net/bnxt: fix mark action if rule is at index zero
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_ring.h"
16 #include "bnxt_rxr.h"
17 #include "bnxt_rxq.h"
18 #include "hsi_struct_def_dpdk.h"
19 #ifdef RTE_LIBRTE_IEEE1588
20 #include "bnxt_hwrm.h"
21 #endif
22
23 #include <bnxt_tf_common.h>
24 #include <ulp_mark_mgr.h>
25
26 /*
27  * RX Ring handling
28  */
29
30 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
31 {
32         struct rte_mbuf *data;
33
34         data = rte_mbuf_raw_alloc(mb);
35
36         return data;
37 }
38
39 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
40                                      struct bnxt_rx_ring_info *rxr,
41                                      uint16_t prod)
42 {
43         struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
44         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
45         struct rte_mbuf *mbuf;
46
47         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
48         if (!mbuf) {
49                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
50                 return -ENOMEM;
51         }
52
53         rx_buf->mbuf = mbuf;
54         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
55
56         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
57
58         return 0;
59 }
60
61 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
62                                      struct bnxt_rx_ring_info *rxr,
63                                      uint16_t prod)
64 {
65         struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
66         struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod];
67         struct rte_mbuf *mbuf;
68
69         if (rxbd == NULL) {
70                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
71                 return -EINVAL;
72         }
73
74         if (rx_buf == NULL) {
75                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
76                 return -EINVAL;
77         }
78
79         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
80         if (!mbuf) {
81                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
82                 return -ENOMEM;
83         }
84
85         rx_buf->mbuf = mbuf;
86         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
87
88         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
89
90         return 0;
91 }
92
93 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
94                                struct rte_mbuf *mbuf)
95 {
96         uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
97         struct bnxt_sw_rx_bd *prod_rx_buf;
98         struct rx_prod_pkt_bd *prod_bd;
99
100         prod_rx_buf = &rxr->rx_buf_ring[prod];
101
102         RTE_ASSERT(prod_rx_buf->mbuf == NULL);
103         RTE_ASSERT(mbuf != NULL);
104
105         prod_rx_buf->mbuf = mbuf;
106
107         prod_bd = &rxr->rx_desc_ring[prod];
108
109         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
110
111         rxr->rx_prod = prod;
112 }
113
114 static inline
115 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
116                                      uint16_t cons)
117 {
118         struct bnxt_sw_rx_bd *cons_rx_buf;
119         struct rte_mbuf *mbuf;
120
121         cons_rx_buf = &rxr->rx_buf_ring[cons];
122         RTE_ASSERT(cons_rx_buf->mbuf != NULL);
123         mbuf = cons_rx_buf->mbuf;
124         cons_rx_buf->mbuf = NULL;
125         return mbuf;
126 }
127
128 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
129                            struct rx_tpa_start_cmpl *tpa_start,
130                            struct rx_tpa_start_cmpl_hi *tpa_start1)
131 {
132         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
133         uint16_t agg_id;
134         uint16_t data_cons;
135         struct bnxt_tpa_info *tpa_info;
136         struct rte_mbuf *mbuf;
137
138         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
139
140         data_cons = tpa_start->opaque;
141         tpa_info = &rxr->tpa_info[agg_id];
142
143         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
144
145         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
146
147         tpa_info->agg_count = 0;
148         tpa_info->mbuf = mbuf;
149         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
150
151         mbuf->nb_segs = 1;
152         mbuf->next = NULL;
153         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
154         mbuf->data_len = mbuf->pkt_len;
155         mbuf->port = rxq->port_id;
156         mbuf->ol_flags = PKT_RX_LRO;
157         if (likely(tpa_start->flags_type &
158                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
159                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
160                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
161         } else {
162                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
163                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
164         }
165         if (tpa_start1->flags2 &
166             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
167                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
168                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
169         }
170         if (likely(tpa_start1->flags2 &
171                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
172                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
173
174         /* recycle next mbuf */
175         data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
176         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
177 }
178
179 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
180                 uint8_t agg_bufs, uint32_t raw_cp_cons)
181 {
182         uint16_t last_cp_cons;
183         struct rx_pkt_cmpl *agg_cmpl;
184
185         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
186         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
187         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
188         cpr->valid = FLIP_VALID(raw_cp_cons,
189                                 cpr->cp_ring_struct->ring_mask,
190                                 cpr->valid);
191         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
192 }
193
194 /* TPA consume agg buffer out of order, allocate connected data only */
195 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
196 {
197         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
198         uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
199
200         /* TODO batch allocation for better performance */
201         while (rte_bitmap_get(rxr->ag_bitmap, next)) {
202                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
203                         PMD_DRV_LOG(ERR,
204                                 "agg mbuf alloc failed: prod=0x%x\n", next);
205                         break;
206                 }
207                 rte_bitmap_clear(rxr->ag_bitmap, next);
208                 rxr->ag_prod = next;
209                 next = RING_NEXT(rxr->ag_ring_struct, next);
210         }
211
212         return 0;
213 }
214
215 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
216                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
217                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
218 {
219         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
220         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
221         int i;
222         uint16_t cp_cons, ag_cons;
223         struct rx_pkt_cmpl *rxcmp;
224         struct rte_mbuf *last = mbuf;
225         bool is_thor_tpa = tpa_info && BNXT_CHIP_THOR(rxq->bp);
226
227         for (i = 0; i < agg_buf; i++) {
228                 struct bnxt_sw_rx_bd *ag_buf;
229                 struct rte_mbuf *ag_mbuf;
230
231                 if (is_thor_tpa) {
232                         rxcmp = (void *)&tpa_info->agg_arr[i];
233                 } else {
234                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
235                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
236                         rxcmp = (struct rx_pkt_cmpl *)
237                                         &cpr->cp_desc_ring[cp_cons];
238                 }
239
240 #ifdef BNXT_DEBUG
241                 bnxt_dump_cmpl(cp_cons, rxcmp);
242 #endif
243
244                 ag_cons = rxcmp->opaque;
245                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
246                 ag_buf = &rxr->ag_buf_ring[ag_cons];
247                 ag_mbuf = ag_buf->mbuf;
248                 RTE_ASSERT(ag_mbuf != NULL);
249
250                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
251
252                 mbuf->nb_segs++;
253                 mbuf->pkt_len += ag_mbuf->data_len;
254
255                 last->next = ag_mbuf;
256                 last = ag_mbuf;
257
258                 ag_buf->mbuf = NULL;
259
260                 /*
261                  * As aggregation buffer consumed out of order in TPA module,
262                  * use bitmap to track freed slots to be allocated and notified
263                  * to NIC
264                  */
265                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
266         }
267         bnxt_prod_ag_mbuf(rxq);
268         return 0;
269 }
270
271 static inline struct rte_mbuf *bnxt_tpa_end(
272                 struct bnxt_rx_queue *rxq,
273                 uint32_t *raw_cp_cons,
274                 struct rx_tpa_end_cmpl *tpa_end,
275                 struct rx_tpa_end_cmpl_hi *tpa_end1)
276 {
277         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
278         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
279         uint16_t agg_id;
280         struct rte_mbuf *mbuf;
281         uint8_t agg_bufs;
282         uint8_t payload_offset;
283         struct bnxt_tpa_info *tpa_info;
284
285         if (BNXT_CHIP_THOR(rxq->bp)) {
286                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
287                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
288
289                 th_tpa_end = (void *)tpa_end;
290                 th_tpa_end1 = (void *)tpa_end1;
291                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
292                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
293                 payload_offset = th_tpa_end1->payload_offset;
294         } else {
295                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
296                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
297                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
298                         return NULL;
299                 payload_offset = tpa_end->payload_offset;
300         }
301
302         tpa_info = &rxr->tpa_info[agg_id];
303         mbuf = tpa_info->mbuf;
304         RTE_ASSERT(mbuf != NULL);
305
306         rte_prefetch0(mbuf);
307         if (agg_bufs) {
308                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
309         }
310         mbuf->l4_len = payload_offset;
311
312         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
313         RTE_ASSERT(new_data != NULL);
314         if (!new_data) {
315                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
316                 return NULL;
317         }
318         tpa_info->mbuf = new_data;
319
320         return mbuf;
321 }
322
323 static uint32_t
324 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
325 {
326         uint32_t l3, pkt_type = 0;
327         uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
328         uint32_t flags_type;
329
330         vlan = !!(rxcmp1->flags2 &
331                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
332         pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
333
334         t_ipcs = !!(rxcmp1->flags2 &
335                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
336         ip6 = !!(rxcmp1->flags2 &
337                  rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
338
339         flags_type = rxcmp->flags_type &
340                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
341
342         if (!t_ipcs && !ip6)
343                 l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
344         else if (!t_ipcs && ip6)
345                 l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
346         else if (t_ipcs && !ip6)
347                 l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
348         else
349                 l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
350
351         switch (flags_type) {
352         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
353                 if (!t_ipcs)
354                         pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
355                 else
356                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
357                 break;
358
359         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
360                 if (!t_ipcs)
361                         pkt_type |= l3 | RTE_PTYPE_L4_TCP;
362                 else
363                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
364                 break;
365
366         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
367                 if (!t_ipcs)
368                         pkt_type |= l3 | RTE_PTYPE_L4_UDP;
369                 else
370                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
371                 break;
372
373         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
374                 pkt_type |= l3;
375                 break;
376         }
377
378         return pkt_type;
379 }
380
381 #ifdef RTE_LIBRTE_IEEE1588
382 static void
383 bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl)
384 {
385         uint64_t systime_cycles = 0;
386
387         if (!BNXT_CHIP_THOR(bp))
388                 return;
389
390         /* On Thor, Rx timestamps are provided directly in the
391          * Rx completion records to the driver. Only 32 bits of
392          * the timestamp is present in the completion. Driver needs
393          * to read the current 48 bit free running timer using the
394          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
395          * from the HWRM response with the lower 32 bits in the
396          * Rx completion to produce the 48 bit timestamp for the Rx packet
397          */
398         bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
399                                 &systime_cycles);
400         bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
401         bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
402 }
403 #endif
404
405 static void
406 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
407                           struct rte_mbuf *mbuf)
408 {
409         uint32_t cfa_code;
410         uint32_t meta_fmt;
411         uint32_t meta;
412         bool gfid = false;
413         uint32_t mark_id;
414         uint32_t flags2;
415         int rc;
416
417         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
418         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
419         meta = rte_le_to_cpu_32(rxcmp1->metadata);
420
421         /*
422          * The flags field holds extra bits of info from [6:4]
423          * which indicate if the flow is in TCAM or EM or EEM
424          */
425         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
426                 BNXT_CFA_META_FMT_SHFT;
427
428         switch (meta_fmt) {
429         case 0:
430                 /* Not an LFID or GFID, a flush cmd. */
431                 goto skip_mark;
432         case 4:
433         case 5:
434                 /*
435                  * EM/TCAM case
436                  * Assume that EM doesn't support Mark due to GFID
437                  * collisions with EEM.  Simply return without setting the mark
438                  * in the mbuf.
439                  */
440                 if (BNXT_CFA_META_EM_TEST(meta))
441                         goto skip_mark;
442                 /*
443                  * It is a TCAM entry, so it is an LFID. The TCAM IDX and Mode
444                  * can also be determined by decoding the meta_data.  We are not
445                  * using these for now.
446                  */
447                 break;
448         case 6:
449         case 7:
450                 /* EEM Case, only using gfid in EEM for now. */
451                 gfid = true;
452
453                 /*
454                  * For EEM flows, The first part of cfa_code is 16 bits.
455                  * The second part is embedded in the
456                  * metadata field from bit 19 onwards. The driver needs to
457                  * ignore the first 19 bits of metadata and use the next 12
458                  * bits as higher 12 bits of cfa_code.
459                  */
460                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
461                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
462                 break;
463         default:
464                 /* For other values, the cfa_code is assumed to be an LFID. */
465                 break;
466         }
467
468         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
469                                   cfa_code, &mark_id);
470         if (!rc) {
471                 /* Got the mark, write it to the mbuf and return */
472                 mbuf->hash.fdir.hi = mark_id;
473                 mbuf->udata64 = (cfa_code & 0xffffffffull) << 32;
474                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
475                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
476                 return;
477         }
478
479 skip_mark:
480         mbuf->hash.fdir.hi = 0;
481         mbuf->hash.fdir.id = 0;
482 }
483
484 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
485                            struct rx_pkt_cmpl_hi *rxcmp1,
486                            struct rte_mbuf *mbuf)
487 {
488         uint32_t cfa_code = 0;
489         uint8_t meta_fmt = 0;
490         uint16_t flags2 = 0;
491         uint32_t meta =  0;
492
493         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
494         if (!cfa_code)
495                 return;
496
497         if (cfa_code && !bp->mark_table[cfa_code].valid)
498                 return;
499
500         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
501         meta = rte_le_to_cpu_32(rxcmp1->metadata);
502         if (meta) {
503                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
504
505                 /* The flags field holds extra bits of info from [6:4]
506                  * which indicate if the flow is in TCAM or EM or EEM
507                  */
508                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
509                            BNXT_CFA_META_FMT_SHFT;
510
511                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
512                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
513                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
514                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
515                  */
516                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
517         }
518
519         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
520         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
521 }
522
523 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
524                             struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
525 {
526         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
527         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
528         struct rx_pkt_cmpl *rxcmp;
529         struct rx_pkt_cmpl_hi *rxcmp1;
530         uint32_t tmp_raw_cons = *raw_cons;
531         uint16_t cons, prod, cp_cons =
532             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
533         struct rte_mbuf *mbuf;
534         int rc = 0;
535         uint8_t agg_buf = 0;
536         uint16_t cmp_type;
537         uint32_t flags2_f = 0;
538         uint16_t flags_type;
539         struct bnxt *bp = rxq->bp;
540
541         rxcmp = (struct rx_pkt_cmpl *)
542             &cpr->cp_desc_ring[cp_cons];
543
544         cmp_type = CMP_TYPE(rxcmp);
545
546         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
547                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
548                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
549                 struct bnxt_tpa_info *tpa_info;
550
551                 tpa_info = &rxr->tpa_info[agg_id];
552                 RTE_ASSERT(tpa_info->agg_count < 16);
553                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
554                 rc = -EINVAL; /* Continue w/o new mbuf */
555                 goto next_rx;
556         }
557
558         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
559         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
560         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
561
562         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
563                 return -EBUSY;
564
565         cpr->valid = FLIP_VALID(cp_cons,
566                                 cpr->cp_ring_struct->ring_mask,
567                                 cpr->valid);
568
569         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
570                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
571                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
572                 rc = -EINVAL; /* Continue w/o new mbuf */
573                 goto next_rx;
574         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
575                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
576                                    (struct rx_tpa_end_cmpl *)rxcmp,
577                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
578                 if (unlikely(!mbuf))
579                         return -EBUSY;
580                 *rx_pkt = mbuf;
581                 goto next_rx;
582         } else if (cmp_type != 0x11) {
583                 rc = -EINVAL;
584                 goto next_rx;
585         }
586
587         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
588                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
589         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
590                 return -EBUSY;
591
592         prod = rxr->rx_prod;
593
594         cons = rxcmp->opaque;
595         mbuf = bnxt_consume_rx_buf(rxr, cons);
596         if (mbuf == NULL)
597                 return -EBUSY;
598
599         rte_prefetch0(mbuf);
600
601         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
602         mbuf->nb_segs = 1;
603         mbuf->next = NULL;
604         mbuf->pkt_len = rxcmp->len;
605         mbuf->data_len = mbuf->pkt_len;
606         mbuf->port = rxq->port_id;
607         mbuf->ol_flags = 0;
608
609         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
610         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
611                 mbuf->hash.rss = rxcmp->rss_hash;
612                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
613         }
614
615         if (BNXT_TRUFLOW_EN(bp))
616                 bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
617         else
618                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
619
620 #ifdef RTE_LIBRTE_IEEE1588
621         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
622                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
623                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
624                 bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder);
625         }
626 #endif
627         if (agg_buf)
628                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
629
630         if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
631                 mbuf->vlan_tci = rxcmp1->metadata &
632                         (RX_PKT_CMPL_METADATA_VID_MASK |
633                         RX_PKT_CMPL_METADATA_DE |
634                         RX_PKT_CMPL_METADATA_PRI_MASK);
635                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
636         }
637
638         flags2_f = flags2_0xf(rxcmp1);
639         /* IP Checksum */
640         if (likely(IS_IP_NONTUNNEL_PKT(flags2_f))) {
641                 if (unlikely(RX_CMP_IP_CS_ERROR(rxcmp1)))
642                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
643                 else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
644                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
645                 else
646                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
647         } else if (IS_IP_TUNNEL_PKT(flags2_f)) {
648                 if (unlikely(RX_CMP_IP_OUTER_CS_ERROR(rxcmp1) ||
649                              RX_CMP_IP_CS_ERROR(rxcmp1)))
650                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
651                 else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
652                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
653                 else
654                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
655         }
656
657         /* L4 Checksum */
658         if (likely(IS_L4_NONTUNNEL_PKT(flags2_f))) {
659                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
660                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
661                 else
662                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
663         } else if (IS_L4_TUNNEL_PKT(flags2_f)) {
664                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
665                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
666                 else
667                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
668                 if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
669                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
670                 } else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
671                                     (flags2_f))) {
672                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
673                 } else {
674                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
675                 }
676         } else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
677                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
678         }
679
680         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
681
682 #ifdef BNXT_DEBUG
683         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
684                 /* Re-install the mbuf back to the rx ring */
685                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
686
687                 rc = -EIO;
688                 goto next_rx;
689         }
690 #endif
691         /*
692          * TODO: Redesign this....
693          * If the allocation fails, the packet does not get received.
694          * Simply returning this will result in slowly falling behind
695          * on the producer ring buffers.
696          * Instead, "filling up" the producer just before ringing the
697          * doorbell could be a better solution since it will let the
698          * producer ring starve until memory is available again pushing
699          * the drops into hardware and getting them out of the driver
700          * allowing recovery to a full producer ring.
701          *
702          * This could also help with cache usage by preventing per-packet
703          * calls in favour of a tight loop with the same function being called
704          * in it.
705          */
706         prod = RING_NEXT(rxr->rx_ring_struct, prod);
707         if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
708                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
709                 rc = -ENOMEM;
710                 goto rx;
711         }
712         rxr->rx_prod = prod;
713         /*
714          * All MBUFs are allocated with the same size under DPDK,
715          * no optimization for rx_copy_thresh
716          */
717 rx:
718         *rx_pkt = mbuf;
719
720 next_rx:
721
722         *raw_cons = tmp_raw_cons;
723
724         return rc;
725 }
726
727 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
728                                uint16_t nb_pkts)
729 {
730         struct bnxt_rx_queue *rxq = rx_queue;
731         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
732         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
733         uint32_t raw_cons = cpr->cp_raw_cons;
734         uint32_t cons;
735         int nb_rx_pkts = 0;
736         struct rx_pkt_cmpl *rxcmp;
737         uint16_t prod = rxr->rx_prod;
738         uint16_t ag_prod = rxr->ag_prod;
739         int rc = 0;
740         bool evt = false;
741
742         if (unlikely(is_bnxt_in_error(rxq->bp)))
743                 return 0;
744
745         /* If Rx Q was stopped return */
746         if (unlikely(!rxq->rx_started ||
747                      !rte_spinlock_trylock(&rxq->lock)))
748                 return 0;
749
750         /* Handle RX burst request */
751         while (1) {
752                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
753                 rte_prefetch0(&cpr->cp_desc_ring[cons]);
754                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
755
756                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
757                         break;
758                 cpr->valid = FLIP_VALID(cons,
759                                         cpr->cp_ring_struct->ring_mask,
760                                         cpr->valid);
761
762                 /* TODO: Avoid magic numbers... */
763                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
764                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
765                         if (likely(!rc) || rc == -ENOMEM)
766                                 nb_rx_pkts++;
767                         if (rc == -EBUSY)       /* partial completion */
768                                 break;
769                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
770                         evt =
771                         bnxt_event_hwrm_resp_handler(rxq->bp,
772                                                      (struct cmpl_base *)rxcmp);
773                         /* If the async event is Fatal error, return */
774                         if (unlikely(is_bnxt_in_error(rxq->bp)))
775                                 goto done;
776                 }
777
778                 raw_cons = NEXT_RAW_CMP(raw_cons);
779                 if (nb_rx_pkts == nb_pkts || evt)
780                         break;
781                 /* Post some Rx buf early in case of larger burst processing */
782                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
783                         bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
784         }
785
786         cpr->cp_raw_cons = raw_cons;
787         if (!nb_rx_pkts && !evt) {
788                 /*
789                  * For PMD, there is no need to keep on pushing to REARM
790                  * the doorbell if there are no new completions
791                  */
792                 goto done;
793         }
794
795         if (prod != rxr->rx_prod)
796                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
797
798         /* Ring the AGG ring DB */
799         if (ag_prod != rxr->ag_prod)
800                 bnxt_db_write(&rxr->ag_db, rxr->ag_prod);
801
802         bnxt_db_cq(cpr);
803
804         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
805         if (rc == -ENOMEM) {
806                 int i = RING_NEXT(rxr->rx_ring_struct, prod);
807                 int cnt = nb_rx_pkts;
808
809                 for (; cnt;
810                         i = RING_NEXT(rxr->rx_ring_struct, i), cnt--) {
811                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
812
813                         /* Buffer already allocated for this index. */
814                         if (rx_buf->mbuf != NULL)
815                                 continue;
816
817                         /* This slot is empty. Alloc buffer for Rx */
818                         if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
819                                 rxr->rx_prod = i;
820                                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
821                         } else {
822                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
823                                 break;
824                         }
825                 }
826         }
827
828 done:
829         rte_spinlock_unlock(&rxq->lock);
830
831         return nb_rx_pkts;
832 }
833
834 /*
835  * Dummy DPDK callback for RX.
836  *
837  * This function is used to temporarily replace the real callback during
838  * unsafe control operations on the queue, or in case of error.
839  */
840 uint16_t
841 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
842                      struct rte_mbuf **rx_pkts __rte_unused,
843                      uint16_t nb_pkts __rte_unused)
844 {
845         return 0;
846 }
847
848 void bnxt_free_rx_rings(struct bnxt *bp)
849 {
850         int i;
851         struct bnxt_rx_queue *rxq;
852
853         if (!bp->rx_queues)
854                 return;
855
856         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
857                 rxq = bp->rx_queues[i];
858                 if (!rxq)
859                         continue;
860
861                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
862                 rte_free(rxq->rx_ring->rx_ring_struct);
863
864                 /* Free the Aggregator ring */
865                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
866                 rte_free(rxq->rx_ring->ag_ring_struct);
867                 rxq->rx_ring->ag_ring_struct = NULL;
868
869                 rte_free(rxq->rx_ring);
870
871                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
872                 rte_free(rxq->cp_ring->cp_ring_struct);
873                 rte_free(rxq->cp_ring);
874
875                 rte_free(rxq);
876                 bp->rx_queues[i] = NULL;
877         }
878 }
879
880 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
881 {
882         struct bnxt_cp_ring_info *cpr;
883         struct bnxt_rx_ring_info *rxr;
884         struct bnxt_ring *ring;
885
886         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
887
888         rxr = rte_zmalloc_socket("bnxt_rx_ring",
889                                  sizeof(struct bnxt_rx_ring_info),
890                                  RTE_CACHE_LINE_SIZE, socket_id);
891         if (rxr == NULL)
892                 return -ENOMEM;
893         rxq->rx_ring = rxr;
894
895         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
896                                    sizeof(struct bnxt_ring),
897                                    RTE_CACHE_LINE_SIZE, socket_id);
898         if (ring == NULL)
899                 return -ENOMEM;
900         rxr->rx_ring_struct = ring;
901         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
902         ring->ring_mask = ring->ring_size - 1;
903         ring->bd = (void *)rxr->rx_desc_ring;
904         ring->bd_dma = rxr->rx_desc_mapping;
905         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
906         ring->vmem = (void **)&rxr->rx_buf_ring;
907
908         cpr = rte_zmalloc_socket("bnxt_rx_ring",
909                                  sizeof(struct bnxt_cp_ring_info),
910                                  RTE_CACHE_LINE_SIZE, socket_id);
911         if (cpr == NULL)
912                 return -ENOMEM;
913         rxq->cp_ring = cpr;
914
915         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
916                                    sizeof(struct bnxt_ring),
917                                    RTE_CACHE_LINE_SIZE, socket_id);
918         if (ring == NULL)
919                 return -ENOMEM;
920         cpr->cp_ring_struct = ring;
921         ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size *
922                                           (2 + AGG_RING_SIZE_FACTOR));
923         ring->ring_mask = ring->ring_size - 1;
924         ring->bd = (void *)cpr->cp_desc_ring;
925         ring->bd_dma = cpr->cp_desc_mapping;
926         ring->vmem_size = 0;
927         ring->vmem = NULL;
928
929         /* Allocate Aggregator rings */
930         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
931                                    sizeof(struct bnxt_ring),
932                                    RTE_CACHE_LINE_SIZE, socket_id);
933         if (ring == NULL)
934                 return -ENOMEM;
935         rxr->ag_ring_struct = ring;
936         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
937                                           AGG_RING_SIZE_FACTOR);
938         ring->ring_mask = ring->ring_size - 1;
939         ring->bd = (void *)rxr->ag_desc_ring;
940         ring->bd_dma = rxr->ag_desc_mapping;
941         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
942         ring->vmem = (void **)&rxr->ag_buf_ring;
943
944         return 0;
945 }
946
947 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
948                             uint16_t len)
949 {
950         uint32_t j;
951         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
952
953         if (!rx_bd_ring)
954                 return;
955         for (j = 0; j < ring->ring_size; j++) {
956                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
957                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
958                 rx_bd_ring[j].opaque = j;
959         }
960 }
961
962 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
963 {
964         struct bnxt_rx_ring_info *rxr;
965         struct bnxt_ring *ring;
966         uint32_t prod, type;
967         unsigned int i;
968         uint16_t size;
969
970         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
971         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
972
973         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
974
975         rxr = rxq->rx_ring;
976         ring = rxr->rx_ring_struct;
977         bnxt_init_rxbds(ring, type, size);
978
979         prod = rxr->rx_prod;
980         for (i = 0; i < ring->ring_size; i++) {
981                 if (unlikely(!rxr->rx_buf_ring[i].mbuf)) {
982                         if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
983                                 PMD_DRV_LOG(WARNING,
984                                             "init'ed rx ring %d with %d/%d mbufs only\n",
985                                             rxq->queue_id, i, ring->ring_size);
986                                 break;
987                         }
988                 }
989                 rxr->rx_prod = prod;
990                 prod = RING_NEXT(rxr->rx_ring_struct, prod);
991         }
992
993         ring = rxr->ag_ring_struct;
994         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
995         bnxt_init_rxbds(ring, type, size);
996         prod = rxr->ag_prod;
997
998         for (i = 0; i < ring->ring_size; i++) {
999                 if (unlikely(!rxr->ag_buf_ring[i].mbuf)) {
1000                         if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
1001                                 PMD_DRV_LOG(WARNING,
1002                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1003                                             rxq->queue_id, i, ring->ring_size);
1004                                 break;
1005                         }
1006                 }
1007                 rxr->ag_prod = prod;
1008                 prod = RING_NEXT(rxr->ag_ring_struct, prod);
1009         }
1010         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1011
1012         if (rxr->tpa_info) {
1013                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1014
1015                 for (i = 0; i < max_aggs; i++) {
1016                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1017                                 rxr->tpa_info[i].mbuf =
1018                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1019                                 if (!rxr->tpa_info[i].mbuf) {
1020                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1021                                         return -ENOMEM;
1022                                 }
1023                         }
1024                 }
1025         }
1026         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1027
1028         return 0;
1029 }