049d98b1d84930c57be84be003177108f497aeee
[dpdk.git] / drivers / net / bnxt / bnxt_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) Broadcom Limited.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Broadcom Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <inttypes.h>
35 #include <stdbool.h>
36
37 #include <rte_dev.h>
38 #include <rte_ethdev.h>
39 #include <rte_ethdev_pci.h>
40 #include <rte_malloc.h>
41 #include <rte_cycles.h>
42
43 #include "bnxt.h"
44 #include "bnxt_cpr.h"
45 #include "bnxt_filter.h"
46 #include "bnxt_hwrm.h"
47 #include "bnxt_irq.h"
48 #include "bnxt_ring.h"
49 #include "bnxt_rxq.h"
50 #include "bnxt_rxr.h"
51 #include "bnxt_stats.h"
52 #include "bnxt_txq.h"
53 #include "bnxt_txr.h"
54 #include "bnxt_vnic.h"
55 #include "hsi_struct_def_dpdk.h"
56 #include "bnxt_nvm_defs.h"
57
58 #define DRV_MODULE_NAME         "bnxt"
59 static const char bnxt_version[] =
60         "Broadcom Cumulus driver " DRV_MODULE_NAME "\n";
61
62 #define PCI_VENDOR_ID_BROADCOM 0x14E4
63
64 #define BROADCOM_DEV_ID_STRATUS_NIC_VF 0x1609
65 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
66 #define BROADCOM_DEV_ID_57414_VF 0x16c1
67 #define BROADCOM_DEV_ID_57301 0x16c8
68 #define BROADCOM_DEV_ID_57302 0x16c9
69 #define BROADCOM_DEV_ID_57304_PF 0x16ca
70 #define BROADCOM_DEV_ID_57304_VF 0x16cb
71 #define BROADCOM_DEV_ID_57417_MF 0x16cc
72 #define BROADCOM_DEV_ID_NS2 0x16cd
73 #define BROADCOM_DEV_ID_57311 0x16ce
74 #define BROADCOM_DEV_ID_57312 0x16cf
75 #define BROADCOM_DEV_ID_57402 0x16d0
76 #define BROADCOM_DEV_ID_57404 0x16d1
77 #define BROADCOM_DEV_ID_57406_PF 0x16d2
78 #define BROADCOM_DEV_ID_57406_VF 0x16d3
79 #define BROADCOM_DEV_ID_57402_MF 0x16d4
80 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
81 #define BROADCOM_DEV_ID_57412 0x16d6
82 #define BROADCOM_DEV_ID_57414 0x16d7
83 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
84 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
85 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
86 #define BROADCOM_DEV_ID_57412_MF 0x16de
87 #define BROADCOM_DEV_ID_57314 0x16df
88 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
89 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
90 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
91 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
92 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
93 #define BROADCOM_DEV_ID_57404_MF 0x16e7
94 #define BROADCOM_DEV_ID_57406_MF 0x16e8
95 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
96 #define BROADCOM_DEV_ID_57407_MF 0x16ea
97 #define BROADCOM_DEV_ID_57414_MF 0x16ec
98 #define BROADCOM_DEV_ID_57416_MF 0x16ee
99
100 static const struct rte_pci_id bnxt_pci_id_map[] = {
101         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
102                          BROADCOM_DEV_ID_STRATUS_NIC_VF) },
103         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
104         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
105         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
106         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
107         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
108         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
109         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
110         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
111         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
112         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
113         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
114         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
115         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
116         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
117         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
118         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
119         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
120         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
121         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
122         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
123         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
124         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
125         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
126         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
127         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
128         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
129         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
130         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
131         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
132         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
133         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
134         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
135         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
136         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
137         { .vendor_id = 0, /* sentinel */ },
138 };
139
140 #define BNXT_ETH_RSS_SUPPORT (  \
141         ETH_RSS_IPV4 |          \
142         ETH_RSS_NONFRAG_IPV4_TCP |      \
143         ETH_RSS_NONFRAG_IPV4_UDP |      \
144         ETH_RSS_IPV6 |          \
145         ETH_RSS_NONFRAG_IPV6_TCP |      \
146         ETH_RSS_NONFRAG_IPV6_UDP)
147
148 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
149 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
150
151 /***********************/
152
153 /*
154  * High level utility functions
155  */
156
157 static void bnxt_free_mem(struct bnxt *bp)
158 {
159         bnxt_free_filter_mem(bp);
160         bnxt_free_vnic_attributes(bp);
161         bnxt_free_vnic_mem(bp);
162
163         bnxt_free_stats(bp);
164         bnxt_free_tx_rings(bp);
165         bnxt_free_rx_rings(bp);
166         bnxt_free_def_cp_ring(bp);
167 }
168
169 static int bnxt_alloc_mem(struct bnxt *bp)
170 {
171         int rc;
172
173         /* Default completion ring */
174         rc = bnxt_init_def_ring_struct(bp, SOCKET_ID_ANY);
175         if (rc)
176                 goto alloc_mem_err;
177
178         rc = bnxt_alloc_rings(bp, 0, NULL, NULL,
179                               bp->def_cp_ring, "def_cp");
180         if (rc)
181                 goto alloc_mem_err;
182
183         rc = bnxt_alloc_vnic_mem(bp);
184         if (rc)
185                 goto alloc_mem_err;
186
187         rc = bnxt_alloc_vnic_attributes(bp);
188         if (rc)
189                 goto alloc_mem_err;
190
191         rc = bnxt_alloc_filter_mem(bp);
192         if (rc)
193                 goto alloc_mem_err;
194
195         return 0;
196
197 alloc_mem_err:
198         bnxt_free_mem(bp);
199         return rc;
200 }
201
202 static int bnxt_init_chip(struct bnxt *bp)
203 {
204         unsigned int i, rss_idx, fw_idx;
205         struct rte_eth_link new;
206         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
207         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
208         uint32_t intr_vector = 0;
209         uint32_t queue_id, base = BNXT_MISC_VEC_ID;
210         uint32_t vec = BNXT_MISC_VEC_ID;
211         int rc;
212
213         /* disable uio/vfio intr/eventfd mapping */
214         rte_intr_disable(intr_handle);
215
216         if (bp->eth_dev->data->mtu > ETHER_MTU) {
217                 bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
218                 bp->flags |= BNXT_FLAG_JUMBO;
219         } else {
220                 bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
221                 bp->flags &= ~BNXT_FLAG_JUMBO;
222         }
223
224         rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
225         if (rc) {
226                 RTE_LOG(ERR, PMD, "HWRM stat ctx alloc failure rc: %x\n", rc);
227                 goto err_out;
228         }
229
230         rc = bnxt_alloc_hwrm_rings(bp);
231         if (rc) {
232                 RTE_LOG(ERR, PMD, "HWRM ring alloc failure rc: %x\n", rc);
233                 goto err_out;
234         }
235
236         rc = bnxt_alloc_all_hwrm_ring_grps(bp);
237         if (rc) {
238                 RTE_LOG(ERR, PMD, "HWRM ring grp alloc failure: %x\n", rc);
239                 goto err_out;
240         }
241
242         rc = bnxt_mq_rx_configure(bp);
243         if (rc) {
244                 RTE_LOG(ERR, PMD, "MQ mode configure failure rc: %x\n", rc);
245                 goto err_out;
246         }
247
248         /* VNIC configuration */
249         for (i = 0; i < bp->nr_vnics; i++) {
250                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
251
252                 rc = bnxt_hwrm_vnic_alloc(bp, vnic);
253                 if (rc) {
254                         RTE_LOG(ERR, PMD, "HWRM vnic %d alloc failure rc: %x\n",
255                                 i, rc);
256                         goto err_out;
257                 }
258
259                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic);
260                 if (rc) {
261                         RTE_LOG(ERR, PMD,
262                                 "HWRM vnic %d ctx alloc failure rc: %x\n",
263                                 i, rc);
264                         goto err_out;
265                 }
266
267                 rc = bnxt_hwrm_vnic_cfg(bp, vnic);
268                 if (rc) {
269                         RTE_LOG(ERR, PMD, "HWRM vnic %d cfg failure rc: %x\n",
270                                 i, rc);
271                         goto err_out;
272                 }
273
274                 rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
275                 if (rc) {
276                         RTE_LOG(ERR, PMD,
277                                 "HWRM vnic %d filter failure rc: %x\n",
278                                 i, rc);
279                         goto err_out;
280                 }
281                 if (vnic->rss_table && vnic->hash_type) {
282                         /*
283                          * Fill the RSS hash & redirection table with
284                          * ring group ids for all VNICs
285                          */
286                         for (rss_idx = 0, fw_idx = 0;
287                              rss_idx < HW_HASH_INDEX_SIZE;
288                              rss_idx++, fw_idx++) {
289                                 if (vnic->fw_grp_ids[fw_idx] ==
290                                     INVALID_HW_RING_ID)
291                                         fw_idx = 0;
292                                 vnic->rss_table[rss_idx] =
293                                                 vnic->fw_grp_ids[fw_idx];
294                         }
295                         rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
296                         if (rc) {
297                                 RTE_LOG(ERR, PMD,
298                                         "HWRM vnic %d set RSS failure rc: %x\n",
299                                         i, rc);
300                                 goto err_out;
301                         }
302                 }
303
304                 bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
305
306                 if (bp->eth_dev->data->dev_conf.rxmode.enable_lro)
307                         bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
308                 else
309                         bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
310         }
311         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
312         if (rc) {
313                 RTE_LOG(ERR, PMD,
314                         "HWRM cfa l2 rx mask failure rc: %x\n", rc);
315                 goto err_out;
316         }
317
318         /* check and configure queue intr-vector mapping */
319         if ((rte_intr_cap_multiple(intr_handle) ||
320              !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
321             bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
322                 intr_vector = bp->eth_dev->data->nb_rx_queues;
323                 RTE_LOG(INFO, PMD, "%s(): intr_vector = %d\n", __func__,
324                         intr_vector);
325                 if (intr_vector > bp->rx_cp_nr_rings) {
326                         RTE_LOG(ERR, PMD, "At most %d intr queues supported",
327                                         bp->rx_cp_nr_rings);
328                         return -ENOTSUP;
329                 }
330                 if (rte_intr_efd_enable(intr_handle, intr_vector))
331                         return -1;
332         }
333
334         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
335                 intr_handle->intr_vec =
336                         rte_zmalloc("intr_vec",
337                                     bp->eth_dev->data->nb_rx_queues *
338                                     sizeof(int), 0);
339                 if (intr_handle->intr_vec == NULL) {
340                         RTE_LOG(ERR, PMD, "Failed to allocate %d rx_queues"
341                                 " intr_vec", bp->eth_dev->data->nb_rx_queues);
342                         return -ENOMEM;
343                 }
344                 RTE_LOG(DEBUG, PMD, "%s(): intr_handle->intr_vec = %p "
345                         "intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
346                          __func__, intr_handle->intr_vec, intr_handle->nb_efd,
347                         intr_handle->max_intr);
348         }
349
350         for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
351              queue_id++) {
352                 intr_handle->intr_vec[queue_id] = vec;
353                 if (vec < base + intr_handle->nb_efd - 1)
354                         vec++;
355         }
356
357         /* enable uio/vfio intr/eventfd mapping */
358         rte_intr_enable(intr_handle);
359
360         rc = bnxt_get_hwrm_link_config(bp, &new);
361         if (rc) {
362                 RTE_LOG(ERR, PMD, "HWRM Get link config failure rc: %x\n", rc);
363                 goto err_out;
364         }
365
366         if (!bp->link_info.link_up) {
367                 rc = bnxt_set_hwrm_link_config(bp, true);
368                 if (rc) {
369                         RTE_LOG(ERR, PMD,
370                                 "HWRM link config failure rc: %x\n", rc);
371                         goto err_out;
372                 }
373         }
374         bnxt_print_link_info(bp->eth_dev);
375
376         return 0;
377
378 err_out:
379         bnxt_free_all_hwrm_resources(bp);
380
381         /* Some of the error status returned by FW may not be from errno.h */
382         if (rc > 0)
383                 rc = -EIO;
384
385         return rc;
386 }
387
388 static int bnxt_shutdown_nic(struct bnxt *bp)
389 {
390         bnxt_free_all_hwrm_resources(bp);
391         bnxt_free_all_filters(bp);
392         bnxt_free_all_vnics(bp);
393         return 0;
394 }
395
396 static int bnxt_init_nic(struct bnxt *bp)
397 {
398         int rc;
399
400         rc = bnxt_init_ring_grps(bp);
401         if (rc)
402                 return rc;
403
404         bnxt_init_vnics(bp);
405         bnxt_init_filters(bp);
406
407         rc = bnxt_init_chip(bp);
408         if (rc)
409                 return rc;
410
411         return 0;
412 }
413
414 /*
415  * Device configuration and status function
416  */
417
418 static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
419                                   struct rte_eth_dev_info *dev_info)
420 {
421         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
422         uint16_t max_vnics, i, j, vpool, vrxq;
423         unsigned int max_rx_rings;
424
425         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
426
427         /* MAC Specifics */
428         dev_info->max_mac_addrs = bp->max_l2_ctx;
429         dev_info->max_hash_mac_addrs = 0;
430
431         /* PF/VF specifics */
432         if (BNXT_PF(bp))
433                 dev_info->max_vfs = bp->pdev->max_vfs;
434         max_rx_rings = RTE_MIN(bp->max_vnics, RTE_MIN(bp->max_l2_ctx,
435                                                 RTE_MIN(bp->max_rsscos_ctx,
436                                                 bp->max_stat_ctx)));
437         /* For the sake of symmetry, max_rx_queues = max_tx_queues */
438         dev_info->max_rx_queues = max_rx_rings;
439         dev_info->max_tx_queues = max_rx_rings;
440         dev_info->reta_size = bp->max_rsscos_ctx;
441         dev_info->hash_key_size = 40;
442         max_vnics = bp->max_vnics;
443
444         /* Fast path specifics */
445         dev_info->min_rx_bufsize = 1;
446         dev_info->max_rx_pktlen = BNXT_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN
447                                   + VLAN_TAG_SIZE;
448         dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
449                                         DEV_RX_OFFLOAD_IPV4_CKSUM |
450                                         DEV_RX_OFFLOAD_UDP_CKSUM |
451                                         DEV_RX_OFFLOAD_TCP_CKSUM |
452                                         DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
453         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
454                                         DEV_TX_OFFLOAD_IPV4_CKSUM |
455                                         DEV_TX_OFFLOAD_TCP_CKSUM |
456                                         DEV_TX_OFFLOAD_UDP_CKSUM |
457                                         DEV_TX_OFFLOAD_TCP_TSO |
458                                         DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
459                                         DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
460                                         DEV_TX_OFFLOAD_GRE_TNL_TSO |
461                                         DEV_TX_OFFLOAD_IPIP_TNL_TSO |
462                                         DEV_TX_OFFLOAD_GENEVE_TNL_TSO;
463
464         /* *INDENT-OFF* */
465         dev_info->default_rxconf = (struct rte_eth_rxconf) {
466                 .rx_thresh = {
467                         .pthresh = 8,
468                         .hthresh = 8,
469                         .wthresh = 0,
470                 },
471                 .rx_free_thresh = 32,
472                 .rx_drop_en = 0,
473         };
474
475         dev_info->default_txconf = (struct rte_eth_txconf) {
476                 .tx_thresh = {
477                         .pthresh = 32,
478                         .hthresh = 0,
479                         .wthresh = 0,
480                 },
481                 .tx_free_thresh = 32,
482                 .tx_rs_thresh = 32,
483                 .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
484                              ETH_TXQ_FLAGS_NOOFFLOADS,
485         };
486         eth_dev->data->dev_conf.intr_conf.lsc = 1;
487
488         eth_dev->data->dev_conf.intr_conf.rxq = 1;
489
490         /* *INDENT-ON* */
491
492         /*
493          * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
494          *       need further investigation.
495          */
496
497         /* VMDq resources */
498         vpool = 64; /* ETH_64_POOLS */
499         vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
500         for (i = 0; i < 4; vpool >>= 1, i++) {
501                 if (max_vnics > vpool) {
502                         for (j = 0; j < 5; vrxq >>= 1, j++) {
503                                 if (dev_info->max_rx_queues > vrxq) {
504                                         if (vpool > vrxq)
505                                                 vpool = vrxq;
506                                         goto found;
507                                 }
508                         }
509                         /* Not enough resources to support VMDq */
510                         break;
511                 }
512         }
513         /* Not enough resources to support VMDq */
514         vpool = 0;
515         vrxq = 0;
516 found:
517         dev_info->max_vmdq_pools = vpool;
518         dev_info->vmdq_queue_num = vrxq;
519
520         dev_info->vmdq_pool_base = 0;
521         dev_info->vmdq_queue_base = 0;
522 }
523
524 /* Configure the device based on the configuration provided */
525 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
526 {
527         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
528
529         bp->rx_queues = (void *)eth_dev->data->rx_queues;
530         bp->tx_queues = (void *)eth_dev->data->tx_queues;
531
532         /* Inherit new configurations */
533         bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
534         bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
535         bp->rx_cp_nr_rings = bp->rx_nr_rings;
536         bp->tx_cp_nr_rings = bp->tx_nr_rings;
537
538         if (eth_dev->data->dev_conf.rxmode.jumbo_frame)
539                 eth_dev->data->mtu =
540                                 eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
541                                 ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE;
542         return 0;
543 }
544
545 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
546 {
547         struct rte_eth_link *link = &eth_dev->data->dev_link;
548
549         if (link->link_status)
550                 RTE_LOG(INFO, PMD, "Port %d Link Up - speed %u Mbps - %s\n",
551                         eth_dev->data->port_id,
552                         (uint32_t)link->link_speed,
553                         (link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
554                         ("full-duplex") : ("half-duplex\n"));
555         else
556                 RTE_LOG(INFO, PMD, "Port %d Link Down\n",
557                         eth_dev->data->port_id);
558 }
559
560 static int bnxt_dev_lsc_intr_setup(struct rte_eth_dev *eth_dev)
561 {
562         bnxt_print_link_info(eth_dev);
563         return 0;
564 }
565
566 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
567 {
568         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
569         int vlan_mask = 0;
570         int rc;
571
572         if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
573                 RTE_LOG(ERR, PMD,
574                         "RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
575                         bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
576         }
577         bp->dev_stopped = 0;
578
579         rc = bnxt_init_nic(bp);
580         if (rc)
581                 goto error;
582
583         bnxt_link_update_op(eth_dev, 1);
584
585         if (eth_dev->data->dev_conf.rxmode.hw_vlan_filter)
586                 vlan_mask |= ETH_VLAN_FILTER_MASK;
587         if (eth_dev->data->dev_conf.rxmode.hw_vlan_strip)
588                 vlan_mask |= ETH_VLAN_STRIP_MASK;
589         rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
590         if (rc)
591                 goto error;
592
593         bp->flags |= BNXT_FLAG_INIT_DONE;
594         return 0;
595
596 error:
597         bnxt_shutdown_nic(bp);
598         bnxt_free_tx_mbufs(bp);
599         bnxt_free_rx_mbufs(bp);
600         return rc;
601 }
602
603 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
604 {
605         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
606         int rc = 0;
607
608         if (!bp->link_info.link_up)
609                 rc = bnxt_set_hwrm_link_config(bp, true);
610         if (!rc)
611                 eth_dev->data->dev_link.link_status = 1;
612
613         bnxt_print_link_info(eth_dev);
614         return 0;
615 }
616
617 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
618 {
619         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
620
621         eth_dev->data->dev_link.link_status = 0;
622         bnxt_set_hwrm_link_config(bp, false);
623         bp->link_info.link_up = 0;
624
625         return 0;
626 }
627
628 /* Unload the driver, release resources */
629 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
630 {
631         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
632
633         if (bp->eth_dev->data->dev_started) {
634                 /* TBD: STOP HW queues DMA */
635                 eth_dev->data->dev_link.link_status = 0;
636         }
637         bnxt_set_hwrm_link_config(bp, false);
638         bnxt_hwrm_port_clr_stats(bp);
639         bp->flags &= ~BNXT_FLAG_INIT_DONE;
640         bnxt_shutdown_nic(bp);
641         bp->dev_stopped = 1;
642 }
643
644 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
645 {
646         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
647
648         if (bp->dev_stopped == 0)
649                 bnxt_dev_stop_op(eth_dev);
650
651         bnxt_free_tx_mbufs(bp);
652         bnxt_free_rx_mbufs(bp);
653         bnxt_free_mem(bp);
654         if (eth_dev->data->mac_addrs != NULL) {
655                 rte_free(eth_dev->data->mac_addrs);
656                 eth_dev->data->mac_addrs = NULL;
657         }
658         if (bp->grp_info != NULL) {
659                 rte_free(bp->grp_info);
660                 bp->grp_info = NULL;
661         }
662 }
663
664 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
665                                     uint32_t index)
666 {
667         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
668         uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
669         struct bnxt_vnic_info *vnic;
670         struct bnxt_filter_info *filter, *temp_filter;
671         uint32_t pool = RTE_MIN(MAX_FF_POOLS, ETH_64_POOLS);
672         uint32_t i;
673
674         /*
675          * Loop through all VNICs from the specified filter flow pools to
676          * remove the corresponding MAC addr filter
677          */
678         for (i = 0; i < pool; i++) {
679                 if (!(pool_mask & (1ULL << i)))
680                         continue;
681
682                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
683                         filter = STAILQ_FIRST(&vnic->filter);
684                         while (filter) {
685                                 temp_filter = STAILQ_NEXT(filter, next);
686                                 if (filter->mac_index == index) {
687                                         STAILQ_REMOVE(&vnic->filter, filter,
688                                                       bnxt_filter_info, next);
689                                         bnxt_hwrm_clear_l2_filter(bp, filter);
690                                         filter->mac_index = INVALID_MAC_INDEX;
691                                         memset(&filter->l2_addr, 0,
692                                                ETHER_ADDR_LEN);
693                                         STAILQ_INSERT_TAIL(
694                                                         &bp->free_filter_list,
695                                                         filter, next);
696                                 }
697                                 filter = temp_filter;
698                         }
699                 }
700         }
701 }
702
703 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
704                                 struct ether_addr *mac_addr,
705                                 uint32_t index, uint32_t pool)
706 {
707         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
708         struct bnxt_vnic_info *vnic = STAILQ_FIRST(&bp->ff_pool[pool]);
709         struct bnxt_filter_info *filter;
710
711         if (BNXT_VF(bp)) {
712                 RTE_LOG(ERR, PMD, "Cannot add MAC address to a VF interface\n");
713                 return -ENOTSUP;
714         }
715
716         if (!vnic) {
717                 RTE_LOG(ERR, PMD, "VNIC not found for pool %d!\n", pool);
718                 return -EINVAL;
719         }
720         /* Attach requested MAC address to the new l2_filter */
721         STAILQ_FOREACH(filter, &vnic->filter, next) {
722                 if (filter->mac_index == index) {
723                         RTE_LOG(ERR, PMD,
724                                 "MAC addr already existed for pool %d\n", pool);
725                         return -EINVAL;
726                 }
727         }
728         filter = bnxt_alloc_filter(bp);
729         if (!filter) {
730                 RTE_LOG(ERR, PMD, "L2 filter alloc failed\n");
731                 return -ENODEV;
732         }
733         STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
734         filter->mac_index = index;
735         memcpy(filter->l2_addr, mac_addr, ETHER_ADDR_LEN);
736         return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
737 }
738
739 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
740 {
741         int rc = 0;
742         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
743         struct rte_eth_link new;
744         unsigned int cnt = BNXT_LINK_WAIT_CNT;
745
746         memset(&new, 0, sizeof(new));
747         do {
748                 /* Retrieve link info from hardware */
749                 rc = bnxt_get_hwrm_link_config(bp, &new);
750                 if (rc) {
751                         new.link_speed = ETH_LINK_SPEED_100M;
752                         new.link_duplex = ETH_LINK_FULL_DUPLEX;
753                         RTE_LOG(ERR, PMD,
754                                 "Failed to retrieve link rc = 0x%x!\n", rc);
755                         goto out;
756                 }
757                 rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
758
759                 if (!wait_to_complete)
760                         break;
761         } while (!new.link_status && cnt--);
762
763 out:
764         /* Timed out or success */
765         if (new.link_status != eth_dev->data->dev_link.link_status ||
766         new.link_speed != eth_dev->data->dev_link.link_speed) {
767                 memcpy(&eth_dev->data->dev_link, &new,
768                         sizeof(struct rte_eth_link));
769                 bnxt_print_link_info(eth_dev);
770         }
771
772         return rc;
773 }
774
775 static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
776 {
777         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
778         struct bnxt_vnic_info *vnic;
779
780         if (bp->vnic_info == NULL)
781                 return;
782
783         vnic = &bp->vnic_info[0];
784
785         vnic->flags |= BNXT_VNIC_INFO_PROMISC;
786         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
787 }
788
789 static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
790 {
791         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
792         struct bnxt_vnic_info *vnic;
793
794         if (bp->vnic_info == NULL)
795                 return;
796
797         vnic = &bp->vnic_info[0];
798
799         vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
800         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
801 }
802
803 static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
804 {
805         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
806         struct bnxt_vnic_info *vnic;
807
808         if (bp->vnic_info == NULL)
809                 return;
810
811         vnic = &bp->vnic_info[0];
812
813         vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
814         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
815 }
816
817 static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
818 {
819         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
820         struct bnxt_vnic_info *vnic;
821
822         if (bp->vnic_info == NULL)
823                 return;
824
825         vnic = &bp->vnic_info[0];
826
827         vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
828         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
829 }
830
831 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
832                             struct rte_eth_rss_reta_entry64 *reta_conf,
833                             uint16_t reta_size)
834 {
835         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
836         struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
837         struct bnxt_vnic_info *vnic;
838         int i;
839
840         if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
841                 return -EINVAL;
842
843         if (reta_size != HW_HASH_INDEX_SIZE) {
844                 RTE_LOG(ERR, PMD, "The configured hash table lookup size "
845                         "(%d) must equal the size supported by the hardware "
846                         "(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
847                 return -EINVAL;
848         }
849         /* Update the RSS VNIC(s) */
850         for (i = 0; i < MAX_FF_POOLS; i++) {
851                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
852                         memcpy(vnic->rss_table, reta_conf, reta_size);
853
854                         bnxt_hwrm_vnic_rss_cfg(bp, vnic);
855                 }
856         }
857         return 0;
858 }
859
860 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
861                               struct rte_eth_rss_reta_entry64 *reta_conf,
862                               uint16_t reta_size)
863 {
864         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
865         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
866         struct rte_intr_handle *intr_handle
867                 = &bp->pdev->intr_handle;
868
869         /* Retrieve from the default VNIC */
870         if (!vnic)
871                 return -EINVAL;
872         if (!vnic->rss_table)
873                 return -EINVAL;
874
875         if (reta_size != HW_HASH_INDEX_SIZE) {
876                 RTE_LOG(ERR, PMD, "The configured hash table lookup size "
877                         "(%d) must equal the size supported by the hardware "
878                         "(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
879                 return -EINVAL;
880         }
881         /* EW - need to revisit here copying from uint64_t to uint16_t */
882         memcpy(reta_conf, vnic->rss_table, reta_size);
883
884         if (rte_intr_allow_others(intr_handle)) {
885                 if (eth_dev->data->dev_conf.intr_conf.lsc != 0)
886                         bnxt_dev_lsc_intr_setup(eth_dev);
887         }
888
889         return 0;
890 }
891
892 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
893                                    struct rte_eth_rss_conf *rss_conf)
894 {
895         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
896         struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
897         struct bnxt_vnic_info *vnic;
898         uint16_t hash_type = 0;
899         int i;
900
901         /*
902          * If RSS enablement were different than dev_configure,
903          * then return -EINVAL
904          */
905         if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
906                 if (!rss_conf->rss_hf)
907                         RTE_LOG(ERR, PMD, "Hash type NONE\n");
908         } else {
909                 if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
910                         return -EINVAL;
911         }
912
913         bp->flags |= BNXT_FLAG_UPDATE_HASH;
914         memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
915
916         if (rss_conf->rss_hf & ETH_RSS_IPV4)
917                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
918         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
919                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
920         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
921                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
922         if (rss_conf->rss_hf & ETH_RSS_IPV6)
923                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
924         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
925                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
926         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
927                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
928
929         /* Update the RSS VNIC(s) */
930         for (i = 0; i < MAX_FF_POOLS; i++) {
931                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
932                         vnic->hash_type = hash_type;
933
934                         /*
935                          * Use the supplied key if the key length is
936                          * acceptable and the rss_key is not NULL
937                          */
938                         if (rss_conf->rss_key &&
939                             rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
940                                 memcpy(vnic->rss_hash_key, rss_conf->rss_key,
941                                        rss_conf->rss_key_len);
942
943                         bnxt_hwrm_vnic_rss_cfg(bp, vnic);
944                 }
945         }
946         return 0;
947 }
948
949 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
950                                      struct rte_eth_rss_conf *rss_conf)
951 {
952         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
953         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
954         int len;
955         uint32_t hash_types;
956
957         /* RSS configuration is the same for all VNICs */
958         if (vnic && vnic->rss_hash_key) {
959                 if (rss_conf->rss_key) {
960                         len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
961                               rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
962                         memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
963                 }
964
965                 hash_types = vnic->hash_type;
966                 rss_conf->rss_hf = 0;
967                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
968                         rss_conf->rss_hf |= ETH_RSS_IPV4;
969                         hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
970                 }
971                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
972                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
973                         hash_types &=
974                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
975                 }
976                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
977                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
978                         hash_types &=
979                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
980                 }
981                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
982                         rss_conf->rss_hf |= ETH_RSS_IPV6;
983                         hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
984                 }
985                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
986                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
987                         hash_types &=
988                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
989                 }
990                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
991                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
992                         hash_types &=
993                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
994                 }
995                 if (hash_types) {
996                         RTE_LOG(ERR, PMD,
997                                 "Unknwon RSS config from firmware (%08x), RSS disabled",
998                                 vnic->hash_type);
999                         return -ENOTSUP;
1000                 }
1001         } else {
1002                 rss_conf->rss_hf = 0;
1003         }
1004         return 0;
1005 }
1006
1007 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1008                                struct rte_eth_fc_conf *fc_conf)
1009 {
1010         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1011         struct rte_eth_link link_info;
1012         int rc;
1013
1014         rc = bnxt_get_hwrm_link_config(bp, &link_info);
1015         if (rc)
1016                 return rc;
1017
1018         memset(fc_conf, 0, sizeof(*fc_conf));
1019         if (bp->link_info.auto_pause)
1020                 fc_conf->autoneg = 1;
1021         switch (bp->link_info.pause) {
1022         case 0:
1023                 fc_conf->mode = RTE_FC_NONE;
1024                 break;
1025         case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1026                 fc_conf->mode = RTE_FC_TX_PAUSE;
1027                 break;
1028         case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1029                 fc_conf->mode = RTE_FC_RX_PAUSE;
1030                 break;
1031         case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1032                         HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1033                 fc_conf->mode = RTE_FC_FULL;
1034                 break;
1035         }
1036         return 0;
1037 }
1038
1039 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1040                                struct rte_eth_fc_conf *fc_conf)
1041 {
1042         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1043
1044         if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1045                 RTE_LOG(ERR, PMD, "Flow Control Settings cannot be modified\n");
1046                 return -ENOTSUP;
1047         }
1048
1049         switch (fc_conf->mode) {
1050         case RTE_FC_NONE:
1051                 bp->link_info.auto_pause = 0;
1052                 bp->link_info.force_pause = 0;
1053                 break;
1054         case RTE_FC_RX_PAUSE:
1055                 if (fc_conf->autoneg) {
1056                         bp->link_info.auto_pause =
1057                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1058                         bp->link_info.force_pause = 0;
1059                 } else {
1060                         bp->link_info.auto_pause = 0;
1061                         bp->link_info.force_pause =
1062                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1063                 }
1064                 break;
1065         case RTE_FC_TX_PAUSE:
1066                 if (fc_conf->autoneg) {
1067                         bp->link_info.auto_pause =
1068                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1069                         bp->link_info.force_pause = 0;
1070                 } else {
1071                         bp->link_info.auto_pause = 0;
1072                         bp->link_info.force_pause =
1073                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1074                 }
1075                 break;
1076         case RTE_FC_FULL:
1077                 if (fc_conf->autoneg) {
1078                         bp->link_info.auto_pause =
1079                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1080                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1081                         bp->link_info.force_pause = 0;
1082                 } else {
1083                         bp->link_info.auto_pause = 0;
1084                         bp->link_info.force_pause =
1085                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1086                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1087                 }
1088                 break;
1089         }
1090         return bnxt_set_hwrm_link_config(bp, true);
1091 }
1092
1093 /* Add UDP tunneling port */
1094 static int
1095 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1096                          struct rte_eth_udp_tunnel *udp_tunnel)
1097 {
1098         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1099         uint16_t tunnel_type = 0;
1100         int rc = 0;
1101
1102         switch (udp_tunnel->prot_type) {
1103         case RTE_TUNNEL_TYPE_VXLAN:
1104                 if (bp->vxlan_port_cnt) {
1105                         RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1106                                 udp_tunnel->udp_port);
1107                         if (bp->vxlan_port != udp_tunnel->udp_port) {
1108                                 RTE_LOG(ERR, PMD, "Only one port allowed\n");
1109                                 return -ENOSPC;
1110                         }
1111                         bp->vxlan_port_cnt++;
1112                         return 0;
1113                 }
1114                 tunnel_type =
1115                         HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1116                 bp->vxlan_port_cnt++;
1117                 break;
1118         case RTE_TUNNEL_TYPE_GENEVE:
1119                 if (bp->geneve_port_cnt) {
1120                         RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1121                                 udp_tunnel->udp_port);
1122                         if (bp->geneve_port != udp_tunnel->udp_port) {
1123                                 RTE_LOG(ERR, PMD, "Only one port allowed\n");
1124                                 return -ENOSPC;
1125                         }
1126                         bp->geneve_port_cnt++;
1127                         return 0;
1128                 }
1129                 tunnel_type =
1130                         HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1131                 bp->geneve_port_cnt++;
1132                 break;
1133         default:
1134                 RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1135                 return -ENOTSUP;
1136         }
1137         rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1138                                              tunnel_type);
1139         return rc;
1140 }
1141
1142 static int
1143 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1144                          struct rte_eth_udp_tunnel *udp_tunnel)
1145 {
1146         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1147         uint16_t tunnel_type = 0;
1148         uint16_t port = 0;
1149         int rc = 0;
1150
1151         switch (udp_tunnel->prot_type) {
1152         case RTE_TUNNEL_TYPE_VXLAN:
1153                 if (!bp->vxlan_port_cnt) {
1154                         RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1155                         return -EINVAL;
1156                 }
1157                 if (bp->vxlan_port != udp_tunnel->udp_port) {
1158                         RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1159                                 udp_tunnel->udp_port, bp->vxlan_port);
1160                         return -EINVAL;
1161                 }
1162                 if (--bp->vxlan_port_cnt)
1163                         return 0;
1164
1165                 tunnel_type =
1166                         HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1167                 port = bp->vxlan_fw_dst_port_id;
1168                 break;
1169         case RTE_TUNNEL_TYPE_GENEVE:
1170                 if (!bp->geneve_port_cnt) {
1171                         RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1172                         return -EINVAL;
1173                 }
1174                 if (bp->geneve_port != udp_tunnel->udp_port) {
1175                         RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1176                                 udp_tunnel->udp_port, bp->geneve_port);
1177                         return -EINVAL;
1178                 }
1179                 if (--bp->geneve_port_cnt)
1180                         return 0;
1181
1182                 tunnel_type =
1183                         HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1184                 port = bp->geneve_fw_dst_port_id;
1185                 break;
1186         default:
1187                 RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1188                 return -ENOTSUP;
1189         }
1190
1191         rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1192         if (!rc) {
1193                 if (tunnel_type ==
1194                     HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1195                         bp->vxlan_port = 0;
1196                 if (tunnel_type ==
1197                     HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1198                         bp->geneve_port = 0;
1199         }
1200         return rc;
1201 }
1202
1203 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1204 {
1205         struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1206         struct bnxt_vnic_info *vnic;
1207         unsigned int i;
1208         int rc = 0;
1209         uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1210
1211         /* Cycle through all VNICs */
1212         for (i = 0; i < bp->nr_vnics; i++) {
1213                 /*
1214                  * For each VNIC and each associated filter(s)
1215                  * if VLAN exists && VLAN matches vlan_id
1216                  *      remove the MAC+VLAN filter
1217                  *      add a new MAC only filter
1218                  * else
1219                  *      VLAN filter doesn't exist, just skip and continue
1220                  */
1221                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1222                         filter = STAILQ_FIRST(&vnic->filter);
1223                         while (filter) {
1224                                 temp_filter = STAILQ_NEXT(filter, next);
1225
1226                                 if (filter->enables & chk &&
1227                                     filter->l2_ovlan == vlan_id) {
1228                                         /* Must delete the filter */
1229                                         STAILQ_REMOVE(&vnic->filter, filter,
1230                                                       bnxt_filter_info, next);
1231                                         bnxt_hwrm_clear_l2_filter(bp, filter);
1232                                         STAILQ_INSERT_TAIL(
1233                                                         &bp->free_filter_list,
1234                                                         filter, next);
1235
1236                                         /*
1237                                          * Need to examine to see if the MAC
1238                                          * filter already existed or not before
1239                                          * allocating a new one
1240                                          */
1241
1242                                         new_filter = bnxt_alloc_filter(bp);
1243                                         if (!new_filter) {
1244                                                 RTE_LOG(ERR, PMD,
1245                                                         "MAC/VLAN filter alloc failed\n");
1246                                                 rc = -ENOMEM;
1247                                                 goto exit;
1248                                         }
1249                                         STAILQ_INSERT_TAIL(&vnic->filter,
1250                                                            new_filter, next);
1251                                         /* Inherit MAC from previous filter */
1252                                         new_filter->mac_index =
1253                                                         filter->mac_index;
1254                                         memcpy(new_filter->l2_addr,
1255                                                filter->l2_addr, ETHER_ADDR_LEN);
1256                                         /* MAC only filter */
1257                                         rc = bnxt_hwrm_set_l2_filter(bp,
1258                                                         vnic->fw_vnic_id,
1259                                                         new_filter);
1260                                         if (rc)
1261                                                 goto exit;
1262                                         RTE_LOG(INFO, PMD,
1263                                                 "Del Vlan filter for %d\n",
1264                                                 vlan_id);
1265                                 }
1266                                 filter = temp_filter;
1267                         }
1268                 }
1269         }
1270 exit:
1271         return rc;
1272 }
1273
1274 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1275 {
1276         struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1277         struct bnxt_vnic_info *vnic;
1278         unsigned int i;
1279         int rc = 0;
1280         uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN |
1281                 HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN_MASK;
1282         uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1283
1284         /* Cycle through all VNICs */
1285         for (i = 0; i < bp->nr_vnics; i++) {
1286                 /*
1287                  * For each VNIC and each associated filter(s)
1288                  * if VLAN exists:
1289                  *   if VLAN matches vlan_id
1290                  *      VLAN filter already exists, just skip and continue
1291                  *   else
1292                  *      add a new MAC+VLAN filter
1293                  * else
1294                  *   Remove the old MAC only filter
1295                  *    Add a new MAC+VLAN filter
1296                  */
1297                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1298                         filter = STAILQ_FIRST(&vnic->filter);
1299                         while (filter) {
1300                                 temp_filter = STAILQ_NEXT(filter, next);
1301
1302                                 if (filter->enables & chk) {
1303                                         if (filter->l2_ovlan == vlan_id)
1304                                                 goto cont;
1305                                 } else {
1306                                         /* Must delete the MAC filter */
1307                                         STAILQ_REMOVE(&vnic->filter, filter,
1308                                                       bnxt_filter_info, next);
1309                                         bnxt_hwrm_clear_l2_filter(bp, filter);
1310                                         filter->l2_ovlan = 0;
1311                                         STAILQ_INSERT_TAIL(
1312                                                         &bp->free_filter_list,
1313                                                         filter, next);
1314                                 }
1315                                 new_filter = bnxt_alloc_filter(bp);
1316                                 if (!new_filter) {
1317                                         RTE_LOG(ERR, PMD,
1318                                                 "MAC/VLAN filter alloc failed\n");
1319                                         rc = -ENOMEM;
1320                                         goto exit;
1321                                 }
1322                                 STAILQ_INSERT_TAIL(&vnic->filter, new_filter,
1323                                                    next);
1324                                 /* Inherit MAC from the previous filter */
1325                                 new_filter->mac_index = filter->mac_index;
1326                                 memcpy(new_filter->l2_addr, filter->l2_addr,
1327                                        ETHER_ADDR_LEN);
1328                                 /* MAC + VLAN ID filter */
1329                                 new_filter->l2_ovlan = vlan_id;
1330                                 new_filter->l2_ovlan_mask = 0xF000;
1331                                 new_filter->enables |= en;
1332                                 rc = bnxt_hwrm_set_l2_filter(bp,
1333                                                              vnic->fw_vnic_id,
1334                                                              new_filter);
1335                                 if (rc)
1336                                         goto exit;
1337                                 RTE_LOG(INFO, PMD,
1338                                         "Added Vlan filter for %d\n", vlan_id);
1339 cont:
1340                                 filter = temp_filter;
1341                         }
1342                 }
1343         }
1344 exit:
1345         return rc;
1346 }
1347
1348 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1349                                    uint16_t vlan_id, int on)
1350 {
1351         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1352
1353         /* These operations apply to ALL existing MAC/VLAN filters */
1354         if (on)
1355                 return bnxt_add_vlan_filter(bp, vlan_id);
1356         else
1357                 return bnxt_del_vlan_filter(bp, vlan_id);
1358 }
1359
1360 static int
1361 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1362 {
1363         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1364         unsigned int i;
1365
1366         if (mask & ETH_VLAN_FILTER_MASK) {
1367                 if (!dev->data->dev_conf.rxmode.hw_vlan_filter) {
1368                         /* Remove any VLAN filters programmed */
1369                         for (i = 0; i < 4095; i++)
1370                                 bnxt_del_vlan_filter(bp, i);
1371                 }
1372                 RTE_LOG(INFO, PMD, "VLAN Filtering: %d\n",
1373                         dev->data->dev_conf.rxmode.hw_vlan_filter);
1374         }
1375
1376         if (mask & ETH_VLAN_STRIP_MASK) {
1377                 /* Enable or disable VLAN stripping */
1378                 for (i = 0; i < bp->nr_vnics; i++) {
1379                         struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1380                         if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1381                                 vnic->vlan_strip = true;
1382                         else
1383                                 vnic->vlan_strip = false;
1384                         bnxt_hwrm_vnic_cfg(bp, vnic);
1385                 }
1386                 RTE_LOG(INFO, PMD, "VLAN Strip Offload: %d\n",
1387                         dev->data->dev_conf.rxmode.hw_vlan_strip);
1388         }
1389
1390         if (mask & ETH_VLAN_EXTEND_MASK)
1391                 RTE_LOG(ERR, PMD, "Extend VLAN Not supported\n");
1392
1393         return 0;
1394 }
1395
1396 static void
1397 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct ether_addr *addr)
1398 {
1399         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1400         /* Default Filter is tied to VNIC 0 */
1401         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1402         struct bnxt_filter_info *filter;
1403         int rc;
1404
1405         if (BNXT_VF(bp))
1406                 return;
1407
1408         memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr));
1409         memcpy(&dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
1410
1411         STAILQ_FOREACH(filter, &vnic->filter, next) {
1412                 /* Default Filter is at Index 0 */
1413                 if (filter->mac_index != 0)
1414                         continue;
1415                 rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1416                 if (rc)
1417                         break;
1418                 memcpy(filter->l2_addr, bp->mac_addr, ETHER_ADDR_LEN);
1419                 memset(filter->l2_addr_mask, 0xff, ETHER_ADDR_LEN);
1420                 filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1421                 filter->enables |=
1422                         HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1423                         HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1424                 rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1425                 if (rc)
1426                         break;
1427                 filter->mac_index = 0;
1428                 RTE_LOG(DEBUG, PMD, "Set MAC addr\n");
1429         }
1430 }
1431
1432 static int
1433 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1434                           struct ether_addr *mc_addr_set,
1435                           uint32_t nb_mc_addr)
1436 {
1437         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1438         char *mc_addr_list = (char *)mc_addr_set;
1439         struct bnxt_vnic_info *vnic;
1440         uint32_t off = 0, i = 0;
1441
1442         vnic = &bp->vnic_info[0];
1443
1444         if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1445                 vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1446                 goto allmulti;
1447         }
1448
1449         /* TODO Check for Duplicate mcast addresses */
1450         vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1451         for (i = 0; i < nb_mc_addr; i++) {
1452                 memcpy(vnic->mc_list + off, &mc_addr_list[i], ETHER_ADDR_LEN);
1453                 off += ETHER_ADDR_LEN;
1454         }
1455
1456         vnic->mc_addr_cnt = i;
1457
1458 allmulti:
1459         return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1460 }
1461
1462 static int
1463 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1464 {
1465         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1466         uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1467         uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1468         uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1469         int ret;
1470
1471         ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1472                         fw_major, fw_minor, fw_updt);
1473
1474         ret += 1; /* add the size of '\0' */
1475         if (fw_size < (uint32_t)ret)
1476                 return ret;
1477         else
1478                 return 0;
1479 }
1480
1481 static void
1482 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1483         struct rte_eth_rxq_info *qinfo)
1484 {
1485         struct bnxt_rx_queue *rxq;
1486
1487         rxq = dev->data->rx_queues[queue_id];
1488
1489         qinfo->mp = rxq->mb_pool;
1490         qinfo->scattered_rx = dev->data->scattered_rx;
1491         qinfo->nb_desc = rxq->nb_rx_desc;
1492
1493         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1494         qinfo->conf.rx_drop_en = 0;
1495         qinfo->conf.rx_deferred_start = 0;
1496 }
1497
1498 static void
1499 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1500         struct rte_eth_txq_info *qinfo)
1501 {
1502         struct bnxt_tx_queue *txq;
1503
1504         txq = dev->data->tx_queues[queue_id];
1505
1506         qinfo->nb_desc = txq->nb_tx_desc;
1507
1508         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1509         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1510         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1511
1512         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1513         qinfo->conf.tx_rs_thresh = 0;
1514         qinfo->conf.txq_flags = txq->txq_flags;
1515         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1516 }
1517
1518 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1519 {
1520         struct bnxt *bp = eth_dev->data->dev_private;
1521         struct rte_eth_dev_info dev_info;
1522         uint32_t max_dev_mtu;
1523         uint32_t rc = 0;
1524         uint32_t i;
1525
1526         bnxt_dev_info_get_op(eth_dev, &dev_info);
1527         max_dev_mtu = dev_info.max_rx_pktlen -
1528                       ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE * 2;
1529
1530         if (new_mtu < ETHER_MIN_MTU || new_mtu > max_dev_mtu) {
1531                 RTE_LOG(ERR, PMD, "MTU requested must be within (%d, %d)\n",
1532                         ETHER_MIN_MTU, max_dev_mtu);
1533                 return -EINVAL;
1534         }
1535
1536
1537         if (new_mtu > ETHER_MTU) {
1538                 bp->flags |= BNXT_FLAG_JUMBO;
1539                 eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
1540         } else {
1541                 eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
1542                 bp->flags &= ~BNXT_FLAG_JUMBO;
1543         }
1544
1545         eth_dev->data->dev_conf.rxmode.max_rx_pkt_len =
1546                 new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1547
1548         eth_dev->data->mtu = new_mtu;
1549         RTE_LOG(INFO, PMD, "New MTU is %d\n", eth_dev->data->mtu);
1550
1551         for (i = 0; i < bp->nr_vnics; i++) {
1552                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1553
1554                 vnic->mru = bp->eth_dev->data->mtu + ETHER_HDR_LEN +
1555                                         ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1556                 rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1557                 if (rc)
1558                         break;
1559
1560                 rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1561                 if (rc)
1562                         return rc;
1563         }
1564
1565         return rc;
1566 }
1567
1568 static int
1569 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1570 {
1571         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1572         uint16_t vlan = bp->vlan;
1573         int rc;
1574
1575         if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1576                 RTE_LOG(ERR, PMD,
1577                         "PVID cannot be modified for this function\n");
1578                 return -ENOTSUP;
1579         }
1580         bp->vlan = on ? pvid : 0;
1581
1582         rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1583         if (rc)
1584                 bp->vlan = vlan;
1585         return rc;
1586 }
1587
1588 static int
1589 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1590 {
1591         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1592
1593         return bnxt_hwrm_port_led_cfg(bp, true);
1594 }
1595
1596 static int
1597 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1598 {
1599         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1600
1601         return bnxt_hwrm_port_led_cfg(bp, false);
1602 }
1603
1604 static uint32_t
1605 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1606 {
1607         uint32_t desc = 0, raw_cons = 0, cons;
1608         struct bnxt_cp_ring_info *cpr;
1609         struct bnxt_rx_queue *rxq;
1610         struct rx_pkt_cmpl *rxcmp;
1611         uint16_t cmp_type;
1612         uint8_t cmp = 1;
1613         bool valid;
1614
1615         rxq = dev->data->rx_queues[rx_queue_id];
1616         cpr = rxq->cp_ring;
1617         valid = cpr->valid;
1618
1619         while (raw_cons < rxq->nb_rx_desc) {
1620                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1621                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1622
1623                 if (!CMPL_VALID(rxcmp, valid))
1624                         goto nothing_to_do;
1625                 valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1626                 cmp_type = CMP_TYPE(rxcmp);
1627                 if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1628                         cmp = (rte_le_to_cpu_32(
1629                                         ((struct rx_tpa_end_cmpl *)
1630                                          (rxcmp))->agg_bufs_v1) &
1631                                RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1632                                 RX_TPA_END_CMPL_AGG_BUFS_SFT;
1633                         desc++;
1634                 } else if (cmp_type == 0x11) {
1635                         desc++;
1636                         cmp = (rxcmp->agg_bufs_v1 &
1637                                    RX_PKT_CMPL_AGG_BUFS_MASK) >>
1638                                 RX_PKT_CMPL_AGG_BUFS_SFT;
1639                 } else {
1640                         cmp = 1;
1641                 }
1642 nothing_to_do:
1643                 raw_cons += cmp ? cmp : 2;
1644         }
1645
1646         return desc;
1647 }
1648
1649 static int
1650 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1651 {
1652         struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1653         struct bnxt_rx_ring_info *rxr;
1654         struct bnxt_cp_ring_info *cpr;
1655         struct bnxt_sw_rx_bd *rx_buf;
1656         struct rx_pkt_cmpl *rxcmp;
1657         uint32_t cons, cp_cons;
1658
1659         if (!rxq)
1660                 return -EINVAL;
1661
1662         cpr = rxq->cp_ring;
1663         rxr = rxq->rx_ring;
1664
1665         if (offset >= rxq->nb_rx_desc)
1666                 return -EINVAL;
1667
1668         cons = RING_CMP(cpr->cp_ring_struct, offset);
1669         cp_cons = cpr->cp_raw_cons;
1670         rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1671
1672         if (cons > cp_cons) {
1673                 if (CMPL_VALID(rxcmp, cpr->valid))
1674                         return RTE_ETH_RX_DESC_DONE;
1675         } else {
1676                 if (CMPL_VALID(rxcmp, !cpr->valid))
1677                         return RTE_ETH_RX_DESC_DONE;
1678         }
1679         rx_buf = &rxr->rx_buf_ring[cons];
1680         if (rx_buf->mbuf == NULL)
1681                 return RTE_ETH_RX_DESC_UNAVAIL;
1682
1683
1684         return RTE_ETH_RX_DESC_AVAIL;
1685 }
1686
1687 static int
1688 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
1689 {
1690         struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
1691         struct bnxt_tx_ring_info *txr;
1692         struct bnxt_cp_ring_info *cpr;
1693         struct bnxt_sw_tx_bd *tx_buf;
1694         struct tx_pkt_cmpl *txcmp;
1695         uint32_t cons, cp_cons;
1696
1697         if (!txq)
1698                 return -EINVAL;
1699
1700         cpr = txq->cp_ring;
1701         txr = txq->tx_ring;
1702
1703         if (offset >= txq->nb_tx_desc)
1704                 return -EINVAL;
1705
1706         cons = RING_CMP(cpr->cp_ring_struct, offset);
1707         txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1708         cp_cons = cpr->cp_raw_cons;
1709
1710         if (cons > cp_cons) {
1711                 if (CMPL_VALID(txcmp, cpr->valid))
1712                         return RTE_ETH_TX_DESC_UNAVAIL;
1713         } else {
1714                 if (CMPL_VALID(txcmp, !cpr->valid))
1715                         return RTE_ETH_TX_DESC_UNAVAIL;
1716         }
1717         tx_buf = &txr->tx_buf_ring[cons];
1718         if (tx_buf->mbuf == NULL)
1719                 return RTE_ETH_TX_DESC_DONE;
1720
1721         return RTE_ETH_TX_DESC_FULL;
1722 }
1723
1724 static struct bnxt_filter_info *
1725 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
1726                                 struct rte_eth_ethertype_filter *efilter,
1727                                 struct bnxt_vnic_info *vnic0,
1728                                 struct bnxt_vnic_info *vnic,
1729                                 int *ret)
1730 {
1731         struct bnxt_filter_info *mfilter = NULL;
1732         int match = 0;
1733         *ret = 0;
1734
1735         if (efilter->ether_type == ETHER_TYPE_IPv4 ||
1736                 efilter->ether_type == ETHER_TYPE_IPv6) {
1737                 RTE_LOG(ERR, PMD, "invalid ether_type(0x%04x) in"
1738                         " ethertype filter.", efilter->ether_type);
1739                 *ret = -EINVAL;
1740                 goto exit;
1741         }
1742         if (efilter->queue >= bp->rx_nr_rings) {
1743                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1744                 *ret = -EINVAL;
1745                 goto exit;
1746         }
1747
1748         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1749         vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1750         if (vnic == NULL) {
1751                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1752                 *ret = -EINVAL;
1753                 goto exit;
1754         }
1755
1756         if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1757                 STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
1758                         if ((!memcmp(efilter->mac_addr.addr_bytes,
1759                                      mfilter->l2_addr, ETHER_ADDR_LEN) &&
1760                              mfilter->flags ==
1761                              HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
1762                              mfilter->ethertype == efilter->ether_type)) {
1763                                 match = 1;
1764                                 break;
1765                         }
1766                 }
1767         } else {
1768                 STAILQ_FOREACH(mfilter, &vnic->filter, next)
1769                         if ((!memcmp(efilter->mac_addr.addr_bytes,
1770                                      mfilter->l2_addr, ETHER_ADDR_LEN) &&
1771                              mfilter->ethertype == efilter->ether_type &&
1772                              mfilter->flags ==
1773                              HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
1774                                 match = 1;
1775                                 break;
1776                         }
1777         }
1778
1779         if (match)
1780                 *ret = -EEXIST;
1781
1782 exit:
1783         return mfilter;
1784 }
1785
1786 static int
1787 bnxt_ethertype_filter(struct rte_eth_dev *dev,
1788                         enum rte_filter_op filter_op,
1789                         void *arg)
1790 {
1791         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1792         struct rte_eth_ethertype_filter *efilter =
1793                         (struct rte_eth_ethertype_filter *)arg;
1794         struct bnxt_filter_info *bfilter, *filter1;
1795         struct bnxt_vnic_info *vnic, *vnic0;
1796         int ret;
1797
1798         if (filter_op == RTE_ETH_FILTER_NOP)
1799                 return 0;
1800
1801         if (arg == NULL) {
1802                 RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
1803                             filter_op);
1804                 return -EINVAL;
1805         }
1806
1807         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1808         vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1809
1810         switch (filter_op) {
1811         case RTE_ETH_FILTER_ADD:
1812                 bnxt_match_and_validate_ether_filter(bp, efilter,
1813                                                         vnic0, vnic, &ret);
1814                 if (ret < 0)
1815                         return ret;
1816
1817                 bfilter = bnxt_get_unused_filter(bp);
1818                 if (bfilter == NULL) {
1819                         RTE_LOG(ERR, PMD,
1820                                 "Not enough resources for a new filter.\n");
1821                         return -ENOMEM;
1822                 }
1823                 bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
1824                 memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
1825                        ETHER_ADDR_LEN);
1826                 memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
1827                        ETHER_ADDR_LEN);
1828                 bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
1829                 bfilter->ethertype = efilter->ether_type;
1830                 bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
1831
1832                 filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
1833                 if (filter1 == NULL) {
1834                         ret = -1;
1835                         goto cleanup;
1836                 }
1837                 bfilter->enables |=
1838                         HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
1839                 bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
1840
1841                 bfilter->dst_id = vnic->fw_vnic_id;
1842
1843                 if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1844                         bfilter->flags =
1845                                 HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
1846                 }
1847
1848                 ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
1849                 if (ret)
1850                         goto cleanup;
1851                 STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
1852                 break;
1853         case RTE_ETH_FILTER_DELETE:
1854                 filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
1855                                                         vnic0, vnic, &ret);
1856                 if (ret == -EEXIST) {
1857                         ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
1858
1859                         STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
1860                                       next);
1861                         bnxt_free_filter(bp, filter1);
1862                 } else if (ret == 0) {
1863                         RTE_LOG(ERR, PMD, "No matching filter found\n");
1864                 }
1865                 break;
1866         default:
1867                 RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
1868                 ret = -EINVAL;
1869                 goto error;
1870         }
1871         return ret;
1872 cleanup:
1873         bnxt_free_filter(bp, bfilter);
1874 error:
1875         return ret;
1876 }
1877
1878 static inline int
1879 parse_ntuple_filter(struct bnxt *bp,
1880                     struct rte_eth_ntuple_filter *nfilter,
1881                     struct bnxt_filter_info *bfilter)
1882 {
1883         uint32_t en = 0;
1884
1885         if (nfilter->queue >= bp->rx_nr_rings) {
1886                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", nfilter->queue);
1887                 return -EINVAL;
1888         }
1889
1890         switch (nfilter->dst_port_mask) {
1891         case UINT16_MAX:
1892                 bfilter->dst_port_mask = -1;
1893                 bfilter->dst_port = nfilter->dst_port;
1894                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
1895                         NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
1896                 break;
1897         default:
1898                 RTE_LOG(ERR, PMD, "invalid dst_port mask.");
1899                 return -EINVAL;
1900         }
1901
1902         bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
1903         en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1904
1905         switch (nfilter->proto_mask) {
1906         case UINT8_MAX:
1907                 if (nfilter->proto == 17) /* IPPROTO_UDP */
1908                         bfilter->ip_protocol = 17;
1909                 else if (nfilter->proto == 6) /* IPPROTO_TCP */
1910                         bfilter->ip_protocol = 6;
1911                 else
1912                         return -EINVAL;
1913                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1914                 break;
1915         default:
1916                 RTE_LOG(ERR, PMD, "invalid protocol mask.");
1917                 return -EINVAL;
1918         }
1919
1920         switch (nfilter->dst_ip_mask) {
1921         case UINT32_MAX:
1922                 bfilter->dst_ipaddr_mask[0] = -1;
1923                 bfilter->dst_ipaddr[0] = nfilter->dst_ip;
1924                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
1925                         NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
1926                 break;
1927         default:
1928                 RTE_LOG(ERR, PMD, "invalid dst_ip mask.");
1929                 return -EINVAL;
1930         }
1931
1932         switch (nfilter->src_ip_mask) {
1933         case UINT32_MAX:
1934                 bfilter->src_ipaddr_mask[0] = -1;
1935                 bfilter->src_ipaddr[0] = nfilter->src_ip;
1936                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
1937                         NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
1938                 break;
1939         default:
1940                 RTE_LOG(ERR, PMD, "invalid src_ip mask.");
1941                 return -EINVAL;
1942         }
1943
1944         switch (nfilter->src_port_mask) {
1945         case UINT16_MAX:
1946                 bfilter->src_port_mask = -1;
1947                 bfilter->src_port = nfilter->src_port;
1948                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
1949                         NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
1950                 break;
1951         default:
1952                 RTE_LOG(ERR, PMD, "invalid src_port mask.");
1953                 return -EINVAL;
1954         }
1955
1956         //TODO Priority
1957         //nfilter->priority = (uint8_t)filter->priority;
1958
1959         bfilter->enables = en;
1960         return 0;
1961 }
1962
1963 static struct bnxt_filter_info*
1964 bnxt_match_ntuple_filter(struct bnxt *bp,
1965                          struct bnxt_filter_info *bfilter)
1966 {
1967         struct bnxt_filter_info *mfilter = NULL;
1968         int i;
1969
1970         for (i = bp->nr_vnics - 1; i >= 0; i--) {
1971                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1972                 STAILQ_FOREACH(mfilter, &vnic->filter, next) {
1973                         if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
1974                             bfilter->src_ipaddr_mask[0] ==
1975                             mfilter->src_ipaddr_mask[0] &&
1976                             bfilter->src_port == mfilter->src_port &&
1977                             bfilter->src_port_mask == mfilter->src_port_mask &&
1978                             bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
1979                             bfilter->dst_ipaddr_mask[0] ==
1980                             mfilter->dst_ipaddr_mask[0] &&
1981                             bfilter->dst_port == mfilter->dst_port &&
1982                             bfilter->dst_port_mask == mfilter->dst_port_mask &&
1983                             bfilter->flags == mfilter->flags &&
1984                             bfilter->enables == mfilter->enables)
1985                                 return mfilter;
1986                 }
1987         }
1988         return NULL;
1989 }
1990
1991 static int
1992 bnxt_cfg_ntuple_filter(struct bnxt *bp,
1993                        struct rte_eth_ntuple_filter *nfilter,
1994                        enum rte_filter_op filter_op)
1995 {
1996         struct bnxt_filter_info *bfilter, *mfilter, *filter1;
1997         struct bnxt_vnic_info *vnic, *vnic0;
1998         int ret;
1999
2000         if (nfilter->flags != RTE_5TUPLE_FLAGS) {
2001                 RTE_LOG(ERR, PMD, "only 5tuple is supported.");
2002                 return -EINVAL;
2003         }
2004
2005         if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
2006                 RTE_LOG(ERR, PMD, "Ntuple filter: TCP flags not supported\n");
2007                 return -EINVAL;
2008         }
2009
2010         bfilter = bnxt_get_unused_filter(bp);
2011         if (bfilter == NULL) {
2012                 RTE_LOG(ERR, PMD,
2013                         "Not enough resources for a new filter.\n");
2014                 return -ENOMEM;
2015         }
2016         ret = parse_ntuple_filter(bp, nfilter, bfilter);
2017         if (ret < 0)
2018                 goto free_filter;
2019
2020         vnic = STAILQ_FIRST(&bp->ff_pool[nfilter->queue]);
2021         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2022         filter1 = STAILQ_FIRST(&vnic0->filter);
2023         if (filter1 == NULL) {
2024                 ret = -1;
2025                 goto free_filter;
2026         }
2027
2028         bfilter->dst_id = vnic->fw_vnic_id;
2029         bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2030         bfilter->enables |=
2031                 HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2032         bfilter->ethertype = 0x800;
2033         bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2034
2035         mfilter = bnxt_match_ntuple_filter(bp, bfilter);
2036
2037         if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2038                 RTE_LOG(ERR, PMD, "filter exists.");
2039                 ret = -EEXIST;
2040                 goto free_filter;
2041         }
2042         if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2043                 RTE_LOG(ERR, PMD, "filter doesn't exist.");
2044                 ret = -ENOENT;
2045                 goto free_filter;
2046         }
2047
2048         if (filter_op == RTE_ETH_FILTER_ADD) {
2049                 bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2050                 ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2051                 if (ret)
2052                         goto free_filter;
2053                 STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2054         } else {
2055                 if (mfilter == NULL) {
2056                         /* This should not happen. But for Coverity! */
2057                         ret = -ENOENT;
2058                         goto free_filter;
2059                 }
2060                 ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2061
2062                 STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info,
2063                               next);
2064                 bnxt_free_filter(bp, mfilter);
2065                 bfilter->fw_l2_filter_id = -1;
2066                 bnxt_free_filter(bp, bfilter);
2067         }
2068
2069         return 0;
2070 free_filter:
2071         bfilter->fw_l2_filter_id = -1;
2072         bnxt_free_filter(bp, bfilter);
2073         return ret;
2074 }
2075
2076 static int
2077 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2078                         enum rte_filter_op filter_op,
2079                         void *arg)
2080 {
2081         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2082         int ret;
2083
2084         if (filter_op == RTE_ETH_FILTER_NOP)
2085                 return 0;
2086
2087         if (arg == NULL) {
2088                 RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
2089                             filter_op);
2090                 return -EINVAL;
2091         }
2092
2093         switch (filter_op) {
2094         case RTE_ETH_FILTER_ADD:
2095                 ret = bnxt_cfg_ntuple_filter(bp,
2096                         (struct rte_eth_ntuple_filter *)arg,
2097                         filter_op);
2098                 break;
2099         case RTE_ETH_FILTER_DELETE:
2100                 ret = bnxt_cfg_ntuple_filter(bp,
2101                         (struct rte_eth_ntuple_filter *)arg,
2102                         filter_op);
2103                 break;
2104         default:
2105                 RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
2106                 ret = -EINVAL;
2107                 break;
2108         }
2109         return ret;
2110 }
2111
2112 static int
2113 bnxt_parse_fdir_filter(struct bnxt *bp,
2114                        struct rte_eth_fdir_filter *fdir,
2115                        struct bnxt_filter_info *filter)
2116 {
2117         enum rte_fdir_mode fdir_mode =
2118                 bp->eth_dev->data->dev_conf.fdir_conf.mode;
2119         struct bnxt_vnic_info *vnic0, *vnic;
2120         struct bnxt_filter_info *filter1;
2121         uint32_t en = 0;
2122         int i;
2123
2124         if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2125                 return -EINVAL;
2126
2127         filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2128         en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2129
2130         switch (fdir->input.flow_type) {
2131         case RTE_ETH_FLOW_IPV4:
2132         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2133                 /* FALLTHROUGH */
2134                 filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2135                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2136                 filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2137                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2138                 filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2139                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2140                 filter->ip_addr_type =
2141                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2142                 filter->src_ipaddr_mask[0] = 0xffffffff;
2143                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2144                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2145                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2146                 filter->ethertype = 0x800;
2147                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2148                 break;
2149         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2150                 filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2151                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2152                 filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2153                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2154                 filter->dst_port_mask = 0xffff;
2155                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2156                 filter->src_port_mask = 0xffff;
2157                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2158                 filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2159                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2160                 filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2161                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2162                 filter->ip_protocol = 6;
2163                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2164                 filter->ip_addr_type =
2165                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2166                 filter->src_ipaddr_mask[0] = 0xffffffff;
2167                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2168                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2169                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2170                 filter->ethertype = 0x800;
2171                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2172                 break;
2173         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2174                 filter->src_port = fdir->input.flow.udp4_flow.src_port;
2175                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2176                 filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2177                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2178                 filter->dst_port_mask = 0xffff;
2179                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2180                 filter->src_port_mask = 0xffff;
2181                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2182                 filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2183                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2184                 filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2185                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2186                 filter->ip_protocol = 17;
2187                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2188                 filter->ip_addr_type =
2189                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2190                 filter->src_ipaddr_mask[0] = 0xffffffff;
2191                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2192                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2193                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2194                 filter->ethertype = 0x800;
2195                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2196                 break;
2197         case RTE_ETH_FLOW_IPV6:
2198         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2199                 /* FALLTHROUGH */
2200                 filter->ip_addr_type =
2201                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2202                 filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2203                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2204                 rte_memcpy(filter->src_ipaddr,
2205                            fdir->input.flow.ipv6_flow.src_ip, 16);
2206                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2207                 rte_memcpy(filter->dst_ipaddr,
2208                            fdir->input.flow.ipv6_flow.dst_ip, 16);
2209                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2210                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2211                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2212                 memset(filter->src_ipaddr_mask, 0xff, 16);
2213                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2214                 filter->ethertype = 0x86dd;
2215                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2216                 break;
2217         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2218                 filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2219                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2220                 filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2221                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2222                 filter->dst_port_mask = 0xffff;
2223                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2224                 filter->src_port_mask = 0xffff;
2225                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2226                 filter->ip_addr_type =
2227                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2228                 filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2229                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2230                 rte_memcpy(filter->src_ipaddr,
2231                            fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2232                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2233                 rte_memcpy(filter->dst_ipaddr,
2234                            fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2235                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2236                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2237                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2238                 memset(filter->src_ipaddr_mask, 0xff, 16);
2239                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2240                 filter->ethertype = 0x86dd;
2241                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2242                 break;
2243         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2244                 filter->src_port = fdir->input.flow.udp6_flow.src_port;
2245                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2246                 filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2247                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2248                 filter->dst_port_mask = 0xffff;
2249                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2250                 filter->src_port_mask = 0xffff;
2251                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2252                 filter->ip_addr_type =
2253                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2254                 filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2255                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2256                 rte_memcpy(filter->src_ipaddr,
2257                            fdir->input.flow.udp6_flow.ip.src_ip, 16);
2258                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2259                 rte_memcpy(filter->dst_ipaddr,
2260                            fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2261                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2262                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2263                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2264                 memset(filter->src_ipaddr_mask, 0xff, 16);
2265                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2266                 filter->ethertype = 0x86dd;
2267                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2268                 break;
2269         case RTE_ETH_FLOW_L2_PAYLOAD:
2270                 filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2271                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2272                 break;
2273         case RTE_ETH_FLOW_VXLAN:
2274                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2275                         return -EINVAL;
2276                 filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2277                 filter->tunnel_type =
2278                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2279                 en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2280                 break;
2281         case RTE_ETH_FLOW_NVGRE:
2282                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2283                         return -EINVAL;
2284                 filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2285                 filter->tunnel_type =
2286                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2287                 en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2288                 break;
2289         case RTE_ETH_FLOW_UNKNOWN:
2290         case RTE_ETH_FLOW_RAW:
2291         case RTE_ETH_FLOW_FRAG_IPV4:
2292         case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2293         case RTE_ETH_FLOW_FRAG_IPV6:
2294         case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2295         case RTE_ETH_FLOW_IPV6_EX:
2296         case RTE_ETH_FLOW_IPV6_TCP_EX:
2297         case RTE_ETH_FLOW_IPV6_UDP_EX:
2298         case RTE_ETH_FLOW_GENEVE:
2299                 /* FALLTHROUGH */
2300         default:
2301                 return -EINVAL;
2302         }
2303
2304         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2305         vnic = STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2306         if (vnic == NULL) {
2307                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", fdir->action.rx_queue);
2308                 return -EINVAL;
2309         }
2310
2311
2312         if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2313                 rte_memcpy(filter->dst_macaddr,
2314                         fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2315                         en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2316         }
2317
2318         if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2319                 filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2320                 filter1 = STAILQ_FIRST(&vnic0->filter);
2321                 //filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2322         } else {
2323                 filter->dst_id = vnic->fw_vnic_id;
2324                 for (i = 0; i < ETHER_ADDR_LEN; i++)
2325                         if (filter->dst_macaddr[i] == 0x00)
2326                                 filter1 = STAILQ_FIRST(&vnic0->filter);
2327                         else
2328                                 filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2329         }
2330
2331         if (filter1 == NULL)
2332                 return -EINVAL;
2333
2334         en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2335         filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2336
2337         filter->enables = en;
2338
2339         return 0;
2340 }
2341
2342 static struct bnxt_filter_info *
2343 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf)
2344 {
2345         struct bnxt_filter_info *mf = NULL;
2346         int i;
2347
2348         for (i = bp->nr_vnics - 1; i >= 0; i--) {
2349                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2350
2351                 STAILQ_FOREACH(mf, &vnic->filter, next) {
2352                         if (mf->filter_type == nf->filter_type &&
2353                             mf->flags == nf->flags &&
2354                             mf->src_port == nf->src_port &&
2355                             mf->src_port_mask == nf->src_port_mask &&
2356                             mf->dst_port == nf->dst_port &&
2357                             mf->dst_port_mask == nf->dst_port_mask &&
2358                             mf->ip_protocol == nf->ip_protocol &&
2359                             mf->ip_addr_type == nf->ip_addr_type &&
2360                             mf->ethertype == nf->ethertype &&
2361                             mf->vni == nf->vni &&
2362                             mf->tunnel_type == nf->tunnel_type &&
2363                             mf->l2_ovlan == nf->l2_ovlan &&
2364                             mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2365                             mf->l2_ivlan == nf->l2_ivlan &&
2366                             mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2367                             !memcmp(mf->l2_addr, nf->l2_addr, ETHER_ADDR_LEN) &&
2368                             !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2369                                     ETHER_ADDR_LEN) &&
2370                             !memcmp(mf->src_macaddr, nf->src_macaddr,
2371                                     ETHER_ADDR_LEN) &&
2372                             !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2373                                     ETHER_ADDR_LEN) &&
2374                             !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2375                                     sizeof(nf->src_ipaddr)) &&
2376                             !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2377                                     sizeof(nf->src_ipaddr_mask)) &&
2378                             !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2379                                     sizeof(nf->dst_ipaddr)) &&
2380                             !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2381                                     sizeof(nf->dst_ipaddr_mask)))
2382                                 return mf;
2383                 }
2384         }
2385         return NULL;
2386 }
2387
2388 static int
2389 bnxt_fdir_filter(struct rte_eth_dev *dev,
2390                  enum rte_filter_op filter_op,
2391                  void *arg)
2392 {
2393         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2394         struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2395         struct bnxt_filter_info *filter, *match;
2396         struct bnxt_vnic_info *vnic;
2397         int ret = 0, i;
2398
2399         if (filter_op == RTE_ETH_FILTER_NOP)
2400                 return 0;
2401
2402         if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2403                 return -EINVAL;
2404
2405         switch (filter_op) {
2406         case RTE_ETH_FILTER_ADD:
2407         case RTE_ETH_FILTER_DELETE:
2408                 /* FALLTHROUGH */
2409                 filter = bnxt_get_unused_filter(bp);
2410                 if (filter == NULL) {
2411                         RTE_LOG(ERR, PMD,
2412                                 "Not enough resources for a new flow.\n");
2413                         return -ENOMEM;
2414                 }
2415
2416                 ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2417                 if (ret != 0)
2418                         goto free_filter;
2419                 filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2420
2421                 match = bnxt_match_fdir(bp, filter);
2422                 if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2423                         RTE_LOG(ERR, PMD, "Flow already exists.\n");
2424                         ret = -EEXIST;
2425                         goto free_filter;
2426                 }
2427                 if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2428                         RTE_LOG(ERR, PMD, "Flow does not exist.\n");
2429                         ret = -ENOENT;
2430                         goto free_filter;
2431                 }
2432
2433                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2434                         vnic = STAILQ_FIRST(&bp->ff_pool[0]);
2435                 else
2436                         vnic =
2437                         STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2438
2439                 if (filter_op == RTE_ETH_FILTER_ADD) {
2440                         ret = bnxt_hwrm_set_ntuple_filter(bp,
2441                                                           filter->dst_id,
2442                                                           filter);
2443                         if (ret)
2444                                 goto free_filter;
2445                         STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2446                 } else {
2447                         ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2448                         STAILQ_REMOVE(&vnic->filter, match,
2449                                       bnxt_filter_info, next);
2450                         bnxt_free_filter(bp, match);
2451                         filter->fw_l2_filter_id = -1;
2452                         bnxt_free_filter(bp, filter);
2453                 }
2454                 break;
2455         case RTE_ETH_FILTER_FLUSH:
2456                 for (i = bp->nr_vnics - 1; i >= 0; i--) {
2457                         struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2458
2459                         STAILQ_FOREACH(filter, &vnic->filter, next) {
2460                                 if (filter->filter_type ==
2461                                     HWRM_CFA_NTUPLE_FILTER) {
2462                                         ret =
2463                                         bnxt_hwrm_clear_ntuple_filter(bp,
2464                                                                       filter);
2465                                         STAILQ_REMOVE(&vnic->filter, filter,
2466                                                       bnxt_filter_info, next);
2467                                 }
2468                         }
2469                 }
2470                 return ret;
2471         case RTE_ETH_FILTER_UPDATE:
2472         case RTE_ETH_FILTER_STATS:
2473         case RTE_ETH_FILTER_INFO:
2474                 /* FALLTHROUGH */
2475                 RTE_LOG(ERR, PMD, "operation %u not implemented", filter_op);
2476                 break;
2477         default:
2478                 RTE_LOG(ERR, PMD, "unknown operation %u", filter_op);
2479                 ret = -EINVAL;
2480                 break;
2481         }
2482         return ret;
2483
2484 free_filter:
2485         filter->fw_l2_filter_id = -1;
2486         bnxt_free_filter(bp, filter);
2487         return ret;
2488 }
2489
2490 static int
2491 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2492                     enum rte_filter_type filter_type,
2493                     enum rte_filter_op filter_op, void *arg)
2494 {
2495         int ret = 0;
2496
2497         switch (filter_type) {
2498         case RTE_ETH_FILTER_TUNNEL:
2499                 RTE_LOG(ERR, PMD,
2500                         "filter type: %d: To be implemented\n", filter_type);
2501                 break;
2502         case RTE_ETH_FILTER_FDIR:
2503                 ret = bnxt_fdir_filter(dev, filter_op, arg);
2504                 break;
2505         case RTE_ETH_FILTER_NTUPLE:
2506                 ret = bnxt_ntuple_filter(dev, filter_op, arg);
2507                 break;
2508         case RTE_ETH_FILTER_ETHERTYPE:
2509                 ret = bnxt_ethertype_filter(dev, filter_op, arg);
2510                 break;
2511         case RTE_ETH_FILTER_GENERIC:
2512                 if (filter_op != RTE_ETH_FILTER_GET)
2513                         return -EINVAL;
2514                 *(const void **)arg = &bnxt_flow_ops;
2515                 break;
2516         default:
2517                 RTE_LOG(ERR, PMD,
2518                         "Filter type (%d) not supported", filter_type);
2519                 ret = -EINVAL;
2520                 break;
2521         }
2522         return ret;
2523 }
2524
2525 static const uint32_t *
2526 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2527 {
2528         static const uint32_t ptypes[] = {
2529                 RTE_PTYPE_L2_ETHER_VLAN,
2530                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2531                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2532                 RTE_PTYPE_L4_ICMP,
2533                 RTE_PTYPE_L4_TCP,
2534                 RTE_PTYPE_L4_UDP,
2535                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2536                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2537                 RTE_PTYPE_INNER_L4_ICMP,
2538                 RTE_PTYPE_INNER_L4_TCP,
2539                 RTE_PTYPE_INNER_L4_UDP,
2540                 RTE_PTYPE_UNKNOWN
2541         };
2542
2543         if (dev->rx_pkt_burst == bnxt_recv_pkts)
2544                 return ptypes;
2545         return NULL;
2546 }
2547
2548 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
2549                          int reg_win)
2550 {
2551         uint32_t reg_base = *reg_arr & 0xfffff000;
2552         uint32_t win_off;
2553         int i;
2554
2555         for (i = 0; i < count; i++) {
2556                 if ((reg_arr[i] & 0xfffff000) != reg_base)
2557                         return -ERANGE;
2558         }
2559         win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
2560         rte_cpu_to_le_32(rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off));
2561         return 0;
2562 }
2563
2564 static int bnxt_map_ptp_regs(struct bnxt *bp)
2565 {
2566         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2567         uint32_t *reg_arr;
2568         int rc, i;
2569
2570         reg_arr = ptp->rx_regs;
2571         rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
2572         if (rc)
2573                 return rc;
2574
2575         reg_arr = ptp->tx_regs;
2576         rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
2577         if (rc)
2578                 return rc;
2579
2580         for (i = 0; i < BNXT_PTP_RX_REGS; i++)
2581                 ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
2582
2583         for (i = 0; i < BNXT_PTP_TX_REGS; i++)
2584                 ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
2585
2586         return 0;
2587 }
2588
2589 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
2590 {
2591         rte_cpu_to_le_32(rte_write32(0, (uint8_t *)bp->bar0 +
2592                          BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16));
2593         rte_cpu_to_le_32(rte_write32(0, (uint8_t *)bp->bar0 +
2594                          BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20));
2595 }
2596
2597 static uint64_t bnxt_cc_read(struct bnxt *bp)
2598 {
2599         uint64_t ns;
2600
2601         ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2602                               BNXT_GRCPF_REG_SYNC_TIME));
2603         ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2604                                           BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
2605         return ns;
2606 }
2607
2608 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
2609 {
2610         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2611         uint32_t fifo;
2612
2613         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2614                                 ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2615         if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
2616                 return -EAGAIN;
2617
2618         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2619                                 ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2620         *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2621                                 ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
2622         *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2623                                 ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
2624
2625         return 0;
2626 }
2627
2628 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
2629 {
2630         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2631         struct bnxt_pf_info *pf = &bp->pf;
2632         uint16_t port_id;
2633         uint32_t fifo;
2634
2635         if (!ptp)
2636                 return -ENODEV;
2637
2638         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2639                                 ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2640         if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
2641                 return -EAGAIN;
2642
2643         port_id = pf->port_id;
2644         rte_cpu_to_le_32(rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
2645                ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]));
2646
2647         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2648                                    ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2649         if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
2650 /*              bnxt_clr_rx_ts(bp);       TBD  */
2651                 return -EBUSY;
2652         }
2653
2654         *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2655                                 ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
2656         *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2657                                 ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
2658
2659         return 0;
2660 }
2661
2662 static int
2663 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
2664 {
2665         uint64_t ns;
2666         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2667         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2668
2669         if (!ptp)
2670                 return 0;
2671
2672         ns = rte_timespec_to_ns(ts);
2673         /* Set the timecounters to a new value. */
2674         ptp->tc.nsec = ns;
2675
2676         return 0;
2677 }
2678
2679 static int
2680 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
2681 {
2682         uint64_t ns, systime_cycles;
2683         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2684         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2685
2686         if (!ptp)
2687                 return 0;
2688
2689         systime_cycles = bnxt_cc_read(bp);
2690         ns = rte_timecounter_update(&ptp->tc, systime_cycles);
2691         *ts = rte_ns_to_timespec(ns);
2692
2693         return 0;
2694 }
2695 static int
2696 bnxt_timesync_enable(struct rte_eth_dev *dev)
2697 {
2698         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2699         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2700         uint32_t shift = 0;
2701
2702         if (!ptp)
2703                 return 0;
2704
2705         ptp->rx_filter = 1;
2706         ptp->tx_tstamp_en = 1;
2707         ptp->rxctl = BNXT_PTP_MSG_EVENTS;
2708
2709         if (!bnxt_hwrm_ptp_cfg(bp))
2710                 bnxt_map_ptp_regs(bp);
2711
2712         memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
2713         memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2714         memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2715
2716         ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2717         ptp->tc.cc_shift = shift;
2718         ptp->tc.nsec_mask = (1ULL << shift) - 1;
2719
2720         ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2721         ptp->rx_tstamp_tc.cc_shift = shift;
2722         ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2723
2724         ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2725         ptp->tx_tstamp_tc.cc_shift = shift;
2726         ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2727
2728         return 0;
2729 }
2730
2731 static int
2732 bnxt_timesync_disable(struct rte_eth_dev *dev)
2733 {
2734         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2735         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2736
2737         if (!ptp)
2738                 return 0;
2739
2740         ptp->rx_filter = 0;
2741         ptp->tx_tstamp_en = 0;
2742         ptp->rxctl = 0;
2743
2744         bnxt_hwrm_ptp_cfg(bp);
2745
2746         bnxt_unmap_ptp_regs(bp);
2747
2748         return 0;
2749 }
2750
2751 static int
2752 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
2753                                  struct timespec *timestamp,
2754                                  uint32_t flags __rte_unused)
2755 {
2756         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2757         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2758         uint64_t rx_tstamp_cycles = 0;
2759         uint64_t ns;
2760
2761         if (!ptp)
2762                 return 0;
2763
2764         bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
2765         ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
2766         *timestamp = rte_ns_to_timespec(ns);
2767         return  0;
2768 }
2769
2770 static int
2771 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
2772                                  struct timespec *timestamp)
2773 {
2774         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2775         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2776         uint64_t tx_tstamp_cycles = 0;
2777         uint64_t ns;
2778
2779         if (!ptp)
2780                 return 0;
2781
2782         bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
2783         ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
2784         *timestamp = rte_ns_to_timespec(ns);
2785
2786         return 0;
2787 }
2788
2789 static int
2790 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
2791 {
2792         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2793         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2794
2795         if (!ptp)
2796                 return 0;
2797
2798         ptp->tc.nsec += delta;
2799
2800         return 0;
2801 }
2802
2803 static int
2804 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
2805 {
2806         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2807         int rc;
2808         uint32_t dir_entries;
2809         uint32_t entry_length;
2810
2811         RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x\n",
2812                 __func__, bp->pdev->addr.domain, bp->pdev->addr.bus,
2813                 bp->pdev->addr.devid, bp->pdev->addr.function);
2814
2815         rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
2816         if (rc != 0)
2817                 return rc;
2818
2819         return dir_entries * entry_length;
2820 }
2821
2822 static int
2823 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
2824                 struct rte_dev_eeprom_info *in_eeprom)
2825 {
2826         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2827         uint32_t index;
2828         uint32_t offset;
2829
2830         RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2831                 "len = %d\n", __func__, bp->pdev->addr.domain,
2832                 bp->pdev->addr.bus, bp->pdev->addr.devid,
2833                 bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2834
2835         if (in_eeprom->offset == 0) /* special offset value to get directory */
2836                 return bnxt_get_nvram_directory(bp, in_eeprom->length,
2837                                                 in_eeprom->data);
2838
2839         index = in_eeprom->offset >> 24;
2840         offset = in_eeprom->offset & 0xffffff;
2841
2842         if (index != 0)
2843                 return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
2844                                            in_eeprom->length, in_eeprom->data);
2845
2846         return 0;
2847 }
2848
2849 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
2850 {
2851         switch (dir_type) {
2852         case BNX_DIR_TYPE_CHIMP_PATCH:
2853         case BNX_DIR_TYPE_BOOTCODE:
2854         case BNX_DIR_TYPE_BOOTCODE_2:
2855         case BNX_DIR_TYPE_APE_FW:
2856         case BNX_DIR_TYPE_APE_PATCH:
2857         case BNX_DIR_TYPE_KONG_FW:
2858         case BNX_DIR_TYPE_KONG_PATCH:
2859         case BNX_DIR_TYPE_BONO_FW:
2860         case BNX_DIR_TYPE_BONO_PATCH:
2861                 return true;
2862         }
2863
2864         return false;
2865 }
2866
2867 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
2868 {
2869         switch (dir_type) {
2870         case BNX_DIR_TYPE_AVS:
2871         case BNX_DIR_TYPE_EXP_ROM_MBA:
2872         case BNX_DIR_TYPE_PCIE:
2873         case BNX_DIR_TYPE_TSCF_UCODE:
2874         case BNX_DIR_TYPE_EXT_PHY:
2875         case BNX_DIR_TYPE_CCM:
2876         case BNX_DIR_TYPE_ISCSI_BOOT:
2877         case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
2878         case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
2879                 return true;
2880         }
2881
2882         return false;
2883 }
2884
2885 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
2886 {
2887         return bnxt_dir_type_is_ape_bin_format(dir_type) ||
2888                 bnxt_dir_type_is_other_exec_format(dir_type);
2889 }
2890
2891 static int
2892 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
2893                 struct rte_dev_eeprom_info *in_eeprom)
2894 {
2895         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2896         uint8_t index, dir_op;
2897         uint16_t type, ext, ordinal, attr;
2898
2899         RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2900                 "len = %d\n", __func__, bp->pdev->addr.domain,
2901                 bp->pdev->addr.bus, bp->pdev->addr.devid,
2902                 bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2903
2904         if (!BNXT_PF(bp)) {
2905                 RTE_LOG(ERR, PMD, "NVM write not supported from a VF\n");
2906                 return -EINVAL;
2907         }
2908
2909         type = in_eeprom->magic >> 16;
2910
2911         if (type == 0xffff) { /* special value for directory operations */
2912                 index = in_eeprom->magic & 0xff;
2913                 dir_op = in_eeprom->magic >> 8;
2914                 if (index == 0)
2915                         return -EINVAL;
2916                 switch (dir_op) {
2917                 case 0x0e: /* erase */
2918                         if (in_eeprom->offset != ~in_eeprom->magic)
2919                                 return -EINVAL;
2920                         return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
2921                 default:
2922                         return -EINVAL;
2923                 }
2924         }
2925
2926         /* Create or re-write an NVM item: */
2927         if (bnxt_dir_type_is_executable(type) == true)
2928                 return -EOPNOTSUPP;
2929         ext = in_eeprom->magic & 0xffff;
2930         ordinal = in_eeprom->offset >> 16;
2931         attr = in_eeprom->offset & 0xffff;
2932
2933         return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
2934                                      in_eeprom->data, in_eeprom->length);
2935         return 0;
2936 }
2937
2938 /*
2939  * Initialization
2940  */
2941
2942 static const struct eth_dev_ops bnxt_dev_ops = {
2943         .dev_infos_get = bnxt_dev_info_get_op,
2944         .dev_close = bnxt_dev_close_op,
2945         .dev_configure = bnxt_dev_configure_op,
2946         .dev_start = bnxt_dev_start_op,
2947         .dev_stop = bnxt_dev_stop_op,
2948         .dev_set_link_up = bnxt_dev_set_link_up_op,
2949         .dev_set_link_down = bnxt_dev_set_link_down_op,
2950         .stats_get = bnxt_stats_get_op,
2951         .stats_reset = bnxt_stats_reset_op,
2952         .rx_queue_setup = bnxt_rx_queue_setup_op,
2953         .rx_queue_release = bnxt_rx_queue_release_op,
2954         .tx_queue_setup = bnxt_tx_queue_setup_op,
2955         .tx_queue_release = bnxt_tx_queue_release_op,
2956         .rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
2957         .rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
2958         .reta_update = bnxt_reta_update_op,
2959         .reta_query = bnxt_reta_query_op,
2960         .rss_hash_update = bnxt_rss_hash_update_op,
2961         .rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
2962         .link_update = bnxt_link_update_op,
2963         .promiscuous_enable = bnxt_promiscuous_enable_op,
2964         .promiscuous_disable = bnxt_promiscuous_disable_op,
2965         .allmulticast_enable = bnxt_allmulticast_enable_op,
2966         .allmulticast_disable = bnxt_allmulticast_disable_op,
2967         .mac_addr_add = bnxt_mac_addr_add_op,
2968         .mac_addr_remove = bnxt_mac_addr_remove_op,
2969         .flow_ctrl_get = bnxt_flow_ctrl_get_op,
2970         .flow_ctrl_set = bnxt_flow_ctrl_set_op,
2971         .udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
2972         .udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
2973         .vlan_filter_set = bnxt_vlan_filter_set_op,
2974         .vlan_offload_set = bnxt_vlan_offload_set_op,
2975         .vlan_pvid_set = bnxt_vlan_pvid_set_op,
2976         .mtu_set = bnxt_mtu_set_op,
2977         .mac_addr_set = bnxt_set_default_mac_addr_op,
2978         .xstats_get = bnxt_dev_xstats_get_op,
2979         .xstats_get_names = bnxt_dev_xstats_get_names_op,
2980         .xstats_reset = bnxt_dev_xstats_reset_op,
2981         .fw_version_get = bnxt_fw_version_get,
2982         .set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
2983         .rxq_info_get = bnxt_rxq_info_get_op,
2984         .txq_info_get = bnxt_txq_info_get_op,
2985         .dev_led_on = bnxt_dev_led_on_op,
2986         .dev_led_off = bnxt_dev_led_off_op,
2987         .xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
2988         .xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
2989         .rx_queue_count = bnxt_rx_queue_count_op,
2990         .rx_descriptor_status = bnxt_rx_descriptor_status_op,
2991         .tx_descriptor_status = bnxt_tx_descriptor_status_op,
2992         .filter_ctrl = bnxt_filter_ctrl_op,
2993         .dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
2994         .get_eeprom_length    = bnxt_get_eeprom_length_op,
2995         .get_eeprom           = bnxt_get_eeprom_op,
2996         .set_eeprom           = bnxt_set_eeprom_op,
2997         .timesync_enable      = bnxt_timesync_enable,
2998         .timesync_disable     = bnxt_timesync_disable,
2999         .timesync_read_time   = bnxt_timesync_read_time,
3000         .timesync_write_time   = bnxt_timesync_write_time,
3001         .timesync_adjust_time = bnxt_timesync_adjust_time,
3002         .timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
3003         .timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
3004 };
3005
3006 static bool bnxt_vf_pciid(uint16_t id)
3007 {
3008         if (id == BROADCOM_DEV_ID_57304_VF ||
3009             id == BROADCOM_DEV_ID_57406_VF ||
3010             id == BROADCOM_DEV_ID_5731X_VF ||
3011             id == BROADCOM_DEV_ID_5741X_VF ||
3012             id == BROADCOM_DEV_ID_57414_VF ||
3013             id == BROADCOM_DEV_ID_STRATUS_NIC_VF)
3014                 return true;
3015         return false;
3016 }
3017
3018 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
3019 {
3020         struct bnxt *bp = eth_dev->data->dev_private;
3021         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3022         int rc;
3023
3024         /* enable device (incl. PCI PM wakeup), and bus-mastering */
3025         if (!pci_dev->mem_resource[0].addr) {
3026                 RTE_LOG(ERR, PMD,
3027                         "Cannot find PCI device base address, aborting\n");
3028                 rc = -ENODEV;
3029                 goto init_err_disable;
3030         }
3031
3032         bp->eth_dev = eth_dev;
3033         bp->pdev = pci_dev;
3034
3035         bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
3036         if (!bp->bar0) {
3037                 RTE_LOG(ERR, PMD, "Cannot map device registers, aborting\n");
3038                 rc = -ENOMEM;
3039                 goto init_err_release;
3040         }
3041         return 0;
3042
3043 init_err_release:
3044         if (bp->bar0)
3045                 bp->bar0 = NULL;
3046
3047 init_err_disable:
3048
3049         return rc;
3050 }
3051
3052 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
3053
3054 #define ALLOW_FUNC(x)   \
3055         { \
3056                 typeof(x) arg = (x); \
3057                 bp->pf.vf_req_fwd[((arg) >> 5)] &= \
3058                 ~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
3059         }
3060 static int
3061 bnxt_dev_init(struct rte_eth_dev *eth_dev)
3062 {
3063         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3064         char mz_name[RTE_MEMZONE_NAMESIZE];
3065         const struct rte_memzone *mz = NULL;
3066         static int version_printed;
3067         uint32_t total_alloc_len;
3068         rte_iova_t mz_phys_addr;
3069         struct bnxt *bp;
3070         int rc;
3071
3072         if (version_printed++ == 0)
3073                 RTE_LOG(INFO, PMD, "%s\n", bnxt_version);
3074
3075         rte_eth_copy_pci_info(eth_dev, pci_dev);
3076
3077         bp = eth_dev->data->dev_private;
3078
3079         rte_atomic64_init(&bp->rx_mbuf_alloc_fail);
3080         bp->dev_stopped = 1;
3081
3082         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3083                 goto skip_init;
3084
3085         if (bnxt_vf_pciid(pci_dev->id.device_id))
3086                 bp->flags |= BNXT_FLAG_VF;
3087
3088         rc = bnxt_init_board(eth_dev);
3089         if (rc) {
3090                 RTE_LOG(ERR, PMD,
3091                         "Board initialization failed rc: %x\n", rc);
3092                 goto error;
3093         }
3094 skip_init:
3095         eth_dev->dev_ops = &bnxt_dev_ops;
3096         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3097                 return 0;
3098         eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
3099         eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
3100
3101         if (BNXT_PF(bp) && pci_dev->id.device_id != BROADCOM_DEV_ID_NS2) {
3102                 snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3103                          "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3104                          pci_dev->addr.bus, pci_dev->addr.devid,
3105                          pci_dev->addr.function, "rx_port_stats");
3106                 mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3107                 mz = rte_memzone_lookup(mz_name);
3108                 total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3109                                 sizeof(struct rx_port_stats) + 512);
3110                 if (!mz) {
3111                         mz = rte_memzone_reserve(mz_name, total_alloc_len,
3112                                                  SOCKET_ID_ANY,
3113                                                  RTE_MEMZONE_2MB |
3114                                                  RTE_MEMZONE_SIZE_HINT_ONLY);
3115                         if (mz == NULL)
3116                                 return -ENOMEM;
3117                 }
3118                 memset(mz->addr, 0, mz->len);
3119                 mz_phys_addr = mz->iova;
3120                 if ((unsigned long)mz->addr == mz_phys_addr) {
3121                         RTE_LOG(WARNING, PMD,
3122                                 "Memzone physical address same as virtual.\n");
3123                         RTE_LOG(WARNING, PMD,
3124                                 "Using rte_mem_virt2iova()\n");
3125                         mz_phys_addr = rte_mem_virt2iova(mz->addr);
3126                         if (mz_phys_addr == 0) {
3127                                 RTE_LOG(ERR, PMD,
3128                                 "unable to map address to physical memory\n");
3129                                 return -ENOMEM;
3130                         }
3131                 }
3132
3133                 bp->rx_mem_zone = (const void *)mz;
3134                 bp->hw_rx_port_stats = mz->addr;
3135                 bp->hw_rx_port_stats_map = mz_phys_addr;
3136
3137                 snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3138                          "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3139                          pci_dev->addr.bus, pci_dev->addr.devid,
3140                          pci_dev->addr.function, "tx_port_stats");
3141                 mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3142                 mz = rte_memzone_lookup(mz_name);
3143                 total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3144                                 sizeof(struct tx_port_stats) + 512);
3145                 if (!mz) {
3146                         mz = rte_memzone_reserve(mz_name, total_alloc_len,
3147                                                  SOCKET_ID_ANY,
3148                                                  RTE_MEMZONE_2MB |
3149                                                  RTE_MEMZONE_SIZE_HINT_ONLY);
3150                         if (mz == NULL)
3151                                 return -ENOMEM;
3152                 }
3153                 memset(mz->addr, 0, mz->len);
3154                 mz_phys_addr = mz->iova;
3155                 if ((unsigned long)mz->addr == mz_phys_addr) {
3156                         RTE_LOG(WARNING, PMD,
3157                                 "Memzone physical address same as virtual.\n");
3158                         RTE_LOG(WARNING, PMD,
3159                                 "Using rte_mem_virt2iova()\n");
3160                         mz_phys_addr = rte_mem_virt2iova(mz->addr);
3161                         if (mz_phys_addr == 0) {
3162                                 RTE_LOG(ERR, PMD,
3163                                 "unable to map address to physical memory\n");
3164                                 return -ENOMEM;
3165                         }
3166                 }
3167
3168                 bp->tx_mem_zone = (const void *)mz;
3169                 bp->hw_tx_port_stats = mz->addr;
3170                 bp->hw_tx_port_stats_map = mz_phys_addr;
3171
3172                 bp->flags |= BNXT_FLAG_PORT_STATS;
3173         }
3174
3175         rc = bnxt_alloc_hwrm_resources(bp);
3176         if (rc) {
3177                 RTE_LOG(ERR, PMD,
3178                         "hwrm resource allocation failure rc: %x\n", rc);
3179                 goto error_free;
3180         }
3181         rc = bnxt_hwrm_ver_get(bp);
3182         if (rc)
3183                 goto error_free;
3184         rc = bnxt_hwrm_queue_qportcfg(bp);
3185         if (rc) {
3186                 RTE_LOG(ERR, PMD, "hwrm queue qportcfg failed\n");
3187                 goto error_free;
3188         }
3189
3190         rc = bnxt_hwrm_func_qcfg(bp);
3191         if (rc) {
3192                 RTE_LOG(ERR, PMD, "hwrm func qcfg failed\n");
3193                 goto error_free;
3194         }
3195
3196         /* Get the MAX capabilities for this function */
3197         rc = bnxt_hwrm_func_qcaps(bp);
3198         if (rc) {
3199                 RTE_LOG(ERR, PMD, "hwrm query capability failure rc: %x\n", rc);
3200                 goto error_free;
3201         }
3202         if (bp->max_tx_rings == 0) {
3203                 RTE_LOG(ERR, PMD, "No TX rings available!\n");
3204                 rc = -EBUSY;
3205                 goto error_free;
3206         }
3207         eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
3208                                         ETHER_ADDR_LEN * bp->max_l2_ctx, 0);
3209         if (eth_dev->data->mac_addrs == NULL) {
3210                 RTE_LOG(ERR, PMD,
3211                         "Failed to alloc %u bytes needed to store MAC addr tbl",
3212                         ETHER_ADDR_LEN * bp->max_l2_ctx);
3213                 rc = -ENOMEM;
3214                 goto error_free;
3215         }
3216         /* Copy the permanent MAC from the qcap response address now. */
3217         memcpy(bp->mac_addr, bp->dflt_mac_addr, sizeof(bp->mac_addr));
3218         memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
3219
3220         if (bp->max_ring_grps < bp->rx_cp_nr_rings) {
3221                 /* 1 ring is for default completion ring */
3222                 RTE_LOG(ERR, PMD, "Insufficient resource: Ring Group\n");
3223                 rc = -ENOSPC;
3224                 goto error_free;
3225         }
3226
3227         bp->grp_info = rte_zmalloc("bnxt_grp_info",
3228                                 sizeof(*bp->grp_info) * bp->max_ring_grps, 0);
3229         if (!bp->grp_info) {
3230                 RTE_LOG(ERR, PMD,
3231                         "Failed to alloc %zu bytes to store group info table\n",
3232                         sizeof(*bp->grp_info) * bp->max_ring_grps);
3233                 rc = -ENOMEM;
3234                 goto error_free;
3235         }
3236
3237         /* Forward all requests if firmware is new enough */
3238         if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
3239             (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
3240             ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
3241                 memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
3242         } else {
3243                 RTE_LOG(WARNING, PMD,
3244                         "Firmware too old for VF mailbox functionality\n");
3245                 memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
3246         }
3247
3248         /*
3249          * The following are used for driver cleanup.  If we disallow these,
3250          * VF drivers can't clean up cleanly.
3251          */
3252         ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
3253         ALLOW_FUNC(HWRM_VNIC_FREE);
3254         ALLOW_FUNC(HWRM_RING_FREE);
3255         ALLOW_FUNC(HWRM_RING_GRP_FREE);
3256         ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
3257         ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
3258         ALLOW_FUNC(HWRM_STAT_CTX_FREE);
3259         ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
3260         ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
3261         rc = bnxt_hwrm_func_driver_register(bp);
3262         if (rc) {
3263                 RTE_LOG(ERR, PMD,
3264                         "Failed to register driver");
3265                 rc = -EBUSY;
3266                 goto error_free;
3267         }
3268
3269         RTE_LOG(INFO, PMD,
3270                 DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
3271                 pci_dev->mem_resource[0].phys_addr,
3272                 pci_dev->mem_resource[0].addr);
3273
3274         rc = bnxt_hwrm_func_reset(bp);
3275         if (rc) {
3276                 RTE_LOG(ERR, PMD, "hwrm chip reset failure rc: %x\n", rc);
3277                 rc = -EIO;
3278                 goto error_free;
3279         }
3280
3281         if (BNXT_PF(bp)) {
3282                 //if (bp->pf.active_vfs) {
3283                         // TODO: Deallocate VF resources?
3284                 //}
3285                 if (bp->pdev->max_vfs) {
3286                         rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3287                         if (rc) {
3288                                 RTE_LOG(ERR, PMD, "Failed to allocate VFs\n");
3289                                 goto error_free;
3290                         }
3291                 } else {
3292                         rc = bnxt_hwrm_allocate_pf_only(bp);
3293                         if (rc) {
3294                                 RTE_LOG(ERR, PMD,
3295                                         "Failed to allocate PF resources\n");
3296                                 goto error_free;
3297                         }
3298                 }
3299         }
3300
3301         bnxt_hwrm_port_led_qcaps(bp);
3302
3303         rc = bnxt_setup_int(bp);
3304         if (rc)
3305                 goto error_free;
3306
3307         rc = bnxt_alloc_mem(bp);
3308         if (rc)
3309                 goto error_free_int;
3310
3311         rc = bnxt_request_int(bp);
3312         if (rc)
3313                 goto error_free_int;
3314
3315         rc = bnxt_alloc_def_cp_ring(bp);
3316         if (rc)
3317                 goto error_free_int;
3318
3319         bnxt_enable_int(bp);
3320
3321         return 0;
3322
3323 error_free_int:
3324         bnxt_disable_int(bp);
3325         bnxt_free_def_cp_ring(bp);
3326         bnxt_hwrm_func_buf_unrgtr(bp);
3327         bnxt_free_int(bp);
3328         bnxt_free_mem(bp);
3329 error_free:
3330         bnxt_dev_uninit(eth_dev);
3331 error:
3332         return rc;
3333 }
3334
3335 static int
3336 bnxt_dev_uninit(struct rte_eth_dev *eth_dev) {
3337         struct bnxt *bp = eth_dev->data->dev_private;
3338         int rc;
3339
3340         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3341                 return -EPERM;
3342
3343         bnxt_disable_int(bp);
3344         bnxt_free_int(bp);
3345         bnxt_free_mem(bp);
3346         if (eth_dev->data->mac_addrs != NULL) {
3347                 rte_free(eth_dev->data->mac_addrs);
3348                 eth_dev->data->mac_addrs = NULL;
3349         }
3350         if (bp->grp_info != NULL) {
3351                 rte_free(bp->grp_info);
3352                 bp->grp_info = NULL;
3353         }
3354         rc = bnxt_hwrm_func_driver_unregister(bp, 0);
3355         bnxt_free_hwrm_resources(bp);
3356         rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
3357         rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
3358         if (bp->dev_stopped == 0)
3359                 bnxt_dev_close_op(eth_dev);
3360         if (bp->pf.vf_info)
3361                 rte_free(bp->pf.vf_info);
3362         eth_dev->dev_ops = NULL;
3363         eth_dev->rx_pkt_burst = NULL;
3364         eth_dev->tx_pkt_burst = NULL;
3365
3366         return rc;
3367 }
3368
3369 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3370         struct rte_pci_device *pci_dev)
3371 {
3372         return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
3373                 bnxt_dev_init);
3374 }
3375
3376 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
3377 {
3378         return rte_eth_dev_pci_generic_remove(pci_dev, bnxt_dev_uninit);
3379 }
3380
3381 static struct rte_pci_driver bnxt_rte_pmd = {
3382         .id_table = bnxt_pci_id_map,
3383         .drv_flags = RTE_PCI_DRV_NEED_MAPPING |
3384                 RTE_PCI_DRV_INTR_LSC,
3385         .probe = bnxt_pci_probe,
3386         .remove = bnxt_pci_remove,
3387 };
3388
3389 static bool
3390 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
3391 {
3392         if (strcmp(dev->device->driver->name, drv->driver.name))
3393                 return false;
3394
3395         return true;
3396 }
3397
3398 bool is_bnxt_supported(struct rte_eth_dev *dev)
3399 {
3400         return is_device_supported(dev, &bnxt_rte_pmd);
3401 }
3402
3403 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
3404 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
3405 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");