net/bnxt: support timesync
[dpdk.git] / drivers / net / bnxt / bnxt_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) Broadcom Limited.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Broadcom Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <inttypes.h>
35 #include <stdbool.h>
36
37 #include <rte_dev.h>
38 #include <rte_ethdev.h>
39 #include <rte_ethdev_pci.h>
40 #include <rte_malloc.h>
41 #include <rte_cycles.h>
42
43 #include "bnxt.h"
44 #include "bnxt_cpr.h"
45 #include "bnxt_filter.h"
46 #include "bnxt_hwrm.h"
47 #include "bnxt_irq.h"
48 #include "bnxt_ring.h"
49 #include "bnxt_rxq.h"
50 #include "bnxt_rxr.h"
51 #include "bnxt_stats.h"
52 #include "bnxt_txq.h"
53 #include "bnxt_txr.h"
54 #include "bnxt_vnic.h"
55 #include "hsi_struct_def_dpdk.h"
56 #include "bnxt_nvm_defs.h"
57
58 #define DRV_MODULE_NAME         "bnxt"
59 static const char bnxt_version[] =
60         "Broadcom Cumulus driver " DRV_MODULE_NAME "\n";
61
62 #define PCI_VENDOR_ID_BROADCOM 0x14E4
63
64 #define BROADCOM_DEV_ID_STRATUS_NIC_VF 0x1609
65 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
66 #define BROADCOM_DEV_ID_57414_VF 0x16c1
67 #define BROADCOM_DEV_ID_57301 0x16c8
68 #define BROADCOM_DEV_ID_57302 0x16c9
69 #define BROADCOM_DEV_ID_57304_PF 0x16ca
70 #define BROADCOM_DEV_ID_57304_VF 0x16cb
71 #define BROADCOM_DEV_ID_57417_MF 0x16cc
72 #define BROADCOM_DEV_ID_NS2 0x16cd
73 #define BROADCOM_DEV_ID_57311 0x16ce
74 #define BROADCOM_DEV_ID_57312 0x16cf
75 #define BROADCOM_DEV_ID_57402 0x16d0
76 #define BROADCOM_DEV_ID_57404 0x16d1
77 #define BROADCOM_DEV_ID_57406_PF 0x16d2
78 #define BROADCOM_DEV_ID_57406_VF 0x16d3
79 #define BROADCOM_DEV_ID_57402_MF 0x16d4
80 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
81 #define BROADCOM_DEV_ID_57412 0x16d6
82 #define BROADCOM_DEV_ID_57414 0x16d7
83 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
84 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
85 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
86 #define BROADCOM_DEV_ID_57412_MF 0x16de
87 #define BROADCOM_DEV_ID_57314 0x16df
88 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
89 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
90 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
91 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
92 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
93 #define BROADCOM_DEV_ID_57404_MF 0x16e7
94 #define BROADCOM_DEV_ID_57406_MF 0x16e8
95 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
96 #define BROADCOM_DEV_ID_57407_MF 0x16ea
97 #define BROADCOM_DEV_ID_57414_MF 0x16ec
98 #define BROADCOM_DEV_ID_57416_MF 0x16ee
99
100 static const struct rte_pci_id bnxt_pci_id_map[] = {
101         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
102                          BROADCOM_DEV_ID_STRATUS_NIC_VF) },
103         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
104         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
105         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
106         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
107         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
108         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
109         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
110         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
111         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
112         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
113         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
114         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
115         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
116         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
117         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
118         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
119         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
120         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
121         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
122         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
123         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
124         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
125         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
126         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
127         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
128         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
129         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
130         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
131         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
132         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
133         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
134         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
135         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
136         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
137         { .vendor_id = 0, /* sentinel */ },
138 };
139
140 #define BNXT_ETH_RSS_SUPPORT (  \
141         ETH_RSS_IPV4 |          \
142         ETH_RSS_NONFRAG_IPV4_TCP |      \
143         ETH_RSS_NONFRAG_IPV4_UDP |      \
144         ETH_RSS_IPV6 |          \
145         ETH_RSS_NONFRAG_IPV6_TCP |      \
146         ETH_RSS_NONFRAG_IPV6_UDP)
147
148 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
149 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
150
151 /***********************/
152
153 /*
154  * High level utility functions
155  */
156
157 static void bnxt_free_mem(struct bnxt *bp)
158 {
159         bnxt_free_filter_mem(bp);
160         bnxt_free_vnic_attributes(bp);
161         bnxt_free_vnic_mem(bp);
162
163         bnxt_free_stats(bp);
164         bnxt_free_tx_rings(bp);
165         bnxt_free_rx_rings(bp);
166         bnxt_free_def_cp_ring(bp);
167 }
168
169 static int bnxt_alloc_mem(struct bnxt *bp)
170 {
171         int rc;
172
173         /* Default completion ring */
174         rc = bnxt_init_def_ring_struct(bp, SOCKET_ID_ANY);
175         if (rc)
176                 goto alloc_mem_err;
177
178         rc = bnxt_alloc_rings(bp, 0, NULL, NULL,
179                               bp->def_cp_ring, "def_cp");
180         if (rc)
181                 goto alloc_mem_err;
182
183         rc = bnxt_alloc_vnic_mem(bp);
184         if (rc)
185                 goto alloc_mem_err;
186
187         rc = bnxt_alloc_vnic_attributes(bp);
188         if (rc)
189                 goto alloc_mem_err;
190
191         rc = bnxt_alloc_filter_mem(bp);
192         if (rc)
193                 goto alloc_mem_err;
194
195         return 0;
196
197 alloc_mem_err:
198         bnxt_free_mem(bp);
199         return rc;
200 }
201
202 static int bnxt_init_chip(struct bnxt *bp)
203 {
204         unsigned int i, rss_idx, fw_idx;
205         struct rte_eth_link new;
206         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
207         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
208         uint32_t intr_vector = 0;
209         uint32_t queue_id, base = BNXT_MISC_VEC_ID;
210         uint32_t vec = BNXT_MISC_VEC_ID;
211         int rc;
212
213         /* disable uio/vfio intr/eventfd mapping */
214         rte_intr_disable(intr_handle);
215
216         if (bp->eth_dev->data->mtu > ETHER_MTU) {
217                 bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
218                 bp->flags |= BNXT_FLAG_JUMBO;
219         } else {
220                 bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
221                 bp->flags &= ~BNXT_FLAG_JUMBO;
222         }
223
224         rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
225         if (rc) {
226                 RTE_LOG(ERR, PMD, "HWRM stat ctx alloc failure rc: %x\n", rc);
227                 goto err_out;
228         }
229
230         rc = bnxt_alloc_hwrm_rings(bp);
231         if (rc) {
232                 RTE_LOG(ERR, PMD, "HWRM ring alloc failure rc: %x\n", rc);
233                 goto err_out;
234         }
235
236         rc = bnxt_alloc_all_hwrm_ring_grps(bp);
237         if (rc) {
238                 RTE_LOG(ERR, PMD, "HWRM ring grp alloc failure: %x\n", rc);
239                 goto err_out;
240         }
241
242         rc = bnxt_mq_rx_configure(bp);
243         if (rc) {
244                 RTE_LOG(ERR, PMD, "MQ mode configure failure rc: %x\n", rc);
245                 goto err_out;
246         }
247
248         /* VNIC configuration */
249         for (i = 0; i < bp->nr_vnics; i++) {
250                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
251
252                 rc = bnxt_hwrm_vnic_alloc(bp, vnic);
253                 if (rc) {
254                         RTE_LOG(ERR, PMD, "HWRM vnic %d alloc failure rc: %x\n",
255                                 i, rc);
256                         goto err_out;
257                 }
258
259                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic);
260                 if (rc) {
261                         RTE_LOG(ERR, PMD,
262                                 "HWRM vnic %d ctx alloc failure rc: %x\n",
263                                 i, rc);
264                         goto err_out;
265                 }
266
267                 rc = bnxt_hwrm_vnic_cfg(bp, vnic);
268                 if (rc) {
269                         RTE_LOG(ERR, PMD, "HWRM vnic %d cfg failure rc: %x\n",
270                                 i, rc);
271                         goto err_out;
272                 }
273
274                 rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
275                 if (rc) {
276                         RTE_LOG(ERR, PMD,
277                                 "HWRM vnic %d filter failure rc: %x\n",
278                                 i, rc);
279                         goto err_out;
280                 }
281                 if (vnic->rss_table && vnic->hash_type) {
282                         /*
283                          * Fill the RSS hash & redirection table with
284                          * ring group ids for all VNICs
285                          */
286                         for (rss_idx = 0, fw_idx = 0;
287                              rss_idx < HW_HASH_INDEX_SIZE;
288                              rss_idx++, fw_idx++) {
289                                 if (vnic->fw_grp_ids[fw_idx] ==
290                                     INVALID_HW_RING_ID)
291                                         fw_idx = 0;
292                                 vnic->rss_table[rss_idx] =
293                                                 vnic->fw_grp_ids[fw_idx];
294                         }
295                         rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
296                         if (rc) {
297                                 RTE_LOG(ERR, PMD,
298                                         "HWRM vnic %d set RSS failure rc: %x\n",
299                                         i, rc);
300                                 goto err_out;
301                         }
302                 }
303
304                 bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
305
306                 if (bp->eth_dev->data->dev_conf.rxmode.enable_lro)
307                         bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
308                 else
309                         bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
310         }
311         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
312         if (rc) {
313                 RTE_LOG(ERR, PMD,
314                         "HWRM cfa l2 rx mask failure rc: %x\n", rc);
315                 goto err_out;
316         }
317
318         /* check and configure queue intr-vector mapping */
319         if ((rte_intr_cap_multiple(intr_handle) ||
320              !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
321             bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
322                 intr_vector = bp->eth_dev->data->nb_rx_queues;
323                 RTE_LOG(INFO, PMD, "%s(): intr_vector = %d\n", __func__,
324                         intr_vector);
325                 if (intr_vector > bp->rx_cp_nr_rings) {
326                         RTE_LOG(ERR, PMD, "At most %d intr queues supported",
327                                         bp->rx_cp_nr_rings);
328                         return -ENOTSUP;
329                 }
330                 if (rte_intr_efd_enable(intr_handle, intr_vector))
331                         return -1;
332         }
333
334         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
335                 intr_handle->intr_vec =
336                         rte_zmalloc("intr_vec",
337                                     bp->eth_dev->data->nb_rx_queues *
338                                     sizeof(int), 0);
339                 if (intr_handle->intr_vec == NULL) {
340                         RTE_LOG(ERR, PMD, "Failed to allocate %d rx_queues"
341                                 " intr_vec", bp->eth_dev->data->nb_rx_queues);
342                         return -ENOMEM;
343                 }
344                 RTE_LOG(DEBUG, PMD, "%s(): intr_handle->intr_vec = %p "
345                         "intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
346                          __func__, intr_handle->intr_vec, intr_handle->nb_efd,
347                         intr_handle->max_intr);
348         }
349
350         for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
351              queue_id++) {
352                 intr_handle->intr_vec[queue_id] = vec;
353                 if (vec < base + intr_handle->nb_efd - 1)
354                         vec++;
355         }
356
357         /* enable uio/vfio intr/eventfd mapping */
358         rte_intr_enable(intr_handle);
359
360         rc = bnxt_get_hwrm_link_config(bp, &new);
361         if (rc) {
362                 RTE_LOG(ERR, PMD, "HWRM Get link config failure rc: %x\n", rc);
363                 goto err_out;
364         }
365
366         if (!bp->link_info.link_up) {
367                 rc = bnxt_set_hwrm_link_config(bp, true);
368                 if (rc) {
369                         RTE_LOG(ERR, PMD,
370                                 "HWRM link config failure rc: %x\n", rc);
371                         goto err_out;
372                 }
373         }
374         bnxt_print_link_info(bp->eth_dev);
375
376         return 0;
377
378 err_out:
379         bnxt_free_all_hwrm_resources(bp);
380
381         return rc;
382 }
383
384 static int bnxt_shutdown_nic(struct bnxt *bp)
385 {
386         bnxt_free_all_hwrm_resources(bp);
387         bnxt_free_all_filters(bp);
388         bnxt_free_all_vnics(bp);
389         return 0;
390 }
391
392 static int bnxt_init_nic(struct bnxt *bp)
393 {
394         int rc;
395
396         bnxt_init_ring_grps(bp);
397         bnxt_init_vnics(bp);
398         bnxt_init_filters(bp);
399
400         rc = bnxt_init_chip(bp);
401         if (rc)
402                 return rc;
403
404         return 0;
405 }
406
407 /*
408  * Device configuration and status function
409  */
410
411 static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
412                                   struct rte_eth_dev_info *dev_info)
413 {
414         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
415         uint16_t max_vnics, i, j, vpool, vrxq;
416         unsigned int max_rx_rings;
417
418         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
419
420         /* MAC Specifics */
421         dev_info->max_mac_addrs = bp->max_l2_ctx;
422         dev_info->max_hash_mac_addrs = 0;
423
424         /* PF/VF specifics */
425         if (BNXT_PF(bp))
426                 dev_info->max_vfs = bp->pdev->max_vfs;
427         max_rx_rings = RTE_MIN(bp->max_vnics, RTE_MIN(bp->max_l2_ctx,
428                                                 RTE_MIN(bp->max_rsscos_ctx,
429                                                 bp->max_stat_ctx)));
430         /* For the sake of symmetry, max_rx_queues = max_tx_queues */
431         dev_info->max_rx_queues = max_rx_rings;
432         dev_info->max_tx_queues = max_rx_rings;
433         dev_info->reta_size = bp->max_rsscos_ctx;
434         dev_info->hash_key_size = 40;
435         max_vnics = bp->max_vnics;
436
437         /* Fast path specifics */
438         dev_info->min_rx_bufsize = 1;
439         dev_info->max_rx_pktlen = BNXT_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN
440                                   + VLAN_TAG_SIZE;
441         dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
442                                         DEV_RX_OFFLOAD_IPV4_CKSUM |
443                                         DEV_RX_OFFLOAD_UDP_CKSUM |
444                                         DEV_RX_OFFLOAD_TCP_CKSUM |
445                                         DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
446         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
447                                         DEV_TX_OFFLOAD_IPV4_CKSUM |
448                                         DEV_TX_OFFLOAD_TCP_CKSUM |
449                                         DEV_TX_OFFLOAD_UDP_CKSUM |
450                                         DEV_TX_OFFLOAD_TCP_TSO |
451                                         DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
452                                         DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
453                                         DEV_TX_OFFLOAD_GRE_TNL_TSO |
454                                         DEV_TX_OFFLOAD_IPIP_TNL_TSO |
455                                         DEV_TX_OFFLOAD_GENEVE_TNL_TSO;
456
457         /* *INDENT-OFF* */
458         dev_info->default_rxconf = (struct rte_eth_rxconf) {
459                 .rx_thresh = {
460                         .pthresh = 8,
461                         .hthresh = 8,
462                         .wthresh = 0,
463                 },
464                 .rx_free_thresh = 32,
465                 .rx_drop_en = 0,
466         };
467
468         dev_info->default_txconf = (struct rte_eth_txconf) {
469                 .tx_thresh = {
470                         .pthresh = 32,
471                         .hthresh = 0,
472                         .wthresh = 0,
473                 },
474                 .tx_free_thresh = 32,
475                 .tx_rs_thresh = 32,
476                 .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
477                              ETH_TXQ_FLAGS_NOOFFLOADS,
478         };
479         eth_dev->data->dev_conf.intr_conf.lsc = 1;
480
481         eth_dev->data->dev_conf.intr_conf.rxq = 1;
482
483         /* *INDENT-ON* */
484
485         /*
486          * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
487          *       need further investigation.
488          */
489
490         /* VMDq resources */
491         vpool = 64; /* ETH_64_POOLS */
492         vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
493         for (i = 0; i < 4; vpool >>= 1, i++) {
494                 if (max_vnics > vpool) {
495                         for (j = 0; j < 5; vrxq >>= 1, j++) {
496                                 if (dev_info->max_rx_queues > vrxq) {
497                                         if (vpool > vrxq)
498                                                 vpool = vrxq;
499                                         goto found;
500                                 }
501                         }
502                         /* Not enough resources to support VMDq */
503                         break;
504                 }
505         }
506         /* Not enough resources to support VMDq */
507         vpool = 0;
508         vrxq = 0;
509 found:
510         dev_info->max_vmdq_pools = vpool;
511         dev_info->vmdq_queue_num = vrxq;
512
513         dev_info->vmdq_pool_base = 0;
514         dev_info->vmdq_queue_base = 0;
515 }
516
517 /* Configure the device based on the configuration provided */
518 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
519 {
520         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
521
522         bp->rx_queues = (void *)eth_dev->data->rx_queues;
523         bp->tx_queues = (void *)eth_dev->data->tx_queues;
524
525         /* Inherit new configurations */
526         bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
527         bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
528         bp->rx_cp_nr_rings = bp->rx_nr_rings;
529         bp->tx_cp_nr_rings = bp->tx_nr_rings;
530
531         if (eth_dev->data->dev_conf.rxmode.jumbo_frame)
532                 eth_dev->data->mtu =
533                                 eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
534                                 ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE;
535         return 0;
536 }
537
538 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
539 {
540         struct rte_eth_link *link = &eth_dev->data->dev_link;
541
542         if (link->link_status)
543                 RTE_LOG(INFO, PMD, "Port %d Link Up - speed %u Mbps - %s\n",
544                         eth_dev->data->port_id,
545                         (uint32_t)link->link_speed,
546                         (link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
547                         ("full-duplex") : ("half-duplex\n"));
548         else
549                 RTE_LOG(INFO, PMD, "Port %d Link Down\n",
550                         eth_dev->data->port_id);
551 }
552
553 static int bnxt_dev_lsc_intr_setup(struct rte_eth_dev *eth_dev)
554 {
555         bnxt_print_link_info(eth_dev);
556         return 0;
557 }
558
559 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
560 {
561         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
562         int vlan_mask = 0;
563         int rc;
564
565         if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
566                 RTE_LOG(ERR, PMD,
567                         "RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
568                         bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
569         }
570         bp->dev_stopped = 0;
571
572         rc = bnxt_init_nic(bp);
573         if (rc)
574                 goto error;
575
576         bnxt_link_update_op(eth_dev, 1);
577
578         if (eth_dev->data->dev_conf.rxmode.hw_vlan_filter)
579                 vlan_mask |= ETH_VLAN_FILTER_MASK;
580         if (eth_dev->data->dev_conf.rxmode.hw_vlan_strip)
581                 vlan_mask |= ETH_VLAN_STRIP_MASK;
582         rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
583         if (rc)
584                 goto error;
585
586         return 0;
587
588 error:
589         bnxt_shutdown_nic(bp);
590         bnxt_free_tx_mbufs(bp);
591         bnxt_free_rx_mbufs(bp);
592         return rc;
593 }
594
595 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
596 {
597         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
598         int rc = 0;
599
600         if (!bp->link_info.link_up)
601                 rc = bnxt_set_hwrm_link_config(bp, true);
602         if (!rc)
603                 eth_dev->data->dev_link.link_status = 1;
604
605         bnxt_print_link_info(eth_dev);
606         return 0;
607 }
608
609 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
610 {
611         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
612
613         eth_dev->data->dev_link.link_status = 0;
614         bnxt_set_hwrm_link_config(bp, false);
615         bp->link_info.link_up = 0;
616
617         return 0;
618 }
619
620 /* Unload the driver, release resources */
621 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
622 {
623         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
624
625         if (bp->eth_dev->data->dev_started) {
626                 /* TBD: STOP HW queues DMA */
627                 eth_dev->data->dev_link.link_status = 0;
628         }
629         bnxt_set_hwrm_link_config(bp, false);
630         bnxt_hwrm_port_clr_stats(bp);
631         bnxt_shutdown_nic(bp);
632         bp->dev_stopped = 1;
633 }
634
635 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
636 {
637         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
638
639         if (bp->dev_stopped == 0)
640                 bnxt_dev_stop_op(eth_dev);
641
642         bnxt_free_tx_mbufs(bp);
643         bnxt_free_rx_mbufs(bp);
644         bnxt_free_mem(bp);
645         if (eth_dev->data->mac_addrs != NULL) {
646                 rte_free(eth_dev->data->mac_addrs);
647                 eth_dev->data->mac_addrs = NULL;
648         }
649         if (bp->grp_info != NULL) {
650                 rte_free(bp->grp_info);
651                 bp->grp_info = NULL;
652         }
653 }
654
655 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
656                                     uint32_t index)
657 {
658         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
659         uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
660         struct bnxt_vnic_info *vnic;
661         struct bnxt_filter_info *filter, *temp_filter;
662         uint32_t pool = RTE_MIN(MAX_FF_POOLS, ETH_64_POOLS);
663         uint32_t i;
664
665         /*
666          * Loop through all VNICs from the specified filter flow pools to
667          * remove the corresponding MAC addr filter
668          */
669         for (i = 0; i < pool; i++) {
670                 if (!(pool_mask & (1ULL << i)))
671                         continue;
672
673                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
674                         filter = STAILQ_FIRST(&vnic->filter);
675                         while (filter) {
676                                 temp_filter = STAILQ_NEXT(filter, next);
677                                 if (filter->mac_index == index) {
678                                         STAILQ_REMOVE(&vnic->filter, filter,
679                                                       bnxt_filter_info, next);
680                                         bnxt_hwrm_clear_l2_filter(bp, filter);
681                                         filter->mac_index = INVALID_MAC_INDEX;
682                                         memset(&filter->l2_addr, 0,
683                                                ETHER_ADDR_LEN);
684                                         STAILQ_INSERT_TAIL(
685                                                         &bp->free_filter_list,
686                                                         filter, next);
687                                 }
688                                 filter = temp_filter;
689                         }
690                 }
691         }
692 }
693
694 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
695                                 struct ether_addr *mac_addr,
696                                 uint32_t index, uint32_t pool)
697 {
698         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
699         struct bnxt_vnic_info *vnic = STAILQ_FIRST(&bp->ff_pool[pool]);
700         struct bnxt_filter_info *filter;
701
702         if (BNXT_VF(bp)) {
703                 RTE_LOG(ERR, PMD, "Cannot add MAC address to a VF interface\n");
704                 return -ENOTSUP;
705         }
706
707         if (!vnic) {
708                 RTE_LOG(ERR, PMD, "VNIC not found for pool %d!\n", pool);
709                 return -EINVAL;
710         }
711         /* Attach requested MAC address to the new l2_filter */
712         STAILQ_FOREACH(filter, &vnic->filter, next) {
713                 if (filter->mac_index == index) {
714                         RTE_LOG(ERR, PMD,
715                                 "MAC addr already existed for pool %d\n", pool);
716                         return -EINVAL;
717                 }
718         }
719         filter = bnxt_alloc_filter(bp);
720         if (!filter) {
721                 RTE_LOG(ERR, PMD, "L2 filter alloc failed\n");
722                 return -ENODEV;
723         }
724         STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
725         filter->mac_index = index;
726         memcpy(filter->l2_addr, mac_addr, ETHER_ADDR_LEN);
727         return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
728 }
729
730 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
731 {
732         int rc = 0;
733         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
734         struct rte_eth_link new;
735         unsigned int cnt = BNXT_LINK_WAIT_CNT;
736
737         memset(&new, 0, sizeof(new));
738         do {
739                 /* Retrieve link info from hardware */
740                 rc = bnxt_get_hwrm_link_config(bp, &new);
741                 if (rc) {
742                         new.link_speed = ETH_LINK_SPEED_100M;
743                         new.link_duplex = ETH_LINK_FULL_DUPLEX;
744                         RTE_LOG(ERR, PMD,
745                                 "Failed to retrieve link rc = 0x%x!\n", rc);
746                         goto out;
747                 }
748                 rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
749
750                 if (!wait_to_complete)
751                         break;
752         } while (!new.link_status && cnt--);
753
754 out:
755         /* Timed out or success */
756         if (new.link_status != eth_dev->data->dev_link.link_status ||
757         new.link_speed != eth_dev->data->dev_link.link_speed) {
758                 memcpy(&eth_dev->data->dev_link, &new,
759                         sizeof(struct rte_eth_link));
760                 bnxt_print_link_info(eth_dev);
761         }
762
763         return rc;
764 }
765
766 static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
767 {
768         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
769         struct bnxt_vnic_info *vnic;
770
771         if (bp->vnic_info == NULL)
772                 return;
773
774         vnic = &bp->vnic_info[0];
775
776         vnic->flags |= BNXT_VNIC_INFO_PROMISC;
777         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
778 }
779
780 static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
781 {
782         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
783         struct bnxt_vnic_info *vnic;
784
785         if (bp->vnic_info == NULL)
786                 return;
787
788         vnic = &bp->vnic_info[0];
789
790         vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
791         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
792 }
793
794 static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
795 {
796         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
797         struct bnxt_vnic_info *vnic;
798
799         if (bp->vnic_info == NULL)
800                 return;
801
802         vnic = &bp->vnic_info[0];
803
804         vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
805         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
806 }
807
808 static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
809 {
810         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
811         struct bnxt_vnic_info *vnic;
812
813         if (bp->vnic_info == NULL)
814                 return;
815
816         vnic = &bp->vnic_info[0];
817
818         vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
819         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
820 }
821
822 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
823                             struct rte_eth_rss_reta_entry64 *reta_conf,
824                             uint16_t reta_size)
825 {
826         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
827         struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
828         struct bnxt_vnic_info *vnic;
829         int i;
830
831         if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
832                 return -EINVAL;
833
834         if (reta_size != HW_HASH_INDEX_SIZE) {
835                 RTE_LOG(ERR, PMD, "The configured hash table lookup size "
836                         "(%d) must equal the size supported by the hardware "
837                         "(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
838                 return -EINVAL;
839         }
840         /* Update the RSS VNIC(s) */
841         for (i = 0; i < MAX_FF_POOLS; i++) {
842                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
843                         memcpy(vnic->rss_table, reta_conf, reta_size);
844
845                         bnxt_hwrm_vnic_rss_cfg(bp, vnic);
846                 }
847         }
848         return 0;
849 }
850
851 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
852                               struct rte_eth_rss_reta_entry64 *reta_conf,
853                               uint16_t reta_size)
854 {
855         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
856         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
857         struct rte_intr_handle *intr_handle
858                 = &bp->pdev->intr_handle;
859
860         /* Retrieve from the default VNIC */
861         if (!vnic)
862                 return -EINVAL;
863         if (!vnic->rss_table)
864                 return -EINVAL;
865
866         if (reta_size != HW_HASH_INDEX_SIZE) {
867                 RTE_LOG(ERR, PMD, "The configured hash table lookup size "
868                         "(%d) must equal the size supported by the hardware "
869                         "(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
870                 return -EINVAL;
871         }
872         /* EW - need to revisit here copying from uint64_t to uint16_t */
873         memcpy(reta_conf, vnic->rss_table, reta_size);
874
875         if (rte_intr_allow_others(intr_handle)) {
876                 if (eth_dev->data->dev_conf.intr_conf.lsc != 0)
877                         bnxt_dev_lsc_intr_setup(eth_dev);
878         }
879
880         return 0;
881 }
882
883 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
884                                    struct rte_eth_rss_conf *rss_conf)
885 {
886         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
887         struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
888         struct bnxt_vnic_info *vnic;
889         uint16_t hash_type = 0;
890         int i;
891
892         /*
893          * If RSS enablement were different than dev_configure,
894          * then return -EINVAL
895          */
896         if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
897                 if (!rss_conf->rss_hf)
898                         RTE_LOG(ERR, PMD, "Hash type NONE\n");
899         } else {
900                 if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
901                         return -EINVAL;
902         }
903
904         bp->flags |= BNXT_FLAG_UPDATE_HASH;
905         memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
906
907         if (rss_conf->rss_hf & ETH_RSS_IPV4)
908                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
909         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
910                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
911         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
912                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
913         if (rss_conf->rss_hf & ETH_RSS_IPV6)
914                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
915         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
916                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
917         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
918                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
919
920         /* Update the RSS VNIC(s) */
921         for (i = 0; i < MAX_FF_POOLS; i++) {
922                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
923                         vnic->hash_type = hash_type;
924
925                         /*
926                          * Use the supplied key if the key length is
927                          * acceptable and the rss_key is not NULL
928                          */
929                         if (rss_conf->rss_key &&
930                             rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
931                                 memcpy(vnic->rss_hash_key, rss_conf->rss_key,
932                                        rss_conf->rss_key_len);
933
934                         bnxt_hwrm_vnic_rss_cfg(bp, vnic);
935                 }
936         }
937         return 0;
938 }
939
940 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
941                                      struct rte_eth_rss_conf *rss_conf)
942 {
943         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
944         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
945         int len;
946         uint32_t hash_types;
947
948         /* RSS configuration is the same for all VNICs */
949         if (vnic && vnic->rss_hash_key) {
950                 if (rss_conf->rss_key) {
951                         len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
952                               rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
953                         memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
954                 }
955
956                 hash_types = vnic->hash_type;
957                 rss_conf->rss_hf = 0;
958                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
959                         rss_conf->rss_hf |= ETH_RSS_IPV4;
960                         hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
961                 }
962                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
963                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
964                         hash_types &=
965                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
966                 }
967                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
968                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
969                         hash_types &=
970                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
971                 }
972                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
973                         rss_conf->rss_hf |= ETH_RSS_IPV6;
974                         hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
975                 }
976                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
977                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
978                         hash_types &=
979                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
980                 }
981                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
982                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
983                         hash_types &=
984                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
985                 }
986                 if (hash_types) {
987                         RTE_LOG(ERR, PMD,
988                                 "Unknwon RSS config from firmware (%08x), RSS disabled",
989                                 vnic->hash_type);
990                         return -ENOTSUP;
991                 }
992         } else {
993                 rss_conf->rss_hf = 0;
994         }
995         return 0;
996 }
997
998 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
999                                struct rte_eth_fc_conf *fc_conf)
1000 {
1001         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1002         struct rte_eth_link link_info;
1003         int rc;
1004
1005         rc = bnxt_get_hwrm_link_config(bp, &link_info);
1006         if (rc)
1007                 return rc;
1008
1009         memset(fc_conf, 0, sizeof(*fc_conf));
1010         if (bp->link_info.auto_pause)
1011                 fc_conf->autoneg = 1;
1012         switch (bp->link_info.pause) {
1013         case 0:
1014                 fc_conf->mode = RTE_FC_NONE;
1015                 break;
1016         case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1017                 fc_conf->mode = RTE_FC_TX_PAUSE;
1018                 break;
1019         case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1020                 fc_conf->mode = RTE_FC_RX_PAUSE;
1021                 break;
1022         case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1023                         HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1024                 fc_conf->mode = RTE_FC_FULL;
1025                 break;
1026         }
1027         return 0;
1028 }
1029
1030 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1031                                struct rte_eth_fc_conf *fc_conf)
1032 {
1033         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1034
1035         if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
1036                 RTE_LOG(ERR, PMD, "Flow Control Settings cannot be modified\n");
1037                 return -ENOTSUP;
1038         }
1039
1040         switch (fc_conf->mode) {
1041         case RTE_FC_NONE:
1042                 bp->link_info.auto_pause = 0;
1043                 bp->link_info.force_pause = 0;
1044                 break;
1045         case RTE_FC_RX_PAUSE:
1046                 if (fc_conf->autoneg) {
1047                         bp->link_info.auto_pause =
1048                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1049                         bp->link_info.force_pause = 0;
1050                 } else {
1051                         bp->link_info.auto_pause = 0;
1052                         bp->link_info.force_pause =
1053                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1054                 }
1055                 break;
1056         case RTE_FC_TX_PAUSE:
1057                 if (fc_conf->autoneg) {
1058                         bp->link_info.auto_pause =
1059                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1060                         bp->link_info.force_pause = 0;
1061                 } else {
1062                         bp->link_info.auto_pause = 0;
1063                         bp->link_info.force_pause =
1064                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1065                 }
1066                 break;
1067         case RTE_FC_FULL:
1068                 if (fc_conf->autoneg) {
1069                         bp->link_info.auto_pause =
1070                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1071                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1072                         bp->link_info.force_pause = 0;
1073                 } else {
1074                         bp->link_info.auto_pause = 0;
1075                         bp->link_info.force_pause =
1076                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1077                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1078                 }
1079                 break;
1080         }
1081         return bnxt_set_hwrm_link_config(bp, true);
1082 }
1083
1084 /* Add UDP tunneling port */
1085 static int
1086 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1087                          struct rte_eth_udp_tunnel *udp_tunnel)
1088 {
1089         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1090         uint16_t tunnel_type = 0;
1091         int rc = 0;
1092
1093         switch (udp_tunnel->prot_type) {
1094         case RTE_TUNNEL_TYPE_VXLAN:
1095                 if (bp->vxlan_port_cnt) {
1096                         RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1097                                 udp_tunnel->udp_port);
1098                         if (bp->vxlan_port != udp_tunnel->udp_port) {
1099                                 RTE_LOG(ERR, PMD, "Only one port allowed\n");
1100                                 return -ENOSPC;
1101                         }
1102                         bp->vxlan_port_cnt++;
1103                         return 0;
1104                 }
1105                 tunnel_type =
1106                         HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1107                 bp->vxlan_port_cnt++;
1108                 break;
1109         case RTE_TUNNEL_TYPE_GENEVE:
1110                 if (bp->geneve_port_cnt) {
1111                         RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1112                                 udp_tunnel->udp_port);
1113                         if (bp->geneve_port != udp_tunnel->udp_port) {
1114                                 RTE_LOG(ERR, PMD, "Only one port allowed\n");
1115                                 return -ENOSPC;
1116                         }
1117                         bp->geneve_port_cnt++;
1118                         return 0;
1119                 }
1120                 tunnel_type =
1121                         HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1122                 bp->geneve_port_cnt++;
1123                 break;
1124         default:
1125                 RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1126                 return -ENOTSUP;
1127         }
1128         rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1129                                              tunnel_type);
1130         return rc;
1131 }
1132
1133 static int
1134 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1135                          struct rte_eth_udp_tunnel *udp_tunnel)
1136 {
1137         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1138         uint16_t tunnel_type = 0;
1139         uint16_t port = 0;
1140         int rc = 0;
1141
1142         switch (udp_tunnel->prot_type) {
1143         case RTE_TUNNEL_TYPE_VXLAN:
1144                 if (!bp->vxlan_port_cnt) {
1145                         RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1146                         return -EINVAL;
1147                 }
1148                 if (bp->vxlan_port != udp_tunnel->udp_port) {
1149                         RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1150                                 udp_tunnel->udp_port, bp->vxlan_port);
1151                         return -EINVAL;
1152                 }
1153                 if (--bp->vxlan_port_cnt)
1154                         return 0;
1155
1156                 tunnel_type =
1157                         HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1158                 port = bp->vxlan_fw_dst_port_id;
1159                 break;
1160         case RTE_TUNNEL_TYPE_GENEVE:
1161                 if (!bp->geneve_port_cnt) {
1162                         RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1163                         return -EINVAL;
1164                 }
1165                 if (bp->geneve_port != udp_tunnel->udp_port) {
1166                         RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1167                                 udp_tunnel->udp_port, bp->geneve_port);
1168                         return -EINVAL;
1169                 }
1170                 if (--bp->geneve_port_cnt)
1171                         return 0;
1172
1173                 tunnel_type =
1174                         HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1175                 port = bp->geneve_fw_dst_port_id;
1176                 break;
1177         default:
1178                 RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1179                 return -ENOTSUP;
1180         }
1181
1182         rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1183         if (!rc) {
1184                 if (tunnel_type ==
1185                     HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1186                         bp->vxlan_port = 0;
1187                 if (tunnel_type ==
1188                     HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1189                         bp->geneve_port = 0;
1190         }
1191         return rc;
1192 }
1193
1194 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1195 {
1196         struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1197         struct bnxt_vnic_info *vnic;
1198         unsigned int i;
1199         int rc = 0;
1200         uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1201
1202         /* Cycle through all VNICs */
1203         for (i = 0; i < bp->nr_vnics; i++) {
1204                 /*
1205                  * For each VNIC and each associated filter(s)
1206                  * if VLAN exists && VLAN matches vlan_id
1207                  *      remove the MAC+VLAN filter
1208                  *      add a new MAC only filter
1209                  * else
1210                  *      VLAN filter doesn't exist, just skip and continue
1211                  */
1212                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1213                         filter = STAILQ_FIRST(&vnic->filter);
1214                         while (filter) {
1215                                 temp_filter = STAILQ_NEXT(filter, next);
1216
1217                                 if (filter->enables & chk &&
1218                                     filter->l2_ovlan == vlan_id) {
1219                                         /* Must delete the filter */
1220                                         STAILQ_REMOVE(&vnic->filter, filter,
1221                                                       bnxt_filter_info, next);
1222                                         bnxt_hwrm_clear_l2_filter(bp, filter);
1223                                         STAILQ_INSERT_TAIL(
1224                                                         &bp->free_filter_list,
1225                                                         filter, next);
1226
1227                                         /*
1228                                          * Need to examine to see if the MAC
1229                                          * filter already existed or not before
1230                                          * allocating a new one
1231                                          */
1232
1233                                         new_filter = bnxt_alloc_filter(bp);
1234                                         if (!new_filter) {
1235                                                 RTE_LOG(ERR, PMD,
1236                                                         "MAC/VLAN filter alloc failed\n");
1237                                                 rc = -ENOMEM;
1238                                                 goto exit;
1239                                         }
1240                                         STAILQ_INSERT_TAIL(&vnic->filter,
1241                                                            new_filter, next);
1242                                         /* Inherit MAC from previous filter */
1243                                         new_filter->mac_index =
1244                                                         filter->mac_index;
1245                                         memcpy(new_filter->l2_addr,
1246                                                filter->l2_addr, ETHER_ADDR_LEN);
1247                                         /* MAC only filter */
1248                                         rc = bnxt_hwrm_set_l2_filter(bp,
1249                                                         vnic->fw_vnic_id,
1250                                                         new_filter);
1251                                         if (rc)
1252                                                 goto exit;
1253                                         RTE_LOG(INFO, PMD,
1254                                                 "Del Vlan filter for %d\n",
1255                                                 vlan_id);
1256                                 }
1257                                 filter = temp_filter;
1258                         }
1259                 }
1260         }
1261 exit:
1262         return rc;
1263 }
1264
1265 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1266 {
1267         struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1268         struct bnxt_vnic_info *vnic;
1269         unsigned int i;
1270         int rc = 0;
1271         uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN |
1272                 HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN_MASK;
1273         uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1274
1275         /* Cycle through all VNICs */
1276         for (i = 0; i < bp->nr_vnics; i++) {
1277                 /*
1278                  * For each VNIC and each associated filter(s)
1279                  * if VLAN exists:
1280                  *   if VLAN matches vlan_id
1281                  *      VLAN filter already exists, just skip and continue
1282                  *   else
1283                  *      add a new MAC+VLAN filter
1284                  * else
1285                  *   Remove the old MAC only filter
1286                  *    Add a new MAC+VLAN filter
1287                  */
1288                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1289                         filter = STAILQ_FIRST(&vnic->filter);
1290                         while (filter) {
1291                                 temp_filter = STAILQ_NEXT(filter, next);
1292
1293                                 if (filter->enables & chk) {
1294                                         if (filter->l2_ovlan == vlan_id)
1295                                                 goto cont;
1296                                 } else {
1297                                         /* Must delete the MAC filter */
1298                                         STAILQ_REMOVE(&vnic->filter, filter,
1299                                                       bnxt_filter_info, next);
1300                                         bnxt_hwrm_clear_l2_filter(bp, filter);
1301                                         filter->l2_ovlan = 0;
1302                                         STAILQ_INSERT_TAIL(
1303                                                         &bp->free_filter_list,
1304                                                         filter, next);
1305                                 }
1306                                 new_filter = bnxt_alloc_filter(bp);
1307                                 if (!new_filter) {
1308                                         RTE_LOG(ERR, PMD,
1309                                                 "MAC/VLAN filter alloc failed\n");
1310                                         rc = -ENOMEM;
1311                                         goto exit;
1312                                 }
1313                                 STAILQ_INSERT_TAIL(&vnic->filter, new_filter,
1314                                                    next);
1315                                 /* Inherit MAC from the previous filter */
1316                                 new_filter->mac_index = filter->mac_index;
1317                                 memcpy(new_filter->l2_addr, filter->l2_addr,
1318                                        ETHER_ADDR_LEN);
1319                                 /* MAC + VLAN ID filter */
1320                                 new_filter->l2_ovlan = vlan_id;
1321                                 new_filter->l2_ovlan_mask = 0xF000;
1322                                 new_filter->enables |= en;
1323                                 rc = bnxt_hwrm_set_l2_filter(bp,
1324                                                              vnic->fw_vnic_id,
1325                                                              new_filter);
1326                                 if (rc)
1327                                         goto exit;
1328                                 RTE_LOG(INFO, PMD,
1329                                         "Added Vlan filter for %d\n", vlan_id);
1330 cont:
1331                                 filter = temp_filter;
1332                         }
1333                 }
1334         }
1335 exit:
1336         return rc;
1337 }
1338
1339 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1340                                    uint16_t vlan_id, int on)
1341 {
1342         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1343
1344         /* These operations apply to ALL existing MAC/VLAN filters */
1345         if (on)
1346                 return bnxt_add_vlan_filter(bp, vlan_id);
1347         else
1348                 return bnxt_del_vlan_filter(bp, vlan_id);
1349 }
1350
1351 static int
1352 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1353 {
1354         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1355         unsigned int i;
1356
1357         if (mask & ETH_VLAN_FILTER_MASK) {
1358                 if (!dev->data->dev_conf.rxmode.hw_vlan_filter) {
1359                         /* Remove any VLAN filters programmed */
1360                         for (i = 0; i < 4095; i++)
1361                                 bnxt_del_vlan_filter(bp, i);
1362                 }
1363                 RTE_LOG(INFO, PMD, "VLAN Filtering: %d\n",
1364                         dev->data->dev_conf.rxmode.hw_vlan_filter);
1365         }
1366
1367         if (mask & ETH_VLAN_STRIP_MASK) {
1368                 /* Enable or disable VLAN stripping */
1369                 for (i = 0; i < bp->nr_vnics; i++) {
1370                         struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1371                         if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1372                                 vnic->vlan_strip = true;
1373                         else
1374                                 vnic->vlan_strip = false;
1375                         bnxt_hwrm_vnic_cfg(bp, vnic);
1376                 }
1377                 RTE_LOG(INFO, PMD, "VLAN Strip Offload: %d\n",
1378                         dev->data->dev_conf.rxmode.hw_vlan_strip);
1379         }
1380
1381         if (mask & ETH_VLAN_EXTEND_MASK)
1382                 RTE_LOG(ERR, PMD, "Extend VLAN Not supported\n");
1383
1384         return 0;
1385 }
1386
1387 static void
1388 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct ether_addr *addr)
1389 {
1390         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1391         /* Default Filter is tied to VNIC 0 */
1392         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1393         struct bnxt_filter_info *filter;
1394         int rc;
1395
1396         if (BNXT_VF(bp))
1397                 return;
1398
1399         memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr));
1400         memcpy(&dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
1401
1402         STAILQ_FOREACH(filter, &vnic->filter, next) {
1403                 /* Default Filter is at Index 0 */
1404                 if (filter->mac_index != 0)
1405                         continue;
1406                 rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1407                 if (rc)
1408                         break;
1409                 memcpy(filter->l2_addr, bp->mac_addr, ETHER_ADDR_LEN);
1410                 memset(filter->l2_addr_mask, 0xff, ETHER_ADDR_LEN);
1411                 filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1412                 filter->enables |=
1413                         HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1414                         HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1415                 rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1416                 if (rc)
1417                         break;
1418                 filter->mac_index = 0;
1419                 RTE_LOG(DEBUG, PMD, "Set MAC addr\n");
1420         }
1421 }
1422
1423 static int
1424 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1425                           struct ether_addr *mc_addr_set,
1426                           uint32_t nb_mc_addr)
1427 {
1428         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1429         char *mc_addr_list = (char *)mc_addr_set;
1430         struct bnxt_vnic_info *vnic;
1431         uint32_t off = 0, i = 0;
1432
1433         vnic = &bp->vnic_info[0];
1434
1435         if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1436                 vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1437                 goto allmulti;
1438         }
1439
1440         /* TODO Check for Duplicate mcast addresses */
1441         vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1442         for (i = 0; i < nb_mc_addr; i++) {
1443                 memcpy(vnic->mc_list + off, &mc_addr_list[i], ETHER_ADDR_LEN);
1444                 off += ETHER_ADDR_LEN;
1445         }
1446
1447         vnic->mc_addr_cnt = i;
1448
1449 allmulti:
1450         return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1451 }
1452
1453 static int
1454 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1455 {
1456         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1457         uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1458         uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1459         uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1460         int ret;
1461
1462         ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1463                         fw_major, fw_minor, fw_updt);
1464
1465         ret += 1; /* add the size of '\0' */
1466         if (fw_size < (uint32_t)ret)
1467                 return ret;
1468         else
1469                 return 0;
1470 }
1471
1472 static void
1473 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1474         struct rte_eth_rxq_info *qinfo)
1475 {
1476         struct bnxt_rx_queue *rxq;
1477
1478         rxq = dev->data->rx_queues[queue_id];
1479
1480         qinfo->mp = rxq->mb_pool;
1481         qinfo->scattered_rx = dev->data->scattered_rx;
1482         qinfo->nb_desc = rxq->nb_rx_desc;
1483
1484         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1485         qinfo->conf.rx_drop_en = 0;
1486         qinfo->conf.rx_deferred_start = 0;
1487 }
1488
1489 static void
1490 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1491         struct rte_eth_txq_info *qinfo)
1492 {
1493         struct bnxt_tx_queue *txq;
1494
1495         txq = dev->data->tx_queues[queue_id];
1496
1497         qinfo->nb_desc = txq->nb_tx_desc;
1498
1499         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1500         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1501         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1502
1503         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1504         qinfo->conf.tx_rs_thresh = 0;
1505         qinfo->conf.txq_flags = txq->txq_flags;
1506         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1507 }
1508
1509 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1510 {
1511         struct bnxt *bp = eth_dev->data->dev_private;
1512         struct rte_eth_dev_info dev_info;
1513         uint32_t max_dev_mtu;
1514         uint32_t rc = 0;
1515         uint32_t i;
1516
1517         bnxt_dev_info_get_op(eth_dev, &dev_info);
1518         max_dev_mtu = dev_info.max_rx_pktlen -
1519                       ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE * 2;
1520
1521         if (new_mtu < ETHER_MIN_MTU || new_mtu > max_dev_mtu) {
1522                 RTE_LOG(ERR, PMD, "MTU requested must be within (%d, %d)\n",
1523                         ETHER_MIN_MTU, max_dev_mtu);
1524                 return -EINVAL;
1525         }
1526
1527
1528         if (new_mtu > ETHER_MTU) {
1529                 bp->flags |= BNXT_FLAG_JUMBO;
1530                 eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
1531         } else {
1532                 eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
1533                 bp->flags &= ~BNXT_FLAG_JUMBO;
1534         }
1535
1536         eth_dev->data->dev_conf.rxmode.max_rx_pkt_len =
1537                 new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1538
1539         eth_dev->data->mtu = new_mtu;
1540         RTE_LOG(INFO, PMD, "New MTU is %d\n", eth_dev->data->mtu);
1541
1542         for (i = 0; i < bp->nr_vnics; i++) {
1543                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1544
1545                 vnic->mru = bp->eth_dev->data->mtu + ETHER_HDR_LEN +
1546                                         ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1547                 rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1548                 if (rc)
1549                         break;
1550
1551                 rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1552                 if (rc)
1553                         return rc;
1554         }
1555
1556         return rc;
1557 }
1558
1559 static int
1560 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1561 {
1562         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1563         uint16_t vlan = bp->vlan;
1564         int rc;
1565
1566         if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
1567                 RTE_LOG(ERR, PMD,
1568                         "PVID cannot be modified for this function\n");
1569                 return -ENOTSUP;
1570         }
1571         bp->vlan = on ? pvid : 0;
1572
1573         rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1574         if (rc)
1575                 bp->vlan = vlan;
1576         return rc;
1577 }
1578
1579 static int
1580 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1581 {
1582         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1583
1584         return bnxt_hwrm_port_led_cfg(bp, true);
1585 }
1586
1587 static int
1588 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1589 {
1590         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1591
1592         return bnxt_hwrm_port_led_cfg(bp, false);
1593 }
1594
1595 static uint32_t
1596 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1597 {
1598         uint32_t desc = 0, raw_cons = 0, cons;
1599         struct bnxt_cp_ring_info *cpr;
1600         struct bnxt_rx_queue *rxq;
1601         struct rx_pkt_cmpl *rxcmp;
1602         uint16_t cmp_type;
1603         uint8_t cmp = 1;
1604         bool valid;
1605
1606         rxq = dev->data->rx_queues[rx_queue_id];
1607         cpr = rxq->cp_ring;
1608         valid = cpr->valid;
1609
1610         while (raw_cons < rxq->nb_rx_desc) {
1611                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1612                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1613
1614                 if (!CMPL_VALID(rxcmp, valid))
1615                         goto nothing_to_do;
1616                 valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1617                 cmp_type = CMP_TYPE(rxcmp);
1618                 if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1619                         cmp = (rte_le_to_cpu_32(
1620                                         ((struct rx_tpa_end_cmpl *)
1621                                          (rxcmp))->agg_bufs_v1) &
1622                                RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1623                                 RX_TPA_END_CMPL_AGG_BUFS_SFT;
1624                         desc++;
1625                 } else if (cmp_type == 0x11) {
1626                         desc++;
1627                         cmp = (rxcmp->agg_bufs_v1 &
1628                                    RX_PKT_CMPL_AGG_BUFS_MASK) >>
1629                                 RX_PKT_CMPL_AGG_BUFS_SFT;
1630                 } else {
1631                         cmp = 1;
1632                 }
1633 nothing_to_do:
1634                 raw_cons += cmp ? cmp : 2;
1635         }
1636
1637         return desc;
1638 }
1639
1640 static int
1641 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1642 {
1643         struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1644         struct bnxt_rx_ring_info *rxr;
1645         struct bnxt_cp_ring_info *cpr;
1646         struct bnxt_sw_rx_bd *rx_buf;
1647         struct rx_pkt_cmpl *rxcmp;
1648         uint32_t cons, cp_cons;
1649
1650         if (!rxq)
1651                 return -EINVAL;
1652
1653         cpr = rxq->cp_ring;
1654         rxr = rxq->rx_ring;
1655
1656         if (offset >= rxq->nb_rx_desc)
1657                 return -EINVAL;
1658
1659         cons = RING_CMP(cpr->cp_ring_struct, offset);
1660         cp_cons = cpr->cp_raw_cons;
1661         rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1662
1663         if (cons > cp_cons) {
1664                 if (CMPL_VALID(rxcmp, cpr->valid))
1665                         return RTE_ETH_RX_DESC_DONE;
1666         } else {
1667                 if (CMPL_VALID(rxcmp, !cpr->valid))
1668                         return RTE_ETH_RX_DESC_DONE;
1669         }
1670         rx_buf = &rxr->rx_buf_ring[cons];
1671         if (rx_buf->mbuf == NULL)
1672                 return RTE_ETH_RX_DESC_UNAVAIL;
1673
1674
1675         return RTE_ETH_RX_DESC_AVAIL;
1676 }
1677
1678 static int
1679 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
1680 {
1681         struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
1682         struct bnxt_tx_ring_info *txr;
1683         struct bnxt_cp_ring_info *cpr;
1684         struct bnxt_sw_tx_bd *tx_buf;
1685         struct tx_pkt_cmpl *txcmp;
1686         uint32_t cons, cp_cons;
1687
1688         if (!txq)
1689                 return -EINVAL;
1690
1691         cpr = txq->cp_ring;
1692         txr = txq->tx_ring;
1693
1694         if (offset >= txq->nb_tx_desc)
1695                 return -EINVAL;
1696
1697         cons = RING_CMP(cpr->cp_ring_struct, offset);
1698         txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1699         cp_cons = cpr->cp_raw_cons;
1700
1701         if (cons > cp_cons) {
1702                 if (CMPL_VALID(txcmp, cpr->valid))
1703                         return RTE_ETH_TX_DESC_UNAVAIL;
1704         } else {
1705                 if (CMPL_VALID(txcmp, !cpr->valid))
1706                         return RTE_ETH_TX_DESC_UNAVAIL;
1707         }
1708         tx_buf = &txr->tx_buf_ring[cons];
1709         if (tx_buf->mbuf == NULL)
1710                 return RTE_ETH_TX_DESC_DONE;
1711
1712         return RTE_ETH_TX_DESC_FULL;
1713 }
1714
1715 static struct bnxt_filter_info *
1716 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
1717                                 struct rte_eth_ethertype_filter *efilter,
1718                                 struct bnxt_vnic_info *vnic0,
1719                                 struct bnxt_vnic_info *vnic,
1720                                 int *ret)
1721 {
1722         struct bnxt_filter_info *mfilter = NULL;
1723         int match = 0;
1724         *ret = 0;
1725
1726         if (efilter->ether_type != ETHER_TYPE_IPv4 &&
1727                 efilter->ether_type != ETHER_TYPE_IPv6) {
1728                 RTE_LOG(ERR, PMD, "unsupported ether_type(0x%04x) in"
1729                         " ethertype filter.", efilter->ether_type);
1730                 *ret = -EINVAL;
1731                 goto exit;
1732         }
1733         if (efilter->queue >= bp->rx_nr_rings) {
1734                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1735                 *ret = -EINVAL;
1736                 goto exit;
1737         }
1738
1739         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1740         vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1741         if (vnic == NULL) {
1742                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1743                 *ret = -EINVAL;
1744                 goto exit;
1745         }
1746
1747         if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1748                 STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
1749                         if ((!memcmp(efilter->mac_addr.addr_bytes,
1750                                      mfilter->l2_addr, ETHER_ADDR_LEN) &&
1751                              mfilter->flags ==
1752                              HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
1753                              mfilter->ethertype == efilter->ether_type)) {
1754                                 match = 1;
1755                                 break;
1756                         }
1757                 }
1758         } else {
1759                 STAILQ_FOREACH(mfilter, &vnic->filter, next)
1760                         if ((!memcmp(efilter->mac_addr.addr_bytes,
1761                                      mfilter->l2_addr, ETHER_ADDR_LEN) &&
1762                              mfilter->ethertype == efilter->ether_type &&
1763                              mfilter->flags ==
1764                              HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
1765                                 match = 1;
1766                                 break;
1767                         }
1768         }
1769
1770         if (match)
1771                 *ret = -EEXIST;
1772
1773 exit:
1774         return mfilter;
1775 }
1776
1777 static int
1778 bnxt_ethertype_filter(struct rte_eth_dev *dev,
1779                         enum rte_filter_op filter_op,
1780                         void *arg)
1781 {
1782         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1783         struct rte_eth_ethertype_filter *efilter =
1784                         (struct rte_eth_ethertype_filter *)arg;
1785         struct bnxt_filter_info *bfilter, *filter1;
1786         struct bnxt_vnic_info *vnic, *vnic0;
1787         int ret;
1788
1789         if (filter_op == RTE_ETH_FILTER_NOP)
1790                 return 0;
1791
1792         if (arg == NULL) {
1793                 RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
1794                             filter_op);
1795                 return -EINVAL;
1796         }
1797
1798         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1799         vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1800
1801         switch (filter_op) {
1802         case RTE_ETH_FILTER_ADD:
1803                 bnxt_match_and_validate_ether_filter(bp, efilter,
1804                                                         vnic0, vnic, &ret);
1805                 if (ret < 0)
1806                         return ret;
1807
1808                 bfilter = bnxt_get_unused_filter(bp);
1809                 if (bfilter == NULL) {
1810                         RTE_LOG(ERR, PMD,
1811                                 "Not enough resources for a new filter.\n");
1812                         return -ENOMEM;
1813                 }
1814                 bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
1815                 memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
1816                        ETHER_ADDR_LEN);
1817                 memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
1818                        ETHER_ADDR_LEN);
1819                 bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
1820                 bfilter->ethertype = efilter->ether_type;
1821                 bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
1822
1823                 filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
1824                 if (filter1 == NULL) {
1825                         ret = -1;
1826                         goto cleanup;
1827                 }
1828                 bfilter->enables |=
1829                         HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
1830                 bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
1831
1832                 bfilter->dst_id = vnic->fw_vnic_id;
1833
1834                 if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1835                         bfilter->flags =
1836                                 HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
1837                 }
1838
1839                 ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
1840                 if (ret)
1841                         goto cleanup;
1842                 STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
1843                 break;
1844         case RTE_ETH_FILTER_DELETE:
1845                 filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
1846                                                         vnic0, vnic, &ret);
1847                 if (ret == -EEXIST) {
1848                         ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
1849
1850                         STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
1851                                       next);
1852                         bnxt_free_filter(bp, filter1);
1853                 } else if (ret == 0) {
1854                         RTE_LOG(ERR, PMD, "No matching filter found\n");
1855                 }
1856                 break;
1857         default:
1858                 RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
1859                 ret = -EINVAL;
1860                 goto error;
1861         }
1862         return ret;
1863 cleanup:
1864         bnxt_free_filter(bp, bfilter);
1865 error:
1866         return ret;
1867 }
1868
1869 static inline int
1870 parse_ntuple_filter(struct bnxt *bp,
1871                     struct rte_eth_ntuple_filter *nfilter,
1872                     struct bnxt_filter_info *bfilter)
1873 {
1874         uint32_t en = 0;
1875
1876         if (nfilter->queue >= bp->rx_nr_rings) {
1877                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", nfilter->queue);
1878                 return -EINVAL;
1879         }
1880
1881         switch (nfilter->dst_port_mask) {
1882         case UINT16_MAX:
1883                 bfilter->dst_port_mask = -1;
1884                 bfilter->dst_port = nfilter->dst_port;
1885                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
1886                         NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
1887                 break;
1888         default:
1889                 RTE_LOG(ERR, PMD, "invalid dst_port mask.");
1890                 return -EINVAL;
1891         }
1892
1893         bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
1894         en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1895
1896         switch (nfilter->proto_mask) {
1897         case UINT8_MAX:
1898                 if (nfilter->proto == 17) /* IPPROTO_UDP */
1899                         bfilter->ip_protocol = 17;
1900                 else if (nfilter->proto == 6) /* IPPROTO_TCP */
1901                         bfilter->ip_protocol = 6;
1902                 else
1903                         return -EINVAL;
1904                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1905                 break;
1906         default:
1907                 RTE_LOG(ERR, PMD, "invalid protocol mask.");
1908                 return -EINVAL;
1909         }
1910
1911         switch (nfilter->dst_ip_mask) {
1912         case UINT32_MAX:
1913                 bfilter->dst_ipaddr_mask[0] = -1;
1914                 bfilter->dst_ipaddr[0] = nfilter->dst_ip;
1915                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
1916                         NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
1917                 break;
1918         default:
1919                 RTE_LOG(ERR, PMD, "invalid dst_ip mask.");
1920                 return -EINVAL;
1921         }
1922
1923         switch (nfilter->src_ip_mask) {
1924         case UINT32_MAX:
1925                 bfilter->src_ipaddr_mask[0] = -1;
1926                 bfilter->src_ipaddr[0] = nfilter->src_ip;
1927                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
1928                         NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
1929                 break;
1930         default:
1931                 RTE_LOG(ERR, PMD, "invalid src_ip mask.");
1932                 return -EINVAL;
1933         }
1934
1935         switch (nfilter->src_port_mask) {
1936         case UINT16_MAX:
1937                 bfilter->src_port_mask = -1;
1938                 bfilter->src_port = nfilter->src_port;
1939                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
1940                         NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
1941                 break;
1942         default:
1943                 RTE_LOG(ERR, PMD, "invalid src_port mask.");
1944                 return -EINVAL;
1945         }
1946
1947         //TODO Priority
1948         //nfilter->priority = (uint8_t)filter->priority;
1949
1950         bfilter->enables = en;
1951         return 0;
1952 }
1953
1954 static struct bnxt_filter_info*
1955 bnxt_match_ntuple_filter(struct bnxt *bp,
1956                          struct bnxt_filter_info *bfilter)
1957 {
1958         struct bnxt_filter_info *mfilter = NULL;
1959         int i;
1960
1961         for (i = bp->nr_vnics - 1; i >= 0; i--) {
1962                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1963                 STAILQ_FOREACH(mfilter, &vnic->filter, next) {
1964                         if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
1965                             bfilter->src_ipaddr_mask[0] ==
1966                             mfilter->src_ipaddr_mask[0] &&
1967                             bfilter->src_port == mfilter->src_port &&
1968                             bfilter->src_port_mask == mfilter->src_port_mask &&
1969                             bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
1970                             bfilter->dst_ipaddr_mask[0] ==
1971                             mfilter->dst_ipaddr_mask[0] &&
1972                             bfilter->dst_port == mfilter->dst_port &&
1973                             bfilter->dst_port_mask == mfilter->dst_port_mask &&
1974                             bfilter->flags == mfilter->flags &&
1975                             bfilter->enables == mfilter->enables)
1976                                 return mfilter;
1977                 }
1978         }
1979         return NULL;
1980 }
1981
1982 static int
1983 bnxt_cfg_ntuple_filter(struct bnxt *bp,
1984                        struct rte_eth_ntuple_filter *nfilter,
1985                        enum rte_filter_op filter_op)
1986 {
1987         struct bnxt_filter_info *bfilter, *mfilter, *filter1;
1988         struct bnxt_vnic_info *vnic, *vnic0;
1989         int ret;
1990
1991         if (nfilter->flags != RTE_5TUPLE_FLAGS) {
1992                 RTE_LOG(ERR, PMD, "only 5tuple is supported.");
1993                 return -EINVAL;
1994         }
1995
1996         if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
1997                 RTE_LOG(ERR, PMD, "Ntuple filter: TCP flags not supported\n");
1998                 return -EINVAL;
1999         }
2000
2001         bfilter = bnxt_get_unused_filter(bp);
2002         if (bfilter == NULL) {
2003                 RTE_LOG(ERR, PMD,
2004                         "Not enough resources for a new filter.\n");
2005                 return -ENOMEM;
2006         }
2007         ret = parse_ntuple_filter(bp, nfilter, bfilter);
2008         if (ret < 0)
2009                 goto free_filter;
2010
2011         vnic = STAILQ_FIRST(&bp->ff_pool[nfilter->queue]);
2012         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2013         filter1 = STAILQ_FIRST(&vnic0->filter);
2014         if (filter1 == NULL) {
2015                 ret = -1;
2016                 goto free_filter;
2017         }
2018
2019         bfilter->dst_id = vnic->fw_vnic_id;
2020         bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2021         bfilter->enables |=
2022                 HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2023         bfilter->ethertype = 0x800;
2024         bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2025
2026         mfilter = bnxt_match_ntuple_filter(bp, bfilter);
2027
2028         if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2029                 RTE_LOG(ERR, PMD, "filter exists.");
2030                 ret = -EEXIST;
2031                 goto free_filter;
2032         }
2033         if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2034                 RTE_LOG(ERR, PMD, "filter doesn't exist.");
2035                 ret = -ENOENT;
2036                 goto free_filter;
2037         }
2038
2039         if (filter_op == RTE_ETH_FILTER_ADD) {
2040                 bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2041                 ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2042                 if (ret)
2043                         goto free_filter;
2044                 STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2045         } else {
2046                 if (mfilter == NULL) {
2047                         /* This should not happen. But for Coverity! */
2048                         ret = -ENOENT;
2049                         goto free_filter;
2050                 }
2051                 ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2052
2053                 STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info,
2054                               next);
2055                 bnxt_free_filter(bp, mfilter);
2056                 bfilter->fw_l2_filter_id = -1;
2057                 bnxt_free_filter(bp, bfilter);
2058         }
2059
2060         return 0;
2061 free_filter:
2062         bfilter->fw_l2_filter_id = -1;
2063         bnxt_free_filter(bp, bfilter);
2064         return ret;
2065 }
2066
2067 static int
2068 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2069                         enum rte_filter_op filter_op,
2070                         void *arg)
2071 {
2072         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2073         int ret;
2074
2075         if (filter_op == RTE_ETH_FILTER_NOP)
2076                 return 0;
2077
2078         if (arg == NULL) {
2079                 RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
2080                             filter_op);
2081                 return -EINVAL;
2082         }
2083
2084         switch (filter_op) {
2085         case RTE_ETH_FILTER_ADD:
2086                 ret = bnxt_cfg_ntuple_filter(bp,
2087                         (struct rte_eth_ntuple_filter *)arg,
2088                         filter_op);
2089                 break;
2090         case RTE_ETH_FILTER_DELETE:
2091                 ret = bnxt_cfg_ntuple_filter(bp,
2092                         (struct rte_eth_ntuple_filter *)arg,
2093                         filter_op);
2094                 break;
2095         default:
2096                 RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
2097                 ret = -EINVAL;
2098                 break;
2099         }
2100         return ret;
2101 }
2102
2103 static int
2104 bnxt_parse_fdir_filter(struct bnxt *bp,
2105                        struct rte_eth_fdir_filter *fdir,
2106                        struct bnxt_filter_info *filter)
2107 {
2108         enum rte_fdir_mode fdir_mode =
2109                 bp->eth_dev->data->dev_conf.fdir_conf.mode;
2110         struct bnxt_vnic_info *vnic0, *vnic;
2111         struct bnxt_filter_info *filter1;
2112         uint32_t en = 0;
2113         int i;
2114
2115         if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2116                 return -EINVAL;
2117
2118         filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2119         en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2120
2121         switch (fdir->input.flow_type) {
2122         case RTE_ETH_FLOW_IPV4:
2123         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2124                 /* FALLTHROUGH */
2125                 filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2126                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2127                 filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2128                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2129                 filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2130                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2131                 filter->ip_addr_type =
2132                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2133                 filter->src_ipaddr_mask[0] = 0xffffffff;
2134                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2135                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2136                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2137                 filter->ethertype = 0x800;
2138                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2139                 break;
2140         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2141                 filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2142                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2143                 filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2144                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2145                 filter->dst_port_mask = 0xffff;
2146                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2147                 filter->src_port_mask = 0xffff;
2148                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2149                 filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2150                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2151                 filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2152                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2153                 filter->ip_protocol = 6;
2154                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2155                 filter->ip_addr_type =
2156                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2157                 filter->src_ipaddr_mask[0] = 0xffffffff;
2158                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2159                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2160                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2161                 filter->ethertype = 0x800;
2162                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2163                 break;
2164         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2165                 filter->src_port = fdir->input.flow.udp4_flow.src_port;
2166                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2167                 filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2168                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2169                 filter->dst_port_mask = 0xffff;
2170                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2171                 filter->src_port_mask = 0xffff;
2172                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2173                 filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2174                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2175                 filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2176                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2177                 filter->ip_protocol = 17;
2178                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2179                 filter->ip_addr_type =
2180                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2181                 filter->src_ipaddr_mask[0] = 0xffffffff;
2182                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2183                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2184                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2185                 filter->ethertype = 0x800;
2186                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2187                 break;
2188         case RTE_ETH_FLOW_IPV6:
2189         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2190                 /* FALLTHROUGH */
2191                 filter->ip_addr_type =
2192                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2193                 filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2194                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2195                 rte_memcpy(filter->src_ipaddr,
2196                            fdir->input.flow.ipv6_flow.src_ip, 16);
2197                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2198                 rte_memcpy(filter->dst_ipaddr,
2199                            fdir->input.flow.ipv6_flow.dst_ip, 16);
2200                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2201                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2202                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2203                 memset(filter->src_ipaddr_mask, 0xff, 16);
2204                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2205                 filter->ethertype = 0x86dd;
2206                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2207                 break;
2208         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2209                 filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2210                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2211                 filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2212                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2213                 filter->dst_port_mask = 0xffff;
2214                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2215                 filter->src_port_mask = 0xffff;
2216                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2217                 filter->ip_addr_type =
2218                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2219                 filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2220                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2221                 rte_memcpy(filter->src_ipaddr,
2222                            fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2223                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2224                 rte_memcpy(filter->dst_ipaddr,
2225                            fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2226                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2227                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2228                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2229                 memset(filter->src_ipaddr_mask, 0xff, 16);
2230                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2231                 filter->ethertype = 0x86dd;
2232                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2233                 break;
2234         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2235                 filter->src_port = fdir->input.flow.udp6_flow.src_port;
2236                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2237                 filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2238                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2239                 filter->dst_port_mask = 0xffff;
2240                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2241                 filter->src_port_mask = 0xffff;
2242                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2243                 filter->ip_addr_type =
2244                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2245                 filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2246                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2247                 rte_memcpy(filter->src_ipaddr,
2248                            fdir->input.flow.udp6_flow.ip.src_ip, 16);
2249                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2250                 rte_memcpy(filter->dst_ipaddr,
2251                            fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2252                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2253                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2254                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2255                 memset(filter->src_ipaddr_mask, 0xff, 16);
2256                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2257                 filter->ethertype = 0x86dd;
2258                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2259                 break;
2260         case RTE_ETH_FLOW_L2_PAYLOAD:
2261                 filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2262                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2263                 break;
2264         case RTE_ETH_FLOW_VXLAN:
2265                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2266                         return -EINVAL;
2267                 filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2268                 filter->tunnel_type =
2269                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2270                 en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2271                 break;
2272         case RTE_ETH_FLOW_NVGRE:
2273                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2274                         return -EINVAL;
2275                 filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2276                 filter->tunnel_type =
2277                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2278                 en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2279                 break;
2280         case RTE_ETH_FLOW_UNKNOWN:
2281         case RTE_ETH_FLOW_RAW:
2282         case RTE_ETH_FLOW_FRAG_IPV4:
2283         case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2284         case RTE_ETH_FLOW_FRAG_IPV6:
2285         case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2286         case RTE_ETH_FLOW_IPV6_EX:
2287         case RTE_ETH_FLOW_IPV6_TCP_EX:
2288         case RTE_ETH_FLOW_IPV6_UDP_EX:
2289         case RTE_ETH_FLOW_GENEVE:
2290                 /* FALLTHROUGH */
2291         default:
2292                 return -EINVAL;
2293         }
2294
2295         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2296         vnic = STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2297         if (vnic == NULL) {
2298                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", fdir->action.rx_queue);
2299                 return -EINVAL;
2300         }
2301
2302
2303         if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2304                 rte_memcpy(filter->dst_macaddr,
2305                         fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2306                         en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2307         }
2308
2309         if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2310                 filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2311                 filter1 = STAILQ_FIRST(&vnic0->filter);
2312                 //filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2313         } else {
2314                 filter->dst_id = vnic->fw_vnic_id;
2315                 for (i = 0; i < ETHER_ADDR_LEN; i++)
2316                         if (filter->dst_macaddr[i] == 0x00)
2317                                 filter1 = STAILQ_FIRST(&vnic0->filter);
2318                         else
2319                                 filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2320         }
2321
2322         if (filter1 == NULL)
2323                 return -EINVAL;
2324
2325         en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2326         filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2327
2328         filter->enables = en;
2329
2330         return 0;
2331 }
2332
2333 static struct bnxt_filter_info *
2334 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf)
2335 {
2336         struct bnxt_filter_info *mf = NULL;
2337         int i;
2338
2339         for (i = bp->nr_vnics - 1; i >= 0; i--) {
2340                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2341
2342                 STAILQ_FOREACH(mf, &vnic->filter, next) {
2343                         if (mf->filter_type == nf->filter_type &&
2344                             mf->flags == nf->flags &&
2345                             mf->src_port == nf->src_port &&
2346                             mf->src_port_mask == nf->src_port_mask &&
2347                             mf->dst_port == nf->dst_port &&
2348                             mf->dst_port_mask == nf->dst_port_mask &&
2349                             mf->ip_protocol == nf->ip_protocol &&
2350                             mf->ip_addr_type == nf->ip_addr_type &&
2351                             mf->ethertype == nf->ethertype &&
2352                             mf->vni == nf->vni &&
2353                             mf->tunnel_type == nf->tunnel_type &&
2354                             mf->l2_ovlan == nf->l2_ovlan &&
2355                             mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2356                             mf->l2_ivlan == nf->l2_ivlan &&
2357                             mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2358                             !memcmp(mf->l2_addr, nf->l2_addr, ETHER_ADDR_LEN) &&
2359                             !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2360                                     ETHER_ADDR_LEN) &&
2361                             !memcmp(mf->src_macaddr, nf->src_macaddr,
2362                                     ETHER_ADDR_LEN) &&
2363                             !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2364                                     ETHER_ADDR_LEN) &&
2365                             !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2366                                     sizeof(nf->src_ipaddr)) &&
2367                             !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2368                                     sizeof(nf->src_ipaddr_mask)) &&
2369                             !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2370                                     sizeof(nf->dst_ipaddr)) &&
2371                             !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2372                                     sizeof(nf->dst_ipaddr_mask)))
2373                                 return mf;
2374                 }
2375         }
2376         return NULL;
2377 }
2378
2379 static int
2380 bnxt_fdir_filter(struct rte_eth_dev *dev,
2381                  enum rte_filter_op filter_op,
2382                  void *arg)
2383 {
2384         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2385         struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2386         struct bnxt_filter_info *filter, *match;
2387         struct bnxt_vnic_info *vnic;
2388         int ret = 0, i;
2389
2390         if (filter_op == RTE_ETH_FILTER_NOP)
2391                 return 0;
2392
2393         if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2394                 return -EINVAL;
2395
2396         switch (filter_op) {
2397         case RTE_ETH_FILTER_ADD:
2398         case RTE_ETH_FILTER_DELETE:
2399                 /* FALLTHROUGH */
2400                 filter = bnxt_get_unused_filter(bp);
2401                 if (filter == NULL) {
2402                         RTE_LOG(ERR, PMD,
2403                                 "Not enough resources for a new flow.\n");
2404                         return -ENOMEM;
2405                 }
2406
2407                 ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2408                 if (ret != 0)
2409                         goto free_filter;
2410                 filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2411
2412                 match = bnxt_match_fdir(bp, filter);
2413                 if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2414                         RTE_LOG(ERR, PMD, "Flow already exists.\n");
2415                         ret = -EEXIST;
2416                         goto free_filter;
2417                 }
2418                 if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2419                         RTE_LOG(ERR, PMD, "Flow does not exist.\n");
2420                         ret = -ENOENT;
2421                         goto free_filter;
2422                 }
2423
2424                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2425                         vnic = STAILQ_FIRST(&bp->ff_pool[0]);
2426                 else
2427                         vnic =
2428                         STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2429
2430                 if (filter_op == RTE_ETH_FILTER_ADD) {
2431                         ret = bnxt_hwrm_set_ntuple_filter(bp,
2432                                                           filter->dst_id,
2433                                                           filter);
2434                         if (ret)
2435                                 goto free_filter;
2436                         STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2437                 } else {
2438                         ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2439                         STAILQ_REMOVE(&vnic->filter, match,
2440                                       bnxt_filter_info, next);
2441                         bnxt_free_filter(bp, match);
2442                         filter->fw_l2_filter_id = -1;
2443                         bnxt_free_filter(bp, filter);
2444                 }
2445                 break;
2446         case RTE_ETH_FILTER_FLUSH:
2447                 for (i = bp->nr_vnics - 1; i >= 0; i--) {
2448                         struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2449
2450                         STAILQ_FOREACH(filter, &vnic->filter, next) {
2451                                 if (filter->filter_type ==
2452                                     HWRM_CFA_NTUPLE_FILTER) {
2453                                         ret =
2454                                         bnxt_hwrm_clear_ntuple_filter(bp,
2455                                                                       filter);
2456                                         STAILQ_REMOVE(&vnic->filter, filter,
2457                                                       bnxt_filter_info, next);
2458                                 }
2459                         }
2460                 }
2461                 return ret;
2462         case RTE_ETH_FILTER_UPDATE:
2463         case RTE_ETH_FILTER_STATS:
2464         case RTE_ETH_FILTER_INFO:
2465                 /* FALLTHROUGH */
2466                 RTE_LOG(ERR, PMD, "operation %u not implemented", filter_op);
2467                 break;
2468         default:
2469                 RTE_LOG(ERR, PMD, "unknown operation %u", filter_op);
2470                 ret = -EINVAL;
2471                 break;
2472         }
2473         return ret;
2474
2475 free_filter:
2476         filter->fw_l2_filter_id = -1;
2477         bnxt_free_filter(bp, filter);
2478         return ret;
2479 }
2480
2481 static int
2482 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2483                     enum rte_filter_type filter_type,
2484                     enum rte_filter_op filter_op, void *arg)
2485 {
2486         int ret = 0;
2487
2488         switch (filter_type) {
2489         case RTE_ETH_FILTER_TUNNEL:
2490                 RTE_LOG(ERR, PMD,
2491                         "filter type: %d: To be implemented\n", filter_type);
2492                 break;
2493         case RTE_ETH_FILTER_FDIR:
2494                 ret = bnxt_fdir_filter(dev, filter_op, arg);
2495                 break;
2496         case RTE_ETH_FILTER_NTUPLE:
2497                 ret = bnxt_ntuple_filter(dev, filter_op, arg);
2498                 break;
2499         case RTE_ETH_FILTER_ETHERTYPE:
2500                 ret = bnxt_ethertype_filter(dev, filter_op, arg);
2501                 break;
2502         case RTE_ETH_FILTER_GENERIC:
2503                 if (filter_op != RTE_ETH_FILTER_GET)
2504                         return -EINVAL;
2505                 *(const void **)arg = &bnxt_flow_ops;
2506                 break;
2507         default:
2508                 RTE_LOG(ERR, PMD,
2509                         "Filter type (%d) not supported", filter_type);
2510                 ret = -EINVAL;
2511                 break;
2512         }
2513         return ret;
2514 }
2515
2516 static const uint32_t *
2517 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2518 {
2519         static const uint32_t ptypes[] = {
2520                 RTE_PTYPE_L2_ETHER_VLAN,
2521                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2522                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2523                 RTE_PTYPE_L4_ICMP,
2524                 RTE_PTYPE_L4_TCP,
2525                 RTE_PTYPE_L4_UDP,
2526                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2527                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2528                 RTE_PTYPE_INNER_L4_ICMP,
2529                 RTE_PTYPE_INNER_L4_TCP,
2530                 RTE_PTYPE_INNER_L4_UDP,
2531                 RTE_PTYPE_UNKNOWN
2532         };
2533
2534         if (dev->rx_pkt_burst == bnxt_recv_pkts)
2535                 return ptypes;
2536         return NULL;
2537 }
2538
2539 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
2540                          int reg_win)
2541 {
2542         uint32_t reg_base = *reg_arr & 0xfffff000;
2543         uint32_t win_off;
2544         int i;
2545
2546         for (i = 0; i < count; i++) {
2547                 if ((reg_arr[i] & 0xfffff000) != reg_base)
2548                         return -ERANGE;
2549         }
2550         win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
2551         rte_cpu_to_le_32(rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off));
2552         return 0;
2553 }
2554
2555 static int bnxt_map_ptp_regs(struct bnxt *bp)
2556 {
2557         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2558         uint32_t *reg_arr;
2559         int rc, i;
2560
2561         reg_arr = ptp->rx_regs;
2562         rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
2563         if (rc)
2564                 return rc;
2565
2566         reg_arr = ptp->tx_regs;
2567         rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
2568         if (rc)
2569                 return rc;
2570
2571         for (i = 0; i < BNXT_PTP_RX_REGS; i++)
2572                 ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
2573
2574         for (i = 0; i < BNXT_PTP_TX_REGS; i++)
2575                 ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
2576
2577         return 0;
2578 }
2579
2580 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
2581 {
2582         rte_cpu_to_le_32(rte_write32(0, (uint8_t *)bp->bar0 +
2583                          BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16));
2584         rte_cpu_to_le_32(rte_write32(0, (uint8_t *)bp->bar0 +
2585                          BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20));
2586 }
2587
2588 static uint64_t bnxt_cc_read(struct bnxt *bp)
2589 {
2590         uint64_t ns;
2591
2592         ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2593                               BNXT_GRCPF_REG_SYNC_TIME));
2594         ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2595                                           BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
2596         return ns;
2597 }
2598
2599 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
2600 {
2601         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2602         uint32_t fifo;
2603
2604         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2605                                 ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2606         if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
2607                 return -EAGAIN;
2608
2609         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2610                                 ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2611         *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2612                                 ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
2613         *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2614                                 ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
2615
2616         return 0;
2617 }
2618
2619 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
2620 {
2621         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2622         struct bnxt_pf_info *pf = &bp->pf;
2623         uint16_t port_id;
2624         uint32_t fifo;
2625
2626         if (!ptp)
2627                 return -ENODEV;
2628
2629         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2630                                 ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2631         if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
2632                 return -EAGAIN;
2633
2634         port_id = pf->port_id;
2635         rte_cpu_to_le_32(rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
2636                ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]));
2637
2638         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2639                                    ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2640         if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
2641 /*              bnxt_clr_rx_ts(bp);       TBD  */
2642                 return -EBUSY;
2643         }
2644
2645         *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2646                                 ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
2647         *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2648                                 ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
2649
2650         return 0;
2651 }
2652
2653 static int
2654 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
2655 {
2656         uint64_t ns;
2657         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2658         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2659
2660         if (!ptp)
2661                 return 0;
2662
2663         ns = rte_timespec_to_ns(ts);
2664         /* Set the timecounters to a new value. */
2665         ptp->tc.nsec = ns;
2666
2667         return 0;
2668 }
2669
2670 static int
2671 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
2672 {
2673         uint64_t ns, systime_cycles;
2674         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2675         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2676
2677         if (!ptp)
2678                 return 0;
2679
2680         systime_cycles = bnxt_cc_read(bp);
2681         ns = rte_timecounter_update(&ptp->tc, systime_cycles);
2682         *ts = rte_ns_to_timespec(ns);
2683
2684         return 0;
2685 }
2686 static int
2687 bnxt_timesync_enable(struct rte_eth_dev *dev)
2688 {
2689         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2690         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2691         uint32_t shift = 0;
2692
2693         if (!ptp)
2694                 return 0;
2695
2696         ptp->rx_filter = 1;
2697         ptp->tx_tstamp_en = 1;
2698         ptp->rxctl = BNXT_PTP_MSG_EVENTS;
2699
2700         if (!bnxt_hwrm_ptp_cfg(bp))
2701                 bnxt_map_ptp_regs(bp);
2702
2703         memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
2704         memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2705         memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2706
2707         ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2708         ptp->tc.cc_shift = shift;
2709         ptp->tc.nsec_mask = (1ULL << shift) - 1;
2710
2711         ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2712         ptp->rx_tstamp_tc.cc_shift = shift;
2713         ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2714
2715         ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2716         ptp->tx_tstamp_tc.cc_shift = shift;
2717         ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2718
2719         return 0;
2720 }
2721
2722 static int
2723 bnxt_timesync_disable(struct rte_eth_dev *dev)
2724 {
2725         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2726         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2727
2728         if (!ptp)
2729                 return 0;
2730
2731         ptp->rx_filter = 0;
2732         ptp->tx_tstamp_en = 0;
2733         ptp->rxctl = 0;
2734
2735         bnxt_hwrm_ptp_cfg(bp);
2736
2737         bnxt_unmap_ptp_regs(bp);
2738
2739         return 0;
2740 }
2741
2742 static int
2743 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
2744                                  struct timespec *timestamp,
2745                                  uint32_t flags __rte_unused)
2746 {
2747         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2748         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2749         uint64_t rx_tstamp_cycles = 0;
2750         uint64_t ns;
2751
2752         if (!ptp)
2753                 return 0;
2754
2755         bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
2756         ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
2757         *timestamp = rte_ns_to_timespec(ns);
2758         return  0;
2759 }
2760
2761 static int
2762 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
2763                                  struct timespec *timestamp)
2764 {
2765         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2766         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2767         uint64_t tx_tstamp_cycles = 0;
2768         uint64_t ns;
2769
2770         if (!ptp)
2771                 return 0;
2772
2773         bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
2774         ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
2775         *timestamp = rte_ns_to_timespec(ns);
2776
2777         return 0;
2778 }
2779
2780 static int
2781 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
2782 {
2783         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2784         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2785
2786         if (!ptp)
2787                 return 0;
2788
2789         ptp->tc.nsec += delta;
2790
2791         return 0;
2792 }
2793
2794 static int
2795 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
2796 {
2797         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2798         int rc;
2799         uint32_t dir_entries;
2800         uint32_t entry_length;
2801
2802         RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x\n",
2803                 __func__, bp->pdev->addr.domain, bp->pdev->addr.bus,
2804                 bp->pdev->addr.devid, bp->pdev->addr.function);
2805
2806         rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
2807         if (rc != 0)
2808                 return rc;
2809
2810         return dir_entries * entry_length;
2811 }
2812
2813 static int
2814 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
2815                 struct rte_dev_eeprom_info *in_eeprom)
2816 {
2817         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2818         uint32_t index;
2819         uint32_t offset;
2820
2821         RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2822                 "len = %d\n", __func__, bp->pdev->addr.domain,
2823                 bp->pdev->addr.bus, bp->pdev->addr.devid,
2824                 bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2825
2826         if (in_eeprom->offset == 0) /* special offset value to get directory */
2827                 return bnxt_get_nvram_directory(bp, in_eeprom->length,
2828                                                 in_eeprom->data);
2829
2830         index = in_eeprom->offset >> 24;
2831         offset = in_eeprom->offset & 0xffffff;
2832
2833         if (index != 0)
2834                 return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
2835                                            in_eeprom->length, in_eeprom->data);
2836
2837         return 0;
2838 }
2839
2840 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
2841 {
2842         switch (dir_type) {
2843         case BNX_DIR_TYPE_CHIMP_PATCH:
2844         case BNX_DIR_TYPE_BOOTCODE:
2845         case BNX_DIR_TYPE_BOOTCODE_2:
2846         case BNX_DIR_TYPE_APE_FW:
2847         case BNX_DIR_TYPE_APE_PATCH:
2848         case BNX_DIR_TYPE_KONG_FW:
2849         case BNX_DIR_TYPE_KONG_PATCH:
2850         case BNX_DIR_TYPE_BONO_FW:
2851         case BNX_DIR_TYPE_BONO_PATCH:
2852                 return true;
2853         }
2854
2855         return false;
2856 }
2857
2858 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
2859 {
2860         switch (dir_type) {
2861         case BNX_DIR_TYPE_AVS:
2862         case BNX_DIR_TYPE_EXP_ROM_MBA:
2863         case BNX_DIR_TYPE_PCIE:
2864         case BNX_DIR_TYPE_TSCF_UCODE:
2865         case BNX_DIR_TYPE_EXT_PHY:
2866         case BNX_DIR_TYPE_CCM:
2867         case BNX_DIR_TYPE_ISCSI_BOOT:
2868         case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
2869         case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
2870                 return true;
2871         }
2872
2873         return false;
2874 }
2875
2876 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
2877 {
2878         return bnxt_dir_type_is_ape_bin_format(dir_type) ||
2879                 bnxt_dir_type_is_other_exec_format(dir_type);
2880 }
2881
2882 static int
2883 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
2884                 struct rte_dev_eeprom_info *in_eeprom)
2885 {
2886         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2887         uint8_t index, dir_op;
2888         uint16_t type, ext, ordinal, attr;
2889
2890         RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2891                 "len = %d\n", __func__, bp->pdev->addr.domain,
2892                 bp->pdev->addr.bus, bp->pdev->addr.devid,
2893                 bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2894
2895         if (!BNXT_PF(bp)) {
2896                 RTE_LOG(ERR, PMD, "NVM write not supported from a VF\n");
2897                 return -EINVAL;
2898         }
2899
2900         type = in_eeprom->magic >> 16;
2901
2902         if (type == 0xffff) { /* special value for directory operations */
2903                 index = in_eeprom->magic & 0xff;
2904                 dir_op = in_eeprom->magic >> 8;
2905                 if (index == 0)
2906                         return -EINVAL;
2907                 switch (dir_op) {
2908                 case 0x0e: /* erase */
2909                         if (in_eeprom->offset != ~in_eeprom->magic)
2910                                 return -EINVAL;
2911                         return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
2912                 default:
2913                         return -EINVAL;
2914                 }
2915         }
2916
2917         /* Create or re-write an NVM item: */
2918         if (bnxt_dir_type_is_executable(type) == true)
2919                 return -EOPNOTSUPP;
2920         ext = in_eeprom->magic & 0xffff;
2921         ordinal = in_eeprom->offset >> 16;
2922         attr = in_eeprom->offset & 0xffff;
2923
2924         return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
2925                                      in_eeprom->data, in_eeprom->length);
2926         return 0;
2927 }
2928
2929 /*
2930  * Initialization
2931  */
2932
2933 static const struct eth_dev_ops bnxt_dev_ops = {
2934         .dev_infos_get = bnxt_dev_info_get_op,
2935         .dev_close = bnxt_dev_close_op,
2936         .dev_configure = bnxt_dev_configure_op,
2937         .dev_start = bnxt_dev_start_op,
2938         .dev_stop = bnxt_dev_stop_op,
2939         .dev_set_link_up = bnxt_dev_set_link_up_op,
2940         .dev_set_link_down = bnxt_dev_set_link_down_op,
2941         .stats_get = bnxt_stats_get_op,
2942         .stats_reset = bnxt_stats_reset_op,
2943         .rx_queue_setup = bnxt_rx_queue_setup_op,
2944         .rx_queue_release = bnxt_rx_queue_release_op,
2945         .tx_queue_setup = bnxt_tx_queue_setup_op,
2946         .tx_queue_release = bnxt_tx_queue_release_op,
2947         .rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
2948         .rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
2949         .reta_update = bnxt_reta_update_op,
2950         .reta_query = bnxt_reta_query_op,
2951         .rss_hash_update = bnxt_rss_hash_update_op,
2952         .rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
2953         .link_update = bnxt_link_update_op,
2954         .promiscuous_enable = bnxt_promiscuous_enable_op,
2955         .promiscuous_disable = bnxt_promiscuous_disable_op,
2956         .allmulticast_enable = bnxt_allmulticast_enable_op,
2957         .allmulticast_disable = bnxt_allmulticast_disable_op,
2958         .mac_addr_add = bnxt_mac_addr_add_op,
2959         .mac_addr_remove = bnxt_mac_addr_remove_op,
2960         .flow_ctrl_get = bnxt_flow_ctrl_get_op,
2961         .flow_ctrl_set = bnxt_flow_ctrl_set_op,
2962         .udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
2963         .udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
2964         .vlan_filter_set = bnxt_vlan_filter_set_op,
2965         .vlan_offload_set = bnxt_vlan_offload_set_op,
2966         .vlan_pvid_set = bnxt_vlan_pvid_set_op,
2967         .mtu_set = bnxt_mtu_set_op,
2968         .mac_addr_set = bnxt_set_default_mac_addr_op,
2969         .xstats_get = bnxt_dev_xstats_get_op,
2970         .xstats_get_names = bnxt_dev_xstats_get_names_op,
2971         .xstats_reset = bnxt_dev_xstats_reset_op,
2972         .fw_version_get = bnxt_fw_version_get,
2973         .set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
2974         .rxq_info_get = bnxt_rxq_info_get_op,
2975         .txq_info_get = bnxt_txq_info_get_op,
2976         .dev_led_on = bnxt_dev_led_on_op,
2977         .dev_led_off = bnxt_dev_led_off_op,
2978         .xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
2979         .xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
2980         .rx_queue_count = bnxt_rx_queue_count_op,
2981         .rx_descriptor_status = bnxt_rx_descriptor_status_op,
2982         .tx_descriptor_status = bnxt_tx_descriptor_status_op,
2983         .filter_ctrl = bnxt_filter_ctrl_op,
2984         .dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
2985         .get_eeprom_length    = bnxt_get_eeprom_length_op,
2986         .get_eeprom           = bnxt_get_eeprom_op,
2987         .set_eeprom           = bnxt_set_eeprom_op,
2988         .timesync_enable      = bnxt_timesync_enable,
2989         .timesync_disable     = bnxt_timesync_disable,
2990         .timesync_read_time   = bnxt_timesync_read_time,
2991         .timesync_write_time   = bnxt_timesync_write_time,
2992         .timesync_adjust_time = bnxt_timesync_adjust_time,
2993         .timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
2994         .timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
2995 };
2996
2997 static bool bnxt_vf_pciid(uint16_t id)
2998 {
2999         if (id == BROADCOM_DEV_ID_57304_VF ||
3000             id == BROADCOM_DEV_ID_57406_VF ||
3001             id == BROADCOM_DEV_ID_5731X_VF ||
3002             id == BROADCOM_DEV_ID_5741X_VF ||
3003             id == BROADCOM_DEV_ID_57414_VF ||
3004             id == BROADCOM_DEV_ID_STRATUS_NIC_VF)
3005                 return true;
3006         return false;
3007 }
3008
3009 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
3010 {
3011         struct bnxt *bp = eth_dev->data->dev_private;
3012         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3013         int rc;
3014
3015         /* enable device (incl. PCI PM wakeup), and bus-mastering */
3016         if (!pci_dev->mem_resource[0].addr) {
3017                 RTE_LOG(ERR, PMD,
3018                         "Cannot find PCI device base address, aborting\n");
3019                 rc = -ENODEV;
3020                 goto init_err_disable;
3021         }
3022
3023         bp->eth_dev = eth_dev;
3024         bp->pdev = pci_dev;
3025
3026         bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
3027         if (!bp->bar0) {
3028                 RTE_LOG(ERR, PMD, "Cannot map device registers, aborting\n");
3029                 rc = -ENOMEM;
3030                 goto init_err_release;
3031         }
3032         return 0;
3033
3034 init_err_release:
3035         if (bp->bar0)
3036                 bp->bar0 = NULL;
3037
3038 init_err_disable:
3039
3040         return rc;
3041 }
3042
3043 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
3044
3045 #define ALLOW_FUNC(x)   \
3046         { \
3047                 typeof(x) arg = (x); \
3048                 bp->pf.vf_req_fwd[((arg) >> 5)] &= \
3049                 ~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
3050         }
3051 static int
3052 bnxt_dev_init(struct rte_eth_dev *eth_dev)
3053 {
3054         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3055         char mz_name[RTE_MEMZONE_NAMESIZE];
3056         const struct rte_memzone *mz = NULL;
3057         static int version_printed;
3058         uint32_t total_alloc_len;
3059         rte_iova_t mz_phys_addr;
3060         struct bnxt *bp;
3061         int rc;
3062
3063         if (version_printed++ == 0)
3064                 RTE_LOG(INFO, PMD, "%s\n", bnxt_version);
3065
3066         rte_eth_copy_pci_info(eth_dev, pci_dev);
3067
3068         bp = eth_dev->data->dev_private;
3069
3070         rte_atomic64_init(&bp->rx_mbuf_alloc_fail);
3071         bp->dev_stopped = 1;
3072
3073         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3074                 goto skip_init;
3075
3076         if (bnxt_vf_pciid(pci_dev->id.device_id))
3077                 bp->flags |= BNXT_FLAG_VF;
3078
3079         rc = bnxt_init_board(eth_dev);
3080         if (rc) {
3081                 RTE_LOG(ERR, PMD,
3082                         "Board initialization failed rc: %x\n", rc);
3083                 goto error;
3084         }
3085 skip_init:
3086         eth_dev->dev_ops = &bnxt_dev_ops;
3087         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3088                 return 0;
3089         eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
3090         eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
3091
3092         if (BNXT_PF(bp) && pci_dev->id.device_id != BROADCOM_DEV_ID_NS2) {
3093                 snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3094                          "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3095                          pci_dev->addr.bus, pci_dev->addr.devid,
3096                          pci_dev->addr.function, "rx_port_stats");
3097                 mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3098                 mz = rte_memzone_lookup(mz_name);
3099                 total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3100                                 sizeof(struct rx_port_stats) + 512);
3101                 if (!mz) {
3102                         mz = rte_memzone_reserve(mz_name, total_alloc_len,
3103                                                  SOCKET_ID_ANY,
3104                                                  RTE_MEMZONE_2MB |
3105                                                  RTE_MEMZONE_SIZE_HINT_ONLY);
3106                         if (mz == NULL)
3107                                 return -ENOMEM;
3108                 }
3109                 memset(mz->addr, 0, mz->len);
3110                 mz_phys_addr = mz->iova;
3111                 if ((unsigned long)mz->addr == mz_phys_addr) {
3112                         RTE_LOG(WARNING, PMD,
3113                                 "Memzone physical address same as virtual.\n");
3114                         RTE_LOG(WARNING, PMD,
3115                                 "Using rte_mem_virt2iova()\n");
3116                         mz_phys_addr = rte_mem_virt2iova(mz->addr);
3117                         if (mz_phys_addr == 0) {
3118                                 RTE_LOG(ERR, PMD,
3119                                 "unable to map address to physical memory\n");
3120                                 return -ENOMEM;
3121                         }
3122                 }
3123
3124                 bp->rx_mem_zone = (const void *)mz;
3125                 bp->hw_rx_port_stats = mz->addr;
3126                 bp->hw_rx_port_stats_map = mz_phys_addr;
3127
3128                 snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3129                          "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3130                          pci_dev->addr.bus, pci_dev->addr.devid,
3131                          pci_dev->addr.function, "tx_port_stats");
3132                 mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3133                 mz = rte_memzone_lookup(mz_name);
3134                 total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3135                                 sizeof(struct tx_port_stats) + 512);
3136                 if (!mz) {
3137                         mz = rte_memzone_reserve(mz_name, total_alloc_len,
3138                                                  SOCKET_ID_ANY,
3139                                                  RTE_MEMZONE_2MB |
3140                                                  RTE_MEMZONE_SIZE_HINT_ONLY);
3141                         if (mz == NULL)
3142                                 return -ENOMEM;
3143                 }
3144                 memset(mz->addr, 0, mz->len);
3145                 mz_phys_addr = mz->iova;
3146                 if ((unsigned long)mz->addr == mz_phys_addr) {
3147                         RTE_LOG(WARNING, PMD,
3148                                 "Memzone physical address same as virtual.\n");
3149                         RTE_LOG(WARNING, PMD,
3150                                 "Using rte_mem_virt2iova()\n");
3151                         mz_phys_addr = rte_mem_virt2iova(mz->addr);
3152                         if (mz_phys_addr == 0) {
3153                                 RTE_LOG(ERR, PMD,
3154                                 "unable to map address to physical memory\n");
3155                                 return -ENOMEM;
3156                         }
3157                 }
3158
3159                 bp->tx_mem_zone = (const void *)mz;
3160                 bp->hw_tx_port_stats = mz->addr;
3161                 bp->hw_tx_port_stats_map = mz_phys_addr;
3162
3163                 bp->flags |= BNXT_FLAG_PORT_STATS;
3164         }
3165
3166         rc = bnxt_alloc_hwrm_resources(bp);
3167         if (rc) {
3168                 RTE_LOG(ERR, PMD,
3169                         "hwrm resource allocation failure rc: %x\n", rc);
3170                 goto error_free;
3171         }
3172         rc = bnxt_hwrm_ver_get(bp);
3173         if (rc)
3174                 goto error_free;
3175         bnxt_hwrm_queue_qportcfg(bp);
3176
3177         bnxt_hwrm_func_qcfg(bp);
3178
3179         /* Get the MAX capabilities for this function */
3180         rc = bnxt_hwrm_func_qcaps(bp);
3181         if (rc) {
3182                 RTE_LOG(ERR, PMD, "hwrm query capability failure rc: %x\n", rc);
3183                 goto error_free;
3184         }
3185         if (bp->max_tx_rings == 0) {
3186                 RTE_LOG(ERR, PMD, "No TX rings available!\n");
3187                 rc = -EBUSY;
3188                 goto error_free;
3189         }
3190         eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
3191                                         ETHER_ADDR_LEN * bp->max_l2_ctx, 0);
3192         if (eth_dev->data->mac_addrs == NULL) {
3193                 RTE_LOG(ERR, PMD,
3194                         "Failed to alloc %u bytes needed to store MAC addr tbl",
3195                         ETHER_ADDR_LEN * bp->max_l2_ctx);
3196                 rc = -ENOMEM;
3197                 goto error_free;
3198         }
3199         /* Copy the permanent MAC from the qcap response address now. */
3200         memcpy(bp->mac_addr, bp->dflt_mac_addr, sizeof(bp->mac_addr));
3201         memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
3202         bp->grp_info = rte_zmalloc("bnxt_grp_info",
3203                                 sizeof(*bp->grp_info) * bp->max_ring_grps, 0);
3204         if (!bp->grp_info) {
3205                 RTE_LOG(ERR, PMD,
3206                         "Failed to alloc %zu bytes needed to store group info table\n",
3207                         sizeof(*bp->grp_info) * bp->max_ring_grps);
3208                 rc = -ENOMEM;
3209                 goto error_free;
3210         }
3211
3212         /* Forward all requests if firmware is new enough */
3213         if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
3214             (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
3215             ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
3216                 memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
3217         } else {
3218                 RTE_LOG(WARNING, PMD,
3219                         "Firmware too old for VF mailbox functionality\n");
3220                 memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
3221         }
3222
3223         /*
3224          * The following are used for driver cleanup.  If we disallow these,
3225          * VF drivers can't clean up cleanly.
3226          */
3227         ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
3228         ALLOW_FUNC(HWRM_VNIC_FREE);
3229         ALLOW_FUNC(HWRM_RING_FREE);
3230         ALLOW_FUNC(HWRM_RING_GRP_FREE);
3231         ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
3232         ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
3233         ALLOW_FUNC(HWRM_STAT_CTX_FREE);
3234         ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
3235         ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
3236         rc = bnxt_hwrm_func_driver_register(bp);
3237         if (rc) {
3238                 RTE_LOG(ERR, PMD,
3239                         "Failed to register driver");
3240                 rc = -EBUSY;
3241                 goto error_free;
3242         }
3243
3244         RTE_LOG(INFO, PMD,
3245                 DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
3246                 pci_dev->mem_resource[0].phys_addr,
3247                 pci_dev->mem_resource[0].addr);
3248
3249         rc = bnxt_hwrm_func_reset(bp);
3250         if (rc) {
3251                 RTE_LOG(ERR, PMD, "hwrm chip reset failure rc: %x\n", rc);
3252                 rc = -1;
3253                 goto error_free;
3254         }
3255
3256         if (BNXT_PF(bp)) {
3257                 //if (bp->pf.active_vfs) {
3258                         // TODO: Deallocate VF resources?
3259                 //}
3260                 if (bp->pdev->max_vfs) {
3261                         rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3262                         if (rc) {
3263                                 RTE_LOG(ERR, PMD, "Failed to allocate VFs\n");
3264                                 goto error_free;
3265                         }
3266                 } else {
3267                         rc = bnxt_hwrm_allocate_pf_only(bp);
3268                         if (rc) {
3269                                 RTE_LOG(ERR, PMD,
3270                                         "Failed to allocate PF resources\n");
3271                                 goto error_free;
3272                         }
3273                 }
3274         }
3275
3276         bnxt_hwrm_port_led_qcaps(bp);
3277
3278         rc = bnxt_setup_int(bp);
3279         if (rc)
3280                 goto error_free;
3281
3282         rc = bnxt_alloc_mem(bp);
3283         if (rc)
3284                 goto error_free_int;
3285
3286         rc = bnxt_request_int(bp);
3287         if (rc)
3288                 goto error_free_int;
3289
3290         rc = bnxt_alloc_def_cp_ring(bp);
3291         if (rc)
3292                 goto error_free_int;
3293
3294         bnxt_enable_int(bp);
3295
3296         return 0;
3297
3298 error_free_int:
3299         bnxt_disable_int(bp);
3300         bnxt_free_def_cp_ring(bp);
3301         bnxt_hwrm_func_buf_unrgtr(bp);
3302         bnxt_free_int(bp);
3303         bnxt_free_mem(bp);
3304 error_free:
3305         bnxt_dev_uninit(eth_dev);
3306 error:
3307         return rc;
3308 }
3309
3310 static int
3311 bnxt_dev_uninit(struct rte_eth_dev *eth_dev) {
3312         struct bnxt *bp = eth_dev->data->dev_private;
3313         int rc;
3314
3315         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3316                 return -EPERM;
3317
3318         bnxt_disable_int(bp);
3319         bnxt_free_int(bp);
3320         bnxt_free_mem(bp);
3321         if (eth_dev->data->mac_addrs != NULL) {
3322                 rte_free(eth_dev->data->mac_addrs);
3323                 eth_dev->data->mac_addrs = NULL;
3324         }
3325         if (bp->grp_info != NULL) {
3326                 rte_free(bp->grp_info);
3327                 bp->grp_info = NULL;
3328         }
3329         rc = bnxt_hwrm_func_driver_unregister(bp, 0);
3330         bnxt_free_hwrm_resources(bp);
3331         rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
3332         rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
3333         if (bp->dev_stopped == 0)
3334                 bnxt_dev_close_op(eth_dev);
3335         if (bp->pf.vf_info)
3336                 rte_free(bp->pf.vf_info);
3337         eth_dev->dev_ops = NULL;
3338         eth_dev->rx_pkt_burst = NULL;
3339         eth_dev->tx_pkt_burst = NULL;
3340
3341         return rc;
3342 }
3343
3344 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3345         struct rte_pci_device *pci_dev)
3346 {
3347         return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
3348                 bnxt_dev_init);
3349 }
3350
3351 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
3352 {
3353         return rte_eth_dev_pci_generic_remove(pci_dev, bnxt_dev_uninit);
3354 }
3355
3356 static struct rte_pci_driver bnxt_rte_pmd = {
3357         .id_table = bnxt_pci_id_map,
3358         .drv_flags = RTE_PCI_DRV_NEED_MAPPING |
3359                 RTE_PCI_DRV_INTR_LSC,
3360         .probe = bnxt_pci_probe,
3361         .remove = bnxt_pci_remove,
3362 };
3363
3364 static bool
3365 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
3366 {
3367         if (strcmp(dev->device->driver->name, drv->driver.name))
3368                 return false;
3369
3370         return true;
3371 }
3372
3373 bool is_bnxt_supported(struct rte_eth_dev *dev)
3374 {
3375         return is_device_supported(dev, &bnxt_rte_pmd);
3376 }
3377
3378 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
3379 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
3380 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");