net/bnxt: fix VF probe when MAC address is zero
[dpdk.git] / drivers / net / bnxt / bnxt_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_dev.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14
15 #include "bnxt.h"
16 #include "bnxt_cpr.h"
17 #include "bnxt_filter.h"
18 #include "bnxt_hwrm.h"
19 #include "bnxt_irq.h"
20 #include "bnxt_ring.h"
21 #include "bnxt_rxq.h"
22 #include "bnxt_rxr.h"
23 #include "bnxt_stats.h"
24 #include "bnxt_txq.h"
25 #include "bnxt_txr.h"
26 #include "bnxt_vnic.h"
27 #include "hsi_struct_def_dpdk.h"
28 #include "bnxt_nvm_defs.h"
29 #include "bnxt_util.h"
30
31 #define DRV_MODULE_NAME         "bnxt"
32 static const char bnxt_version[] =
33         "Broadcom NetXtreme driver " DRV_MODULE_NAME;
34 int bnxt_logtype_driver;
35
36 #define PCI_VENDOR_ID_BROADCOM 0x14E4
37
38 #define BROADCOM_DEV_ID_STRATUS_NIC_VF1 0x1606
39 #define BROADCOM_DEV_ID_STRATUS_NIC_VF2 0x1609
40 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
41 #define BROADCOM_DEV_ID_57414_VF 0x16c1
42 #define BROADCOM_DEV_ID_57301 0x16c8
43 #define BROADCOM_DEV_ID_57302 0x16c9
44 #define BROADCOM_DEV_ID_57304_PF 0x16ca
45 #define BROADCOM_DEV_ID_57304_VF 0x16cb
46 #define BROADCOM_DEV_ID_57417_MF 0x16cc
47 #define BROADCOM_DEV_ID_NS2 0x16cd
48 #define BROADCOM_DEV_ID_57311 0x16ce
49 #define BROADCOM_DEV_ID_57312 0x16cf
50 #define BROADCOM_DEV_ID_57402 0x16d0
51 #define BROADCOM_DEV_ID_57404 0x16d1
52 #define BROADCOM_DEV_ID_57406_PF 0x16d2
53 #define BROADCOM_DEV_ID_57406_VF 0x16d3
54 #define BROADCOM_DEV_ID_57402_MF 0x16d4
55 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
56 #define BROADCOM_DEV_ID_57412 0x16d6
57 #define BROADCOM_DEV_ID_57414 0x16d7
58 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
59 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
60 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
61 #define BROADCOM_DEV_ID_57412_MF 0x16de
62 #define BROADCOM_DEV_ID_57314 0x16df
63 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
64 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
65 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
66 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
67 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
68 #define BROADCOM_DEV_ID_57404_MF 0x16e7
69 #define BROADCOM_DEV_ID_57406_MF 0x16e8
70 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
71 #define BROADCOM_DEV_ID_57407_MF 0x16ea
72 #define BROADCOM_DEV_ID_57414_MF 0x16ec
73 #define BROADCOM_DEV_ID_57416_MF 0x16ee
74 #define BROADCOM_DEV_ID_57508 0x1750
75 #define BROADCOM_DEV_ID_57504 0x1751
76 #define BROADCOM_DEV_ID_57502 0x1752
77 #define BROADCOM_DEV_ID_57500_VF 0x1807
78 #define BROADCOM_DEV_ID_58802 0xd802
79 #define BROADCOM_DEV_ID_58804 0xd804
80 #define BROADCOM_DEV_ID_58808 0x16f0
81 #define BROADCOM_DEV_ID_58802_VF 0xd800
82
83 static const struct rte_pci_id bnxt_pci_id_map[] = {
84         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
85                          BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
86         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
87                          BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
88         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
89         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
90         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
91         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
92         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
93         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
94         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
95         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
96         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
97         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
98         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
99         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
100         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
101         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
102         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
103         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
104         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
105         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
106         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
107         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
108         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
109         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
110         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
111         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
112         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
113         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
114         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
115         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
116         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
117         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
118         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
119         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
120         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
121         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
122         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
123         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
124         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
125         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
126         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) },
127         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) },
128         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) },
129         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF) },
130         { .vendor_id = 0, /* sentinel */ },
131 };
132
133 #define BNXT_ETH_RSS_SUPPORT (  \
134         ETH_RSS_IPV4 |          \
135         ETH_RSS_NONFRAG_IPV4_TCP |      \
136         ETH_RSS_NONFRAG_IPV4_UDP |      \
137         ETH_RSS_IPV6 |          \
138         ETH_RSS_NONFRAG_IPV6_TCP |      \
139         ETH_RSS_NONFRAG_IPV6_UDP)
140
141 #define BNXT_DEV_TX_OFFLOAD_SUPPORT (DEV_TX_OFFLOAD_VLAN_INSERT | \
142                                      DEV_TX_OFFLOAD_IPV4_CKSUM | \
143                                      DEV_TX_OFFLOAD_TCP_CKSUM | \
144                                      DEV_TX_OFFLOAD_UDP_CKSUM | \
145                                      DEV_TX_OFFLOAD_TCP_TSO | \
146                                      DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | \
147                                      DEV_TX_OFFLOAD_VXLAN_TNL_TSO | \
148                                      DEV_TX_OFFLOAD_GRE_TNL_TSO | \
149                                      DEV_TX_OFFLOAD_IPIP_TNL_TSO | \
150                                      DEV_TX_OFFLOAD_GENEVE_TNL_TSO | \
151                                      DEV_TX_OFFLOAD_MULTI_SEGS)
152
153 #define BNXT_DEV_RX_OFFLOAD_SUPPORT (DEV_RX_OFFLOAD_VLAN_FILTER | \
154                                      DEV_RX_OFFLOAD_VLAN_STRIP | \
155                                      DEV_RX_OFFLOAD_IPV4_CKSUM | \
156                                      DEV_RX_OFFLOAD_UDP_CKSUM | \
157                                      DEV_RX_OFFLOAD_TCP_CKSUM | \
158                                      DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | \
159                                      DEV_RX_OFFLOAD_JUMBO_FRAME | \
160                                      DEV_RX_OFFLOAD_KEEP_CRC | \
161                                      DEV_RX_OFFLOAD_TCP_LRO)
162
163 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
164 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
165 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu);
166 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
167
168 /***********************/
169
170 /*
171  * High level utility functions
172  */
173
174 static uint16_t bnxt_rss_ctxts(const struct bnxt *bp)
175 {
176         if (!BNXT_CHIP_THOR(bp))
177                 return 1;
178
179         return RTE_ALIGN_MUL_CEIL(bp->rx_nr_rings,
180                                   BNXT_RSS_ENTRIES_PER_CTX_THOR) /
181                                     BNXT_RSS_ENTRIES_PER_CTX_THOR;
182 }
183
184 static uint16_t  bnxt_rss_hash_tbl_size(const struct bnxt *bp)
185 {
186         if (!BNXT_CHIP_THOR(bp))
187                 return HW_HASH_INDEX_SIZE;
188
189         return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_THOR;
190 }
191
192 static void bnxt_free_mem(struct bnxt *bp)
193 {
194         bnxt_free_filter_mem(bp);
195         bnxt_free_vnic_attributes(bp);
196         bnxt_free_vnic_mem(bp);
197
198         bnxt_free_stats(bp);
199         bnxt_free_tx_rings(bp);
200         bnxt_free_rx_rings(bp);
201 }
202
203 static int bnxt_alloc_mem(struct bnxt *bp)
204 {
205         int rc;
206
207         rc = bnxt_alloc_vnic_mem(bp);
208         if (rc)
209                 goto alloc_mem_err;
210
211         rc = bnxt_alloc_vnic_attributes(bp);
212         if (rc)
213                 goto alloc_mem_err;
214
215         rc = bnxt_alloc_filter_mem(bp);
216         if (rc)
217                 goto alloc_mem_err;
218
219         return 0;
220
221 alloc_mem_err:
222         bnxt_free_mem(bp);
223         return rc;
224 }
225
226 static int bnxt_init_chip(struct bnxt *bp)
227 {
228         struct bnxt_rx_queue *rxq;
229         struct rte_eth_link new;
230         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
231         struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
232         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
233         uint64_t rx_offloads = dev_conf->rxmode.offloads;
234         uint32_t intr_vector = 0;
235         uint32_t queue_id, base = BNXT_MISC_VEC_ID;
236         uint32_t vec = BNXT_MISC_VEC_ID;
237         unsigned int i, j;
238         int rc;
239
240         /* disable uio/vfio intr/eventfd mapping */
241         rte_intr_disable(intr_handle);
242
243         if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) {
244                 bp->eth_dev->data->dev_conf.rxmode.offloads |=
245                         DEV_RX_OFFLOAD_JUMBO_FRAME;
246                 bp->flags |= BNXT_FLAG_JUMBO;
247         } else {
248                 bp->eth_dev->data->dev_conf.rxmode.offloads &=
249                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
250                 bp->flags &= ~BNXT_FLAG_JUMBO;
251         }
252
253         /* THOR does not support ring groups.
254          * But we will use the array to save RSS context IDs.
255          */
256         if (BNXT_CHIP_THOR(bp))
257                 bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
258
259         rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
260         if (rc) {
261                 PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc);
262                 goto err_out;
263         }
264
265         rc = bnxt_alloc_hwrm_rings(bp);
266         if (rc) {
267                 PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
268                 goto err_out;
269         }
270
271         rc = bnxt_alloc_all_hwrm_ring_grps(bp);
272         if (rc) {
273                 PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
274                 goto err_out;
275         }
276
277         rc = bnxt_mq_rx_configure(bp);
278         if (rc) {
279                 PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
280                 goto err_out;
281         }
282
283         /* VNIC configuration */
284         for (i = 0; i < bp->nr_vnics; i++) {
285                 struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
286                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
287                 uint32_t size = sizeof(*vnic->fw_grp_ids) * bp->max_ring_grps;
288
289                 vnic->fw_grp_ids = rte_zmalloc("vnic_fw_grp_ids", size, 0);
290                 if (!vnic->fw_grp_ids) {
291                         PMD_DRV_LOG(ERR,
292                                     "Failed to alloc %d bytes for group ids\n",
293                                     size);
294                         rc = -ENOMEM;
295                         goto err_out;
296                 }
297                 memset(vnic->fw_grp_ids, -1, size);
298
299                 PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
300                             i, vnic, vnic->fw_grp_ids);
301
302                 rc = bnxt_hwrm_vnic_alloc(bp, vnic);
303                 if (rc) {
304                         PMD_DRV_LOG(ERR, "HWRM vnic %d alloc failure rc: %x\n",
305                                 i, rc);
306                         goto err_out;
307                 }
308
309                 /* Alloc RSS context only if RSS mode is enabled */
310                 if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) {
311                         int j, nr_ctxs = bnxt_rss_ctxts(bp);
312
313                         rc = 0;
314                         for (j = 0; j < nr_ctxs; j++) {
315                                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j);
316                                 if (rc)
317                                         break;
318                         }
319                         if (rc) {
320                                 PMD_DRV_LOG(ERR,
321                                   "HWRM vnic %d ctx %d alloc failure rc: %x\n",
322                                   i, j, rc);
323                                 goto err_out;
324                         }
325                         vnic->num_lb_ctxts = nr_ctxs;
326                 }
327
328                 /*
329                  * Firmware sets pf pair in default vnic cfg. If the VLAN strip
330                  * setting is not available at this time, it will not be
331                  * configured correctly in the CFA.
332                  */
333                 if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
334                         vnic->vlan_strip = true;
335                 else
336                         vnic->vlan_strip = false;
337
338                 rc = bnxt_hwrm_vnic_cfg(bp, vnic);
339                 if (rc) {
340                         PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
341                                 i, rc);
342                         goto err_out;
343                 }
344
345                 rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
346                 if (rc) {
347                         PMD_DRV_LOG(ERR,
348                                 "HWRM vnic %d filter failure rc: %x\n",
349                                 i, rc);
350                         goto err_out;
351                 }
352
353                 for (j = 0; j < bp->rx_nr_rings; j++) {
354                         rxq = bp->eth_dev->data->rx_queues[j];
355
356                         PMD_DRV_LOG(DEBUG,
357                                     "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
358                                     j, rxq->vnic, rxq->vnic->fw_grp_ids);
359
360                         if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start)
361                                 rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
362                 }
363
364                 rc = bnxt_vnic_rss_configure(bp, vnic);
365                 if (rc) {
366                         PMD_DRV_LOG(ERR,
367                                     "HWRM vnic set RSS failure rc: %x\n", rc);
368                         goto err_out;
369                 }
370
371                 bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
372
373                 if (bp->eth_dev->data->dev_conf.rxmode.offloads &
374                     DEV_RX_OFFLOAD_TCP_LRO)
375                         bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
376                 else
377                         bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
378         }
379         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
380         if (rc) {
381                 PMD_DRV_LOG(ERR,
382                         "HWRM cfa l2 rx mask failure rc: %x\n", rc);
383                 goto err_out;
384         }
385
386         /* check and configure queue intr-vector mapping */
387         if ((rte_intr_cap_multiple(intr_handle) ||
388              !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
389             bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
390                 intr_vector = bp->eth_dev->data->nb_rx_queues;
391                 PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
392                 if (intr_vector > bp->rx_cp_nr_rings) {
393                         PMD_DRV_LOG(ERR, "At most %d intr queues supported",
394                                         bp->rx_cp_nr_rings);
395                         return -ENOTSUP;
396                 }
397                 if (rte_intr_efd_enable(intr_handle, intr_vector))
398                         return -1;
399         }
400
401         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
402                 intr_handle->intr_vec =
403                         rte_zmalloc("intr_vec",
404                                     bp->eth_dev->data->nb_rx_queues *
405                                     sizeof(int), 0);
406                 if (intr_handle->intr_vec == NULL) {
407                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
408                                 " intr_vec", bp->eth_dev->data->nb_rx_queues);
409                         return -ENOMEM;
410                 }
411                 PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p "
412                         "intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
413                          intr_handle->intr_vec, intr_handle->nb_efd,
414                         intr_handle->max_intr);
415                 for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
416                      queue_id++) {
417                         intr_handle->intr_vec[queue_id] = vec;
418                         if (vec < base + intr_handle->nb_efd - 1)
419                                 vec++;
420                 }
421         }
422
423         /* enable uio/vfio intr/eventfd mapping */
424         rte_intr_enable(intr_handle);
425
426         rc = bnxt_get_hwrm_link_config(bp, &new);
427         if (rc) {
428                 PMD_DRV_LOG(ERR, "HWRM Get link config failure rc: %x\n", rc);
429                 goto err_out;
430         }
431
432         if (!bp->link_info.link_up) {
433                 rc = bnxt_set_hwrm_link_config(bp, true);
434                 if (rc) {
435                         PMD_DRV_LOG(ERR,
436                                 "HWRM link config failure rc: %x\n", rc);
437                         goto err_out;
438                 }
439         }
440         bnxt_print_link_info(bp->eth_dev);
441
442         return 0;
443
444 err_out:
445         bnxt_free_all_hwrm_resources(bp);
446
447         /* Some of the error status returned by FW may not be from errno.h */
448         if (rc > 0)
449                 rc = -EIO;
450
451         return rc;
452 }
453
454 static int bnxt_shutdown_nic(struct bnxt *bp)
455 {
456         bnxt_free_all_hwrm_resources(bp);
457         bnxt_free_all_filters(bp);
458         bnxt_free_all_vnics(bp);
459         return 0;
460 }
461
462 static int bnxt_init_nic(struct bnxt *bp)
463 {
464         int rc;
465
466         if (BNXT_HAS_RING_GRPS(bp)) {
467                 rc = bnxt_init_ring_grps(bp);
468                 if (rc)
469                         return rc;
470         }
471
472         bnxt_init_vnics(bp);
473         bnxt_init_filters(bp);
474
475         return 0;
476 }
477
478 /*
479  * Device configuration and status function
480  */
481
482 static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
483                                   struct rte_eth_dev_info *dev_info)
484 {
485         struct bnxt *bp = eth_dev->data->dev_private;
486         uint16_t max_vnics, i, j, vpool, vrxq;
487         unsigned int max_rx_rings;
488
489         /* MAC Specifics */
490         dev_info->max_mac_addrs = bp->max_l2_ctx;
491         dev_info->max_hash_mac_addrs = 0;
492
493         /* PF/VF specifics */
494         if (BNXT_PF(bp))
495                 dev_info->max_vfs = bp->pdev->max_vfs;
496         max_rx_rings = RTE_MIN(bp->max_vnics, bp->max_stat_ctx);
497         /* For the sake of symmetry, max_rx_queues = max_tx_queues */
498         dev_info->max_rx_queues = max_rx_rings;
499         dev_info->max_tx_queues = max_rx_rings;
500         dev_info->reta_size = bnxt_rss_hash_tbl_size(bp);
501         dev_info->hash_key_size = 40;
502         max_vnics = bp->max_vnics;
503
504         /* Fast path specifics */
505         dev_info->min_rx_bufsize = 1;
506         dev_info->max_rx_pktlen = BNXT_MAX_MTU + RTE_ETHER_HDR_LEN +
507                 RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
508
509         dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
510         if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
511                 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
512         dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT;
513         dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
514
515         /* *INDENT-OFF* */
516         dev_info->default_rxconf = (struct rte_eth_rxconf) {
517                 .rx_thresh = {
518                         .pthresh = 8,
519                         .hthresh = 8,
520                         .wthresh = 0,
521                 },
522                 .rx_free_thresh = 32,
523                 /* If no descriptors available, pkts are dropped by default */
524                 .rx_drop_en = 1,
525         };
526
527         dev_info->default_txconf = (struct rte_eth_txconf) {
528                 .tx_thresh = {
529                         .pthresh = 32,
530                         .hthresh = 0,
531                         .wthresh = 0,
532                 },
533                 .tx_free_thresh = 32,
534                 .tx_rs_thresh = 32,
535         };
536         eth_dev->data->dev_conf.intr_conf.lsc = 1;
537
538         eth_dev->data->dev_conf.intr_conf.rxq = 1;
539         dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
540         dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
541         dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
542         dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
543
544         /* *INDENT-ON* */
545
546         /*
547          * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
548          *       need further investigation.
549          */
550
551         /* VMDq resources */
552         vpool = 64; /* ETH_64_POOLS */
553         vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
554         for (i = 0; i < 4; vpool >>= 1, i++) {
555                 if (max_vnics > vpool) {
556                         for (j = 0; j < 5; vrxq >>= 1, j++) {
557                                 if (dev_info->max_rx_queues > vrxq) {
558                                         if (vpool > vrxq)
559                                                 vpool = vrxq;
560                                         goto found;
561                                 }
562                         }
563                         /* Not enough resources to support VMDq */
564                         break;
565                 }
566         }
567         /* Not enough resources to support VMDq */
568         vpool = 0;
569         vrxq = 0;
570 found:
571         dev_info->max_vmdq_pools = vpool;
572         dev_info->vmdq_queue_num = vrxq;
573
574         dev_info->vmdq_pool_base = 0;
575         dev_info->vmdq_queue_base = 0;
576 }
577
578 /* Configure the device based on the configuration provided */
579 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
580 {
581         struct bnxt *bp = eth_dev->data->dev_private;
582         uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
583         int rc;
584
585         bp->rx_queues = (void *)eth_dev->data->rx_queues;
586         bp->tx_queues = (void *)eth_dev->data->tx_queues;
587         bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
588         bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
589
590         if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
591                 rc = bnxt_hwrm_check_vf_rings(bp);
592                 if (rc) {
593                         PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
594                         return -ENOSPC;
595                 }
596
597                 rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
598                 if (rc) {
599                         PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
600                         return -ENOSPC;
601                 }
602         } else {
603                 /* legacy driver needs to get updated values */
604                 rc = bnxt_hwrm_func_qcaps(bp);
605                 if (rc) {
606                         PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc);
607                         return rc;
608                 }
609         }
610
611         /* Inherit new configurations */
612         if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
613             eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
614             eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
615             bp->max_cp_rings ||
616             eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
617             bp->max_stat_ctx)
618                 goto resource_error;
619
620         if (BNXT_HAS_RING_GRPS(bp) &&
621             (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps)
622                 goto resource_error;
623
624         if (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) &&
625             bp->max_vnics < eth_dev->data->nb_rx_queues)
626                 goto resource_error;
627
628         bp->rx_cp_nr_rings = bp->rx_nr_rings;
629         bp->tx_cp_nr_rings = bp->tx_nr_rings;
630
631         if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
632                 eth_dev->data->mtu =
633                         eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
634                         RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE *
635                         BNXT_NUM_VLANS;
636                 bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
637         }
638         return 0;
639
640 resource_error:
641         PMD_DRV_LOG(ERR,
642                     "Insufficient resources to support requested config\n");
643         PMD_DRV_LOG(ERR,
644                     "Num Queues Requested: Tx %d, Rx %d\n",
645                     eth_dev->data->nb_tx_queues,
646                     eth_dev->data->nb_rx_queues);
647         PMD_DRV_LOG(ERR,
648                     "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
649                     bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
650                     bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
651         return -ENOSPC;
652 }
653
654 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
655 {
656         struct rte_eth_link *link = &eth_dev->data->dev_link;
657
658         if (link->link_status)
659                 PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n",
660                         eth_dev->data->port_id,
661                         (uint32_t)link->link_speed,
662                         (link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
663                         ("full-duplex") : ("half-duplex\n"));
664         else
665                 PMD_DRV_LOG(INFO, "Port %d Link Down\n",
666                         eth_dev->data->port_id);
667 }
668
669 /*
670  * Determine whether the current configuration requires support for scattered
671  * receive; return 1 if scattered receive is required and 0 if not.
672  */
673 static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev)
674 {
675         uint16_t buf_size;
676         int i;
677
678         for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
679                 struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i];
680
681                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
682                                       RTE_PKTMBUF_HEADROOM);
683                 if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size)
684                         return 1;
685         }
686         return 0;
687 }
688
689 static eth_rx_burst_t
690 bnxt_receive_function(__rte_unused struct rte_eth_dev *eth_dev)
691 {
692 #ifdef RTE_ARCH_X86
693         /*
694          * Vector mode receive can be enabled only if scatter rx is not
695          * in use and rx offloads are limited to VLAN stripping and
696          * CRC stripping.
697          */
698         if (!eth_dev->data->scattered_rx &&
699             !(eth_dev->data->dev_conf.rxmode.offloads &
700               ~(DEV_RX_OFFLOAD_VLAN_STRIP |
701                 DEV_RX_OFFLOAD_KEEP_CRC |
702                 DEV_RX_OFFLOAD_JUMBO_FRAME |
703                 DEV_RX_OFFLOAD_IPV4_CKSUM |
704                 DEV_RX_OFFLOAD_UDP_CKSUM |
705                 DEV_RX_OFFLOAD_TCP_CKSUM |
706                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
707                 DEV_RX_OFFLOAD_VLAN_FILTER))) {
708                 PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n",
709                             eth_dev->data->port_id);
710                 return bnxt_recv_pkts_vec;
711         }
712         PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
713                     eth_dev->data->port_id);
714         PMD_DRV_LOG(INFO,
715                     "Port %d scatter: %d rx offload: %" PRIX64 "\n",
716                     eth_dev->data->port_id,
717                     eth_dev->data->scattered_rx,
718                     eth_dev->data->dev_conf.rxmode.offloads);
719 #endif
720         return bnxt_recv_pkts;
721 }
722
723 static eth_tx_burst_t
724 bnxt_transmit_function(__rte_unused struct rte_eth_dev *eth_dev)
725 {
726 #ifdef RTE_ARCH_X86
727         /*
728          * Vector mode receive can be enabled only if scatter tx is not
729          * in use and tx offloads other than VLAN insertion are not
730          * in use.
731          */
732         if (!eth_dev->data->scattered_rx &&
733             !(eth_dev->data->dev_conf.txmode.offloads &
734               ~DEV_TX_OFFLOAD_VLAN_INSERT)) {
735                 PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n",
736                             eth_dev->data->port_id);
737                 return bnxt_xmit_pkts_vec;
738         }
739         PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
740                     eth_dev->data->port_id);
741         PMD_DRV_LOG(INFO,
742                     "Port %d scatter: %d tx offload: %" PRIX64 "\n",
743                     eth_dev->data->port_id,
744                     eth_dev->data->scattered_rx,
745                     eth_dev->data->dev_conf.txmode.offloads);
746 #endif
747         return bnxt_xmit_pkts;
748 }
749
750 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
751 {
752         struct bnxt *bp = eth_dev->data->dev_private;
753         uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
754         int vlan_mask = 0;
755         int rc;
756
757         if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
758                 PMD_DRV_LOG(ERR,
759                         "RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
760                         bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
761         }
762         bp->dev_stopped = 0;
763
764         rc = bnxt_init_chip(bp);
765         if (rc)
766                 goto error;
767
768         eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev);
769
770         bnxt_link_update_op(eth_dev, 1);
771
772         if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
773                 vlan_mask |= ETH_VLAN_FILTER_MASK;
774         if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
775                 vlan_mask |= ETH_VLAN_STRIP_MASK;
776         rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
777         if (rc)
778                 goto error;
779
780         eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev);
781         eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev);
782         bp->flags |= BNXT_FLAG_INIT_DONE;
783         return 0;
784
785 error:
786         bnxt_shutdown_nic(bp);
787         bnxt_free_tx_mbufs(bp);
788         bnxt_free_rx_mbufs(bp);
789         return rc;
790 }
791
792 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
793 {
794         struct bnxt *bp = eth_dev->data->dev_private;
795         int rc = 0;
796
797         if (!bp->link_info.link_up)
798                 rc = bnxt_set_hwrm_link_config(bp, true);
799         if (!rc)
800                 eth_dev->data->dev_link.link_status = 1;
801
802         bnxt_print_link_info(eth_dev);
803         return 0;
804 }
805
806 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
807 {
808         struct bnxt *bp = eth_dev->data->dev_private;
809
810         eth_dev->data->dev_link.link_status = 0;
811         bnxt_set_hwrm_link_config(bp, false);
812         bp->link_info.link_up = 0;
813
814         return 0;
815 }
816
817 /* Unload the driver, release resources */
818 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
819 {
820         struct bnxt *bp = eth_dev->data->dev_private;
821
822         bp->flags &= ~BNXT_FLAG_INIT_DONE;
823         if (bp->eth_dev->data->dev_started) {
824                 /* TBD: STOP HW queues DMA */
825                 eth_dev->data->dev_link.link_status = 0;
826         }
827         bnxt_set_hwrm_link_config(bp, false);
828         bnxt_hwrm_port_clr_stats(bp);
829         bnxt_free_tx_mbufs(bp);
830         bnxt_free_rx_mbufs(bp);
831         bnxt_shutdown_nic(bp);
832         bp->dev_stopped = 1;
833 }
834
835 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
836 {
837         struct bnxt *bp = eth_dev->data->dev_private;
838
839         if (bp->dev_stopped == 0)
840                 bnxt_dev_stop_op(eth_dev);
841
842         if (eth_dev->data->mac_addrs != NULL) {
843                 rte_free(eth_dev->data->mac_addrs);
844                 eth_dev->data->mac_addrs = NULL;
845         }
846         if (bp->grp_info != NULL) {
847                 rte_free(bp->grp_info);
848                 bp->grp_info = NULL;
849         }
850
851         bnxt_dev_uninit(eth_dev);
852 }
853
854 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
855                                     uint32_t index)
856 {
857         struct bnxt *bp = eth_dev->data->dev_private;
858         uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
859         struct bnxt_vnic_info *vnic;
860         struct bnxt_filter_info *filter, *temp_filter;
861         uint32_t i;
862
863         /*
864          * Loop through all VNICs from the specified filter flow pools to
865          * remove the corresponding MAC addr filter
866          */
867         for (i = 0; i < bp->nr_vnics; i++) {
868                 if (!(pool_mask & (1ULL << i)))
869                         continue;
870
871                 vnic = &bp->vnic_info[i];
872                 filter = STAILQ_FIRST(&vnic->filter);
873                 while (filter) {
874                         temp_filter = STAILQ_NEXT(filter, next);
875                         if (filter->mac_index == index) {
876                                 STAILQ_REMOVE(&vnic->filter, filter,
877                                                 bnxt_filter_info, next);
878                                 bnxt_hwrm_clear_l2_filter(bp, filter);
879                                 filter->mac_index = INVALID_MAC_INDEX;
880                                 memset(&filter->l2_addr, 0, RTE_ETHER_ADDR_LEN);
881                                 STAILQ_INSERT_TAIL(&bp->free_filter_list,
882                                                    filter, next);
883                         }
884                         filter = temp_filter;
885                 }
886         }
887 }
888
889 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
890                                 struct rte_ether_addr *mac_addr,
891                                 uint32_t index, uint32_t pool)
892 {
893         struct bnxt *bp = eth_dev->data->dev_private;
894         struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
895         struct bnxt_filter_info *filter;
896
897         if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) {
898                 PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
899                 return -ENOTSUP;
900         }
901
902         if (!vnic) {
903                 PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
904                 return -EINVAL;
905         }
906         /* Attach requested MAC address to the new l2_filter */
907         STAILQ_FOREACH(filter, &vnic->filter, next) {
908                 if (filter->mac_index == index) {
909                         PMD_DRV_LOG(ERR,
910                                 "MAC addr already existed for pool %d\n", pool);
911                         return 0;
912                 }
913         }
914         filter = bnxt_alloc_filter(bp);
915         if (!filter) {
916                 PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
917                 return -ENODEV;
918         }
919         STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
920         filter->mac_index = index;
921         memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
922         return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
923 }
924
925 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
926 {
927         int rc = 0;
928         struct bnxt *bp = eth_dev->data->dev_private;
929         struct rte_eth_link new;
930         unsigned int cnt = BNXT_LINK_WAIT_CNT;
931
932         memset(&new, 0, sizeof(new));
933         do {
934                 /* Retrieve link info from hardware */
935                 rc = bnxt_get_hwrm_link_config(bp, &new);
936                 if (rc) {
937                         new.link_speed = ETH_LINK_SPEED_100M;
938                         new.link_duplex = ETH_LINK_FULL_DUPLEX;
939                         PMD_DRV_LOG(ERR,
940                                 "Failed to retrieve link rc = 0x%x!\n", rc);
941                         goto out;
942                 }
943                 rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
944
945                 if (!wait_to_complete)
946                         break;
947         } while (!new.link_status && cnt--);
948
949 out:
950         /* Timed out or success */
951         if (new.link_status != eth_dev->data->dev_link.link_status ||
952         new.link_speed != eth_dev->data->dev_link.link_speed) {
953                 memcpy(&eth_dev->data->dev_link, &new,
954                         sizeof(struct rte_eth_link));
955
956                 _rte_eth_dev_callback_process(eth_dev,
957                                               RTE_ETH_EVENT_INTR_LSC,
958                                               NULL);
959
960                 bnxt_print_link_info(eth_dev);
961         }
962
963         return rc;
964 }
965
966 static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
967 {
968         struct bnxt *bp = eth_dev->data->dev_private;
969         struct bnxt_vnic_info *vnic;
970
971         if (bp->vnic_info == NULL)
972                 return;
973
974         vnic = &bp->vnic_info[0];
975
976         vnic->flags |= BNXT_VNIC_INFO_PROMISC;
977         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
978 }
979
980 static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
981 {
982         struct bnxt *bp = eth_dev->data->dev_private;
983         struct bnxt_vnic_info *vnic;
984
985         if (bp->vnic_info == NULL)
986                 return;
987
988         vnic = &bp->vnic_info[0];
989
990         vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
991         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
992 }
993
994 static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
995 {
996         struct bnxt *bp = eth_dev->data->dev_private;
997         struct bnxt_vnic_info *vnic;
998
999         if (bp->vnic_info == NULL)
1000                 return;
1001
1002         vnic = &bp->vnic_info[0];
1003
1004         vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1005         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1006 }
1007
1008 static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
1009 {
1010         struct bnxt *bp = eth_dev->data->dev_private;
1011         struct bnxt_vnic_info *vnic;
1012
1013         if (bp->vnic_info == NULL)
1014                 return;
1015
1016         vnic = &bp->vnic_info[0];
1017
1018         vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1019         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1020 }
1021
1022 /* Return bnxt_rx_queue pointer corresponding to a given rxq. */
1023 static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid)
1024 {
1025         if (qid >= bp->rx_nr_rings)
1026                 return NULL;
1027
1028         return bp->eth_dev->data->rx_queues[qid];
1029 }
1030
1031 /* Return rxq corresponding to a given rss table ring/group ID. */
1032 static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr)
1033 {
1034         struct bnxt_rx_queue *rxq;
1035         unsigned int i;
1036
1037         if (!BNXT_HAS_RING_GRPS(bp)) {
1038                 for (i = 0; i < bp->rx_nr_rings; i++) {
1039                         rxq = bp->eth_dev->data->rx_queues[i];
1040                         if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr)
1041                                 return rxq->index;
1042                 }
1043         } else {
1044                 for (i = 0; i < bp->rx_nr_rings; i++) {
1045                         if (bp->grp_info[i].fw_grp_id == fwr)
1046                                 return i;
1047                 }
1048         }
1049
1050         return INVALID_HW_RING_ID;
1051 }
1052
1053 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
1054                             struct rte_eth_rss_reta_entry64 *reta_conf,
1055                             uint16_t reta_size)
1056 {
1057         struct bnxt *bp = eth_dev->data->dev_private;
1058         struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1059         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1060         uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1061         uint16_t idx, sft;
1062         int i;
1063
1064         if (!vnic->rss_table)
1065                 return -EINVAL;
1066
1067         if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
1068                 return -EINVAL;
1069
1070         if (reta_size != tbl_size) {
1071                 PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1072                         "(%d) must equal the size supported by the hardware "
1073                         "(%d)\n", reta_size, tbl_size);
1074                 return -EINVAL;
1075         }
1076
1077         for (i = 0; i < reta_size; i++) {
1078                 struct bnxt_rx_queue *rxq;
1079
1080                 idx = i / RTE_RETA_GROUP_SIZE;
1081                 sft = i % RTE_RETA_GROUP_SIZE;
1082
1083                 if (!(reta_conf[idx].mask & (1ULL << sft)))
1084                         continue;
1085
1086                 rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]);
1087                 if (!rxq) {
1088                         PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n");
1089                         return -EINVAL;
1090                 }
1091
1092                 if (BNXT_CHIP_THOR(bp)) {
1093                         vnic->rss_table[i * 2] =
1094                                 rxq->rx_ring->rx_ring_struct->fw_ring_id;
1095                         vnic->rss_table[i * 2 + 1] =
1096                                 rxq->cp_ring->cp_ring_struct->fw_ring_id;
1097                 } else {
1098                         vnic->rss_table[i] =
1099                             vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1100                 }
1101
1102                 vnic->rss_table[i] =
1103                     vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1104         }
1105
1106         bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1107         return 0;
1108 }
1109
1110 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
1111                               struct rte_eth_rss_reta_entry64 *reta_conf,
1112                               uint16_t reta_size)
1113 {
1114         struct bnxt *bp = eth_dev->data->dev_private;
1115         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1116         uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1117         uint16_t idx, sft, i;
1118
1119         /* Retrieve from the default VNIC */
1120         if (!vnic)
1121                 return -EINVAL;
1122         if (!vnic->rss_table)
1123                 return -EINVAL;
1124
1125         if (reta_size != tbl_size) {
1126                 PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1127                         "(%d) must equal the size supported by the hardware "
1128                         "(%d)\n", reta_size, tbl_size);
1129                 return -EINVAL;
1130         }
1131
1132         for (idx = 0, i = 0; i < reta_size; i++) {
1133                 idx = i / RTE_RETA_GROUP_SIZE;
1134                 sft = i % RTE_RETA_GROUP_SIZE;
1135
1136                 if (reta_conf[idx].mask & (1ULL << sft)) {
1137                         uint16_t qid;
1138
1139                         if (BNXT_CHIP_THOR(bp))
1140                                 qid = bnxt_rss_to_qid(bp,
1141                                                       vnic->rss_table[i * 2]);
1142                         else
1143                                 qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]);
1144
1145                         if (qid == INVALID_HW_RING_ID) {
1146                                 PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n");
1147                                 return -EINVAL;
1148                         }
1149                         reta_conf[idx].reta[sft] = qid;
1150                 }
1151         }
1152
1153         return 0;
1154 }
1155
1156 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
1157                                    struct rte_eth_rss_conf *rss_conf)
1158 {
1159         struct bnxt *bp = eth_dev->data->dev_private;
1160         struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1161         struct bnxt_vnic_info *vnic;
1162         uint16_t hash_type = 0;
1163         unsigned int i;
1164
1165         /*
1166          * If RSS enablement were different than dev_configure,
1167          * then return -EINVAL
1168          */
1169         if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
1170                 if (!rss_conf->rss_hf)
1171                         PMD_DRV_LOG(ERR, "Hash type NONE\n");
1172         } else {
1173                 if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
1174                         return -EINVAL;
1175         }
1176
1177         bp->flags |= BNXT_FLAG_UPDATE_HASH;
1178         memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
1179
1180         if (rss_conf->rss_hf & ETH_RSS_IPV4)
1181                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1182         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1183                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1184         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1185                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1186         if (rss_conf->rss_hf & ETH_RSS_IPV6)
1187                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1188         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1189                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1190         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1191                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1192
1193         /* Update the RSS VNIC(s) */
1194         for (i = 0; i < bp->nr_vnics; i++) {
1195                 vnic = &bp->vnic_info[i];
1196                 vnic->hash_type = hash_type;
1197
1198                 /*
1199                  * Use the supplied key if the key length is
1200                  * acceptable and the rss_key is not NULL
1201                  */
1202                 if (rss_conf->rss_key &&
1203                     rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
1204                         memcpy(vnic->rss_hash_key, rss_conf->rss_key,
1205                                rss_conf->rss_key_len);
1206
1207                 bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1208         }
1209         return 0;
1210 }
1211
1212 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
1213                                      struct rte_eth_rss_conf *rss_conf)
1214 {
1215         struct bnxt *bp = eth_dev->data->dev_private;
1216         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1217         int len;
1218         uint32_t hash_types;
1219
1220         /* RSS configuration is the same for all VNICs */
1221         if (vnic && vnic->rss_hash_key) {
1222                 if (rss_conf->rss_key) {
1223                         len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
1224                               rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
1225                         memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
1226                 }
1227
1228                 hash_types = vnic->hash_type;
1229                 rss_conf->rss_hf = 0;
1230                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
1231                         rss_conf->rss_hf |= ETH_RSS_IPV4;
1232                         hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1233                 }
1234                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
1235                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1236                         hash_types &=
1237                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1238                 }
1239                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
1240                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1241                         hash_types &=
1242                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1243                 }
1244                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
1245                         rss_conf->rss_hf |= ETH_RSS_IPV6;
1246                         hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1247                 }
1248                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
1249                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1250                         hash_types &=
1251                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1252                 }
1253                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
1254                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1255                         hash_types &=
1256                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1257                 }
1258                 if (hash_types) {
1259                         PMD_DRV_LOG(ERR,
1260                                 "Unknwon RSS config from firmware (%08x), RSS disabled",
1261                                 vnic->hash_type);
1262                         return -ENOTSUP;
1263                 }
1264         } else {
1265                 rss_conf->rss_hf = 0;
1266         }
1267         return 0;
1268 }
1269
1270 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1271                                struct rte_eth_fc_conf *fc_conf)
1272 {
1273         struct bnxt *bp = dev->data->dev_private;
1274         struct rte_eth_link link_info;
1275         int rc;
1276
1277         rc = bnxt_get_hwrm_link_config(bp, &link_info);
1278         if (rc)
1279                 return rc;
1280
1281         memset(fc_conf, 0, sizeof(*fc_conf));
1282         if (bp->link_info.auto_pause)
1283                 fc_conf->autoneg = 1;
1284         switch (bp->link_info.pause) {
1285         case 0:
1286                 fc_conf->mode = RTE_FC_NONE;
1287                 break;
1288         case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1289                 fc_conf->mode = RTE_FC_TX_PAUSE;
1290                 break;
1291         case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1292                 fc_conf->mode = RTE_FC_RX_PAUSE;
1293                 break;
1294         case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1295                         HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1296                 fc_conf->mode = RTE_FC_FULL;
1297                 break;
1298         }
1299         return 0;
1300 }
1301
1302 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1303                                struct rte_eth_fc_conf *fc_conf)
1304 {
1305         struct bnxt *bp = dev->data->dev_private;
1306
1307         if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1308                 PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n");
1309                 return -ENOTSUP;
1310         }
1311
1312         switch (fc_conf->mode) {
1313         case RTE_FC_NONE:
1314                 bp->link_info.auto_pause = 0;
1315                 bp->link_info.force_pause = 0;
1316                 break;
1317         case RTE_FC_RX_PAUSE:
1318                 if (fc_conf->autoneg) {
1319                         bp->link_info.auto_pause =
1320                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1321                         bp->link_info.force_pause = 0;
1322                 } else {
1323                         bp->link_info.auto_pause = 0;
1324                         bp->link_info.force_pause =
1325                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1326                 }
1327                 break;
1328         case RTE_FC_TX_PAUSE:
1329                 if (fc_conf->autoneg) {
1330                         bp->link_info.auto_pause =
1331                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1332                         bp->link_info.force_pause = 0;
1333                 } else {
1334                         bp->link_info.auto_pause = 0;
1335                         bp->link_info.force_pause =
1336                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1337                 }
1338                 break;
1339         case RTE_FC_FULL:
1340                 if (fc_conf->autoneg) {
1341                         bp->link_info.auto_pause =
1342                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1343                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1344                         bp->link_info.force_pause = 0;
1345                 } else {
1346                         bp->link_info.auto_pause = 0;
1347                         bp->link_info.force_pause =
1348                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1349                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1350                 }
1351                 break;
1352         }
1353         return bnxt_set_hwrm_link_config(bp, true);
1354 }
1355
1356 /* Add UDP tunneling port */
1357 static int
1358 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1359                          struct rte_eth_udp_tunnel *udp_tunnel)
1360 {
1361         struct bnxt *bp = eth_dev->data->dev_private;
1362         uint16_t tunnel_type = 0;
1363         int rc = 0;
1364
1365         switch (udp_tunnel->prot_type) {
1366         case RTE_TUNNEL_TYPE_VXLAN:
1367                 if (bp->vxlan_port_cnt) {
1368                         PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1369                                 udp_tunnel->udp_port);
1370                         if (bp->vxlan_port != udp_tunnel->udp_port) {
1371                                 PMD_DRV_LOG(ERR, "Only one port allowed\n");
1372                                 return -ENOSPC;
1373                         }
1374                         bp->vxlan_port_cnt++;
1375                         return 0;
1376                 }
1377                 tunnel_type =
1378                         HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1379                 bp->vxlan_port_cnt++;
1380                 break;
1381         case RTE_TUNNEL_TYPE_GENEVE:
1382                 if (bp->geneve_port_cnt) {
1383                         PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1384                                 udp_tunnel->udp_port);
1385                         if (bp->geneve_port != udp_tunnel->udp_port) {
1386                                 PMD_DRV_LOG(ERR, "Only one port allowed\n");
1387                                 return -ENOSPC;
1388                         }
1389                         bp->geneve_port_cnt++;
1390                         return 0;
1391                 }
1392                 tunnel_type =
1393                         HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1394                 bp->geneve_port_cnt++;
1395                 break;
1396         default:
1397                 PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1398                 return -ENOTSUP;
1399         }
1400         rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1401                                              tunnel_type);
1402         return rc;
1403 }
1404
1405 static int
1406 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1407                          struct rte_eth_udp_tunnel *udp_tunnel)
1408 {
1409         struct bnxt *bp = eth_dev->data->dev_private;
1410         uint16_t tunnel_type = 0;
1411         uint16_t port = 0;
1412         int rc = 0;
1413
1414         switch (udp_tunnel->prot_type) {
1415         case RTE_TUNNEL_TYPE_VXLAN:
1416                 if (!bp->vxlan_port_cnt) {
1417                         PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1418                         return -EINVAL;
1419                 }
1420                 if (bp->vxlan_port != udp_tunnel->udp_port) {
1421                         PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1422                                 udp_tunnel->udp_port, bp->vxlan_port);
1423                         return -EINVAL;
1424                 }
1425                 if (--bp->vxlan_port_cnt)
1426                         return 0;
1427
1428                 tunnel_type =
1429                         HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1430                 port = bp->vxlan_fw_dst_port_id;
1431                 break;
1432         case RTE_TUNNEL_TYPE_GENEVE:
1433                 if (!bp->geneve_port_cnt) {
1434                         PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1435                         return -EINVAL;
1436                 }
1437                 if (bp->geneve_port != udp_tunnel->udp_port) {
1438                         PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1439                                 udp_tunnel->udp_port, bp->geneve_port);
1440                         return -EINVAL;
1441                 }
1442                 if (--bp->geneve_port_cnt)
1443                         return 0;
1444
1445                 tunnel_type =
1446                         HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1447                 port = bp->geneve_fw_dst_port_id;
1448                 break;
1449         default:
1450                 PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1451                 return -ENOTSUP;
1452         }
1453
1454         rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1455         if (!rc) {
1456                 if (tunnel_type ==
1457                     HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1458                         bp->vxlan_port = 0;
1459                 if (tunnel_type ==
1460                     HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1461                         bp->geneve_port = 0;
1462         }
1463         return rc;
1464 }
1465
1466 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1467 {
1468         struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1469         struct bnxt_vnic_info *vnic;
1470         unsigned int i;
1471         int rc = 0;
1472         uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1473
1474         /* Cycle through all VNICs */
1475         for (i = 0; i < bp->nr_vnics; i++) {
1476                 /*
1477                  * For each VNIC and each associated filter(s)
1478                  * if VLAN exists && VLAN matches vlan_id
1479                  *      remove the MAC+VLAN filter
1480                  *      add a new MAC only filter
1481                  * else
1482                  *      VLAN filter doesn't exist, just skip and continue
1483                  */
1484                 vnic = &bp->vnic_info[i];
1485                 filter = STAILQ_FIRST(&vnic->filter);
1486                 while (filter) {
1487                         temp_filter = STAILQ_NEXT(filter, next);
1488
1489                         if (filter->enables & chk &&
1490                             filter->l2_ovlan == vlan_id) {
1491                                 /* Must delete the filter */
1492                                 STAILQ_REMOVE(&vnic->filter, filter,
1493                                               bnxt_filter_info, next);
1494                                 bnxt_hwrm_clear_l2_filter(bp, filter);
1495                                 STAILQ_INSERT_TAIL(&bp->free_filter_list,
1496                                                    filter, next);
1497
1498                                 /*
1499                                  * Need to examine to see if the MAC
1500                                  * filter already existed or not before
1501                                  * allocating a new one
1502                                  */
1503
1504                                 new_filter = bnxt_alloc_filter(bp);
1505                                 if (!new_filter) {
1506                                         PMD_DRV_LOG(ERR,
1507                                                         "MAC/VLAN filter alloc failed\n");
1508                                         rc = -ENOMEM;
1509                                         goto exit;
1510                                 }
1511                                 STAILQ_INSERT_TAIL(&vnic->filter,
1512                                                 new_filter, next);
1513                                 /* Inherit MAC from previous filter */
1514                                 new_filter->mac_index =
1515                                         filter->mac_index;
1516                                 memcpy(new_filter->l2_addr, filter->l2_addr,
1517                                        RTE_ETHER_ADDR_LEN);
1518                                 /* MAC only filter */
1519                                 rc = bnxt_hwrm_set_l2_filter(bp,
1520                                                              vnic->fw_vnic_id,
1521                                                              new_filter);
1522                                 if (rc)
1523                                         goto exit;
1524                                 PMD_DRV_LOG(INFO,
1525                                             "Del Vlan filter for %d\n",
1526                                             vlan_id);
1527                         }
1528                         filter = temp_filter;
1529                 }
1530         }
1531 exit:
1532         return rc;
1533 }
1534
1535 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1536 {
1537         struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1538         struct bnxt_vnic_info *vnic;
1539         unsigned int i;
1540         int rc = 0;
1541         uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
1542                 HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
1543         uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
1544
1545         /* Cycle through all VNICs */
1546         for (i = 0; i < bp->nr_vnics; i++) {
1547                 /*
1548                  * For each VNIC and each associated filter(s)
1549                  * if VLAN exists:
1550                  *   if VLAN matches vlan_id
1551                  *      VLAN filter already exists, just skip and continue
1552                  *   else
1553                  *      add a new MAC+VLAN filter
1554                  * else
1555                  *   Remove the old MAC only filter
1556                  *    Add a new MAC+VLAN filter
1557                  */
1558                 vnic = &bp->vnic_info[i];
1559                 filter = STAILQ_FIRST(&vnic->filter);
1560                 while (filter) {
1561                         temp_filter = STAILQ_NEXT(filter, next);
1562
1563                         if (filter->enables & chk) {
1564                                 if (filter->l2_ivlan == vlan_id)
1565                                         goto cont;
1566                         } else {
1567                                 /* Must delete the MAC filter */
1568                                 STAILQ_REMOVE(&vnic->filter, filter,
1569                                                 bnxt_filter_info, next);
1570                                 bnxt_hwrm_clear_l2_filter(bp, filter);
1571                                 filter->l2_ovlan = 0;
1572                                 STAILQ_INSERT_TAIL(&bp->free_filter_list,
1573                                                    filter, next);
1574                         }
1575                         new_filter = bnxt_alloc_filter(bp);
1576                         if (!new_filter) {
1577                                 PMD_DRV_LOG(ERR,
1578                                                 "MAC/VLAN filter alloc failed\n");
1579                                 rc = -ENOMEM;
1580                                 goto exit;
1581                         }
1582                         STAILQ_INSERT_TAIL(&vnic->filter, new_filter, next);
1583                         /* Inherit MAC from the previous filter */
1584                         new_filter->mac_index = filter->mac_index;
1585                         memcpy(new_filter->l2_addr, filter->l2_addr,
1586                                RTE_ETHER_ADDR_LEN);
1587                         /* MAC + VLAN ID filter */
1588                         new_filter->l2_ivlan = vlan_id;
1589                         new_filter->l2_ivlan_mask = 0xF000;
1590                         new_filter->enables |= en;
1591                         rc = bnxt_hwrm_set_l2_filter(bp,
1592                                         vnic->fw_vnic_id,
1593                                         new_filter);
1594                         if (rc)
1595                                 goto exit;
1596                         PMD_DRV_LOG(INFO,
1597                                     "Added Vlan filter for %d\n", vlan_id);
1598 cont:
1599                         filter = temp_filter;
1600                 }
1601         }
1602 exit:
1603         return rc;
1604 }
1605
1606 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1607                 uint16_t vlan_id, int on)
1608 {
1609         struct bnxt *bp = eth_dev->data->dev_private;
1610
1611         /* These operations apply to ALL existing MAC/VLAN filters */
1612         if (on)
1613                 return bnxt_add_vlan_filter(bp, vlan_id);
1614         else
1615                 return bnxt_del_vlan_filter(bp, vlan_id);
1616 }
1617
1618 static int
1619 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1620 {
1621         struct bnxt *bp = dev->data->dev_private;
1622         uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
1623         unsigned int i;
1624
1625         if (mask & ETH_VLAN_FILTER_MASK) {
1626                 if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) {
1627                         /* Remove any VLAN filters programmed */
1628                         for (i = 0; i < 4095; i++)
1629                                 bnxt_del_vlan_filter(bp, i);
1630                 }
1631                 PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
1632                         !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER));
1633         }
1634
1635         if (mask & ETH_VLAN_STRIP_MASK) {
1636                 /* Enable or disable VLAN stripping */
1637                 for (i = 0; i < bp->nr_vnics; i++) {
1638                         struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1639                         if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1640                                 vnic->vlan_strip = true;
1641                         else
1642                                 vnic->vlan_strip = false;
1643                         bnxt_hwrm_vnic_cfg(bp, vnic);
1644                 }
1645                 PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
1646                         !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP));
1647         }
1648
1649         if (mask & ETH_VLAN_EXTEND_MASK)
1650                 PMD_DRV_LOG(ERR, "Extend VLAN Not supported\n");
1651
1652         return 0;
1653 }
1654
1655 static int
1656 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
1657                         struct rte_ether_addr *addr)
1658 {
1659         struct bnxt *bp = dev->data->dev_private;
1660         /* Default Filter is tied to VNIC 0 */
1661         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1662         struct bnxt_filter_info *filter;
1663         int rc;
1664
1665         if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
1666                 return -EPERM;
1667
1668         memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr));
1669
1670         STAILQ_FOREACH(filter, &vnic->filter, next) {
1671                 /* Default Filter is at Index 0 */
1672                 if (filter->mac_index != 0)
1673                         continue;
1674                 rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1675                 if (rc)
1676                         return rc;
1677                 memcpy(filter->l2_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN);
1678                 memset(filter->l2_addr_mask, 0xff, RTE_ETHER_ADDR_LEN);
1679                 filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1680                 filter->enables |=
1681                         HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1682                         HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1683                 rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1684                 if (rc)
1685                         return rc;
1686                 filter->mac_index = 0;
1687                 PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
1688         }
1689
1690         return 0;
1691 }
1692
1693 static int
1694 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1695                           struct rte_ether_addr *mc_addr_set,
1696                           uint32_t nb_mc_addr)
1697 {
1698         struct bnxt *bp = eth_dev->data->dev_private;
1699         char *mc_addr_list = (char *)mc_addr_set;
1700         struct bnxt_vnic_info *vnic;
1701         uint32_t off = 0, i = 0;
1702
1703         vnic = &bp->vnic_info[0];
1704
1705         if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1706                 vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1707                 goto allmulti;
1708         }
1709
1710         /* TODO Check for Duplicate mcast addresses */
1711         vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1712         for (i = 0; i < nb_mc_addr; i++) {
1713                 memcpy(vnic->mc_list + off, &mc_addr_list[i],
1714                         RTE_ETHER_ADDR_LEN);
1715                 off += RTE_ETHER_ADDR_LEN;
1716         }
1717
1718         vnic->mc_addr_cnt = i;
1719
1720 allmulti:
1721         return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1722 }
1723
1724 static int
1725 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1726 {
1727         struct bnxt *bp = dev->data->dev_private;
1728         uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1729         uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1730         uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1731         int ret;
1732
1733         ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1734                         fw_major, fw_minor, fw_updt);
1735
1736         ret += 1; /* add the size of '\0' */
1737         if (fw_size < (uint32_t)ret)
1738                 return ret;
1739         else
1740                 return 0;
1741 }
1742
1743 static void
1744 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1745         struct rte_eth_rxq_info *qinfo)
1746 {
1747         struct bnxt_rx_queue *rxq;
1748
1749         rxq = dev->data->rx_queues[queue_id];
1750
1751         qinfo->mp = rxq->mb_pool;
1752         qinfo->scattered_rx = dev->data->scattered_rx;
1753         qinfo->nb_desc = rxq->nb_rx_desc;
1754
1755         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1756         qinfo->conf.rx_drop_en = 0;
1757         qinfo->conf.rx_deferred_start = 0;
1758 }
1759
1760 static void
1761 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1762         struct rte_eth_txq_info *qinfo)
1763 {
1764         struct bnxt_tx_queue *txq;
1765
1766         txq = dev->data->tx_queues[queue_id];
1767
1768         qinfo->nb_desc = txq->nb_tx_desc;
1769
1770         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1771         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1772         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1773
1774         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1775         qinfo->conf.tx_rs_thresh = 0;
1776         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1777 }
1778
1779 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1780 {
1781         struct bnxt *bp = eth_dev->data->dev_private;
1782         struct rte_eth_dev_info dev_info;
1783         uint32_t new_pkt_size;
1784         uint32_t rc = 0;
1785         uint32_t i;
1786
1787         new_pkt_size = new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1788                        VLAN_TAG_SIZE * BNXT_NUM_VLANS;
1789
1790         bnxt_dev_info_get_op(eth_dev, &dev_info);
1791
1792         if (new_mtu < RTE_ETHER_MIN_MTU || new_mtu > BNXT_MAX_MTU) {
1793                 PMD_DRV_LOG(ERR, "MTU requested must be within (%d, %d)\n",
1794                         RTE_ETHER_MIN_MTU, BNXT_MAX_MTU);
1795                 return -EINVAL;
1796         }
1797
1798 #ifdef RTE_ARCH_X86
1799         /*
1800          * If vector-mode tx/rx is active, disallow any MTU change that would
1801          * require scattered receive support.
1802          */
1803         if (eth_dev->data->dev_started &&
1804             (eth_dev->rx_pkt_burst == bnxt_recv_pkts_vec ||
1805              eth_dev->tx_pkt_burst == bnxt_xmit_pkts_vec) &&
1806             (new_pkt_size >
1807              eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) {
1808                 PMD_DRV_LOG(ERR,
1809                             "MTU change would require scattered rx support. ");
1810                 PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n");
1811                 return -EINVAL;
1812         }
1813 #endif
1814
1815         if (new_mtu > RTE_ETHER_MTU) {
1816                 bp->flags |= BNXT_FLAG_JUMBO;
1817                 bp->eth_dev->data->dev_conf.rxmode.offloads |=
1818                         DEV_RX_OFFLOAD_JUMBO_FRAME;
1819         } else {
1820                 bp->eth_dev->data->dev_conf.rxmode.offloads &=
1821                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1822                 bp->flags &= ~BNXT_FLAG_JUMBO;
1823         }
1824
1825         eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_pkt_size;
1826
1827         eth_dev->data->mtu = new_mtu;
1828         PMD_DRV_LOG(INFO, "New MTU is %d\n", eth_dev->data->mtu);
1829
1830         for (i = 0; i < bp->nr_vnics; i++) {
1831                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1832                 uint16_t size = 0;
1833
1834                 vnic->mru = bp->eth_dev->data->mtu + RTE_ETHER_HDR_LEN +
1835                                         RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1836                 rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1837                 if (rc)
1838                         break;
1839
1840                 size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
1841                 size -= RTE_PKTMBUF_HEADROOM;
1842
1843                 if (size < new_mtu) {
1844                         rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1845                         if (rc)
1846                                 return rc;
1847                 }
1848         }
1849
1850         return rc;
1851 }
1852
1853 static int
1854 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1855 {
1856         struct bnxt *bp = dev->data->dev_private;
1857         uint16_t vlan = bp->vlan;
1858         int rc;
1859
1860         if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1861                 PMD_DRV_LOG(ERR,
1862                         "PVID cannot be modified for this function\n");
1863                 return -ENOTSUP;
1864         }
1865         bp->vlan = on ? pvid : 0;
1866
1867         rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1868         if (rc)
1869                 bp->vlan = vlan;
1870         return rc;
1871 }
1872
1873 static int
1874 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1875 {
1876         struct bnxt *bp = dev->data->dev_private;
1877
1878         return bnxt_hwrm_port_led_cfg(bp, true);
1879 }
1880
1881 static int
1882 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1883 {
1884         struct bnxt *bp = dev->data->dev_private;
1885
1886         return bnxt_hwrm_port_led_cfg(bp, false);
1887 }
1888
1889 static uint32_t
1890 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1891 {
1892         uint32_t desc = 0, raw_cons = 0, cons;
1893         struct bnxt_cp_ring_info *cpr;
1894         struct bnxt_rx_queue *rxq;
1895         struct rx_pkt_cmpl *rxcmp;
1896         uint16_t cmp_type;
1897         uint8_t cmp = 1;
1898         bool valid;
1899
1900         rxq = dev->data->rx_queues[rx_queue_id];
1901         cpr = rxq->cp_ring;
1902         valid = cpr->valid;
1903
1904         while (raw_cons < rxq->nb_rx_desc) {
1905                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1906                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1907
1908                 if (!CMPL_VALID(rxcmp, valid))
1909                         goto nothing_to_do;
1910                 valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1911                 cmp_type = CMP_TYPE(rxcmp);
1912                 if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1913                         cmp = (rte_le_to_cpu_32(
1914                                         ((struct rx_tpa_end_cmpl *)
1915                                          (rxcmp))->agg_bufs_v1) &
1916                                RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1917                                 RX_TPA_END_CMPL_AGG_BUFS_SFT;
1918                         desc++;
1919                 } else if (cmp_type == 0x11) {
1920                         desc++;
1921                         cmp = (rxcmp->agg_bufs_v1 &
1922                                    RX_PKT_CMPL_AGG_BUFS_MASK) >>
1923                                 RX_PKT_CMPL_AGG_BUFS_SFT;
1924                 } else {
1925                         cmp = 1;
1926                 }
1927 nothing_to_do:
1928                 raw_cons += cmp ? cmp : 2;
1929         }
1930
1931         return desc;
1932 }
1933
1934 static int
1935 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1936 {
1937         struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1938         struct bnxt_rx_ring_info *rxr;
1939         struct bnxt_cp_ring_info *cpr;
1940         struct bnxt_sw_rx_bd *rx_buf;
1941         struct rx_pkt_cmpl *rxcmp;
1942         uint32_t cons, cp_cons;
1943
1944         if (!rxq)
1945                 return -EINVAL;
1946
1947         cpr = rxq->cp_ring;
1948         rxr = rxq->rx_ring;
1949
1950         if (offset >= rxq->nb_rx_desc)
1951                 return -EINVAL;
1952
1953         cons = RING_CMP(cpr->cp_ring_struct, offset);
1954         cp_cons = cpr->cp_raw_cons;
1955         rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1956
1957         if (cons > cp_cons) {
1958                 if (CMPL_VALID(rxcmp, cpr->valid))
1959                         return RTE_ETH_RX_DESC_DONE;
1960         } else {
1961                 if (CMPL_VALID(rxcmp, !cpr->valid))
1962                         return RTE_ETH_RX_DESC_DONE;
1963         }
1964         rx_buf = &rxr->rx_buf_ring[cons];
1965         if (rx_buf->mbuf == NULL)
1966                 return RTE_ETH_RX_DESC_UNAVAIL;
1967
1968
1969         return RTE_ETH_RX_DESC_AVAIL;
1970 }
1971
1972 static int
1973 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
1974 {
1975         struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
1976         struct bnxt_tx_ring_info *txr;
1977         struct bnxt_cp_ring_info *cpr;
1978         struct bnxt_sw_tx_bd *tx_buf;
1979         struct tx_pkt_cmpl *txcmp;
1980         uint32_t cons, cp_cons;
1981
1982         if (!txq)
1983                 return -EINVAL;
1984
1985         cpr = txq->cp_ring;
1986         txr = txq->tx_ring;
1987
1988         if (offset >= txq->nb_tx_desc)
1989                 return -EINVAL;
1990
1991         cons = RING_CMP(cpr->cp_ring_struct, offset);
1992         txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1993         cp_cons = cpr->cp_raw_cons;
1994
1995         if (cons > cp_cons) {
1996                 if (CMPL_VALID(txcmp, cpr->valid))
1997                         return RTE_ETH_TX_DESC_UNAVAIL;
1998         } else {
1999                 if (CMPL_VALID(txcmp, !cpr->valid))
2000                         return RTE_ETH_TX_DESC_UNAVAIL;
2001         }
2002         tx_buf = &txr->tx_buf_ring[cons];
2003         if (tx_buf->mbuf == NULL)
2004                 return RTE_ETH_TX_DESC_DONE;
2005
2006         return RTE_ETH_TX_DESC_FULL;
2007 }
2008
2009 static struct bnxt_filter_info *
2010 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
2011                                 struct rte_eth_ethertype_filter *efilter,
2012                                 struct bnxt_vnic_info *vnic0,
2013                                 struct bnxt_vnic_info *vnic,
2014                                 int *ret)
2015 {
2016         struct bnxt_filter_info *mfilter = NULL;
2017         int match = 0;
2018         *ret = 0;
2019
2020         if (efilter->ether_type == RTE_ETHER_TYPE_IPV4 ||
2021                 efilter->ether_type == RTE_ETHER_TYPE_IPV6) {
2022                 PMD_DRV_LOG(ERR, "invalid ether_type(0x%04x) in"
2023                         " ethertype filter.", efilter->ether_type);
2024                 *ret = -EINVAL;
2025                 goto exit;
2026         }
2027         if (efilter->queue >= bp->rx_nr_rings) {
2028                 PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2029                 *ret = -EINVAL;
2030                 goto exit;
2031         }
2032
2033         vnic0 = &bp->vnic_info[0];
2034         vnic = &bp->vnic_info[efilter->queue];
2035         if (vnic == NULL) {
2036                 PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2037                 *ret = -EINVAL;
2038                 goto exit;
2039         }
2040
2041         if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
2042                 STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
2043                         if ((!memcmp(efilter->mac_addr.addr_bytes,
2044                                      mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
2045                              mfilter->flags ==
2046                              HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
2047                              mfilter->ethertype == efilter->ether_type)) {
2048                                 match = 1;
2049                                 break;
2050                         }
2051                 }
2052         } else {
2053                 STAILQ_FOREACH(mfilter, &vnic->filter, next)
2054                         if ((!memcmp(efilter->mac_addr.addr_bytes,
2055                                      mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
2056                              mfilter->ethertype == efilter->ether_type &&
2057                              mfilter->flags ==
2058                              HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
2059                                 match = 1;
2060                                 break;
2061                         }
2062         }
2063
2064         if (match)
2065                 *ret = -EEXIST;
2066
2067 exit:
2068         return mfilter;
2069 }
2070
2071 static int
2072 bnxt_ethertype_filter(struct rte_eth_dev *dev,
2073                         enum rte_filter_op filter_op,
2074                         void *arg)
2075 {
2076         struct bnxt *bp = dev->data->dev_private;
2077         struct rte_eth_ethertype_filter *efilter =
2078                         (struct rte_eth_ethertype_filter *)arg;
2079         struct bnxt_filter_info *bfilter, *filter1;
2080         struct bnxt_vnic_info *vnic, *vnic0;
2081         int ret;
2082
2083         if (filter_op == RTE_ETH_FILTER_NOP)
2084                 return 0;
2085
2086         if (arg == NULL) {
2087                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2088                             filter_op);
2089                 return -EINVAL;
2090         }
2091
2092         vnic0 = &bp->vnic_info[0];
2093         vnic = &bp->vnic_info[efilter->queue];
2094
2095         switch (filter_op) {
2096         case RTE_ETH_FILTER_ADD:
2097                 bnxt_match_and_validate_ether_filter(bp, efilter,
2098                                                         vnic0, vnic, &ret);
2099                 if (ret < 0)
2100                         return ret;
2101
2102                 bfilter = bnxt_get_unused_filter(bp);
2103                 if (bfilter == NULL) {
2104                         PMD_DRV_LOG(ERR,
2105                                 "Not enough resources for a new filter.\n");
2106                         return -ENOMEM;
2107                 }
2108                 bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2109                 memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
2110                        RTE_ETHER_ADDR_LEN);
2111                 memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
2112                        RTE_ETHER_ADDR_LEN);
2113                 bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2114                 bfilter->ethertype = efilter->ether_type;
2115                 bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2116
2117                 filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
2118                 if (filter1 == NULL) {
2119                         ret = -1;
2120                         goto cleanup;
2121                 }
2122                 bfilter->enables |=
2123                         HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2124                 bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2125
2126                 bfilter->dst_id = vnic->fw_vnic_id;
2127
2128                 if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
2129                         bfilter->flags =
2130                                 HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2131                 }
2132
2133                 ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2134                 if (ret)
2135                         goto cleanup;
2136                 STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2137                 break;
2138         case RTE_ETH_FILTER_DELETE:
2139                 filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
2140                                                         vnic0, vnic, &ret);
2141                 if (ret == -EEXIST) {
2142                         ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
2143
2144                         STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
2145                                       next);
2146                         bnxt_free_filter(bp, filter1);
2147                 } else if (ret == 0) {
2148                         PMD_DRV_LOG(ERR, "No matching filter found\n");
2149                 }
2150                 break;
2151         default:
2152                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2153                 ret = -EINVAL;
2154                 goto error;
2155         }
2156         return ret;
2157 cleanup:
2158         bnxt_free_filter(bp, bfilter);
2159 error:
2160         return ret;
2161 }
2162
2163 static inline int
2164 parse_ntuple_filter(struct bnxt *bp,
2165                     struct rte_eth_ntuple_filter *nfilter,
2166                     struct bnxt_filter_info *bfilter)
2167 {
2168         uint32_t en = 0;
2169
2170         if (nfilter->queue >= bp->rx_nr_rings) {
2171                 PMD_DRV_LOG(ERR, "Invalid queue %d\n", nfilter->queue);
2172                 return -EINVAL;
2173         }
2174
2175         switch (nfilter->dst_port_mask) {
2176         case UINT16_MAX:
2177                 bfilter->dst_port_mask = -1;
2178                 bfilter->dst_port = nfilter->dst_port;
2179                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
2180                         NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2181                 break;
2182         default:
2183                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
2184                 return -EINVAL;
2185         }
2186
2187         bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2188         en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2189
2190         switch (nfilter->proto_mask) {
2191         case UINT8_MAX:
2192                 if (nfilter->proto == 17) /* IPPROTO_UDP */
2193                         bfilter->ip_protocol = 17;
2194                 else if (nfilter->proto == 6) /* IPPROTO_TCP */
2195                         bfilter->ip_protocol = 6;
2196                 else
2197                         return -EINVAL;
2198                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2199                 break;
2200         default:
2201                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
2202                 return -EINVAL;
2203         }
2204
2205         switch (nfilter->dst_ip_mask) {
2206         case UINT32_MAX:
2207                 bfilter->dst_ipaddr_mask[0] = -1;
2208                 bfilter->dst_ipaddr[0] = nfilter->dst_ip;
2209                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
2210                         NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2211                 break;
2212         default:
2213                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
2214                 return -EINVAL;
2215         }
2216
2217         switch (nfilter->src_ip_mask) {
2218         case UINT32_MAX:
2219                 bfilter->src_ipaddr_mask[0] = -1;
2220                 bfilter->src_ipaddr[0] = nfilter->src_ip;
2221                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
2222                         NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2223                 break;
2224         default:
2225                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
2226                 return -EINVAL;
2227         }
2228
2229         switch (nfilter->src_port_mask) {
2230         case UINT16_MAX:
2231                 bfilter->src_port_mask = -1;
2232                 bfilter->src_port = nfilter->src_port;
2233                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
2234                         NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2235                 break;
2236         default:
2237                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
2238                 return -EINVAL;
2239         }
2240
2241         //TODO Priority
2242         //nfilter->priority = (uint8_t)filter->priority;
2243
2244         bfilter->enables = en;
2245         return 0;
2246 }
2247
2248 static struct bnxt_filter_info*
2249 bnxt_match_ntuple_filter(struct bnxt *bp,
2250                          struct bnxt_filter_info *bfilter,
2251                          struct bnxt_vnic_info **mvnic)
2252 {
2253         struct bnxt_filter_info *mfilter = NULL;
2254         int i;
2255
2256         for (i = bp->nr_vnics - 1; i >= 0; i--) {
2257                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2258                 STAILQ_FOREACH(mfilter, &vnic->filter, next) {
2259                         if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
2260                             bfilter->src_ipaddr_mask[0] ==
2261                             mfilter->src_ipaddr_mask[0] &&
2262                             bfilter->src_port == mfilter->src_port &&
2263                             bfilter->src_port_mask == mfilter->src_port_mask &&
2264                             bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
2265                             bfilter->dst_ipaddr_mask[0] ==
2266                             mfilter->dst_ipaddr_mask[0] &&
2267                             bfilter->dst_port == mfilter->dst_port &&
2268                             bfilter->dst_port_mask == mfilter->dst_port_mask &&
2269                             bfilter->flags == mfilter->flags &&
2270                             bfilter->enables == mfilter->enables) {
2271                                 if (mvnic)
2272                                         *mvnic = vnic;
2273                                 return mfilter;
2274                         }
2275                 }
2276         }
2277         return NULL;
2278 }
2279
2280 static int
2281 bnxt_cfg_ntuple_filter(struct bnxt *bp,
2282                        struct rte_eth_ntuple_filter *nfilter,
2283                        enum rte_filter_op filter_op)
2284 {
2285         struct bnxt_filter_info *bfilter, *mfilter, *filter1;
2286         struct bnxt_vnic_info *vnic, *vnic0, *mvnic;
2287         int ret;
2288
2289         if (nfilter->flags != RTE_5TUPLE_FLAGS) {
2290                 PMD_DRV_LOG(ERR, "only 5tuple is supported.");
2291                 return -EINVAL;
2292         }
2293
2294         if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
2295                 PMD_DRV_LOG(ERR, "Ntuple filter: TCP flags not supported\n");
2296                 return -EINVAL;
2297         }
2298
2299         bfilter = bnxt_get_unused_filter(bp);
2300         if (bfilter == NULL) {
2301                 PMD_DRV_LOG(ERR,
2302                         "Not enough resources for a new filter.\n");
2303                 return -ENOMEM;
2304         }
2305         ret = parse_ntuple_filter(bp, nfilter, bfilter);
2306         if (ret < 0)
2307                 goto free_filter;
2308
2309         vnic = &bp->vnic_info[nfilter->queue];
2310         vnic0 = &bp->vnic_info[0];
2311         filter1 = STAILQ_FIRST(&vnic0->filter);
2312         if (filter1 == NULL) {
2313                 ret = -1;
2314                 goto free_filter;
2315         }
2316
2317         bfilter->dst_id = vnic->fw_vnic_id;
2318         bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2319         bfilter->enables |=
2320                 HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2321         bfilter->ethertype = 0x800;
2322         bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2323
2324         mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic);
2325
2326         if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2327             bfilter->dst_id == mfilter->dst_id) {
2328                 PMD_DRV_LOG(ERR, "filter exists.\n");
2329                 ret = -EEXIST;
2330                 goto free_filter;
2331         } else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2332                    bfilter->dst_id != mfilter->dst_id) {
2333                 mfilter->dst_id = vnic->fw_vnic_id;
2334                 ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter);
2335                 STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next);
2336                 STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next);
2337                 PMD_DRV_LOG(ERR, "filter with matching pattern exists.\n");
2338                 PMD_DRV_LOG(ERR, " Updated it to the new destination queue\n");
2339                 goto free_filter;
2340         }
2341         if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2342                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
2343                 ret = -ENOENT;
2344                 goto free_filter;
2345         }
2346
2347         if (filter_op == RTE_ETH_FILTER_ADD) {
2348                 bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2349                 ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2350                 if (ret)
2351                         goto free_filter;
2352                 STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2353         } else {
2354                 if (mfilter == NULL) {
2355                         /* This should not happen. But for Coverity! */
2356                         ret = -ENOENT;
2357                         goto free_filter;
2358                 }
2359                 ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2360
2361                 STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next);
2362                 bnxt_free_filter(bp, mfilter);
2363                 mfilter->fw_l2_filter_id = -1;
2364                 bnxt_free_filter(bp, bfilter);
2365                 bfilter->fw_l2_filter_id = -1;
2366         }
2367
2368         return 0;
2369 free_filter:
2370         bfilter->fw_l2_filter_id = -1;
2371         bnxt_free_filter(bp, bfilter);
2372         return ret;
2373 }
2374
2375 static int
2376 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2377                         enum rte_filter_op filter_op,
2378                         void *arg)
2379 {
2380         struct bnxt *bp = dev->data->dev_private;
2381         int ret;
2382
2383         if (filter_op == RTE_ETH_FILTER_NOP)
2384                 return 0;
2385
2386         if (arg == NULL) {
2387                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2388                             filter_op);
2389                 return -EINVAL;
2390         }
2391
2392         switch (filter_op) {
2393         case RTE_ETH_FILTER_ADD:
2394                 ret = bnxt_cfg_ntuple_filter(bp,
2395                         (struct rte_eth_ntuple_filter *)arg,
2396                         filter_op);
2397                 break;
2398         case RTE_ETH_FILTER_DELETE:
2399                 ret = bnxt_cfg_ntuple_filter(bp,
2400                         (struct rte_eth_ntuple_filter *)arg,
2401                         filter_op);
2402                 break;
2403         default:
2404                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2405                 ret = -EINVAL;
2406                 break;
2407         }
2408         return ret;
2409 }
2410
2411 static int
2412 bnxt_parse_fdir_filter(struct bnxt *bp,
2413                        struct rte_eth_fdir_filter *fdir,
2414                        struct bnxt_filter_info *filter)
2415 {
2416         enum rte_fdir_mode fdir_mode =
2417                 bp->eth_dev->data->dev_conf.fdir_conf.mode;
2418         struct bnxt_vnic_info *vnic0, *vnic;
2419         struct bnxt_filter_info *filter1;
2420         uint32_t en = 0;
2421         int i;
2422
2423         if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2424                 return -EINVAL;
2425
2426         filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2427         en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2428
2429         switch (fdir->input.flow_type) {
2430         case RTE_ETH_FLOW_IPV4:
2431         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2432                 /* FALLTHROUGH */
2433                 filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2434                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2435                 filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2436                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2437                 filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2438                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2439                 filter->ip_addr_type =
2440                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2441                 filter->src_ipaddr_mask[0] = 0xffffffff;
2442                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2443                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2444                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2445                 filter->ethertype = 0x800;
2446                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2447                 break;
2448         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2449                 filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2450                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2451                 filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2452                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2453                 filter->dst_port_mask = 0xffff;
2454                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2455                 filter->src_port_mask = 0xffff;
2456                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2457                 filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2458                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2459                 filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2460                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2461                 filter->ip_protocol = 6;
2462                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2463                 filter->ip_addr_type =
2464                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2465                 filter->src_ipaddr_mask[0] = 0xffffffff;
2466                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2467                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2468                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2469                 filter->ethertype = 0x800;
2470                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2471                 break;
2472         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2473                 filter->src_port = fdir->input.flow.udp4_flow.src_port;
2474                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2475                 filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2476                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2477                 filter->dst_port_mask = 0xffff;
2478                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2479                 filter->src_port_mask = 0xffff;
2480                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2481                 filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2482                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2483                 filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2484                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2485                 filter->ip_protocol = 17;
2486                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2487                 filter->ip_addr_type =
2488                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2489                 filter->src_ipaddr_mask[0] = 0xffffffff;
2490                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2491                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2492                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2493                 filter->ethertype = 0x800;
2494                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2495                 break;
2496         case RTE_ETH_FLOW_IPV6:
2497         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2498                 /* FALLTHROUGH */
2499                 filter->ip_addr_type =
2500                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2501                 filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2502                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2503                 rte_memcpy(filter->src_ipaddr,
2504                            fdir->input.flow.ipv6_flow.src_ip, 16);
2505                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2506                 rte_memcpy(filter->dst_ipaddr,
2507                            fdir->input.flow.ipv6_flow.dst_ip, 16);
2508                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2509                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2510                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2511                 memset(filter->src_ipaddr_mask, 0xff, 16);
2512                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2513                 filter->ethertype = 0x86dd;
2514                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2515                 break;
2516         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2517                 filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2518                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2519                 filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2520                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2521                 filter->dst_port_mask = 0xffff;
2522                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2523                 filter->src_port_mask = 0xffff;
2524                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2525                 filter->ip_addr_type =
2526                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2527                 filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2528                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2529                 rte_memcpy(filter->src_ipaddr,
2530                            fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2531                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2532                 rte_memcpy(filter->dst_ipaddr,
2533                            fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2534                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2535                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2536                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2537                 memset(filter->src_ipaddr_mask, 0xff, 16);
2538                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2539                 filter->ethertype = 0x86dd;
2540                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2541                 break;
2542         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2543                 filter->src_port = fdir->input.flow.udp6_flow.src_port;
2544                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2545                 filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2546                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2547                 filter->dst_port_mask = 0xffff;
2548                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2549                 filter->src_port_mask = 0xffff;
2550                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2551                 filter->ip_addr_type =
2552                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2553                 filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2554                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2555                 rte_memcpy(filter->src_ipaddr,
2556                            fdir->input.flow.udp6_flow.ip.src_ip, 16);
2557                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2558                 rte_memcpy(filter->dst_ipaddr,
2559                            fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2560                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2561                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2562                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2563                 memset(filter->src_ipaddr_mask, 0xff, 16);
2564                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2565                 filter->ethertype = 0x86dd;
2566                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2567                 break;
2568         case RTE_ETH_FLOW_L2_PAYLOAD:
2569                 filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2570                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2571                 break;
2572         case RTE_ETH_FLOW_VXLAN:
2573                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2574                         return -EINVAL;
2575                 filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2576                 filter->tunnel_type =
2577                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2578                 en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2579                 break;
2580         case RTE_ETH_FLOW_NVGRE:
2581                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2582                         return -EINVAL;
2583                 filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2584                 filter->tunnel_type =
2585                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2586                 en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2587                 break;
2588         case RTE_ETH_FLOW_UNKNOWN:
2589         case RTE_ETH_FLOW_RAW:
2590         case RTE_ETH_FLOW_FRAG_IPV4:
2591         case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2592         case RTE_ETH_FLOW_FRAG_IPV6:
2593         case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2594         case RTE_ETH_FLOW_IPV6_EX:
2595         case RTE_ETH_FLOW_IPV6_TCP_EX:
2596         case RTE_ETH_FLOW_IPV6_UDP_EX:
2597         case RTE_ETH_FLOW_GENEVE:
2598                 /* FALLTHROUGH */
2599         default:
2600                 return -EINVAL;
2601         }
2602
2603         vnic0 = &bp->vnic_info[0];
2604         vnic = &bp->vnic_info[fdir->action.rx_queue];
2605         if (vnic == NULL) {
2606                 PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue);
2607                 return -EINVAL;
2608         }
2609
2610
2611         if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2612                 rte_memcpy(filter->dst_macaddr,
2613                         fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2614                         en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2615         }
2616
2617         if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2618                 filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2619                 filter1 = STAILQ_FIRST(&vnic0->filter);
2620                 //filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2621         } else {
2622                 filter->dst_id = vnic->fw_vnic_id;
2623                 for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2624                         if (filter->dst_macaddr[i] == 0x00)
2625                                 filter1 = STAILQ_FIRST(&vnic0->filter);
2626                         else
2627                                 filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2628         }
2629
2630         if (filter1 == NULL)
2631                 return -EINVAL;
2632
2633         en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2634         filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2635
2636         filter->enables = en;
2637
2638         return 0;
2639 }
2640
2641 static struct bnxt_filter_info *
2642 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf,
2643                 struct bnxt_vnic_info **mvnic)
2644 {
2645         struct bnxt_filter_info *mf = NULL;
2646         int i;
2647
2648         for (i = bp->nr_vnics - 1; i >= 0; i--) {
2649                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2650
2651                 STAILQ_FOREACH(mf, &vnic->filter, next) {
2652                         if (mf->filter_type == nf->filter_type &&
2653                             mf->flags == nf->flags &&
2654                             mf->src_port == nf->src_port &&
2655                             mf->src_port_mask == nf->src_port_mask &&
2656                             mf->dst_port == nf->dst_port &&
2657                             mf->dst_port_mask == nf->dst_port_mask &&
2658                             mf->ip_protocol == nf->ip_protocol &&
2659                             mf->ip_addr_type == nf->ip_addr_type &&
2660                             mf->ethertype == nf->ethertype &&
2661                             mf->vni == nf->vni &&
2662                             mf->tunnel_type == nf->tunnel_type &&
2663                             mf->l2_ovlan == nf->l2_ovlan &&
2664                             mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2665                             mf->l2_ivlan == nf->l2_ivlan &&
2666                             mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2667                             !memcmp(mf->l2_addr, nf->l2_addr,
2668                                     RTE_ETHER_ADDR_LEN) &&
2669                             !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2670                                     RTE_ETHER_ADDR_LEN) &&
2671                             !memcmp(mf->src_macaddr, nf->src_macaddr,
2672                                     RTE_ETHER_ADDR_LEN) &&
2673                             !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2674                                     RTE_ETHER_ADDR_LEN) &&
2675                             !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2676                                     sizeof(nf->src_ipaddr)) &&
2677                             !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2678                                     sizeof(nf->src_ipaddr_mask)) &&
2679                             !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2680                                     sizeof(nf->dst_ipaddr)) &&
2681                             !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2682                                     sizeof(nf->dst_ipaddr_mask))) {
2683                                 if (mvnic)
2684                                         *mvnic = vnic;
2685                                 return mf;
2686                         }
2687                 }
2688         }
2689         return NULL;
2690 }
2691
2692 static int
2693 bnxt_fdir_filter(struct rte_eth_dev *dev,
2694                  enum rte_filter_op filter_op,
2695                  void *arg)
2696 {
2697         struct bnxt *bp = dev->data->dev_private;
2698         struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2699         struct bnxt_filter_info *filter, *match;
2700         struct bnxt_vnic_info *vnic, *mvnic;
2701         int ret = 0, i;
2702
2703         if (filter_op == RTE_ETH_FILTER_NOP)
2704                 return 0;
2705
2706         if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2707                 return -EINVAL;
2708
2709         switch (filter_op) {
2710         case RTE_ETH_FILTER_ADD:
2711         case RTE_ETH_FILTER_DELETE:
2712                 /* FALLTHROUGH */
2713                 filter = bnxt_get_unused_filter(bp);
2714                 if (filter == NULL) {
2715                         PMD_DRV_LOG(ERR,
2716                                 "Not enough resources for a new flow.\n");
2717                         return -ENOMEM;
2718                 }
2719
2720                 ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2721                 if (ret != 0)
2722                         goto free_filter;
2723                 filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2724
2725                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2726                         vnic = &bp->vnic_info[0];
2727                 else
2728                         vnic = &bp->vnic_info[fdir->action.rx_queue];
2729
2730                 match = bnxt_match_fdir(bp, filter, &mvnic);
2731                 if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2732                         if (match->dst_id == vnic->fw_vnic_id) {
2733                                 PMD_DRV_LOG(ERR, "Flow already exists.\n");
2734                                 ret = -EEXIST;
2735                                 goto free_filter;
2736                         } else {
2737                                 match->dst_id = vnic->fw_vnic_id;
2738                                 ret = bnxt_hwrm_set_ntuple_filter(bp,
2739                                                                   match->dst_id,
2740                                                                   match);
2741                                 STAILQ_REMOVE(&mvnic->filter, match,
2742                                               bnxt_filter_info, next);
2743                                 STAILQ_INSERT_TAIL(&vnic->filter, match, next);
2744                                 PMD_DRV_LOG(ERR,
2745                                         "Filter with matching pattern exist\n");
2746                                 PMD_DRV_LOG(ERR,
2747                                         "Updated it to new destination q\n");
2748                                 goto free_filter;
2749                         }
2750                 }
2751                 if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2752                         PMD_DRV_LOG(ERR, "Flow does not exist.\n");
2753                         ret = -ENOENT;
2754                         goto free_filter;
2755                 }
2756
2757                 if (filter_op == RTE_ETH_FILTER_ADD) {
2758                         ret = bnxt_hwrm_set_ntuple_filter(bp,
2759                                                           filter->dst_id,
2760                                                           filter);
2761                         if (ret)
2762                                 goto free_filter;
2763                         STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2764                 } else {
2765                         ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2766                         STAILQ_REMOVE(&vnic->filter, match,
2767                                       bnxt_filter_info, next);
2768                         bnxt_free_filter(bp, match);
2769                         filter->fw_l2_filter_id = -1;
2770                         bnxt_free_filter(bp, filter);
2771                 }
2772                 break;
2773         case RTE_ETH_FILTER_FLUSH:
2774                 for (i = bp->nr_vnics - 1; i >= 0; i--) {
2775                         struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2776
2777                         STAILQ_FOREACH(filter, &vnic->filter, next) {
2778                                 if (filter->filter_type ==
2779                                     HWRM_CFA_NTUPLE_FILTER) {
2780                                         ret =
2781                                         bnxt_hwrm_clear_ntuple_filter(bp,
2782                                                                       filter);
2783                                         STAILQ_REMOVE(&vnic->filter, filter,
2784                                                       bnxt_filter_info, next);
2785                                 }
2786                         }
2787                 }
2788                 return ret;
2789         case RTE_ETH_FILTER_UPDATE:
2790         case RTE_ETH_FILTER_STATS:
2791         case RTE_ETH_FILTER_INFO:
2792                 PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op);
2793                 break;
2794         default:
2795                 PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
2796                 ret = -EINVAL;
2797                 break;
2798         }
2799         return ret;
2800
2801 free_filter:
2802         filter->fw_l2_filter_id = -1;
2803         bnxt_free_filter(bp, filter);
2804         return ret;
2805 }
2806
2807 static int
2808 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2809                     enum rte_filter_type filter_type,
2810                     enum rte_filter_op filter_op, void *arg)
2811 {
2812         int ret = 0;
2813
2814         switch (filter_type) {
2815         case RTE_ETH_FILTER_TUNNEL:
2816                 PMD_DRV_LOG(ERR,
2817                         "filter type: %d: To be implemented\n", filter_type);
2818                 break;
2819         case RTE_ETH_FILTER_FDIR:
2820                 ret = bnxt_fdir_filter(dev, filter_op, arg);
2821                 break;
2822         case RTE_ETH_FILTER_NTUPLE:
2823                 ret = bnxt_ntuple_filter(dev, filter_op, arg);
2824                 break;
2825         case RTE_ETH_FILTER_ETHERTYPE:
2826                 ret = bnxt_ethertype_filter(dev, filter_op, arg);
2827                 break;
2828         case RTE_ETH_FILTER_GENERIC:
2829                 if (filter_op != RTE_ETH_FILTER_GET)
2830                         return -EINVAL;
2831                 *(const void **)arg = &bnxt_flow_ops;
2832                 break;
2833         default:
2834                 PMD_DRV_LOG(ERR,
2835                         "Filter type (%d) not supported", filter_type);
2836                 ret = -EINVAL;
2837                 break;
2838         }
2839         return ret;
2840 }
2841
2842 static const uint32_t *
2843 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2844 {
2845         static const uint32_t ptypes[] = {
2846                 RTE_PTYPE_L2_ETHER_VLAN,
2847                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2848                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2849                 RTE_PTYPE_L4_ICMP,
2850                 RTE_PTYPE_L4_TCP,
2851                 RTE_PTYPE_L4_UDP,
2852                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2853                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2854                 RTE_PTYPE_INNER_L4_ICMP,
2855                 RTE_PTYPE_INNER_L4_TCP,
2856                 RTE_PTYPE_INNER_L4_UDP,
2857                 RTE_PTYPE_UNKNOWN
2858         };
2859
2860         if (!dev->rx_pkt_burst)
2861                 return NULL;
2862
2863         return ptypes;
2864 }
2865
2866 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
2867                          int reg_win)
2868 {
2869         uint32_t reg_base = *reg_arr & 0xfffff000;
2870         uint32_t win_off;
2871         int i;
2872
2873         for (i = 0; i < count; i++) {
2874                 if ((reg_arr[i] & 0xfffff000) != reg_base)
2875                         return -ERANGE;
2876         }
2877         win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
2878         rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
2879         return 0;
2880 }
2881
2882 static int bnxt_map_ptp_regs(struct bnxt *bp)
2883 {
2884         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2885         uint32_t *reg_arr;
2886         int rc, i;
2887
2888         reg_arr = ptp->rx_regs;
2889         rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
2890         if (rc)
2891                 return rc;
2892
2893         reg_arr = ptp->tx_regs;
2894         rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
2895         if (rc)
2896                 return rc;
2897
2898         for (i = 0; i < BNXT_PTP_RX_REGS; i++)
2899                 ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
2900
2901         for (i = 0; i < BNXT_PTP_TX_REGS; i++)
2902                 ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
2903
2904         return 0;
2905 }
2906
2907 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
2908 {
2909         rte_write32(0, (uint8_t *)bp->bar0 +
2910                          BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
2911         rte_write32(0, (uint8_t *)bp->bar0 +
2912                          BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
2913 }
2914
2915 static uint64_t bnxt_cc_read(struct bnxt *bp)
2916 {
2917         uint64_t ns;
2918
2919         ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2920                               BNXT_GRCPF_REG_SYNC_TIME));
2921         ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2922                                           BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
2923         return ns;
2924 }
2925
2926 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
2927 {
2928         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2929         uint32_t fifo;
2930
2931         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2932                                 ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2933         if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
2934                 return -EAGAIN;
2935
2936         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2937                                 ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2938         *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2939                                 ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
2940         *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2941                                 ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
2942
2943         return 0;
2944 }
2945
2946 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
2947 {
2948         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2949         struct bnxt_pf_info *pf = &bp->pf;
2950         uint16_t port_id;
2951         uint32_t fifo;
2952
2953         if (!ptp)
2954                 return -ENODEV;
2955
2956         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2957                                 ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2958         if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
2959                 return -EAGAIN;
2960
2961         port_id = pf->port_id;
2962         rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
2963                ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
2964
2965         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2966                                    ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2967         if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
2968 /*              bnxt_clr_rx_ts(bp);       TBD  */
2969                 return -EBUSY;
2970         }
2971
2972         *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2973                                 ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
2974         *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2975                                 ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
2976
2977         return 0;
2978 }
2979
2980 static int
2981 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
2982 {
2983         uint64_t ns;
2984         struct bnxt *bp = dev->data->dev_private;
2985         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2986
2987         if (!ptp)
2988                 return 0;
2989
2990         ns = rte_timespec_to_ns(ts);
2991         /* Set the timecounters to a new value. */
2992         ptp->tc.nsec = ns;
2993
2994         return 0;
2995 }
2996
2997 static int
2998 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
2999 {
3000         uint64_t ns, systime_cycles;
3001         struct bnxt *bp = dev->data->dev_private;
3002         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3003
3004         if (!ptp)
3005                 return 0;
3006
3007         systime_cycles = bnxt_cc_read(bp);
3008         ns = rte_timecounter_update(&ptp->tc, systime_cycles);
3009         *ts = rte_ns_to_timespec(ns);
3010
3011         return 0;
3012 }
3013 static int
3014 bnxt_timesync_enable(struct rte_eth_dev *dev)
3015 {
3016         struct bnxt *bp = dev->data->dev_private;
3017         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3018         uint32_t shift = 0;
3019
3020         if (!ptp)
3021                 return 0;
3022
3023         ptp->rx_filter = 1;
3024         ptp->tx_tstamp_en = 1;
3025         ptp->rxctl = BNXT_PTP_MSG_EVENTS;
3026
3027         if (!bnxt_hwrm_ptp_cfg(bp))
3028                 bnxt_map_ptp_regs(bp);
3029
3030         memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
3031         memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3032         memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3033
3034         ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3035         ptp->tc.cc_shift = shift;
3036         ptp->tc.nsec_mask = (1ULL << shift) - 1;
3037
3038         ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3039         ptp->rx_tstamp_tc.cc_shift = shift;
3040         ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3041
3042         ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3043         ptp->tx_tstamp_tc.cc_shift = shift;
3044         ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3045
3046         return 0;
3047 }
3048
3049 static int
3050 bnxt_timesync_disable(struct rte_eth_dev *dev)
3051 {
3052         struct bnxt *bp = dev->data->dev_private;
3053         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3054
3055         if (!ptp)
3056                 return 0;
3057
3058         ptp->rx_filter = 0;
3059         ptp->tx_tstamp_en = 0;
3060         ptp->rxctl = 0;
3061
3062         bnxt_hwrm_ptp_cfg(bp);
3063
3064         bnxt_unmap_ptp_regs(bp);
3065
3066         return 0;
3067 }
3068
3069 static int
3070 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
3071                                  struct timespec *timestamp,
3072                                  uint32_t flags __rte_unused)
3073 {
3074         struct bnxt *bp = dev->data->dev_private;
3075         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3076         uint64_t rx_tstamp_cycles = 0;
3077         uint64_t ns;
3078
3079         if (!ptp)
3080                 return 0;
3081
3082         bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
3083         ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
3084         *timestamp = rte_ns_to_timespec(ns);
3085         return  0;
3086 }
3087
3088 static int
3089 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
3090                                  struct timespec *timestamp)
3091 {
3092         struct bnxt *bp = dev->data->dev_private;
3093         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3094         uint64_t tx_tstamp_cycles = 0;
3095         uint64_t ns;
3096
3097         if (!ptp)
3098                 return 0;
3099
3100         bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
3101         ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
3102         *timestamp = rte_ns_to_timespec(ns);
3103
3104         return 0;
3105 }
3106
3107 static int
3108 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
3109 {
3110         struct bnxt *bp = dev->data->dev_private;
3111         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3112
3113         if (!ptp)
3114                 return 0;
3115
3116         ptp->tc.nsec += delta;
3117
3118         return 0;
3119 }
3120
3121 static int
3122 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
3123 {
3124         struct bnxt *bp = dev->data->dev_private;
3125         int rc;
3126         uint32_t dir_entries;
3127         uint32_t entry_length;
3128
3129         PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x\n",
3130                 bp->pdev->addr.domain, bp->pdev->addr.bus,
3131                 bp->pdev->addr.devid, bp->pdev->addr.function);
3132
3133         rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
3134         if (rc != 0)
3135                 return rc;
3136
3137         return dir_entries * entry_length;
3138 }
3139
3140 static int
3141 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
3142                 struct rte_dev_eeprom_info *in_eeprom)
3143 {
3144         struct bnxt *bp = dev->data->dev_private;
3145         uint32_t index;
3146         uint32_t offset;
3147
3148         PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
3149                 "len = %d\n", bp->pdev->addr.domain,
3150                 bp->pdev->addr.bus, bp->pdev->addr.devid,
3151                 bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
3152
3153         if (in_eeprom->offset == 0) /* special offset value to get directory */
3154                 return bnxt_get_nvram_directory(bp, in_eeprom->length,
3155                                                 in_eeprom->data);
3156
3157         index = in_eeprom->offset >> 24;
3158         offset = in_eeprom->offset & 0xffffff;
3159
3160         if (index != 0)
3161                 return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
3162                                            in_eeprom->length, in_eeprom->data);
3163
3164         return 0;
3165 }
3166
3167 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
3168 {
3169         switch (dir_type) {
3170         case BNX_DIR_TYPE_CHIMP_PATCH:
3171         case BNX_DIR_TYPE_BOOTCODE:
3172         case BNX_DIR_TYPE_BOOTCODE_2:
3173         case BNX_DIR_TYPE_APE_FW:
3174         case BNX_DIR_TYPE_APE_PATCH:
3175         case BNX_DIR_TYPE_KONG_FW:
3176         case BNX_DIR_TYPE_KONG_PATCH:
3177         case BNX_DIR_TYPE_BONO_FW:
3178         case BNX_DIR_TYPE_BONO_PATCH:
3179                 /* FALLTHROUGH */
3180                 return true;
3181         }
3182
3183         return false;
3184 }
3185
3186 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
3187 {
3188         switch (dir_type) {
3189         case BNX_DIR_TYPE_AVS:
3190         case BNX_DIR_TYPE_EXP_ROM_MBA:
3191         case BNX_DIR_TYPE_PCIE:
3192         case BNX_DIR_TYPE_TSCF_UCODE:
3193         case BNX_DIR_TYPE_EXT_PHY:
3194         case BNX_DIR_TYPE_CCM:
3195         case BNX_DIR_TYPE_ISCSI_BOOT:
3196         case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
3197         case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
3198                 /* FALLTHROUGH */
3199                 return true;
3200         }
3201
3202         return false;
3203 }
3204
3205 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
3206 {
3207         return bnxt_dir_type_is_ape_bin_format(dir_type) ||
3208                 bnxt_dir_type_is_other_exec_format(dir_type);
3209 }
3210
3211 static int
3212 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
3213                 struct rte_dev_eeprom_info *in_eeprom)
3214 {
3215         struct bnxt *bp = dev->data->dev_private;
3216         uint8_t index, dir_op;
3217         uint16_t type, ext, ordinal, attr;
3218
3219         PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
3220                 "len = %d\n", bp->pdev->addr.domain,
3221                 bp->pdev->addr.bus, bp->pdev->addr.devid,
3222                 bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
3223
3224         if (!BNXT_PF(bp)) {
3225                 PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
3226                 return -EINVAL;
3227         }
3228
3229         type = in_eeprom->magic >> 16;
3230
3231         if (type == 0xffff) { /* special value for directory operations */
3232                 index = in_eeprom->magic & 0xff;
3233                 dir_op = in_eeprom->magic >> 8;
3234                 if (index == 0)
3235                         return -EINVAL;
3236                 switch (dir_op) {
3237                 case 0x0e: /* erase */
3238                         if (in_eeprom->offset != ~in_eeprom->magic)
3239                                 return -EINVAL;
3240                         return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
3241                 default:
3242                         return -EINVAL;
3243                 }
3244         }
3245
3246         /* Create or re-write an NVM item: */
3247         if (bnxt_dir_type_is_executable(type) == true)
3248                 return -EOPNOTSUPP;
3249         ext = in_eeprom->magic & 0xffff;
3250         ordinal = in_eeprom->offset >> 16;
3251         attr = in_eeprom->offset & 0xffff;
3252
3253         return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
3254                                      in_eeprom->data, in_eeprom->length);
3255         return 0;
3256 }
3257
3258 /*
3259  * Initialization
3260  */
3261
3262 static const struct eth_dev_ops bnxt_dev_ops = {
3263         .dev_infos_get = bnxt_dev_info_get_op,
3264         .dev_close = bnxt_dev_close_op,
3265         .dev_configure = bnxt_dev_configure_op,
3266         .dev_start = bnxt_dev_start_op,
3267         .dev_stop = bnxt_dev_stop_op,
3268         .dev_set_link_up = bnxt_dev_set_link_up_op,
3269         .dev_set_link_down = bnxt_dev_set_link_down_op,
3270         .stats_get = bnxt_stats_get_op,
3271         .stats_reset = bnxt_stats_reset_op,
3272         .rx_queue_setup = bnxt_rx_queue_setup_op,
3273         .rx_queue_release = bnxt_rx_queue_release_op,
3274         .tx_queue_setup = bnxt_tx_queue_setup_op,
3275         .tx_queue_release = bnxt_tx_queue_release_op,
3276         .rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
3277         .rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
3278         .reta_update = bnxt_reta_update_op,
3279         .reta_query = bnxt_reta_query_op,
3280         .rss_hash_update = bnxt_rss_hash_update_op,
3281         .rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
3282         .link_update = bnxt_link_update_op,
3283         .promiscuous_enable = bnxt_promiscuous_enable_op,
3284         .promiscuous_disable = bnxt_promiscuous_disable_op,
3285         .allmulticast_enable = bnxt_allmulticast_enable_op,
3286         .allmulticast_disable = bnxt_allmulticast_disable_op,
3287         .mac_addr_add = bnxt_mac_addr_add_op,
3288         .mac_addr_remove = bnxt_mac_addr_remove_op,
3289         .flow_ctrl_get = bnxt_flow_ctrl_get_op,
3290         .flow_ctrl_set = bnxt_flow_ctrl_set_op,
3291         .udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
3292         .udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
3293         .vlan_filter_set = bnxt_vlan_filter_set_op,
3294         .vlan_offload_set = bnxt_vlan_offload_set_op,
3295         .vlan_pvid_set = bnxt_vlan_pvid_set_op,
3296         .mtu_set = bnxt_mtu_set_op,
3297         .mac_addr_set = bnxt_set_default_mac_addr_op,
3298         .xstats_get = bnxt_dev_xstats_get_op,
3299         .xstats_get_names = bnxt_dev_xstats_get_names_op,
3300         .xstats_reset = bnxt_dev_xstats_reset_op,
3301         .fw_version_get = bnxt_fw_version_get,
3302         .set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
3303         .rxq_info_get = bnxt_rxq_info_get_op,
3304         .txq_info_get = bnxt_txq_info_get_op,
3305         .dev_led_on = bnxt_dev_led_on_op,
3306         .dev_led_off = bnxt_dev_led_off_op,
3307         .xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
3308         .xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
3309         .rx_queue_count = bnxt_rx_queue_count_op,
3310         .rx_descriptor_status = bnxt_rx_descriptor_status_op,
3311         .tx_descriptor_status = bnxt_tx_descriptor_status_op,
3312         .rx_queue_start = bnxt_rx_queue_start,
3313         .rx_queue_stop = bnxt_rx_queue_stop,
3314         .tx_queue_start = bnxt_tx_queue_start,
3315         .tx_queue_stop = bnxt_tx_queue_stop,
3316         .filter_ctrl = bnxt_filter_ctrl_op,
3317         .dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
3318         .get_eeprom_length    = bnxt_get_eeprom_length_op,
3319         .get_eeprom           = bnxt_get_eeprom_op,
3320         .set_eeprom           = bnxt_set_eeprom_op,
3321         .timesync_enable      = bnxt_timesync_enable,
3322         .timesync_disable     = bnxt_timesync_disable,
3323         .timesync_read_time   = bnxt_timesync_read_time,
3324         .timesync_write_time   = bnxt_timesync_write_time,
3325         .timesync_adjust_time = bnxt_timesync_adjust_time,
3326         .timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
3327         .timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
3328 };
3329
3330 static bool bnxt_vf_pciid(uint16_t id)
3331 {
3332         if (id == BROADCOM_DEV_ID_57304_VF ||
3333             id == BROADCOM_DEV_ID_57406_VF ||
3334             id == BROADCOM_DEV_ID_5731X_VF ||
3335             id == BROADCOM_DEV_ID_5741X_VF ||
3336             id == BROADCOM_DEV_ID_57414_VF ||
3337             id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3338             id == BROADCOM_DEV_ID_STRATUS_NIC_VF2 ||
3339             id == BROADCOM_DEV_ID_58802_VF ||
3340             id == BROADCOM_DEV_ID_57500_VF)
3341                 return true;
3342         return false;
3343 }
3344
3345 bool bnxt_stratus_device(struct bnxt *bp)
3346 {
3347         uint16_t id = bp->pdev->id.device_id;
3348
3349         if (id == BROADCOM_DEV_ID_STRATUS_NIC ||
3350             id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3351             id == BROADCOM_DEV_ID_STRATUS_NIC_VF2)
3352                 return true;
3353         return false;
3354 }
3355
3356 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
3357 {
3358         struct bnxt *bp = eth_dev->data->dev_private;
3359         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3360         int rc;
3361
3362         /* enable device (incl. PCI PM wakeup), and bus-mastering */
3363         if (!pci_dev->mem_resource[0].addr) {
3364                 PMD_DRV_LOG(ERR,
3365                         "Cannot find PCI device base address, aborting\n");
3366                 rc = -ENODEV;
3367                 goto init_err_disable;
3368         }
3369
3370         bp->eth_dev = eth_dev;
3371         bp->pdev = pci_dev;
3372
3373         bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
3374         if (!bp->bar0) {
3375                 PMD_DRV_LOG(ERR, "Cannot map device registers, aborting\n");
3376                 rc = -ENOMEM;
3377                 goto init_err_release;
3378         }
3379
3380         if (!pci_dev->mem_resource[2].addr) {
3381                 PMD_DRV_LOG(ERR,
3382                             "Cannot find PCI device BAR 2 address, aborting\n");
3383                 rc = -ENODEV;
3384                 goto init_err_release;
3385         } else {
3386                 bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
3387         }
3388
3389         return 0;
3390
3391 init_err_release:
3392         if (bp->bar0)
3393                 bp->bar0 = NULL;
3394         if (bp->doorbell_base)
3395                 bp->doorbell_base = NULL;
3396
3397 init_err_disable:
3398
3399         return rc;
3400 }
3401
3402 static int bnxt_alloc_ctx_mem_blk(__rte_unused struct bnxt *bp,
3403                                   struct bnxt_ctx_pg_info *ctx_pg,
3404                                   uint32_t mem_size,
3405                                   const char *suffix,
3406                                   uint16_t idx)
3407 {
3408         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
3409         const struct rte_memzone *mz = NULL;
3410         char mz_name[RTE_MEMZONE_NAMESIZE];
3411         rte_iova_t mz_phys_addr;
3412         uint64_t valid_bits = 0;
3413         uint32_t sz;
3414         int i;
3415
3416         if (!mem_size)
3417                 return 0;
3418
3419         rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) /
3420                          BNXT_PAGE_SIZE;
3421         rmem->page_size = BNXT_PAGE_SIZE;
3422         rmem->pg_arr = ctx_pg->ctx_pg_arr;
3423         rmem->dma_arr = ctx_pg->ctx_dma_arr;
3424         rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
3425
3426         valid_bits = PTU_PTE_VALID;
3427
3428         if (rmem->nr_pages > 1) {
3429                 snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_pg_tbl%s_%x",
3430                          suffix, idx);
3431                 mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3432                 mz = rte_memzone_lookup(mz_name);
3433                 if (!mz) {
3434                         mz = rte_memzone_reserve_aligned(mz_name,
3435                                                 rmem->nr_pages * 8,
3436                                                 SOCKET_ID_ANY,
3437                                                 RTE_MEMZONE_2MB |
3438                                                 RTE_MEMZONE_SIZE_HINT_ONLY |
3439                                                 RTE_MEMZONE_IOVA_CONTIG,
3440                                                 BNXT_PAGE_SIZE);
3441                         if (mz == NULL)
3442                                 return -ENOMEM;
3443                 }
3444
3445                 memset(mz->addr, 0, mz->len);
3446                 mz_phys_addr = mz->iova;
3447                 if ((unsigned long)mz->addr == mz_phys_addr) {
3448                         PMD_DRV_LOG(WARNING,
3449                                 "Memzone physical address same as virtual.\n");
3450                         PMD_DRV_LOG(WARNING,
3451                                     "Using rte_mem_virt2iova()\n");
3452                         mz_phys_addr = rte_mem_virt2iova(mz->addr);
3453                         if (mz_phys_addr == 0) {
3454                                 PMD_DRV_LOG(ERR,
3455                                         "unable to map addr to phys memory\n");
3456                                 return -ENOMEM;
3457                         }
3458                 }
3459                 rte_mem_lock_page(((char *)mz->addr));
3460
3461                 rmem->pg_tbl = mz->addr;
3462                 rmem->pg_tbl_map = mz_phys_addr;
3463                 rmem->pg_tbl_mz = mz;
3464         }
3465
3466         snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x", suffix, idx);
3467         mz = rte_memzone_lookup(mz_name);
3468         if (!mz) {
3469                 mz = rte_memzone_reserve_aligned(mz_name,
3470                                                  mem_size,
3471                                                  SOCKET_ID_ANY,
3472                                                  RTE_MEMZONE_1GB |
3473                                                  RTE_MEMZONE_SIZE_HINT_ONLY |
3474                                                  RTE_MEMZONE_IOVA_CONTIG,
3475                                                  BNXT_PAGE_SIZE);
3476                 if (mz == NULL)
3477                         return -ENOMEM;
3478         }
3479
3480         memset(mz->addr, 0, mz->len);
3481         mz_phys_addr = mz->iova;
3482         if ((unsigned long)mz->addr == mz_phys_addr) {
3483                 PMD_DRV_LOG(WARNING,
3484                             "Memzone physical address same as virtual.\n");
3485                 PMD_DRV_LOG(WARNING,
3486                             "Using rte_mem_virt2iova()\n");
3487                 for (sz = 0; sz < mem_size; sz += BNXT_PAGE_SIZE)
3488                         rte_mem_lock_page(((char *)mz->addr) + sz);
3489                 mz_phys_addr = rte_mem_virt2iova(mz->addr);
3490                 if (mz_phys_addr == RTE_BAD_IOVA) {
3491                         PMD_DRV_LOG(ERR,
3492                                     "unable to map addr to phys memory\n");
3493                         return -ENOMEM;
3494                 }
3495         }
3496
3497         for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) {
3498                 rte_mem_lock_page(((char *)mz->addr) + sz);
3499                 rmem->pg_arr[i] = ((char *)mz->addr) + sz;
3500                 rmem->dma_arr[i] = mz_phys_addr + sz;
3501
3502                 if (rmem->nr_pages > 1) {
3503                         if (i == rmem->nr_pages - 2 &&
3504                             (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3505                                 valid_bits |= PTU_PTE_NEXT_TO_LAST;
3506                         else if (i == rmem->nr_pages - 1 &&
3507                                  (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3508                                 valid_bits |= PTU_PTE_LAST;
3509
3510                         rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] |
3511                                                            valid_bits);
3512                 }
3513         }
3514
3515         rmem->mz = mz;
3516         if (rmem->vmem_size)
3517                 rmem->vmem = (void **)mz->addr;
3518         rmem->dma_arr[0] = mz_phys_addr;
3519         return 0;
3520 }
3521
3522 static void bnxt_free_ctx_mem(struct bnxt *bp)
3523 {
3524         int i;
3525
3526         if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED))
3527                 return;
3528
3529         bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED;
3530         rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz);
3531         rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz);
3532         rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz);
3533         rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz);
3534         rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz);
3535         rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz);
3536         rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz);
3537         rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz);
3538         rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz);
3539         rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz);
3540
3541         for (i = 0; i < BNXT_MAX_Q; i++) {
3542                 if (bp->ctx->tqm_mem[i])
3543                         rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz);
3544         }
3545
3546         rte_free(bp->ctx);
3547         bp->ctx = NULL;
3548 }
3549
3550 #define bnxt_roundup(x, y)   ((((x) + ((y) - 1)) / (y)) * (y))
3551
3552 #define min_t(type, x, y) ({                    \
3553         type __min1 = (x);                      \
3554         type __min2 = (y);                      \
3555         __min1 < __min2 ? __min1 : __min2; })
3556
3557 #define max_t(type, x, y) ({                    \
3558         type __max1 = (x);                      \
3559         type __max2 = (y);                      \
3560         __max1 > __max2 ? __max1 : __max2; })
3561
3562 #define clamp_t(type, _x, min, max)     min_t(type, max_t(type, _x, min), max)
3563
3564 int bnxt_alloc_ctx_mem(struct bnxt *bp)
3565 {
3566         struct bnxt_ctx_pg_info *ctx_pg;
3567         struct bnxt_ctx_mem_info *ctx;
3568         uint32_t mem_size, ena, entries;
3569         int i, rc;
3570
3571         rc = bnxt_hwrm_func_backing_store_qcaps(bp);
3572         if (rc) {
3573                 PMD_DRV_LOG(ERR, "Query context mem capability failed\n");
3574                 return rc;
3575         }
3576         ctx = bp->ctx;
3577         if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
3578                 return 0;
3579
3580         ctx_pg = &ctx->qp_mem;
3581         ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
3582         mem_size = ctx->qp_entry_size * ctx_pg->entries;
3583         rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0);
3584         if (rc)
3585                 return rc;
3586
3587         ctx_pg = &ctx->srq_mem;
3588         ctx_pg->entries = ctx->srq_max_l2_entries;
3589         mem_size = ctx->srq_entry_size * ctx_pg->entries;
3590         rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0);
3591         if (rc)
3592                 return rc;
3593
3594         ctx_pg = &ctx->cq_mem;
3595         ctx_pg->entries = ctx->cq_max_l2_entries;
3596         mem_size = ctx->cq_entry_size * ctx_pg->entries;
3597         rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0);
3598         if (rc)
3599                 return rc;
3600
3601         ctx_pg = &ctx->vnic_mem;
3602         ctx_pg->entries = ctx->vnic_max_vnic_entries +
3603                 ctx->vnic_max_ring_table_entries;
3604         mem_size = ctx->vnic_entry_size * ctx_pg->entries;
3605         rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0);
3606         if (rc)
3607                 return rc;
3608
3609         ctx_pg = &ctx->stat_mem;
3610         ctx_pg->entries = ctx->stat_max_entries;
3611         mem_size = ctx->stat_entry_size * ctx_pg->entries;
3612         rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0);
3613         if (rc)
3614                 return rc;
3615
3616         entries = ctx->qp_max_l2_entries;
3617         entries = bnxt_roundup(entries, ctx->tqm_entries_multiple);
3618         entries = clamp_t(uint32_t, entries, ctx->tqm_min_entries_per_ring,
3619                           ctx->tqm_max_entries_per_ring);
3620         for (i = 0, ena = 0; i < BNXT_MAX_Q; i++) {
3621                 ctx_pg = ctx->tqm_mem[i];
3622                 /* use min tqm entries for now. */
3623                 ctx_pg->entries = entries;
3624                 mem_size = ctx->tqm_entry_size * ctx_pg->entries;
3625                 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "tqm_mem", i);
3626                 if (rc)
3627                         return rc;
3628                 ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i;
3629         }
3630
3631         ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES;
3632         rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
3633         if (rc)
3634                 PMD_DRV_LOG(ERR,
3635                             "Failed to configure context mem: rc = %d\n", rc);
3636         else
3637                 ctx->flags |= BNXT_CTX_FLAG_INITED;
3638
3639         return 0;
3640 }
3641
3642 static int bnxt_alloc_stats_mem(struct bnxt *bp)
3643 {
3644         struct rte_pci_device *pci_dev = bp->pdev;
3645         char mz_name[RTE_MEMZONE_NAMESIZE];
3646         const struct rte_memzone *mz = NULL;
3647         uint32_t total_alloc_len;
3648         rte_iova_t mz_phys_addr;
3649
3650         if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2)
3651                 return 0;
3652
3653         snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3654                  "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
3655                  pci_dev->addr.bus, pci_dev->addr.devid,
3656                  pci_dev->addr.function, "rx_port_stats");
3657         mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3658         mz = rte_memzone_lookup(mz_name);
3659         total_alloc_len =
3660                 RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) +
3661                                        sizeof(struct rx_port_stats_ext) + 512);
3662         if (!mz) {
3663                 mz = rte_memzone_reserve(mz_name, total_alloc_len,
3664                                          SOCKET_ID_ANY,
3665                                          RTE_MEMZONE_2MB |
3666                                          RTE_MEMZONE_SIZE_HINT_ONLY |
3667                                          RTE_MEMZONE_IOVA_CONTIG);
3668                 if (mz == NULL)
3669                         return -ENOMEM;
3670         }
3671         memset(mz->addr, 0, mz->len);
3672         mz_phys_addr = mz->iova;
3673         if ((unsigned long)mz->addr == mz_phys_addr) {
3674                 PMD_DRV_LOG(WARNING,
3675                             "Memzone physical address same as virtual.\n");
3676                 PMD_DRV_LOG(WARNING,
3677                             "Using rte_mem_virt2iova()\n");
3678                 mz_phys_addr = rte_mem_virt2iova(mz->addr);
3679                 if (mz_phys_addr == 0) {
3680                         PMD_DRV_LOG(ERR,
3681                                     "Can't map address to physical memory\n");
3682                         return -ENOMEM;
3683                 }
3684         }
3685
3686         bp->rx_mem_zone = (const void *)mz;
3687         bp->hw_rx_port_stats = mz->addr;
3688         bp->hw_rx_port_stats_map = mz_phys_addr;
3689
3690         snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3691                  "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
3692                  pci_dev->addr.bus, pci_dev->addr.devid,
3693                  pci_dev->addr.function, "tx_port_stats");
3694         mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3695         mz = rte_memzone_lookup(mz_name);
3696         total_alloc_len =
3697                 RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) +
3698                                        sizeof(struct tx_port_stats_ext) + 512);
3699         if (!mz) {
3700                 mz = rte_memzone_reserve(mz_name,
3701                                          total_alloc_len,
3702                                          SOCKET_ID_ANY,
3703                                          RTE_MEMZONE_2MB |
3704                                          RTE_MEMZONE_SIZE_HINT_ONLY |
3705                                          RTE_MEMZONE_IOVA_CONTIG);
3706                 if (mz == NULL)
3707                         return -ENOMEM;
3708         }
3709         memset(mz->addr, 0, mz->len);
3710         mz_phys_addr = mz->iova;
3711         if ((unsigned long)mz->addr == mz_phys_addr) {
3712                 PMD_DRV_LOG(WARNING,
3713                             "Memzone physical address same as virtual\n");
3714                 PMD_DRV_LOG(WARNING,
3715                             "Using rte_mem_virt2iova()\n");
3716                 mz_phys_addr = rte_mem_virt2iova(mz->addr);
3717                 if (mz_phys_addr == 0) {
3718                         PMD_DRV_LOG(ERR,
3719                                     "Can't map address to physical memory\n");
3720                         return -ENOMEM;
3721                 }
3722         }
3723
3724         bp->tx_mem_zone = (const void *)mz;
3725         bp->hw_tx_port_stats = mz->addr;
3726         bp->hw_tx_port_stats_map = mz_phys_addr;
3727         bp->flags |= BNXT_FLAG_PORT_STATS;
3728
3729         /* Display extended statistics if FW supports it */
3730         if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
3731             bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 ||
3732             !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED))
3733                 return 0;
3734
3735         bp->hw_rx_port_stats_ext = (void *)
3736                 ((uint8_t *)bp->hw_rx_port_stats +
3737                  sizeof(struct rx_port_stats));
3738         bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
3739                 sizeof(struct rx_port_stats);
3740         bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
3741
3742         if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 ||
3743             bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) {
3744                 bp->hw_tx_port_stats_ext = (void *)
3745                         ((uint8_t *)bp->hw_tx_port_stats +
3746                          sizeof(struct tx_port_stats));
3747                 bp->hw_tx_port_stats_ext_map =
3748                         bp->hw_tx_port_stats_map +
3749                         sizeof(struct tx_port_stats);
3750                 bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
3751         }
3752
3753         return 0;
3754 }
3755
3756 static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev)
3757 {
3758         struct bnxt *bp = eth_dev->data->dev_private;
3759         int rc = 0;
3760
3761         eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
3762                                                RTE_ETHER_ADDR_LEN *
3763                                                bp->max_l2_ctx,
3764                                                0);
3765         if (eth_dev->data->mac_addrs == NULL) {
3766                 PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n");
3767                 return -ENOMEM;
3768         }
3769
3770         if (bnxt_check_zero_bytes(bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN)) {
3771                 if (BNXT_PF(bp))
3772                         return -EINVAL;
3773
3774                 /* Generate a random MAC address, if none was assigned by PF */
3775                 PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n");
3776                 bnxt_eth_hw_addr_random(bp->mac_addr);
3777                 PMD_DRV_LOG(INFO,
3778                             "Assign random MAC:%02X:%02X:%02X:%02X:%02X:%02X\n",
3779                             bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2],
3780                             bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]);
3781
3782                 rc = bnxt_hwrm_set_mac(bp);
3783                 if (!rc)
3784                         memcpy(&bp->eth_dev->data->mac_addrs[0], bp->mac_addr,
3785                                RTE_ETHER_ADDR_LEN);
3786                 return rc;
3787         }
3788
3789         /* Copy the permanent MAC from the FUNC_QCAPS response */
3790         memcpy(bp->mac_addr, bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN);
3791         memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
3792
3793         return rc;
3794 }
3795
3796 #define ALLOW_FUNC(x)   \
3797         { \
3798                 uint32_t arg = (x); \
3799                 bp->pf.vf_req_fwd[((arg) >> 5)] &= \
3800                 ~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
3801         }
3802 static int
3803 bnxt_dev_init(struct rte_eth_dev *eth_dev)
3804 {
3805         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3806         static int version_printed;
3807         struct bnxt *bp;
3808         uint16_t mtu;
3809         int rc;
3810
3811         if (version_printed++ == 0)
3812                 PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
3813
3814         rte_eth_copy_pci_info(eth_dev, pci_dev);
3815
3816         bp = eth_dev->data->dev_private;
3817
3818         bp->dev_stopped = 1;
3819
3820         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3821                 goto skip_init;
3822
3823         if (bnxt_vf_pciid(pci_dev->id.device_id))
3824                 bp->flags |= BNXT_FLAG_VF;
3825
3826         if (pci_dev->id.device_id == BROADCOM_DEV_ID_57508 ||
3827             pci_dev->id.device_id == BROADCOM_DEV_ID_57504 ||
3828             pci_dev->id.device_id == BROADCOM_DEV_ID_57502 ||
3829             pci_dev->id.device_id == BROADCOM_DEV_ID_57500_VF)
3830                 bp->flags |= BNXT_FLAG_THOR_CHIP;
3831
3832         rc = bnxt_init_board(eth_dev);
3833         if (rc) {
3834                 PMD_DRV_LOG(ERR,
3835                         "Board initialization failed rc: %x\n", rc);
3836                 goto error;
3837         }
3838 skip_init:
3839         eth_dev->dev_ops = &bnxt_dev_ops;
3840         eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
3841         eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
3842         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3843                 return 0;
3844
3845         rc = bnxt_alloc_hwrm_resources(bp);
3846         if (rc) {
3847                 PMD_DRV_LOG(ERR,
3848                         "hwrm resource allocation failure rc: %x\n", rc);
3849                 goto error_free;
3850         }
3851         rc = bnxt_hwrm_ver_get(bp);
3852         if (rc)
3853                 goto error_free;
3854
3855         rc = bnxt_hwrm_func_reset(bp);
3856         if (rc) {
3857                 PMD_DRV_LOG(ERR, "hwrm chip reset failure rc: %x\n", rc);
3858                 rc = -EIO;
3859                 goto error_free;
3860         }
3861
3862         rc = bnxt_hwrm_queue_qportcfg(bp);
3863         if (rc) {
3864                 PMD_DRV_LOG(ERR, "hwrm queue qportcfg failed\n");
3865                 goto error_free;
3866         }
3867         /* Get the MAX capabilities for this function */
3868         rc = bnxt_hwrm_func_qcaps(bp);
3869         if (rc) {
3870                 PMD_DRV_LOG(ERR, "hwrm query capability failure rc: %x\n", rc);
3871                 goto error_free;
3872         }
3873
3874         rc = bnxt_alloc_stats_mem(bp);
3875         if (rc)
3876                 goto error_free;
3877
3878         if (bp->max_tx_rings == 0) {
3879                 PMD_DRV_LOG(ERR, "No TX rings available!\n");
3880                 rc = -EBUSY;
3881                 goto error_free;
3882         }
3883
3884         rc = bnxt_setup_mac_addr(eth_dev);
3885         if (rc)
3886                 goto error_free;
3887
3888         /* THOR does not support ring groups.
3889          * But we will use the array to save RSS context IDs.
3890          */
3891         if (BNXT_CHIP_THOR(bp)) {
3892                 bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
3893         } else if (bp->max_ring_grps < bp->rx_cp_nr_rings) {
3894                 /* 1 ring is for default completion ring */
3895                 PMD_DRV_LOG(ERR, "Insufficient resource: Ring Group\n");
3896                 rc = -ENOSPC;
3897                 goto error_free;
3898         }
3899
3900         if (BNXT_HAS_RING_GRPS(bp)) {
3901                 bp->grp_info = rte_zmalloc("bnxt_grp_info",
3902                                         sizeof(*bp->grp_info) *
3903                                                 bp->max_ring_grps, 0);
3904                 if (!bp->grp_info) {
3905                         PMD_DRV_LOG(ERR,
3906                                 "Failed to alloc %zu bytes for grp info tbl.\n",
3907                                 sizeof(*bp->grp_info) * bp->max_ring_grps);
3908                         rc = -ENOMEM;
3909                         goto error_free;
3910                 }
3911         }
3912
3913         /* Forward all requests if firmware is new enough */
3914         if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
3915             (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
3916             ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
3917                 memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
3918         } else {
3919                 PMD_DRV_LOG(WARNING,
3920                         "Firmware too old for VF mailbox functionality\n");
3921                 memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
3922         }
3923
3924         /*
3925          * The following are used for driver cleanup.  If we disallow these,
3926          * VF drivers can't clean up cleanly.
3927          */
3928         ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
3929         ALLOW_FUNC(HWRM_VNIC_FREE);
3930         ALLOW_FUNC(HWRM_RING_FREE);
3931         ALLOW_FUNC(HWRM_RING_GRP_FREE);
3932         ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
3933         ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
3934         ALLOW_FUNC(HWRM_STAT_CTX_FREE);
3935         ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
3936         ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
3937         rc = bnxt_hwrm_func_driver_register(bp);
3938         if (rc) {
3939                 PMD_DRV_LOG(ERR,
3940                         "Failed to register driver");
3941                 rc = -EBUSY;
3942                 goto error_free;
3943         }
3944
3945         PMD_DRV_LOG(INFO,
3946                 DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
3947                 pci_dev->mem_resource[0].phys_addr,
3948                 pci_dev->mem_resource[0].addr);
3949
3950         rc = bnxt_hwrm_func_qcfg(bp, &mtu);
3951         if (rc) {
3952                 PMD_DRV_LOG(ERR, "hwrm func qcfg failed\n");
3953                 goto error_free;
3954         }
3955
3956         if (mtu >= RTE_ETHER_MIN_MTU && mtu <= BNXT_MAX_MTU &&
3957             mtu != eth_dev->data->mtu)
3958                 eth_dev->data->mtu = mtu;
3959
3960         if (BNXT_PF(bp)) {
3961                 //if (bp->pf.active_vfs) {
3962                         // TODO: Deallocate VF resources?
3963                 //}
3964                 if (bp->pdev->max_vfs) {
3965                         rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3966                         if (rc) {
3967                                 PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
3968                                 goto error_free;
3969                         }
3970                 } else {
3971                         rc = bnxt_hwrm_allocate_pf_only(bp);
3972                         if (rc) {
3973                                 PMD_DRV_LOG(ERR,
3974                                         "Failed to allocate PF resources\n");
3975                                 goto error_free;
3976                         }
3977                 }
3978         }
3979
3980         bnxt_hwrm_port_led_qcaps(bp);
3981
3982         rc = bnxt_setup_int(bp);
3983         if (rc)
3984                 goto error_free;
3985
3986         rc = bnxt_alloc_mem(bp);
3987         if (rc)
3988                 goto error_free_int;
3989
3990         rc = bnxt_request_int(bp);
3991         if (rc)
3992                 goto error_free_int;
3993
3994         bnxt_enable_int(bp);
3995         bnxt_init_nic(bp);
3996
3997         return 0;
3998
3999 error_free_int:
4000         bnxt_disable_int(bp);
4001         bnxt_hwrm_func_buf_unrgtr(bp);
4002         bnxt_free_int(bp);
4003         bnxt_free_mem(bp);
4004 error_free:
4005         bnxt_dev_uninit(eth_dev);
4006 error:
4007         return rc;
4008 }
4009
4010 static int
4011 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
4012 {
4013         struct bnxt *bp = eth_dev->data->dev_private;
4014         int rc;
4015
4016         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
4017                 return -EPERM;
4018
4019         PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
4020         bnxt_disable_int(bp);
4021         bnxt_free_int(bp);
4022         bnxt_free_mem(bp);
4023         if (bp->grp_info != NULL) {
4024                 rte_free(bp->grp_info);
4025                 bp->grp_info = NULL;
4026         }
4027         rc = bnxt_hwrm_func_driver_unregister(bp, 0);
4028         bnxt_free_hwrm_resources(bp);
4029
4030         if (bp->tx_mem_zone) {
4031                 rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
4032                 bp->tx_mem_zone = NULL;
4033         }
4034
4035         if (bp->rx_mem_zone) {
4036                 rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
4037                 bp->rx_mem_zone = NULL;
4038         }
4039
4040         if (bp->dev_stopped == 0)
4041                 bnxt_dev_close_op(eth_dev);
4042         if (bp->pf.vf_info)
4043                 rte_free(bp->pf.vf_info);
4044         bnxt_free_ctx_mem(bp);
4045         eth_dev->dev_ops = NULL;
4046         eth_dev->rx_pkt_burst = NULL;
4047         eth_dev->tx_pkt_burst = NULL;
4048
4049         return rc;
4050 }
4051
4052 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
4053         struct rte_pci_device *pci_dev)
4054 {
4055         return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
4056                 bnxt_dev_init);
4057 }
4058
4059 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
4060 {
4061         if (rte_eal_process_type() == RTE_PROC_PRIMARY)
4062                 return rte_eth_dev_pci_generic_remove(pci_dev,
4063                                 bnxt_dev_uninit);
4064         else
4065                 return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
4066 }
4067
4068 static struct rte_pci_driver bnxt_rte_pmd = {
4069         .id_table = bnxt_pci_id_map,
4070         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
4071         .probe = bnxt_pci_probe,
4072         .remove = bnxt_pci_remove,
4073 };
4074
4075 static bool
4076 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
4077 {
4078         if (strcmp(dev->device->driver->name, drv->driver.name))
4079                 return false;
4080
4081         return true;
4082 }
4083
4084 bool is_bnxt_supported(struct rte_eth_dev *dev)
4085 {
4086         return is_device_supported(dev, &bnxt_rte_pmd);
4087 }
4088
4089 RTE_INIT(bnxt_init_log)
4090 {
4091         bnxt_logtype_driver = rte_log_register("pmd.net.bnxt.driver");
4092         if (bnxt_logtype_driver >= 0)
4093                 rte_log_set_level(bnxt_logtype_driver, RTE_LOG_NOTICE);
4094 }
4095
4096 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
4097 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
4098 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");