc->port.advertising[idx] |=
8656                                     (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8657                         } else {
8658                                 PMD_DRV_LOG(ERR, sc,
8659                                             "Invalid NVRAM config link_config=0x%08x "
8660                                             "speed_cap_mask=0x%08x",
8661                                             link_config,
8662                                             sc->
8663                                             link_params.speed_cap_mask[idx]);
8664                                 return;
8665                         }
8666                         break;
8667
8668                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8669                         if (sc->
8670                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8671                         {
8672                                 sc->link_params.req_line_speed[idx] =
8673                                     ELINK_SPEED_10;
8674                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8675                                 sc->port.advertising[idx] |=
8676                                     (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8677                         } else {
8678                                 PMD_DRV_LOG(ERR, sc,
8679                                             "Invalid NVRAM config link_config=0x%08x "
8680                                             "speed_cap_mask=0x%08x",
8681                                             link_config,
8682                                             sc->
8683                                             link_params.speed_cap_mask[idx]);
8684                                 return;
8685                         }
8686                         break;
8687
8688                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8689                         if (sc->
8690                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8691                         {
8692                                 sc->link_params.req_line_speed[idx] =
8693                                     ELINK_SPEED_100;
8694                                 sc->port.advertising[idx] |=
8695                                     (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8696                         } else {
8697                                 PMD_DRV_LOG(ERR, sc,
8698                                             "Invalid NVRAM config link_config=0x%08x "
8699                                             "speed_cap_mask=0x%08x",
8700                                             link_config,
8701                                             sc->
8702                                             link_params.speed_cap_mask[idx]);
8703                                 return;
8704                         }
8705                         break;
8706
8707                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
8708                         if (sc->
8709                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8710                         {
8711                                 sc->link_params.req_line_speed[idx] =
8712                                     ELINK_SPEED_100;
8713                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8714                                 sc->port.advertising[idx] |=
8715                                     (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8716                         } else {
8717                                 PMD_DRV_LOG(ERR, sc,
8718                                             "Invalid NVRAM config link_config=0x%08x "
8719                                             "speed_cap_mask=0x%08x",
8720                                             link_config,
8721                                             sc->
8722                                             link_params.speed_cap_mask[idx]);
8723                                 return;
8724                         }
8725                         break;
8726
8727                 case PORT_FEATURE_LINK_SPEED_1G:
8728                         if (sc->port.supported[idx] &
8729                             ELINK_SUPPORTED_1000baseT_Full) {
8730                                 sc->link_params.req_line_speed[idx] =
8731                                     ELINK_SPEED_1000;
8732                                 sc->port.advertising[idx] |=
8733                                     (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8734                         } else {
8735                                 PMD_DRV_LOG(ERR, sc,
8736                                             "Invalid NVRAM config link_config=0x%08x "
8737                                             "speed_cap_mask=0x%08x",
8738                                             link_config,
8739                                             sc->
8740                                             link_params.speed_cap_mask[idx]);
8741                                 return;
8742                         }
8743                         break;
8744
8745                 case PORT_FEATURE_LINK_SPEED_2_5G:
8746                         if (sc->port.supported[idx] &
8747                             ELINK_SUPPORTED_2500baseX_Full) {
8748                                 sc->link_params.req_line_speed[idx] =
8749                                     ELINK_SPEED_2500;
8750                                 sc->port.advertising[idx] |=
8751                                     (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8752                         } else {
8753                                 PMD_DRV_LOG(ERR, sc,
8754                                             "Invalid NVRAM config link_config=0x%08x "
8755                                             "speed_cap_mask=0x%08x",
8756                                             link_config,
8757                                             sc->
8758                                             link_params.speed_cap_mask[idx]);
8759                                 return;
8760                         }
8761                         break;
8762
8763                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
8764                         if (sc->port.supported[idx] &
8765                             ELINK_SUPPORTED_10000baseT_Full) {
8766                                 sc->link_params.req_line_speed[idx] =
8767                                     ELINK_SPEED_10000;
8768                                 sc->port.advertising[idx] |=
8769                                     (ADVERTISED_10000baseT_Full |
8770                                      ADVERTISED_FIBRE);
8771                         } else {
8772                                 PMD_DRV_LOG(ERR, sc,
8773                                             "Invalid NVRAM config link_config=0x%08x "
8774                                             "speed_cap_mask=0x%08x",
8775                                             link_config,
8776                                             sc->
8777                                             link_params.speed_cap_mask[idx]);
8778                                 return;
8779                         }
8780                         break;
8781
8782                 case PORT_FEATURE_LINK_SPEED_20G:
8783                         sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8784                         break;
8785
8786                 default:
8787                         PMD_DRV_LOG(ERR, sc,
8788                                     "Invalid NVRAM config link_config=0x%08x "
8789                                     "speed_cap_mask=0x%08x", link_config,
8790                                     sc->link_params.speed_cap_mask[idx]);
8791                         sc->link_params.req_line_speed[idx] =
8792                             ELINK_SPEED_AUTO_NEG;
8793                         sc->port.advertising[idx] = sc->port.supported[idx];
8794                         break;
8795                 }
8796
8797                 sc->link_params.req_flow_ctrl[idx] =
8798                     (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8799
8800                 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8801                         if (!
8802                             (sc->
8803                              port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8804                                 sc->link_params.req_flow_ctrl[idx] =
8805                                     ELINK_FLOW_CTRL_NONE;
8806                         } else {
8807                                 bnx2x_set_requested_fc(sc);
8808                         }
8809                 }
8810         }
8811 }
8812
8813 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8814 {
8815         uint8_t port = SC_PORT(sc);
8816         uint32_t eee_mode;
8817
8818         PMD_INIT_FUNC_TRACE(sc);
8819
8820         /* shmem data already read in bnx2x_get_shmem_info() */
8821
8822         bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8823         bnx2x_link_settings_requested(sc);
8824
8825         /* configure link feature according to nvram value */
8826         eee_mode =
8827             (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8828               & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8829              PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8830         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8831                 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8832                                             ELINK_EEE_MODE_ENABLE_LPI |
8833                                             ELINK_EEE_MODE_OUTPUT_TIME);
8834         } else {
8835                 sc->link_params.eee_mode = 0;
8836         }
8837
8838         /* get the media type */
8839         bnx2x_media_detect(sc);
8840 }
8841
8842 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8843 {
8844         uint32_t flags = MODE_ASIC | MODE_PORT2;
8845
8846         if (CHIP_IS_E2(sc)) {
8847                 flags |= MODE_E2;
8848         } else if (CHIP_IS_E3(sc)) {
8849                 flags |= MODE_E3;
8850                 if (CHIP_REV(sc) == CHIP_REV_Ax) {
8851                         flags |= MODE_E3_A0;
8852                 } else {        /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8853
8854                         flags |= MODE_E3_B0 | MODE_COS3;
8855                 }
8856         }
8857
8858         if (IS_MF(sc)) {
8859                 flags |= MODE_MF;
8860                 switch (sc->devinfo.mf_info.mf_mode) {
8861                 case MULTI_FUNCTION_SD:
8862                         flags |= MODE_MF_SD;
8863                         break;
8864                 case MULTI_FUNCTION_SI:
8865                         flags |= MODE_MF_SI;
8866                         break;
8867                 case MULTI_FUNCTION_AFEX:
8868                         flags |= MODE_MF_AFEX;
8869                         break;
8870                 }
8871         } else {
8872                 flags |= MODE_SF;
8873         }
8874
8875 #if defined(__LITTLE_ENDIAN)
8876         flags |= MODE_LITTLE_ENDIAN;
8877 #else /* __BIG_ENDIAN */
8878         flags |= MODE_BIG_ENDIAN;
8879 #endif
8880
8881         INIT_MODE_FLAGS(sc) = flags;
8882 }
8883
8884 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8885 {
8886         struct bnx2x_fastpath *fp;
8887         char buf[32];
8888         uint32_t i;
8889
8890         if (IS_PF(sc)) {
8891 /************************/
8892 /* DEFAULT STATUS BLOCK */
8893 /************************/
8894
8895                 if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8896                                   &sc->def_sb_dma, "def_sb",
8897                                   RTE_CACHE_LINE_SIZE) != 0) {
8898                         return -1;
8899                 }
8900
8901                 sc->def_sb =
8902                     (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8903 /***************/
8904 /* EVENT QUEUE */
8905 /***************/
8906
8907                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8908                                   &sc->eq_dma, "ev_queue",
8909                                   RTE_CACHE_LINE_SIZE) != 0) {
8910                         sc->def_sb = NULL;
8911                         return -1;
8912                 }
8913
8914                 sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8915
8916 /*************/
8917 /* SLOW PATH */
8918 /*************/
8919
8920                 if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8921                                   &sc->sp_dma, "sp",
8922                                   RTE_CACHE_LINE_SIZE) != 0) {
8923                         sc->eq = NULL;
8924                         sc->def_sb = NULL;
8925                         return -1;
8926                 }
8927
8928                 sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8929
8930 /*******************/
8931 /* SLOW PATH QUEUE */
8932 /*******************/
8933
8934                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8935                                   &sc->spq_dma, "sp_queue",
8936                                   RTE_CACHE_LINE_SIZE) != 0) {
8937                         sc->sp = NULL;
8938                         sc->eq = NULL;
8939                         sc->def_sb = NULL;
8940                         return -1;
8941                 }
8942
8943                 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8944
8945 /***************************/
8946 /* FW DECOMPRESSION BUFFER */
8947 /***************************/
8948
8949                 if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8950                                   "fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
8951                         sc->spq = NULL;
8952                         sc->sp = NULL;
8953                         sc->eq = NULL;
8954                         sc->def_sb = NULL;
8955                         return -1;
8956                 }
8957
8958                 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8959         }
8960
8961         /*************/
8962         /* FASTPATHS */
8963         /*************/
8964
8965         /* allocate DMA memory for each fastpath structure */
8966         for (i = 0; i < sc->num_queues; i++) {
8967                 fp = &sc->fp[i];
8968                 fp->sc = sc;
8969                 fp->index = i;
8970
8971 /*******************/
8972 /* FP STATUS BLOCK */
8973 /*******************/
8974
8975                 snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8976                 if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8977                                   &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8978                         PMD_DRV_LOG(NOTICE, sc, "Failed to alloc %s", buf);
8979                         return -1;
8980                 } else {
8981                         if (CHIP_IS_E2E3(sc)) {
8982                                 fp->status_block.e2_sb =
8983                                     (struct host_hc_status_block_e2 *)
8984                                     fp->sb_dma.vaddr;
8985                         } else {
8986                                 fp->status_block.e1x_sb =
8987                                     (struct host_hc_status_block_e1x *)
8988                                     fp->sb_dma.vaddr;
8989                         }
8990                 }
8991         }
8992
8993         return 0;
8994 }
8995
8996 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
8997 {
8998         struct bnx2x_fastpath *fp;
8999         int i;
9000
9001         for (i = 0; i < sc->num_queues; i++) {
9002                 fp = &sc->fp[i];
9003
9004 /*******************/
9005 /* FP STATUS BLOCK */
9006 /*******************/
9007
9008                 memset(&fp->status_block, 0, sizeof(fp->status_block));
9009         }
9010
9011         /***************************/
9012         /* FW DECOMPRESSION BUFFER */
9013         /***************************/
9014
9015         sc->gz_buf = NULL;
9016
9017         /*******************/
9018         /* SLOW PATH QUEUE */
9019         /*******************/
9020
9021         sc->spq = NULL;
9022
9023         /*************/
9024         /* SLOW PATH */
9025         /*************/
9026
9027         sc->sp = NULL;
9028
9029         /***************/
9030         /* EVENT QUEUE */
9031         /***************/
9032
9033         sc->eq = NULL;
9034
9035         /************************/
9036         /* DEFAULT STATUS BLOCK */
9037         /************************/
9038
9039         sc->def_sb = NULL;
9040
9041 }
9042
9043 /*
9044 * Previous driver DMAE transaction may have occurred when pre-boot stage
9045 * ended and boot began. This would invalidate the addresses of the
9046 * transaction, resulting in was-error bit set in the PCI causing all
9047 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
9048 * the interrupt which detected this from the pglueb and the was-done bit
9049 */
9050 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
9051 {
9052         uint32_t val;
9053
9054         if (!CHIP_IS_E1x(sc)) {
9055                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
9056                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9057                         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9058                                1 << SC_FUNC(sc));
9059                 }
9060         }
9061 }
9062
9063 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
9064 {
9065         uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
9066                                      DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9067         if (!rc) {
9068                 PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9069                 return -1;
9070         }
9071
9072         return 0;
9073 }
9074
9075 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
9076 {
9077         struct bnx2x_prev_list_node *tmp;
9078
9079         LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
9080                 if ((sc->pcie_bus == tmp->bus) &&
9081                     (sc->pcie_device == tmp->slot) &&
9082                     (SC_PATH(sc) == tmp->path)) {
9083                         return tmp;
9084                 }
9085         }
9086
9087         return NULL;
9088 }
9089
9090 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
9091 {
9092         struct bnx2x_prev_list_node *tmp;
9093         int rc = FALSE;
9094
9095         rte_spinlock_lock(&bnx2x_prev_mtx);
9096
9097         tmp = bnx2x_prev_path_get_entry(sc);
9098         if (tmp) {
9099                 if (tmp->aer) {
9100                         PMD_DRV_LOG(DEBUG, sc,
9101                                     "Path %d/%d/%d was marked by AER",
9102                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9103                 } else {
9104                         rc = TRUE;
9105                         PMD_DRV_LOG(DEBUG, sc,
9106                                     "Path %d/%d/%d was already cleaned from previous drivers",
9107                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9108                 }
9109         }
9110
9111         rte_spinlock_unlock(&bnx2x_prev_mtx);
9112
9113         return rc;
9114 }
9115
9116 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9117 {
9118         struct bnx2x_prev_list_node *tmp;
9119
9120         rte_spinlock_lock(&bnx2x_prev_mtx);
9121
9122         /* Check whether the entry for this path already exists */
9123         tmp = bnx2x_prev_path_get_entry(sc);
9124         if (tmp) {
9125                 if (!tmp->aer) {
9126                         PMD_DRV_LOG(DEBUG, sc,
9127                                     "Re-marking AER in path %d/%d/%d",
9128                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9129                 } else {
9130                         PMD_DRV_LOG(DEBUG, sc,
9131                                     "Removing AER indication from path %d/%d/%d",
9132                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9133                         tmp->aer = 0;
9134                 }
9135
9136                 rte_spinlock_unlock(&bnx2x_prev_mtx);
9137                 return 0;
9138         }
9139
9140         rte_spinlock_unlock(&bnx2x_prev_mtx);
9141
9142         /* Create an entry for this path and add it */
9143         tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9144                          RTE_CACHE_LINE_SIZE);
9145         if (!tmp) {
9146                 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate 'bnx2x_prev_list_node'");
9147                 return -1;
9148         }
9149
9150         tmp->bus = sc->pcie_bus;
9151         tmp->slot = sc->pcie_device;
9152         tmp->path = SC_PATH(sc);
9153         tmp->aer = 0;
9154         tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9155
9156         rte_spinlock_lock(&bnx2x_prev_mtx);
9157
9158         LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9159
9160         rte_spinlock_unlock(&bnx2x_prev_mtx);
9161
9162         return 0;
9163 }
9164
9165 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9166 {
9167         int i;
9168
9169         /* only E2 and onwards support FLR */
9170         if (CHIP_IS_E1x(sc)) {
9171                 PMD_DRV_LOG(WARNING, sc, "FLR not supported in E1H");
9172                 return -1;
9173         }
9174
9175         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9176         if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9177                 PMD_DRV_LOG(WARNING, sc,
9178                             "FLR not supported by BC_VER: 0x%08x",
9179                             sc->devinfo.bc_ver);
9180                 return -1;
9181         }
9182
9183         /* Wait for Transaction Pending bit clean */
9184         for (i = 0; i < 4; i++) {
9185                 if (i) {
9186                         DELAY(((1 << (i - 1)) * 100) * 1000);
9187                 }
9188
9189                 if (!bnx2x_is_pcie_pending(sc)) {
9190                         goto clear;
9191                 }
9192         }
9193
9194         PMD_DRV_LOG(NOTICE, sc, "PCIE transaction is not cleared, "
9195                     "proceeding with reset anyway");
9196
9197 clear:
9198         bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9199
9200         return 0;
9201 }
9202
9203 struct bnx2x_mac_vals {
9204         uint32_t xmac_addr;
9205         uint32_t xmac_val;
9206         uint32_t emac_addr;
9207         uint32_t emac_val;
9208         uint32_t umac_addr;
9209         uint32_t umac_val;
9210         uint32_t bmac_addr;
9211         uint32_t bmac_val[2];
9212 };
9213
9214 static void
9215 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9216 {
9217         uint32_t val, base_addr, offset, mask, reset_reg;
9218         uint8_t mac_stopped = FALSE;
9219         uint8_t port = SC_PORT(sc);
9220         uint32_t wb_data[2];
9221
9222         /* reset addresses as they also mark which values were changed */
9223         vals->bmac_addr = 0;
9224         vals->umac_addr = 0;
9225         vals->xmac_addr = 0;
9226         vals->emac_addr = 0;
9227
9228         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9229
9230         if (!CHIP_IS_E3(sc)) {
9231                 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9232                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9233                 if ((mask & reset_reg) && val) {
9234                         base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9235                             : NIG_REG_INGRESS_BMAC0_MEM;
9236                         offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9237                             : BIGMAC_REGISTER_BMAC_CONTROL;
9238
9239                         /*
9240                          * use rd/wr since we cannot use dmae. This is safe
9241                          * since MCP won't access the bus due to the request
9242                          * to unload, and no function on the path can be
9243                          * loaded at this time.
9244                          */
9245                         wb_data[0] = REG_RD(sc, base_addr + offset);
9246                         wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9247                         vals->bmac_addr = base_addr + offset;
9248                         vals->bmac_val[0] = wb_data[0];
9249                         vals->bmac_val[1] = wb_data[1];
9250                         wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9251                         REG_WR(sc, vals->bmac_addr, wb_data[0]);
9252                         REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9253                 }
9254
9255                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9256                 vals->emac_val = REG_RD(sc, vals->emac_addr);
9257                 REG_WR(sc, vals->emac_addr, 0);
9258                 mac_stopped = TRUE;
9259         } else {
9260                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9261                         base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9262                         val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9263                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9264                                val & ~(1 << 1));
9265                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9266                                val | (1 << 1));
9267                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9268                         vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9269                         REG_WR(sc, vals->xmac_addr, 0);
9270                         mac_stopped = TRUE;
9271                 }
9272
9273                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9274                 if (mask & reset_reg) {
9275                         base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9276                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9277                         vals->umac_val = REG_RD(sc, vals->umac_addr);
9278                         REG_WR(sc, vals->umac_addr, 0);
9279                         mac_stopped = TRUE;
9280                 }
9281         }
9282
9283         if (mac_stopped) {
9284                 DELAY(20000);
9285         }
9286 }
9287
9288 #define BNX2X_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9289 #define BNX2X_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
9290 #define BNX2X_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
9291 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9292
9293 static void
9294 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9295 {
9296         uint16_t rcq, bd;
9297         uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9298
9299         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9300         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9301
9302         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9303         REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9304 }
9305
9306 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9307 {
9308         uint32_t reset_reg, tmp_reg = 0, rc;
9309         uint8_t prev_undi = FALSE;
9310         struct bnx2x_mac_vals mac_vals;
9311         uint32_t timer_count = 1000;
9312         uint32_t prev_brb;
9313
9314         /*
9315          * It is possible a previous function received 'common' answer,
9316          * but hasn't loaded yet, therefore creating a scenario of
9317          * multiple functions receiving 'common' on the same path.
9318          */
9319         memset(&mac_vals, 0, sizeof(mac_vals));
9320
9321         if (bnx2x_prev_is_path_marked(sc)) {
9322                 return bnx2x_prev_mcp_done(sc);
9323         }
9324
9325         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9326
9327         /* Reset should be performed after BRB is emptied */
9328         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9329                 /* Close the MAC Rx to prevent BRB from filling up */
9330                 bnx2x_prev_unload_close_mac(sc, &mac_vals);
9331
9332                 /* close LLH filters towards the BRB */
9333                 elink_set_rx_filter(&sc->link_params, 0);
9334
9335                 /*
9336                  * Check if the UNDI driver was previously loaded.
9337                  * UNDI driver initializes CID offset for normal bell to 0x7
9338                  */
9339                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9340                         tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9341                         if (tmp_reg == 0x7) {
9342                                 PMD_DRV_LOG(DEBUG, sc, "UNDI previously loaded");
9343                                 prev_undi = TRUE;
9344                                 /* clear the UNDI indication */
9345                                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9346                                 /* clear possible idle check errors */
9347                                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9348                         }
9349                 }
9350
9351                 /* wait until BRB is empty */
9352                 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9353                 while (timer_count) {
9354                         prev_brb = tmp_reg;
9355
9356                         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9357                         if (!tmp_reg) {
9358                                 break;
9359                         }
9360
9361                         PMD_DRV_LOG(DEBUG, sc, "BRB still has 0x%08x", tmp_reg);
9362
9363                         /* reset timer as long as BRB actually gets emptied */
9364                         if (prev_brb > tmp_reg) {
9365                                 timer_count = 1000;
9366                         } else {
9367                                 timer_count--;
9368                         }
9369
9370                         /* If UNDI resides in memory, manually increment it */
9371                         if (prev_undi) {
9372                                 bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9373                         }
9374
9375                         DELAY(10);
9376                 }
9377
9378                 if (!timer_count) {
9379                         PMD_DRV_LOG(NOTICE, sc, "Failed to empty BRB");
9380                 }
9381         }
9382
9383         /* No packets are in the pipeline, path is ready for reset */
9384         bnx2x_reset_common(sc);
9385
9386         if (mac_vals.xmac_addr) {
9387                 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9388         }
9389         if (mac_vals.umac_addr) {
9390                 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9391         }
9392         if (mac_vals.emac_addr) {
9393                 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9394         }
9395         if (mac_vals.bmac_addr) {
9396                 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9397                 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9398         }
9399
9400         rc = bnx2x_prev_mark_path(sc, prev_undi);
9401         if (rc) {
9402                 bnx2x_prev_mcp_done(sc);
9403                 return rc;
9404         }
9405
9406         return bnx2x_prev_mcp_done(sc);
9407 }
9408
9409 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9410 {
9411         int rc;
9412
9413         /* Test if previous unload process was already finished for this path */
9414         if (bnx2x_prev_is_path_marked(sc)) {
9415                 return bnx2x_prev_mcp_done(sc);
9416         }
9417
9418         /*
9419          * If function has FLR capabilities, and existing FW version matches
9420          * the one required, then FLR will be sufficient to clean any residue
9421          * left by previous driver
9422          */
9423         rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9424         if (!rc) {
9425                 /* fw version is good */
9426                 rc = bnx2x_do_flr(sc);
9427         }
9428
9429         if (!rc) {
9430                 /* FLR was performed */
9431                 return 0;
9432         }
9433
9434         PMD_DRV_LOG(INFO, sc, "Could not FLR");
9435
9436         /* Close the MCP request, return failure */
9437         rc = bnx2x_prev_mcp_done(sc);
9438         if (!rc) {
9439                 rc = BNX2X_PREV_WAIT_NEEDED;
9440         }
9441
9442         return rc;
9443 }
9444
9445 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9446 {
9447         int time_counter = 10;
9448         uint32_t fw, hw_lock_reg, hw_lock_val;
9449         uint32_t rc = 0;
9450
9451         PMD_INIT_FUNC_TRACE(sc);
9452
9453         /*
9454          * Clear HW from errors which may have resulted from an interrupted
9455          * DMAE transaction.
9456          */
9457         bnx2x_prev_interrupted_dmae(sc);
9458
9459         /* Release previously held locks */
9460         hw_lock_reg = (SC_FUNC(sc) <= 5) ?
9461                         (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
9462                         (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9463
9464         hw_lock_val = (REG_RD(sc, hw_lock_reg));
9465         if (hw_lock_val) {
9466                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9467                         PMD_DRV_LOG(DEBUG, sc, "Releasing previously held NVRAM lock\n");
9468                         REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9469                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9470                 }
9471                 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held HW lock\n");
9472                 REG_WR(sc, hw_lock_reg, 0xffffffff);
9473         }
9474
9475         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9476                 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held ALR\n");
9477                 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9478         }
9479
9480         do {
9481                 /* Lock MCP using an unload request */
9482                 fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9483                 if (!fw) {
9484                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9485                         rc = -1;
9486                         break;
9487                 }
9488
9489                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9490                         rc = bnx2x_prev_unload_common(sc);
9491                         break;
9492                 }
9493
9494                 /* non-common reply from MCP might require looping */
9495                 rc = bnx2x_prev_unload_uncommon(sc);
9496                 if (rc != BNX2X_PREV_WAIT_NEEDED) {
9497                         break;
9498                 }
9499
9500                 DELAY(20000);
9501         } while (--time_counter);
9502
9503         if (!time_counter || rc) {
9504                 PMD_DRV_LOG(NOTICE, sc, "Failed to unload previous driver!");
9505                 rc = -1;
9506         }
9507
9508         return rc;
9509 }
9510
9511 static void
9512 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9513 {
9514         if (!CHIP_IS_E1x(sc)) {
9515                 sc->dcb_state = dcb_on;
9516                 sc->dcbx_enabled = dcbx_enabled;
9517         } else {
9518                 sc->dcb_state = FALSE;
9519                 sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9520         }
9521         PMD_DRV_LOG(DEBUG, sc,
9522                     "DCB state [%s:%s]",
9523                     dcb_on ? "ON" : "OFF",
9524                     (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9525                     (dcbx_enabled ==
9526                      BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9527                     : (dcbx_enabled ==
9528                        BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9529                     "on-chip with negotiation" : "invalid");
9530 }
9531
9532 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9533 {
9534         int cid_count = BNX2X_L2_MAX_CID(sc);
9535
9536         if (CNIC_SUPPORT(sc)) {
9537                 cid_count += CNIC_CID_MAX;
9538         }
9539
9540         return roundup(cid_count, QM_CID_ROUND);
9541 }
9542
9543 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9544 {
9545         int pri, cos;
9546
9547         uint32_t pri_map = 0;
9548
9549         for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9550                 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9551                 if (cos < sc->max_cos) {
9552                         sc->prio_to_cos[pri] = cos;
9553                 } else {
9554                         PMD_DRV_LOG(WARNING, sc,
9555                                     "Invalid COS %d for priority %d "
9556                                     "(max COS is %d), setting to 0", cos, pri,
9557                                     (sc->max_cos - 1));
9558                         sc->prio_to_cos[pri] = 0;
9559                 }
9560         }
9561 }
9562
9563 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9564 {
9565         struct {
9566                 uint8_t id;
9567                 uint8_t next;
9568         } pci_cap;
9569         uint16_t status;
9570         struct bnx2x_pci_cap *cap;
9571
9572         cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9573                                          RTE_CACHE_LINE_SIZE);
9574         if (!cap) {
9575                 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9576                 return -ENOMEM;
9577         }
9578
9579 #ifndef __FreeBSD__
9580         pci_read(sc, PCI_STATUS, &status, 2);
9581         if (!(status & PCI_STATUS_CAP_LIST)) {
9582 #else
9583         pci_read(sc, PCIR_STATUS, &status, 2);
9584         if (!(status & PCIM_STATUS_CAPPRESENT)) {
9585 #endif
9586                 PMD_DRV_LOG(NOTICE, sc, "PCIe capability reading failed");
9587                 return -1;
9588         }
9589
9590 #ifndef __FreeBSD__
9591         pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9592 #else
9593         pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9594 #endif
9595         while (pci_cap.next) {
9596                 cap->addr = pci_cap.next & ~3;
9597                 pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9598                 if (pci_cap.id == 0xff)
9599                         break;
9600                 cap->id = pci_cap.id;
9601                 cap->type = BNX2X_PCI_CAP;
9602                 cap->next = rte_zmalloc("pci_cap",
9603                                         sizeof(struct bnx2x_pci_cap),
9604                                         RTE_CACHE_LINE_SIZE);
9605                 if (!cap->next) {
9606                         PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9607                         return -ENOMEM;
9608                 }
9609                 cap = cap->next;
9610         }
9611
9612         return 0;
9613 }
9614
9615 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9616 {
9617         if (IS_VF(sc)) {
9618                 sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9619                                         sc->igu_sb_cnt);
9620                 sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9621                                         sc->igu_sb_cnt);
9622         } else {
9623                 sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
9624                 sc->max_tx_queues = sc->max_rx_queues;
9625         }
9626 }
9627
9628 #define FW_HEADER_LEN 104
9629 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
9630 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
9631
9632 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9633 {
9634         const char *fwname;
9635         int f;
9636         struct stat st;
9637
9638         fwname = sc->devinfo.device_id == CHIP_NUM_57711
9639                 ? FW_NAME_57711 : FW_NAME_57810;
9640         f = open(fwname, O_RDONLY);
9641         if (f < 0) {
9642                 PMD_DRV_LOG(NOTICE, sc, "Can't open firmware file");
9643                 return;
9644         }
9645
9646         if (fstat(f, &st) < 0) {
9647                 PMD_DRV_LOG(NOTICE, sc, "Can't stat firmware file");
9648                 close(f);
9649                 return;
9650         }
9651
9652         sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9653         if (!sc->firmware) {
9654                 PMD_DRV_LOG(NOTICE, sc, "Can't allocate memory for firmware");
9655                 close(f);
9656                 return;
9657         }
9658
9659         if (read(f, sc->firmware, st.st_size) != st.st_size) {
9660                 PMD_DRV_LOG(NOTICE, sc, "Can't read firmware data");
9661                 close(f);
9662                 return;
9663         }
9664         close(f);
9665
9666         sc->fw_len = st.st_size;
9667         if (sc->fw_len < FW_HEADER_LEN) {
9668                 PMD_DRV_LOG(NOTICE, sc,
9669                             "Invalid fw size: %" PRIu64, sc->fw_len);
9670                 return;
9671         }
9672         PMD_DRV_LOG(DEBUG, sc, "fw_len = %" PRIu64, sc->fw_len);
9673 }
9674
9675 static void
9676 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9677 {
9678         uint32_t *src = (uint32_t *) data;
9679         uint32_t i, j, tmp;
9680
9681         for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9682                 tmp = rte_be_to_cpu_32(src[j]);
9683                 dst[i].op = (tmp >> 24) & 0xFF;
9684                 dst[i].offset = tmp & 0xFFFFFF;
9685                 dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9686         }
9687 }
9688
9689 static void
9690 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9691 {
9692         uint16_t *src = (uint16_t *) data;
9693         uint32_t i;
9694
9695         for (i = 0; i < len / 2; ++i)
9696                 dst[i] = rte_be_to_cpu_16(src[i]);
9697 }
9698
9699 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9700 {
9701         uint32_t *src = (uint32_t *) data;
9702         uint32_t i;
9703
9704         for (i = 0; i < len / 4; ++i)
9705                 dst[i] = rte_be_to_cpu_32(src[i]);
9706 }
9707
9708 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9709 {
9710         uint32_t *src = (uint32_t *) data;
9711         uint32_t i, j, tmp;
9712
9713         for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9714                 dst[i].base = rte_be_to_cpu_32(src[j++]);
9715                 tmp = rte_be_to_cpu_32(src[j]);
9716                 dst[i].m1 = (tmp >> 16) & 0xFFFF;
9717                 dst[i].m2 = tmp & 0xFFFF;
9718                 ++j;
9719                 tmp = rte_be_to_cpu_32(src[j]);
9720                 dst[i].m3 = (tmp >> 16) & 0xFFFF;
9721                 dst[i].size = tmp & 0xFFFF;
9722         }
9723 }
9724
9725 /*
9726 * Device attach function.
9727 *
9728 * Allocates device resources, performs secondary chip identification, and
9729 * initializes driver instance variables. This function is called from driver
9730 * load after a successful probe.
9731 *
9732 * Returns:
9733 *   0 = Success, >0 = Failure
9734 */
9735 int bnx2x_attach(struct bnx2x_softc *sc)
9736 {
9737         int rc;
9738
9739         PMD_DRV_LOG(DEBUG, sc, "Starting attach...");
9740
9741         rc = bnx2x_pci_get_caps(sc);
9742         if (rc) {
9743                 PMD_DRV_LOG(NOTICE, sc, "PCIe caps reading was failed");
9744                 return rc;
9745         }
9746
9747         sc->state = BNX2X_STATE_CLOSED;
9748
9749         pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9750
9751         sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9752
9753         /* get PCI capabilites */
9754         bnx2x_probe_pci_caps(sc);
9755
9756         if (sc->devinfo.pcie_msix_cap_reg != 0) {
9757                 uint32_t val;
9758                 pci_read(sc,
9759                          (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9760                          2);
9761                 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9762         } else {
9763                 sc->igu_sb_cnt = 1;
9764         }
9765
9766         /* Init RTE stuff */
9767         bnx2x_init_rte(sc);
9768
9769         if (IS_PF(sc)) {
9770                 /* Enable internal target-read (in case we are probed after PF
9771                  * FLR). Must be done prior to any BAR read access. Only for
9772                  * 57712 and up
9773                  */
9774                 if (!CHIP_IS_E1x(sc)) {
9775                         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
9776                                1);
9777                         DELAY(200000);
9778                 }
9779
9780                 /* get device info and set params */
9781                 if (bnx2x_get_device_info(sc) != 0) {
9782                         PMD_DRV_LOG(NOTICE, sc, "getting device info");
9783                         return -ENXIO;
9784                 }
9785
9786 /* get phy settings from shmem and 'and' against admin settings */
9787                 bnx2x_get_phy_info(sc);
9788         } else {
9789                 /* Left mac of VF unfilled, PF should set it for VF */
9790                 memset(sc->link_params.mac_addr, 0, RTE_ETHER_ADDR_LEN);
9791         }
9792
9793         sc->wol = 0;
9794
9795         /* set the default MTU (changed via ifconfig) */
9796         sc->mtu = RTE_ETHER_MTU;
9797
9798         bnx2x_set_modes_bitmap(sc);
9799
9800         /* need to reset chip if UNDI was active */
9801         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9802 /* init fw_seq */
9803                 sc->fw_seq =
9804                     (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9805                      DRV_MSG_SEQ_NUMBER_MASK);
9806                 PMD_DRV_LOG(DEBUG, sc, "prev unload fw_seq 0x%04x",
9807                             sc->fw_seq);
9808                 bnx2x_prev_unload(sc);
9809         }
9810
9811         bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9812
9813         /* calculate qm_cid_count */
9814         sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9815
9816         sc->max_cos = 1;
9817         bnx2x_init_multi_cos(sc);
9818
9819         return 0;
9820 }
9821
9822 static void
9823 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9824                uint16_t index, uint8_t op, uint8_t update)
9825 {
9826         uint32_t igu_addr = sc->igu_base_addr;
9827         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9828         bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9829 }
9830
9831 static void
9832 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9833            uint16_t index, uint8_t op, uint8_t update)
9834 {
9835         if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9836                 bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9837         else {
9838                 uint8_t segment;
9839                 if (CHIP_INT_MODE_IS_BC(sc)) {
9840                         segment = storm;
9841                 } else if (igu_sb_id != sc->igu_dsb_id) {
9842                         segment = IGU_SEG_ACCESS_DEF;
9843                 } else if (storm == ATTENTION_ID) {
9844                         segment = IGU_SEG_ACCESS_ATTN;
9845                 } else {
9846                         segment = IGU_SEG_ACCESS_DEF;
9847                 }
9848                 bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9849         }
9850 }
9851
9852 static void
9853 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9854                      uint8_t is_pf)
9855 {
9856         uint32_t data, ctl, cnt = 100;
9857         uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9858         uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9859         uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9860             (idu_sb_id / 32) * 4;
9861         uint32_t sb_bit = 1 << (idu_sb_id % 32);
9862         uint32_t func_encode = func |
9863             (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9864         uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9865
9866         /* Not supported in BC mode */
9867         if (CHIP_INT_MODE_IS_BC(sc)) {
9868                 return;
9869         }
9870
9871         data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9872                  IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9873                 IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9874
9875         ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9876                (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9877                (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9878
9879         REG_WR(sc, igu_addr_data, data);
9880
9881         mb();
9882
9883         PMD_DRV_LOG(DEBUG, sc, "write 0x%08x to IGU(via GRC) addr 0x%x",
9884                     ctl, igu_addr_ctl);
9885         REG_WR(sc, igu_addr_ctl, ctl);
9886
9887         mb();
9888
9889         /* wait for clean up to finish */
9890         while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9891                 DELAY(20000);
9892         }
9893
9894         if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9895                 PMD_DRV_LOG(DEBUG, sc,
9896                             "Unable to finish IGU cleanup: "
9897                             "idu_sb_id %d offset %d bit %d (cnt %d)",
9898                             idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9899         }
9900 }
9901
9902 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9903 {
9904         bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9905 }
9906
9907 /*******************/
9908 /* ECORE CALLBACKS */
9909 /*******************/
9910
9911 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9912 {
9913         uint32_t val = 0x1400;
9914
9915         PMD_INIT_FUNC_TRACE(sc);
9916
9917         /* reset_common */
9918         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9919                0xd3ffff7f);
9920
9921         if (CHIP_IS_E3(sc)) {
9922                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9923                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9924         }
9925
9926         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9927 }
9928
9929 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9930 {
9931         uint32_t shmem_base[2];
9932         uint32_t shmem2_base[2];
9933
9934         /* Avoid common init in case MFW supports LFA */
9935         if (SHMEM2_RD(sc, size) >
9936             (uint32_t) offsetof(struct shmem2_region,
9937                                 lfa_host_addr[SC_PORT(sc)])) {
9938                 return;
9939         }
9940
9941         shmem_base[0] = sc->devinfo.shmem_base;
9942         shmem2_base[0] = sc->devinfo.shmem2_base;
9943
9944         if (!CHIP_IS_E1x(sc)) {
9945                 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9946                 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9947         }
9948
9949         bnx2x_acquire_phy_lock(sc);
9950         elink_common_init_phy(sc, shmem_base, shmem2_base,
9951                               sc->devinfo.chip_id, 0);
9952         bnx2x_release_phy_lock(sc);
9953 }
9954
9955 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9956 {
9957         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9958
9959         val &= ~IGU_PF_CONF_FUNC_EN;
9960
9961         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9962         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9963         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9964 }
9965
9966 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9967 {
9968         uint16_t devctl;
9969         int r_order, w_order;
9970
9971         devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9972
9973         w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9974         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9975
9976         ecore_init_pxp_arb(sc, r_order, w_order);
9977 }
9978
9979 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
9980 {
9981         uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9982         uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
9983         return base + (SC_ABS_FUNC(sc)) * stride;
9984 }
9985
9986 /*
9987  * Called only on E1H or E2.
9988  * When pretending to be PF, the pretend value is the function number 0..7.
9989  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
9990  * combination.
9991  */
9992 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
9993 {
9994         uint32_t pretend_reg;
9995
9996         if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
9997                 return -1;
9998
9999         /* get my own pretend register */
10000         pretend_reg = bnx2x_get_pretend_reg(sc);
10001         REG_WR(sc, pretend_reg, pretend_func_val);
10002         REG_RD(sc, pretend_reg);
10003         return 0;
10004 }
10005
10006 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
10007 {
10008         int is_required;
10009         uint32_t val;
10010         int port;
10011
10012         is_required = 0;
10013         val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
10014                SHARED_HW_CFG_FAN_FAILURE_MASK);
10015
10016         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
10017                 is_required = 1;
10018         }
10019         /*
10020          * The fan failure mechanism is usually related to the PHY type since
10021          * the power consumption of the board is affected by the PHY. Currently,
10022          * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
10023          */
10024         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
10025                 for (port = PORT_0; port < PORT_MAX; port++) {
10026                         is_required |= elink_fan_failure_det_req(sc,
10027                                                                  sc->
10028                                                                  devinfo.shmem_base,
10029                                                                  sc->
10030                                                                  devinfo.shmem2_base,
10031                                                                  port);
10032                 }
10033         }
10034
10035         if (is_required == 0) {
10036                 return;
10037         }
10038
10039         /* Fan failure is indicated by SPIO 5 */
10040         bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
10041
10042         /* set to active low mode */
10043         val = REG_RD(sc, MISC_REG_SPIO_INT);
10044         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
10045         REG_WR(sc, MISC_REG_SPIO_INT, val);
10046
10047         /* enable interrupt to signal the IGU */
10048         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10049         val |= MISC_SPIO_SPIO5;
10050         REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
10051 }
10052
10053 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
10054 {
10055         uint32_t val;
10056
10057         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
10058         if (!CHIP_IS_E1x(sc)) {
10059                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
10060         } else {
10061                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
10062         }
10063         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10064         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10065         /*
10066          * mask read length error interrupts in brb for parser
10067          * (parsing unit and 'checksum and crc' unit)
10068          * these errors are legal (PU reads fixed length and CAC can cause
10069          * read length error on truncated packets)
10070          */
10071         REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
10072         REG_WR(sc, QM_REG_QM_INT_MASK, 0);
10073         REG_WR(sc, TM_REG_TM_INT_MASK, 0);
10074         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
10075         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
10076         REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
10077         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
10078         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
10079         REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
10080         REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
10081         REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
10082         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
10083         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
10084         REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
10085         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
10086         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
10087         REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
10088         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
10089         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
10090
10091         val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
10092                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
10093                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
10094         if (!CHIP_IS_E1x(sc)) {
10095                 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
10096                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
10097         }
10098         REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
10099
10100         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
10101         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
10102         REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
10103         /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
10104
10105         if (!CHIP_IS_E1x(sc)) {
10106 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
10107                 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10108         }
10109
10110         REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10111         REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10112         /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10113         REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
10114 }
10115
10116 /**
10117  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10118  *
10119  * @sc:     driver handle
10120  */
10121 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10122 {
10123         uint8_t abs_func_id;
10124         uint32_t val;
10125
10126         PMD_DRV_LOG(DEBUG, sc,
10127                     "starting common init for func %d", SC_ABS_FUNC(sc));
10128
10129         /*
10130          * take the RESET lock to protect undi_unload flow from accessing
10131          * registers while we are resetting the chip
10132          */
10133         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10134
10135         bnx2x_reset_common(sc);
10136
10137         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10138
10139         val = 0xfffc;
10140         if (CHIP_IS_E3(sc)) {
10141                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10142                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10143         }
10144
10145         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10146
10147         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10148
10149         ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10150
10151         if (!CHIP_IS_E1x(sc)) {
10152 /*
10153  * 4-port mode or 2-port mode we need to turn off master-enable for
10154  * everyone. After that we turn it back on for self. So, we disregard
10155  * multi-function, and always disable all functions on the given path,
10156  * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10157  */
10158                 for (abs_func_id = SC_PATH(sc);
10159                      abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10160                         if (abs_func_id == SC_ABS_FUNC(sc)) {
10161                                 REG_WR(sc,
10162                                        PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10163                                        1);
10164                                 continue;
10165                         }
10166
10167                         bnx2x_pretend_func(sc, abs_func_id);
10168
10169                         /* clear pf enable */
10170                         bnx2x_pf_disable(sc);
10171
10172                         bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10173                 }
10174         }
10175
10176         ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10177
10178         ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10179         bnx2x_init_pxp(sc);
10180
10181 #ifdef __BIG_ENDIAN
10182         REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10183         REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10184         REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10185         REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10186         REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10187         /* make sure this value is 0 */
10188         REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10189
10190         //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10191         REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10192         REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10193         REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10194         REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10195 #endif
10196
10197         ecore_ilt_init_page_size(sc, INITOP_SET);
10198
10199         if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10200                 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10201         }
10202
10203         /* let the HW do it's magic... */
10204         DELAY(100000);
10205
10206         /* finish PXP init */
10207
10208         val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10209         if (val != 1) {
10210                 PMD_DRV_LOG(NOTICE, sc, "PXP2 CFG failed");
10211                 return -1;
10212         }
10213         val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10214         if (val != 1) {
10215                 PMD_DRV_LOG(NOTICE, sc, "PXP2 RD_INIT failed");
10216                 return -1;
10217         }
10218
10219         /*
10220          * Timer bug workaround for E2 only. We need to set the entire ILT to have
10221          * entries with value "0" and valid bit on. This needs to be done by the
10222          * first PF that is loaded in a path (i.e. common phase)
10223          */
10224         if (!CHIP_IS_E1x(sc)) {
10225 /*
10226  * In E2 there is a bug in the timers block that can cause function 6 / 7
10227  * (i.e. vnic3) to start even if it is marked as "scan-off".
10228  * This occurs when a different function (func2,3) is being marked
10229  * as "scan-off". Real-life scenario for example: if a driver is being
10230  * load-unloaded while func6,7 are down. This will cause the timer to access
10231  * the ilt, translate to a logical address and send a request to read/write.
10232  * Since the ilt for the function that is down is not valid, this will cause
10233  * a translation error which is unrecoverable.
10234  * The Workaround is intended to make sure that when this happens nothing
10235  * fatal will occur. The workaround:
10236  *  1.  First PF driver which loads on a path will:
10237  *      a.  After taking the chip out of reset, by using pretend,
10238  *          it will write "0" to the following registers of
10239  *          the other vnics.
10240  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10241  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10242  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10243  *          And for itself it will write '1' to
10244  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10245  *          dmae-operations (writing to pram for example.)
10246  *          note: can be done for only function 6,7 but cleaner this
10247  *            way.
10248  *      b.  Write zero+valid to the entire ILT.
10249  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
10250  *          VNIC3 (of that port). The range allocated will be the
10251  *          entire ILT. This is needed to prevent  ILT range error.
10252  *  2.  Any PF driver load flow:
10253  *      a.  ILT update with the physical addresses of the allocated
10254  *          logical pages.
10255  *      b.  Wait 20msec. - note that this timeout is needed to make
10256  *          sure there are no requests in one of the PXP internal
10257  *          queues with "old" ILT addresses.
10258  *      c.  PF enable in the PGLC.
10259  *      d.  Clear the was_error of the PF in the PGLC. (could have
10260  *          occurred while driver was down)
10261  *      e.  PF enable in the CFC (WEAK + STRONG)
10262  *      f.  Timers scan enable
10263  *  3.  PF driver unload flow:
10264  *      a.  Clear the Timers scan_en.
10265  *      b.  Polling for scan_on=0 for that PF.
10266  *      c.  Clear the PF enable bit in the PXP.
10267  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
10268  *      e.  Write zero+valid to all ILT entries (The valid bit must
10269  *          stay set)
10270  *      f.  If this is VNIC 3 of a port then also init
10271  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
10272  *          to the last enrty in the ILT.
10273  *
10274  *      Notes:
10275  *      Currently the PF error in the PGLC is non recoverable.
10276  *      In the future the there will be a recovery routine for this error.
10277  *      Currently attention is masked.
10278  *      Having an MCP lock on the load/unload process does not guarantee that
10279  *      there is no Timer disable during Func6/7 enable. This is because the
10280  *      Timers scan is currently being cleared by the MCP on FLR.
10281  *      Step 2.d can be done only for PF6/7 and the driver can also check if
10282  *      there is error before clearing it. But the flow above is simpler and
10283  *      more general.
10284  *      All ILT entries are written by zero+valid and not just PF6/7
10285  *      ILT entries since in the future the ILT entries allocation for
10286  *      PF-s might be dynamic.
10287  */
10288                 struct ilt_client_info ilt_cli;
10289                 struct ecore_ilt ilt;
10290
10291                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10292                 memset(&ilt, 0, sizeof(struct ecore_ilt));
10293
10294 /* initialize dummy TM client */
10295                 ilt_cli.start = 0;
10296                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10297                 ilt_cli.client_num = ILT_CLIENT_TM;
10298
10299 /*
10300  * Step 1: set zeroes to all ilt page entries with valid bit on
10301  * Step 2: set the timers first/last ilt entry to point
10302  * to the entire range to prevent ILT range error for 3rd/4th
10303  * vnic (this code assumes existence of the vnic)
10304  *
10305  * both steps performed by call to ecore_ilt_client_init_op()
10306  * with dummy TM client
10307  *
10308  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10309  * and his brother are split registers
10310  */
10311
10312                 bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10313                 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10314                 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10315
10316                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10317                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10318                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10319         }
10320
10321         REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10322         REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10323
10324         if (!CHIP_IS_E1x(sc)) {
10325                 int factor = 0;
10326
10327                 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10328                 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10329
10330 /* let the HW do it's magic... */
10331                 do {
10332                         DELAY(200000);
10333                         val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10334                 } while (factor-- && (val != 1));
10335
10336                 if (val != 1) {
10337                         PMD_DRV_LOG(NOTICE, sc, "ATC_INIT failed");
10338                         return -1;
10339                 }
10340         }
10341
10342         ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10343
10344         /* clean the DMAE memory */
10345         sc->dmae_ready = 1;
10346         ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
10347
10348         ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10349
10350         ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10351
10352         ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10353
10354         ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10355
10356         bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10357         bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10358         bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10359         bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10360
10361         ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10362
10363         /* QM queues pointers table */
10364         ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10365
10366         /* soft reset pulse */
10367         REG_WR(sc, QM_REG_SOFT_RESET, 1);
10368         REG_WR(sc, QM_REG_SOFT_RESET, 0);
10369
10370         if (CNIC_SUPPORT(sc))
10371                 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10372
10373         ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10374         REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
10375
10376         if (!CHIP_REV_IS_SLOW(sc)) {
10377 /* enable hw interrupt from doorbell Q */
10378                 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10379         }
10380
10381         ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10382
10383         ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10384         REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10385         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10386
10387         if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10388                 if (IS_MF_AFEX(sc)) {
10389                         /*
10390                          * configure that AFEX and VLAN headers must be
10391                          * received in AFEX mode
10392                          */
10393                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10394                         REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10395                         REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10396                         REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10397                         REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10398                 } else {
10399                         /*
10400                          * Bit-map indicating which L2 hdrs may appear
10401                          * after the basic Ethernet header
10402                          */
10403                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10404                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10405                 }
10406         }
10407
10408         ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10409         ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10410         ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10411         ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10412
10413         if (!CHIP_IS_E1x(sc)) {
10414 /* reset VFC memories */
10415                 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10416                        VFC_MEMORIES_RST_REG_CAM_RST |
10417                        VFC_MEMORIES_RST_REG_RAM_RST);
10418                 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10419                        VFC_MEMORIES_RST_REG_CAM_RST |
10420                        VFC_MEMORIES_RST_REG_RAM_RST);
10421
10422                 DELAY(20000);
10423         }
10424
10425         ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10426         ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10427         ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10428         ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10429
10430         /* sync semi rtc */
10431         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10432         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10433
10434         ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10435         ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10436         ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10437
10438         if (!CHIP_IS_E1x(sc)) {
10439                 if (IS_MF_AFEX(sc)) {
10440                         /*
10441                          * configure that AFEX and VLAN headers must be
10442                          * sent in AFEX mode
10443                          */
10444                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10445                         REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10446                         REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10447                         REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10448                         REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10449                 } else {
10450                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10451                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10452                 }
10453         }
10454
10455         REG_WR(sc, SRC_REG_SOFT_RST, 1);
10456
10457         ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10458
10459         if (CNIC_SUPPORT(sc)) {
10460                 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10461                 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10462                 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10463                 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10464                 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10465                 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10466                 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10467                 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10468                 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10469                 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10470         }
10471         REG_WR(sc, SRC_REG_SOFT_RST, 0);
10472
10473         if (sizeof(union cdu_context) != 1024) {
10474 /* we currently assume that a context is 1024 bytes */
10475                 PMD_DRV_LOG(NOTICE, sc,
10476                             "please adjust the size of cdu_context(%ld)",
10477                             (long)sizeof(union cdu_context));
10478         }
10479
10480         ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10481         val = (4 << 24) + (0 << 12) + 1024;
10482         REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10483
10484         ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10485
10486         REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10487         /* enable context validation interrupt from CFC */
10488         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10489
10490         /* set the thresholds to prevent CFC/CDU race */
10491         REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10492         ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10493
10494         if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10495                 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10496         }
10497
10498         ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10499         ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10500
10501         /* Reset PCIE errors for debug */
10502         REG_WR(sc, 0x2814, 0xffffffff);
10503         REG_WR(sc, 0x3820, 0xffffffff);
10504
10505         if (!CHIP_IS_E1x(sc)) {
10506                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10507                        (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10508                         PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10509                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10510                        (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10511                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10512                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10513                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10514                        (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10515                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10516                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10517         }
10518
10519         ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10520
10521         /* in E3 this done in per-port section */
10522         if (!CHIP_IS_E3(sc))
10523                 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10524
10525         if (CHIP_IS_E1H(sc)) {
10526 /* not applicable for E2 (and above ...) */
10527                 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10528         }
10529
10530         if (CHIP_REV_IS_SLOW(sc)) {
10531                 DELAY(200000);
10532         }
10533
10534         /* finish CFC init */
10535         val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10536         if (val != 1) {
10537                 PMD_DRV_LOG(NOTICE, sc, "CFC LL_INIT failed");
10538                 return -1;
10539         }
10540         val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10541         if (val != 1) {
10542                 PMD_DRV_LOG(NOTICE, sc, "CFC AC_INIT failed");
10543                 return -1;
10544         }
10545         val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10546         if (val != 1) {
10547                 PMD_DRV_LOG(NOTICE, sc, "CFC CAM_INIT failed");
10548                 return -1;
10549         }
10550         REG_WR(sc, CFC_REG_DEBUG0, 0);
10551
10552         bnx2x_setup_fan_failure_detection(sc);
10553
10554         /* clear PXP2 attentions */
10555         REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10556
10557         bnx2x_enable_blocks_attention(sc);
10558
10559         if (!CHIP_REV_IS_SLOW(sc)) {
10560                 ecore_enable_blocks_parity(sc);
10561         }
10562
10563         if (!BNX2X_NOMCP(sc)) {
10564                 if (CHIP_IS_E1x(sc)) {
10565                         bnx2x_common_init_phy(sc);
10566                 }
10567         }
10568
10569         return 0;
10570 }
10571
10572 /**
10573  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10574  *
10575  * @sc:     driver handle
10576  */
10577 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10578 {
10579         int rc = bnx2x_init_hw_common(sc);
10580
10581         if (rc) {
10582                 return rc;
10583         }
10584
10585         /* In E2 2-PORT mode, same ext phy is used for the two paths */
10586         if (!BNX2X_NOMCP(sc)) {
10587                 bnx2x_common_init_phy(sc);
10588         }
10589
10590         return 0;
10591 }
10592
10593 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10594 {
10595         int port = SC_PORT(sc);
10596         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10597         uint32_t low, high;
10598         uint32_t val;
10599
10600         PMD_DRV_LOG(DEBUG, sc, "starting port init for port %d", port);
10601
10602         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10603
10604         ecore_init_block(sc, BLOCK_MISC, init_phase);
10605         ecore_init_block(sc, BLOCK_PXP, init_phase);
10606         ecore_init_block(sc, BLOCK_PXP2, init_phase);
10607
10608         /*
10609          * Timers bug workaround: disables the pf_master bit in pglue at
10610          * common phase, we need to enable it here before any dmae access are
10611          * attempted. Therefore we manually added the enable-master to the
10612          * port phase (it also happens in the function phase)
10613          */
10614         if (!CHIP_IS_E1x(sc)) {
10615                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10616         }
10617
10618         ecore_init_block(sc, BLOCK_ATC, init_phase);
10619         ecore_init_block(sc, BLOCK_DMAE, init_phase);
10620         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10621         ecore_init_block(sc, BLOCK_QM, init_phase);
10622
10623         ecore_init_block(sc, BLOCK_TCM, init_phase);
10624         ecore_init_block(sc, BLOCK_UCM, init_phase);
10625         ecore_init_block(sc, BLOCK_CCM, init_phase);
10626         ecore_init_block(sc, BLOCK_XCM, init_phase);
10627
10628         /* QM cid (connection) count */
10629         ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10630
10631         if (CNIC_SUPPORT(sc)) {
10632                 ecore_init_block(sc, BLOCK_TM, init_phase);
10633                 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10634                 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10635         }
10636
10637         ecore_init_block(sc, BLOCK_DORQ, init_phase);
10638
10639         ecore_init_block(sc, BLOCK_BRB1, init_phase);
10640
10641         if (CHIP_IS_E1H(sc)) {
10642                 if (IS_MF(sc)) {
10643                         low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10644                 } else if (sc->mtu > 4096) {
10645                         if (BNX2X_ONE_PORT(sc)) {
10646                                 low = 160;
10647                         } else {
10648                                 val = sc->mtu;
10649                                 /* (24*1024 + val*4)/256 */
10650                                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10651                         }
10652                 } else {
10653                         low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10654                 }
10655                 high = (low + 56);      /* 14*1024/256 */
10656                 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10657                 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10658         }
10659
10660         if (CHIP_IS_MODE_4_PORT(sc)) {
10661                 REG_WR(sc, SC_PORT(sc) ?
10662                        BRB1_REG_MAC_GUARANTIED_1 :
10663                        BRB1_REG_MAC_GUARANTIED_0, 40);
10664         }
10665
10666         ecore_init_block(sc, BLOCK_PRS, init_phase);
10667         if (CHIP_IS_E3B0(sc)) {
10668                 if (IS_MF_AFEX(sc)) {
10669                         /* configure headers for AFEX mode */
10670                         if (SC_PORT(sc)) {
10671                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10672                                        0xE);
10673                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10674                                        0x6);
10675                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10676                         } else {
10677                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10678                                        0xE);
10679                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10680                                        0x6);
10681                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10682                         }
10683                 } else {
10684                         /* Ovlan exists only if we are in multi-function +
10685                          * switch-dependent mode, in switch-independent there
10686                          * is no ovlan headers
10687                          */
10688                         REG_WR(sc, SC_PORT(sc) ?
10689                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10690                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10691                                (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10692                 }
10693         }
10694
10695         ecore_init_block(sc, BLOCK_TSDM, init_phase);
10696         ecore_init_block(sc, BLOCK_CSDM, init_phase);
10697         ecore_init_block(sc, BLOCK_USDM, init_phase);
10698         ecore_init_block(sc, BLOCK_XSDM, init_phase);
10699
10700         ecore_init_block(sc, BLOCK_TSEM, init_phase);
10701         ecore_init_block(sc, BLOCK_USEM, init_phase);
10702         ecore_init_block(sc, BLOCK_CSEM, init_phase);
10703         ecore_init_block(sc, BLOCK_XSEM, init_phase);
10704
10705         ecore_init_block(sc, BLOCK_UPB, init_phase);
10706         ecore_init_block(sc, BLOCK_XPB, init_phase);
10707
10708         ecore_init_block(sc, BLOCK_PBF, init_phase);
10709
10710         if (CHIP_IS_E1x(sc)) {
10711 /* configure PBF to work without PAUSE mtu 9000 */
10712                 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10713
10714 /* update threshold */
10715                 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10716 /* update init credit */
10717                 REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10718                        (9040 / 16) + 553 - 22);
10719
10720 /* probe changes */
10721                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10722                 DELAY(50);
10723                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10724         }
10725
10726         if (CNIC_SUPPORT(sc)) {
10727                 ecore_init_block(sc, BLOCK_SRC, init_phase);
10728         }
10729
10730         ecore_init_block(sc, BLOCK_CDU, init_phase);
10731         ecore_init_block(sc, BLOCK_CFC, init_phase);
10732         ecore_init_block(sc, BLOCK_HC, init_phase);
10733         ecore_init_block(sc, BLOCK_IGU, init_phase);
10734         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10735         /* init aeu_mask_attn_func_0/1:
10736          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10737          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10738          *             bits 4-7 are used for "per vn group attention" */
10739         val = IS_MF(sc) ? 0xF7 : 0x7;
10740         val |= 0x10;
10741         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10742
10743         ecore_init_block(sc, BLOCK_NIG, init_phase);
10744
10745         if (!CHIP_IS_E1x(sc)) {
10746 /* Bit-map indicating which L2 hdrs may appear after the
10747  * basic Ethernet header
10748  */
10749                 if (IS_MF_AFEX(sc)) {
10750                         REG_WR(sc, SC_PORT(sc) ?
10751                                NIG_REG_P1_HDRS_AFTER_BASIC :
10752                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10753                 } else {
10754                         REG_WR(sc, SC_PORT(sc) ?
10755                                NIG_REG_P1_HDRS_AFTER_BASIC :
10756                                NIG_REG_P0_HDRS_AFTER_BASIC,
10757                                IS_MF_SD(sc) ? 7 : 6);
10758                 }
10759
10760                 if (CHIP_IS_E3(sc)) {
10761                         REG_WR(sc, SC_PORT(sc) ?
10762                                NIG_REG_LLH1_MF_MODE :
10763                                NIG_REG_LLH_MF_MODE, IS_MF(sc));
10764                 }
10765         }
10766         if (!CHIP_IS_E3(sc)) {
10767                 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10768         }
10769
10770         /* 0x2 disable mf_ov, 0x1 enable */
10771         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10772                (IS_MF_SD(sc) ? 0x1 : 0x2));
10773
10774         if (!CHIP_IS_E1x(sc)) {
10775                 val = 0;
10776                 switch (sc->devinfo.mf_info.mf_mode) {
10777                 case MULTI_FUNCTION_SD:
10778                         val = 1;
10779                         break;
10780                 case MULTI_FUNCTION_SI:
10781                 case MULTI_FUNCTION_AFEX:
10782                         val = 2;
10783                         break;
10784                 }
10785
10786                 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10787                             NIG_REG_LLH0_CLS_TYPE), val);
10788         }
10789         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10790         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10791         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10792
10793         /* If SPIO5 is set to generate interrupts, enable it for this port */
10794         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10795         if (val & MISC_SPIO_SPIO5) {
10796                 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10797                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10798                 val = REG_RD(sc, reg_addr);
10799                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10800                 REG_WR(sc, reg_addr, val);
10801         }
10802
10803         return 0;
10804 }
10805
10806 static uint32_t
10807 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10808                        uint32_t expected, uint32_t poll_count)
10809 {
10810         uint32_t cur_cnt = poll_count;
10811         uint32_t val;
10812
10813         while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10814                 DELAY(FLR_WAIT_INTERVAL);
10815         }
10816
10817         return val;
10818 }
10819
10820 static int
10821 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10822                               __rte_unused const char *msg, uint32_t poll_cnt)
10823 {
10824         uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10825
10826         if (val != 0) {
10827                 PMD_DRV_LOG(NOTICE, sc, "%s usage count=%d", msg, val);
10828                 return -1;
10829         }
10830
10831         return 0;
10832 }
10833
10834 /* Common routines with VF FLR cleanup */
10835 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10836 {
10837         /* adjust polling timeout */
10838         if (CHIP_REV_IS_EMUL(sc)) {
10839                 return FLR_POLL_CNT * 2000;
10840         }
10841
10842         if (CHIP_REV_IS_FPGA(sc)) {
10843                 return FLR_POLL_CNT * 120;
10844         }
10845
10846         return FLR_POLL_CNT;
10847 }
10848
10849 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10850 {
10851         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
10852         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10853                                           CFC_REG_NUM_LCIDS_INSIDE_PF,
10854                                           "CFC PF usage counter timed out",
10855                                           poll_cnt)) {
10856                 return -1;
10857         }
10858
10859         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10860         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10861                                           DORQ_REG_PF_USAGE_CNT,
10862                                           "DQ PF usage counter timed out",
10863                                           poll_cnt)) {
10864                 return -1;
10865         }
10866
10867         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10868         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10869                                           QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10870                                           "QM PF usage counter timed out",
10871                                           poll_cnt)) {
10872                 return -1;
10873         }
10874
10875         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10876         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10877                                           TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10878                                           "Timers VNIC usage counter timed out",
10879                                           poll_cnt)) {
10880                 return -1;
10881         }
10882
10883         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10884                                           TM_REG_LIN0_NUM_SCANS +
10885                                           4 * SC_PORT(sc),
10886                                           "Timers NUM_SCANS usage counter timed out",
10887                                           poll_cnt)) {
10888                 return -1;
10889         }
10890
10891         /* Wait DMAE PF usage counter to zero */
10892         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10893                                           dmae_reg_go_c[INIT_DMAE_C(sc)],
10894                                           "DMAE dommand register timed out",
10895                                           poll_cnt)) {
10896                 return -1;
10897         }
10898
10899         return 0;
10900 }
10901
10902 #define OP_GEN_PARAM(param)                                            \
10903         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10904 #define OP_GEN_TYPE(type)                                           \
10905         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10906 #define OP_GEN_AGG_VECT(index)                                             \
10907         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10908
10909 static int
10910 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10911                      uint32_t poll_cnt)
10912 {
10913         uint32_t op_gen_command = 0;
10914         uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10915                               CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10916         int ret = 0;
10917
10918         if (REG_RD(sc, comp_addr)) {
10919                 PMD_DRV_LOG(NOTICE, sc,
10920                             "Cleanup complete was not 0 before sending");
10921                 return -1;
10922         }
10923
10924         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10925         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10926         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10927         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10928
10929         REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10930
10931         if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10932                 PMD_DRV_LOG(NOTICE, sc, "FW final cleanup did not succeed");
10933                 PMD_DRV_LOG(DEBUG, sc, "At timeout completion address contained %x",
10934                             (REG_RD(sc, comp_addr)));
10935                 rte_panic("FLR cleanup failed");
10936                 return -1;
10937         }
10938
10939         /* Zero completion for nxt FLR */
10940         REG_WR(sc, comp_addr, 0);
10941
10942         return ret;
10943 }
10944
10945 static void
10946 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10947                        uint32_t poll_count)
10948 {
10949         uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10950         uint32_t cur_cnt = poll_count;
10951
10952         crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10953         crd = crd_start = REG_RD(sc, regs->crd);
10954         init_crd = REG_RD(sc, regs->init_crd);
10955
10956         while ((crd != init_crd) &&
10957                ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10958                 (init_crd - crd_start))) {
10959                 if (cur_cnt--) {
10960                         DELAY(FLR_WAIT_INTERVAL);
10961                         crd = REG_RD(sc, regs->crd);
10962                         crd_freed = REG_RD(sc, regs->crd_freed);
10963                 } else {
10964                         break;
10965                 }
10966         }
10967 }
10968
10969 static void
10970 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10971                        uint32_t poll_count)
10972 {
10973         uint32_t occup, to_free, freed, freed_start;
10974         uint32_t cur_cnt = poll_count;
10975
10976         occup = to_free = REG_RD(sc, regs->lines_occup);
10977         freed = freed_start = REG_RD(sc, regs->lines_freed);
10978
10979         while (occup &&
10980                ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
10981                 to_free)) {
10982                 if (cur_cnt--) {
10983                         DELAY(FLR_WAIT_INTERVAL);
10984                         occup = REG_RD(sc, regs->lines_occup);
10985                         freed = REG_RD(sc, regs->lines_freed);
10986                 } else {
10987                         break;
10988                 }
10989         }
10990 }
10991
10992 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
10993 {
10994         struct pbf_pN_cmd_regs cmd_regs[] = {
10995                 {0, (CHIP_IS_E3B0(sc)) ?
10996                  PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
10997                  (CHIP_IS_E3B0(sc)) ?
10998                  PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
10999                 {1, (CHIP_IS_E3B0(sc)) ?
11000                  PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
11001                  (CHIP_IS_E3B0(sc)) ?
11002                  PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
11003                 {4, (CHIP_IS_E3B0(sc)) ?
11004                  PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
11005                  (CHIP_IS_E3B0(sc)) ?
11006                  PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
11007                  PBF_REG_P4_TQ_LINES_FREED_CNT}
11008         };
11009
11010         struct pbf_pN_buf_regs buf_regs[] = {
11011                 {0, (CHIP_IS_E3B0(sc)) ?
11012                  PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
11013                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
11014                  (CHIP_IS_E3B0(sc)) ?
11015                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
11016                  PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
11017                 {1, (CHIP_IS_E3B0(sc)) ?
11018                  PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
11019                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
11020                  (CHIP_IS_E3B0(sc)) ?
11021                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
11022                  PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
11023                 {4, (CHIP_IS_E3B0(sc)) ?
11024                  PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
11025                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
11026                  (CHIP_IS_E3B0(sc)) ?
11027                  PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
11028                  PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
11029         };
11030
11031         uint32_t i;
11032
11033         /* Verify the command queues are flushed P0, P1, P4 */
11034         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
11035                 bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
11036         }
11037
11038         /* Verify the transmission buffers are flushed P0, P1, P4 */
11039         for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
11040                 bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
11041         }
11042 }
11043
11044 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
11045 {
11046         __rte_unused uint32_t val;
11047
11048         val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
11049         PMD_DRV_LOG(DEBUG, sc, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
11050
11051         val = REG_RD(sc, PBF_REG_DISABLE_PF);
11052         PMD_DRV_LOG(DEBUG, sc, "PBF_REG_DISABLE_PF is 0x%x", val);
11053
11054         val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
11055         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
11056
11057         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
11058         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
11059
11060         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
11061         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
11062
11063         val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
11064         PMD_DRV_LOG(DEBUG, sc,
11065                     "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
11066
11067         val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
11068         PMD_DRV_LOG(DEBUG, sc,
11069                     "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
11070
11071         val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
11072         PMD_DRV_LOG(DEBUG, sc, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
11073                     val);
11074 }
11075
11076 /**
11077  *      bnx2x_pf_flr_clnup
11078  *      a. re-enable target read on the PF
11079  *      b. poll cfc per function usgae counter
11080  *      c. poll the qm perfunction usage counter
11081  *      d. poll the tm per function usage counter
11082  *      e. poll the tm per function scan-done indication
11083  *      f. clear the dmae channel associated wit hthe PF
11084  *      g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
11085  *      h. call the common flr cleanup code with -1 (pf indication)
11086  */
11087 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
11088 {
11089         uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
11090
11091         /* Re-enable PF target read access */
11092         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11093
11094         /* Poll HW usage counters */
11095         if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
11096                 return -1;
11097         }
11098
11099         /* Zero the igu 'trailing edge' and 'leading edge' */
11100
11101         /* Send the FW cleanup command */
11102         if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
11103                 return -1;
11104         }
11105
11106         /* ATC cleanup */
11107
11108         /* Verify TX hw is flushed */
11109         bnx2x_tx_hw_flushed(sc, poll_cnt);
11110
11111         /* Wait 100ms (not adjusted according to platform) */
11112         DELAY(100000);
11113
11114         /* Verify no pending pci transactions */
11115         if (bnx2x_is_pcie_pending(sc)) {
11116                 PMD_DRV_LOG(NOTICE, sc, "PCIE Transactions still pending");
11117         }
11118
11119         /* Debug */
11120         bnx2x_hw_enable_status(sc);
11121
11122         /*
11123          * Master enable - Due to WB DMAE writes performed before this
11124          * register is re-initialized as part of the regular function init
11125          */
11126         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11127
11128         return 0;
11129 }
11130
11131 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11132 {
11133         int port = SC_PORT(sc);
11134         int func = SC_FUNC(sc);
11135         int init_phase = PHASE_PF0 + func;
11136         struct ecore_ilt *ilt = sc->ilt;
11137         uint16_t cdu_ilt_start;
11138         uint32_t addr, val;
11139         uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11140         int main_mem_width, rc;
11141         uint32_t i;
11142
11143         PMD_DRV_LOG(DEBUG, sc, "starting func init for func %d", func);
11144
11145         /* FLR cleanup */
11146         if (!CHIP_IS_E1x(sc)) {
11147                 rc = bnx2x_pf_flr_clnup(sc);
11148                 if (rc) {
11149                         PMD_DRV_LOG(NOTICE, sc, "FLR cleanup failed!");
11150                         return rc;
11151                 }
11152         }
11153
11154         /* set MSI reconfigure capability */
11155         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11156                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11157                 val = REG_RD(sc, addr);
11158                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11159                 REG_WR(sc, addr, val);
11160         }
11161
11162         ecore_init_block(sc, BLOCK_PXP, init_phase);
11163         ecore_init_block(sc, BLOCK_PXP2, init_phase);
11164
11165         ilt = sc->ilt;
11166         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11167
11168         for (i = 0; i < L2_ILT_LINES(sc); i++) {
11169                 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11170                 ilt->lines[cdu_ilt_start + i].page_mapping =
11171                     (rte_iova_t)sc->context[i].vcxt_dma.paddr;
11172                 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11173         }
11174         ecore_ilt_init_op(sc, INITOP_SET);
11175
11176         REG_WR(sc, PRS_REG_NIC_MODE, 1);
11177
11178         if (!CHIP_IS_E1x(sc)) {
11179                 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11180
11181 /* Turn on a single ISR mode in IGU if driver is going to use
11182  * INT#x or MSI
11183  */
11184                 if ((sc->interrupt_mode != INTR_MODE_MSIX)
11185                     || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11186                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11187                 }
11188
11189 /*
11190  * Timers workaround bug: function init part.
11191  * Need to wait 20msec after initializing ILT,
11192  * needed to make sure there are no requests in
11193  * one of the PXP internal queues with "old" ILT addresses
11194  */
11195                 DELAY(20000);
11196
11197 /*
11198  * Master enable - Due to WB DMAE writes performed before this
11199  * register is re-initialized as part of the regular function
11200  * init
11201  */
11202                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11203 /* Enable the function in IGU */
11204                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11205         }
11206
11207         sc->dmae_ready = 1;
11208
11209         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11210
11211         if (!CHIP_IS_E1x(sc))
11212                 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11213
11214         ecore_init_block(sc, BLOCK_ATC, init_phase);
11215         ecore_init_block(sc, BLOCK_DMAE, init_phase);
11216         ecore_init_block(sc, BLOCK_NIG, init_phase);
11217         ecore_init_block(sc, BLOCK_SRC, init_phase);
11218         ecore_init_block(sc, BLOCK_MISC, init_phase);
11219         ecore_init_block(sc, BLOCK_TCM, init_phase);
11220         ecore_init_block(sc, BLOCK_UCM, init_phase);
11221         ecore_init_block(sc, BLOCK_CCM, init_phase);
11222         ecore_init_block(sc, BLOCK_XCM, init_phase);
11223         ecore_init_block(sc, BLOCK_TSEM, init_phase);
11224         ecore_init_block(sc, BLOCK_USEM, init_phase);
11225         ecore_init_block(sc, BLOCK_CSEM, init_phase);
11226         ecore_init_block(sc, BLOCK_XSEM, init_phase);
11227
11228         if (!CHIP_IS_E1x(sc))
11229                 REG_WR(sc, QM_REG_PF_EN, 1);
11230
11231         if (!CHIP_IS_E1x(sc)) {
11232                 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11233                 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11234                 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11235                 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11236         }
11237         ecore_init_block(sc, BLOCK_QM, init_phase);
11238
11239         ecore_init_block(sc, BLOCK_TM, init_phase);
11240         ecore_init_block(sc, BLOCK_DORQ, init_phase);
11241
11242         ecore_init_block(sc, BLOCK_BRB1, init_phase);
11243         ecore_init_block(sc, BLOCK_PRS, init_phase);
11244         ecore_init_block(sc, BLOCK_TSDM, init_phase);
11245         ecore_init_block(sc, BLOCK_CSDM, init_phase);
11246         ecore_init_block(sc, BLOCK_USDM, init_phase);
11247         ecore_init_block(sc, BLOCK_XSDM, init_phase);
11248         ecore_init_block(sc, BLOCK_UPB, init_phase);
11249         ecore_init_block(sc, BLOCK_XPB, init_phase);
11250         ecore_init_block(sc, BLOCK_PBF, init_phase);
11251         if (!CHIP_IS_E1x(sc))
11252                 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11253
11254         ecore_init_block(sc, BLOCK_CDU, init_phase);
11255
11256         ecore_init_block(sc, BLOCK_CFC, init_phase);
11257
11258         if (!CHIP_IS_E1x(sc))
11259                 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11260
11261         if (IS_MF(sc)) {
11262                 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11263                 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11264         }
11265
11266         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11267
11268         /* HC init per function */
11269         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11270                 if (CHIP_IS_E1H(sc)) {
11271                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11272
11273                         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11274                         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11275                 }
11276                 ecore_init_block(sc, BLOCK_HC, init_phase);
11277
11278         } else {
11279                 uint32_t num_segs, sb_idx, prod_offset;
11280
11281                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11282
11283                 if (!CHIP_IS_E1x(sc)) {
11284                         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11285                         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11286                 }
11287
11288                 ecore_init_block(sc, BLOCK_IGU, init_phase);
11289
11290                 if (!CHIP_IS_E1x(sc)) {
11291                         int dsb_idx = 0;
11292         /**
11293          * Producer memory:
11294          * E2 mode: address 0-135 match to the mapping memory;
11295          * 136 - PF0 default prod; 137 - PF1 default prod;
11296          * 138 - PF2 default prod; 139 - PF3 default prod;
11297          * 140 - PF0 attn prod;    141 - PF1 attn prod;
11298          * 142 - PF2 attn prod;    143 - PF3 attn prod;
11299          * 144-147 reserved.
11300          *
11301          * E1.5 mode - In backward compatible mode;
11302          * for non default SB; each even line in the memory
11303          * holds the U producer and each odd line hold
11304          * the C producer. The first 128 producers are for
11305          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11306          * producers are for the DSB for each PF.
11307          * Each PF has five segments: (the order inside each
11308          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11309          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11310          * 144-147 attn prods;
11311          */
11312                         /* non-default-status-blocks */
11313                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11314                             IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11315                         for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11316                                 prod_offset = (sc->igu_base_sb + sb_idx) *
11317                                     num_segs;
11318
11319                                 for (i = 0; i < num_segs; i++) {
11320                                         addr = IGU_REG_PROD_CONS_MEMORY +
11321                                             (prod_offset + i) * 4;
11322                                         REG_WR(sc, addr, 0);
11323                                 }
11324                                 /* send consumer update with value 0 */
11325                                 bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11326                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11327                                 bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11328                         }
11329
11330                         /* default-status-blocks */
11331                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11332                             IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11333
11334                         if (CHIP_IS_MODE_4_PORT(sc))
11335                                 dsb_idx = SC_FUNC(sc);
11336                         else
11337                                 dsb_idx = SC_VN(sc);
11338
11339                         prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11340                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
11341                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
11342
11343                         /*
11344                          * igu prods come in chunks of E1HVN_MAX (4) -
11345                          * does not matters what is the current chip mode
11346                          */
11347                         for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11348                                 addr = IGU_REG_PROD_CONS_MEMORY +
11349                                     (prod_offset + i) * 4;
11350                                 REG_WR(sc, addr, 0);
11351                         }
11352                         /* send consumer update with 0 */
11353                         if (CHIP_INT_MODE_IS_BC(sc)) {
11354                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11355                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11356                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11357                                            CSTORM_ID, 0, IGU_INT_NOP, 1);
11358                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11359                                            XSTORM_ID, 0, IGU_INT_NOP, 1);
11360                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11361                                            TSTORM_ID, 0, IGU_INT_NOP, 1);
11362                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11363                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11364                         } else {
11365                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11366                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11367                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11368                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11369                         }
11370                         bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11371
11372                         /* !!! these should become driver const once
11373                            rf-tool supports split-68 const */
11374                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11375                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11376                         REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11377                         REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11378                         REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11379                         REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11380                 }
11381         }
11382
11383         /* Reset PCIE errors for debug */
11384         REG_WR(sc, 0x2114, 0xffffffff);
11385         REG_WR(sc, 0x2120, 0xffffffff);
11386
11387         if (CHIP_IS_E1x(sc)) {
11388                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2;    /*dwords */
11389                 main_mem_base = HC_REG_MAIN_MEMORY +
11390                     SC_PORT(sc) * (main_mem_size * 4);
11391                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11392                 main_mem_width = 8;
11393
11394                 val = REG_RD(sc, main_mem_prty_clr);
11395                 if (val) {
11396                         PMD_DRV_LOG(DEBUG, sc,
11397                                     "Parity errors in HC block during function init (0x%x)!",
11398                                     val);
11399                 }
11400
11401 /* Clear "false" parity errors in MSI-X table */
11402                 for (i = main_mem_base;
11403                      i < main_mem_base + main_mem_size * 4;
11404                      i += main_mem_width) {
11405                         bnx2x_read_dmae(sc, i, main_mem_width / 4);
11406                         bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11407                                        i, main_mem_width / 4);
11408                 }
11409 /* Clear HC parity attention */
11410                 REG_RD(sc, main_mem_prty_clr);
11411         }
11412
11413         /* Enable STORMs SP logging */
11414         REG_WR8(sc, BAR_USTRORM_INTMEM +
11415                 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11416         REG_WR8(sc, BAR_TSTRORM_INTMEM +
11417                 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11418         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11419                 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11420         REG_WR8(sc, BAR_XSTRORM_INTMEM +
11421                 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11422
11423         elink_phy_probe(&sc->link_params);
11424
11425         return 0;
11426 }
11427
11428 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11429 {
11430         if (!BNX2X_NOMCP(sc)) {
11431                 bnx2x_acquire_phy_lock(sc);
11432                 elink_lfa_reset(&sc->link_params, &sc->link_vars);
11433                 bnx2x_release_phy_lock(sc);
11434         } else {
11435                 if (!CHIP_REV_IS_SLOW(sc)) {
11436                         PMD_DRV_LOG(WARNING, sc,
11437                                     "Bootcode is missing - cannot reset link");
11438                 }
11439         }
11440 }
11441
11442 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11443 {
11444         int port = SC_PORT(sc);
11445         uint32_t val;
11446
11447         /* reset physical Link */
11448         bnx2x_link_reset(sc);
11449
11450         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11451
11452         /* Do not rcv packets to BRB */
11453         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11454         /* Do not direct rcv packets that are not for MCP to the BRB */
11455         REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11456                     NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11457
11458         /* Configure AEU */
11459         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11460
11461         DELAY(100000);
11462
11463         /* Check for BRB port occupancy */
11464         val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11465         if (val) {
11466                 PMD_DRV_LOG(DEBUG, sc,
11467                             "BRB1 is not empty, %d blocks are occupied", val);
11468         }
11469 }
11470
11471 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, rte_iova_t addr)
11472 {
11473         int reg;
11474         uint32_t wb_write[2];
11475
11476         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11477
11478         wb_write[0] = ONCHIP_ADDR1(addr);
11479         wb_write[1] = ONCHIP_ADDR2(addr);
11480         REG_WR_DMAE(sc, reg, wb_write, 2);
11481 }
11482
11483 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11484 {
11485         uint32_t i, base = FUNC_ILT_BASE(func);
11486         for (i = base; i < base + ILT_PER_FUNC; i++) {
11487                 bnx2x_ilt_wr(sc, i, 0);
11488         }
11489 }
11490
11491 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11492 {
11493         struct bnx2x_fastpath *fp;
11494         int port = SC_PORT(sc);
11495         int func = SC_FUNC(sc);
11496         int i;
11497
11498         /* Disable the function in the FW */
11499         REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11500         REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11501         REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11502         REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11503
11504         /* FP SBs */
11505         FOR_EACH_ETH_QUEUE(sc, i) {
11506                 fp = &sc->fp[i];
11507                 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11508                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11509                         SB_DISABLED);
11510         }
11511
11512         /* SP SB */
11513         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11514                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11515
11516         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11517                 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11518                        0);
11519         }
11520
11521         /* Configure IGU */
11522         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11523                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11524                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11525         } else {
11526                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11527                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11528         }
11529
11530         if (CNIC_LOADED(sc)) {
11531 /* Disable Timer scan */
11532                 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11533 /*
11534  * Wait for at least 10ms and up to 2 second for the timers
11535  * scan to complete
11536  */
11537                 for (i = 0; i < 200; i++) {
11538                         DELAY(10000);
11539                         if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11540                                 break;
11541                 }
11542         }
11543
11544         /* Clear ILT */
11545         bnx2x_clear_func_ilt(sc, func);
11546
11547         /*
11548          * Timers workaround bug for E2: if this is vnic-3,
11549          * we need to set the entire ilt range for this timers.
11550          */
11551         if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11552                 struct ilt_client_info ilt_cli;
11553 /* use dummy TM client */
11554                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11555                 ilt_cli.start = 0;
11556                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11557                 ilt_cli.client_num = ILT_CLIENT_TM;
11558
11559                 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
11560         }
11561
11562         /* this assumes that reset_port() called before reset_func() */
11563         if (!CHIP_IS_E1x(sc)) {
11564                 bnx2x_pf_disable(sc);
11565         }
11566
11567         sc->dmae_ready = 0;
11568 }
11569
11570 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11571 {
11572         rte_free(sc->init_ops);
11573         rte_free(sc->init_ops_offsets);
11574         rte_free(sc->init_data);
11575         rte_free(sc->iro_array);
11576 }
11577
11578 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11579 {
11580         uint32_t len, i;
11581         uint8_t *p = sc->firmware;
11582         uint32_t off[24];
11583
11584         for (i = 0; i < 24; ++i)
11585                 off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11586
11587         len = off[0];
11588         sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11589         if (!sc->init_ops)
11590                 goto alloc_failed;
11591         bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11592
11593         len = off[2];
11594         sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11595         if (!sc->init_ops_offsets)
11596                 goto alloc_failed;
11597         bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11598
11599         len = off[4];
11600         sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11601         if (!sc->init_data)
11602                 goto alloc_failed;
11603         bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11604
11605         sc->tsem_int_table_data = p + off[7];
11606         sc->tsem_pram_data = p + off[9];
11607         sc->usem_int_table_data = p + off[11];
11608         sc->usem_pram_data = p + off[13];
11609         sc->csem_int_table_data = p + off[15];
11610         sc->csem_pram_data = p + off[17];
11611         sc->xsem_int_table_data = p + off[19];
11612         sc->xsem_pram_data = p + off[21];
11613
11614         len = off[22];
11615         sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11616         if (!sc->iro_array)
11617                 goto alloc_failed;
11618         bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11619
11620         return 0;
11621
11622 alloc_failed:
11623         bnx2x_release_firmware(sc);
11624         return -1;
11625 }
11626
11627 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11628 {
11629 #define MIN_PREFIX_SIZE (10)
11630
11631         int n = MIN_PREFIX_SIZE;
11632         uint16_t xlen;
11633
11634         if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11635             len <= MIN_PREFIX_SIZE) {
11636                 return -1;
11637         }
11638
11639         /* optional extra fields are present */
11640         if (zbuf[3] & 0x4) {
11641                 xlen = zbuf[13];
11642                 xlen <<= 8;
11643                 xlen += zbuf[12];
11644
11645                 n += xlen;
11646         }
11647         /* file name is present */
11648         if (zbuf[3] & 0x8) {
11649                 while ((zbuf[n++] != 0) && (n < len)) ;
11650         }
11651
11652         return n;
11653 }
11654
11655 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11656 {
11657         int ret;
11658         int data_begin = cut_gzip_prefix(zbuf, len);
11659
11660         PMD_DRV_LOG(DEBUG, sc, "ecore_gunzip %d", len);
11661
11662         if (data_begin <= 0) {
11663                 PMD_DRV_LOG(NOTICE, sc, "bad gzip prefix");
11664                 return -1;
11665         }
11666
11667         memset(&zlib_stream, 0, sizeof(zlib_stream));
11668         zlib_stream.next_in = zbuf + data_begin;
11669         zlib_stream.avail_in = len - data_begin;
11670         zlib_stream.next_out = sc->gz_buf;
11671         zlib_stream.avail_out = FW_BUF_SIZE;
11672
11673         ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11674         if (ret != Z_OK) {
11675                 PMD_DRV_LOG(NOTICE, sc, "zlib inflateInit2 error");
11676                 return ret;
11677         }
11678
11679         ret = inflate(&zlib_stream, Z_FINISH);
11680         if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11681                 PMD_DRV_LOG(NOTICE, sc, "zlib inflate error: %d %s", ret,
11682                             zlib_stream.msg);
11683         }
11684
11685         sc->gz_outlen = zlib_stream.total_out;
11686         if (sc->gz_outlen & 0x3) {
11687                 PMD_DRV_LOG(NOTICE, sc, "firmware is not aligned. gz_outlen == %d",
11688                             sc->gz_outlen);
11689         }
11690         sc->gz_outlen >>= 2;
11691
11692         inflateEnd(&zlib_stream);
11693
11694         if (ret == Z_STREAM_END)
11695                 return 0;
11696
11697         return ret;
11698 }
11699
11700 static void
11701 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
11702                           uint32_t addr, uint32_t len)
11703 {
11704         bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11705 }
11706
11707 void
11708 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11709                           uint32_t * data)
11710 {
11711         uint8_t i;
11712         for (i = 0; i < size / 4; i++) {
11713                 REG_WR(sc, addr + (i * 4), data[i]);
11714         }
11715 }
11716
11717 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11718 {
11719         uint32_t phy_type_idx = ext_phy_type >> 8;
11720         static const char *types[] =
11721             { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11722                 "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11723                 "BNX2X-8727",
11724                 "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11725         };
11726
11727         if (phy_type_idx < 12)
11728                 return types[phy_type_idx];
11729         else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11730                 return types[12];
11731         else
11732                 return types[13];
11733 }
11734
11735 static const char *get_state(uint32_t state)
11736 {
11737         uint32_t state_idx = state >> 12;
11738         static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11739                 "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11740                 "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11741                 "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11742                 "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11743         };
11744
11745         if (state_idx <= 0xF)
11746                 return states[state_idx];
11747         else
11748                 return states[0x10];
11749 }
11750
11751 static const char *get_recovery_state(uint32_t state)
11752 {
11753         static const char *states[] = { "NONE", "DONE", "INIT",
11754                 "WAIT", "FAILED", "NIC_LOADING"
11755         };
11756         return states[state];
11757 }
11758
11759 static const char *get_rx_mode(uint32_t mode)
11760 {
11761         static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11762                 "PROMISC", "MAX_MULTICAST", "ERROR"
11763         };
11764
11765         if (mode < 0x4)
11766                 return modes[mode];
11767         else if (BNX2X_MAX_MULTICAST == mode)
11768                 return modes[4];
11769         else
11770                 return modes[5];
11771 }
11772
11773 #define BNX2X_INFO_STR_MAX 256
11774 static const char *get_bnx2x_flags(uint32_t flags)
11775 {
11776         int i;
11777         static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11778                 "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11779                 "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11780                 "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11781         };
11782         static char flag_str[BNX2X_INFO_STR_MAX];
11783         memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11784
11785         for (i = 0; i < 5; i++)
11786                 if (flags & (1 << i)) {
11787                         strlcat(flag_str, flag[i], sizeof(flag_str));
11788                         flags ^= (1 << i);
11789                 }
11790         if (flags) {
11791                 static char unknown[BNX2X_INFO_STR_MAX];
11792                 snprintf(unknown, 32, "Unknown flag mask %x", flags);
11793                 strlcat(flag_str, unknown, sizeof(flag_str));
11794         }
11795         return flag_str;
11796 }
11797
11798 /* Prints useful adapter info. */
11799 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11800 {
11801         int i = 0;
11802
11803         PMD_DRV_LOG(INFO, sc, "========================================");
11804         /* DPDK and Driver versions */
11805         PMD_DRV_LOG(INFO, sc, "%12s : %s", "DPDK",
11806                         rte_version());
11807         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Driver",
11808                         bnx2x_pmd_version());
11809         /* Firmware versions. */
11810         PMD_DRV_LOG(INFO, sc, "%12s : %d.%d.%d",
11811                      "Firmware",
11812                      BNX2X_5710_FW_MAJOR_VERSION,
11813                      BNX2X_5710_FW_MINOR_VERSION,
11814                      BNX2X_5710_FW_REVISION_VERSION);
11815         PMD_DRV_LOG(INFO, sc, "%12s : %s",
11816                      "Bootcode", sc->devinfo.bc_ver_str);
11817         /* Hardware chip info. */
11818         PMD_DRV_LOG(INFO, sc, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11819         PMD_DRV_LOG(INFO, sc, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11820                      (CHIP_METAL(sc) >> 4));
11821         /* Bus PCIe info. */
11822         PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Vendor Id",
11823                     sc->devinfo.vendor_id);
11824         PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Device Id",
11825                     sc->devinfo.device_id);
11826         PMD_DRV_LOG(INFO, sc, "%12s : width x%d, ", "Bus PCIe",
11827                     sc->devinfo.pcie_link_width);
11828         switch (sc->devinfo.pcie_link_speed) {
11829         case 1:
11830                 PMD_DRV_LOG(INFO, sc, "%23s", "2.5 Gbps");
11831                 break;
11832         case 2:
11833                 PMD_DRV_LOG(INFO, sc, "%21s", "5 Gbps");
11834                 break;
11835         case 4:
11836                 PMD_DRV_LOG(INFO, sc, "%21s", "8 Gbps");
11837                 break;
11838         default:
11839                 PMD_DRV_LOG(INFO, sc, "%33s", "Unknown link speed");
11840         }
11841         /* Device features. */
11842         PMD_DRV_LOG(INFO, sc, "%12s : ", "Flags");
11843         /* Miscellaneous flags. */
11844         if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11845                 PMD_DRV_LOG(INFO, sc, "%18s", "MSI");
11846                 i++;
11847         }
11848         if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11849                 if (i > 0)
11850                         PMD_DRV_LOG(INFO, sc, "|");
11851                 PMD_DRV_LOG(INFO, sc, "%20s", "MSI-X");
11852                 i++;
11853         }
11854         PMD_DRV_LOG(INFO, sc, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11855         PMD_DRV_LOG(INFO, sc, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11856         PMD_DRV_LOG(INFO, sc, "========================================");
11857 }
11858
11859 /* Prints useful device info. */
11860 void bnx2x_print_device_info(struct bnx2x_softc *sc)
11861 {
11862         __rte_unused uint32_t ext_phy_type;
11863         uint32_t offset, reg_val;
11864
11865         PMD_INIT_FUNC_TRACE(sc);
11866         offset = offsetof(struct shmem_region,
11867                           dev_info.port_hw_config[0].external_phy_config);
11868         reg_val = REG_RD(sc, sc->devinfo.shmem_base + offset);
11869         if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11870                 ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(reg_val);
11871         else
11872                 ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(reg_val);
11873
11874         /* Device features. */
11875         PMD_DRV_LOG(INFO, sc, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11876         PMD_DRV_LOG(INFO, sc,
11877                     "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11878         PMD_DRV_LOG(INFO, sc, "%12s : %s", "DMAE Is",
11879                      (sc->dmae_ready ? "Ready" : "Not Ready"));
11880         PMD_DRV_LOG(INFO, sc, "%12s : %u", "MTU", sc->mtu);
11881         PMD_DRV_LOG(INFO, sc,
11882                     "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11883         PMD_DRV_LOG(INFO, sc, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
11884                         sc->link_params.mac_addr[0],
11885                         sc->link_params.mac_addr[1],
11886                         sc->link_params.mac_addr[2],
11887                         sc->link_params.mac_addr[3],
11888                         sc->link_params.mac_addr[4],
11889                         sc->link_params.mac_addr[5]);
11890         PMD_DRV_LOG(INFO, sc, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11891         PMD_DRV_LOG(INFO, sc, "%12s : %s", "State", get_state(sc->state));
11892         if (sc->recovery_state)
11893                 PMD_DRV_LOG(INFO, sc, "%12s : %s", "Recovery",
11894                              get_recovery_state(sc->recovery_state));
11895         /* Queue info. */
11896         if (IS_PF(sc)) {
11897                 switch (sc->sp->rss_rdata.rss_mode) {
11898                 case ETH_RSS_MODE_DISABLED:
11899                         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - None");
11900                         break;
11901                 case ETH_RSS_MODE_REGULAR:
11902                         PMD_DRV_LOG(INFO, sc, "%12s : %s,", "Queues", "RSS mode - Regular");
11903                         PMD_DRV_LOG(INFO, sc, "%16d", sc->num_queues);
11904                         break;
11905                 default:
11906                         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - Unknown");
11907                         break;
11908                 }
11909         }
11910         PMD_DRV_LOG(INFO, sc, "%12s : CQ = %lx,  EQ = %lx", "SPQ Left",
11911                      sc->cq_spq_left, sc->eq_spq_left);
11912
11913         PMD_DRV_LOG(INFO, sc,
11914                     "%12s : %x", "Switch", sc->link_params.switch_cfg);
11915         PMD_DRV_LOG(INFO, sc, "pcie_bus=%d, pcie_device=%d",
11916                         sc->pcie_bus, sc->pcie_device);
11917         PMD_DRV_LOG(INFO, sc, "bar0.addr=%p, bar1.addr=%p",
11918                         sc->bar[BAR0].base_addr, sc->bar[BAR1].base_addr);
11919         PMD_DRV_LOG(INFO, sc, "port=%d, path=%d, vnic=%d, func=%d",
11920                         PORT_ID(sc), PATH_ID(sc), VNIC_ID(sc), FUNC_ID(sc));
11921 }